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Abstract 10 

Uncertainty is an inherent, unavoidable feature in the modeling of natural processes. This is particularly a 11 

sensitive issue when dealing with forecasting, especially in the context of climate change impacts. Apart from 12 

the uncertainty introduced by different climate projections, additional sources of uncertainty appear in the 13 

analysis of rainfall-runoff and associated prediction of water discharge changes due to climate change models, 14 

input information in calibration steps, regionalization, parameter choices, and downscaling techniques, among 15 

others. In this study, we focus on the uncertainty introduced by various set of parameters in the 21st century 16 

projections of runoff for two large river basins: the Rhine river in Europe, and the Ganges in Asia. To estimate 17 

the relative impact of parameter-induced uncertainty, various scenarios are compared with those given by 18 

general circulation models (GCM) and climate change emission scenarios (Representative Concentration 19 

Pathways, RCP). We apply a robust parameter estimation optimization algorithm ROPE to account for the 20 

uncertainty in a quasi-optimum parameter set choice. A total of 1,000 well performed parameter sets are 21 

analyzed for this purpose. Also, two hydrological models are used to test the impact of model conception. The 22 

analysis of the ensemble of projected discharge suggests that the parameter uncertainty is strongly related to 23 

model complexity in both basins considering the best one thousand performing sets. The contribution to 24 

uncertainty of parameter sets for the Ganges is rather stable in time and comparatively small for the periods 25 

2006 to 2035, 2036 to 2065 and 2070 to 2099. Major differences are attributable to GCMs ranging from 60% 26 

to 80% followed by RCPs in the range 12-30%, whereas parameter differences account for 3-8%. Results for 27 

the Rhine are more heterogeneous and change over time, with increasing importance of GCM/RCPs toward 28 

the end of the century. The major differences are also observed in the GCM outcomes representing a proportion 29 

of 49-77% in contrast to 11-40% of model parametrization (parameter sets).  30 
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1. Introduction 48 

 49 

Mathematical representation and state representation at a given time of a natural phenomenon that allow a precise 50 

description and detailed picture of the phenomenon is not possible. In the context of hydrological modelling, 51 

several sources of errors and uncertainties have been identified. Although there are various classifications, the 52 

main sources of predictive uncertainty can be divided according to input uncertainty, state uncertainty, process 53 

abstraction-related uncertainty, model structure uncertainty and output uncertainty (Götzinger and Bárdossy, 54 

2008). In spite of their role, addressing their relative contribution to the final predictive uncertainty is far from 55 

being trivial. Furthermore, predictive uncertainty is often partially assessed as the best model state, evaluated with 56 

defined goodness-of-fit metrics (Singh and Woolhiser, 2002). Isolating source of errors and quantifying their 57 

contribution to the overall predictive uncertainty has been matter of various efforts (Kavetski et al., 2003; Schaefli 58 

et al., 2007). This can be significant when future statements are pursued, and a certain confidence is expected.  59 

Several researchers have investigated uncertainty for climate change projections. Efforts have been placed in 60 

various aspects including input data uncertainties in the process of calibration and validation, downscaling related 61 

uncertainties, general circulation models (GCMs) and rainfall-runoff models, among others. The object of analysis 62 

can affect the impact on mean discharge values, flood frequency, extreme values or drought characteristics. Teng 63 

et al., 2011 for example assessed the relative uncertainties in modeling climate change impact on runoff across 64 
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southeast Australia given by GCMs and rainfall-runoff models. Their results showed that uncertainty sourced from 65 

the GCMs is much larger than the uncertainty in the rainfall-runoff models. The contribution of various sources of 66 

uncertainty have also been investigated by Exbrayat et al., 2014 for a remote and data-sparse catchment in Ecuador. 67 

There, the contribution of differences between model structures to the total uncertainty was found to be similar 68 

compared to GCM and emission scenarios for discharge simulations. Harding et al., 2012 investigated the impact 69 

of future climate conditions using a multi-model ensemble approach from 16 GCMs in the Upper Colorado River 70 

Basin. They found that the impact of projected 21th century climate conditions on streamflow ranges from a 71 

decrease of approximately 30% to an increase of similar magnitude.   Jung and Chang, 2011 studied runoff trends 72 

under multiple climate change scenarios consisting of 8 GCMs and 2 emission scenarios, and the effects of 73 

elevation and geological characteristics on uncertainty. Some of their results showed that long-term trends of water 74 

balance components in the Willamette River Basin can be highly affected by anthropogenic climate change.   75 

The parameter uncertainty has been a topical subject in rainfall-runoff modeling in the last decades (Beven and 76 

Binley, 1992), especially in the context of climate change. For example, Wilby, 2005, analyzed the uncertainty 77 

related to model parameter for climate change impact assessments in the River Thames, UK. He explored the 78 

effect of the non-uniqueness of parameters on projections using hydrological model CATCHMOD. Uncertainty in 79 

future river flows was explored using the 100 best performing parameter sets generated by Monte Carlo simulation.  80 

Wilby and Harris, 2006, presented a probabilistic approach for combining sources of uncertainties such as emission 81 

scenario, GCM, downscaling techniques, parameter model parameters and model structure for the River Thames 82 

and low-flow scenarios. Uncertainty due to parameter choice was addressed by using two sets and found that low-83 

flow cumulative distribution functions are most sensitive to uncertainty in the climate change scenarios and 84 

downscaling of different GCMs.  85 

Overall, quantification of uncertainty has been a major topic in hydrology, where substantial effort have been 86 

placed into their effects in climate change scenarios. The contribution of the different uncertainty sources or the 87 

main sources remains as an outstanding open problem, where case-dependent characterization appears be the most 88 

appropriate approach. Addressing all potential uncertainty sources is far from the scope of most or possibly all 89 

research studies we can find in the literature.  90 

While the major uncertainty sources have been attributed to GCMs in the aforementioned studies, other 91 

investigations have arrived to different conclusions. For example, Haddeland et al., 2011 used a multimodel 92 

approach for models intercomparison and showed that major source of uncertainty are due to considerable 93 

differences in simulated runoff between models. They pointed that studies of climate change impacts should not 94 
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be based on a single model. Nonetheless, Uncertainty in rainfall-runoff modeling can be caused by both model 95 

structure and parameters (Teng et al., 2011). 96 

In this study, we investigate the effect of various sets of parameters on the projected discharge of Rhine at Lobith 97 

located in Europe and Ganges at Farakka located in Asia for the periods 2006-2035, 2036-2065, and 2070-2099. 98 

We apply a robust parameter optimization algorithm (ROPE) to generate a large number (n=1,000) of well 99 

performing parameter sets for each instance. We address the influence of model structures/complexity on these 100 

projections by using two state-of-the-art hydrological models. First, we calibrate and validate against observed 101 

discharge. Then, we use climate projections from five GCMs driven by four Representative Concentration 102 

Pathways (RCPs) emission scenarios for the 21st century. GCMs chosen here present ranges of uncertainties in 103 

projections of annual temperature and precipitation comparable with all of CMIP5 models (see protocol-report on 104 

www.isimip.org).    105 

 106 

 107 

2. Material and methods 108 

 109 

2.1 Study areas and available data 110 

 111 

Main features of the Rhine River at Lobith’s and the Ganges at Farakka’s basins can be found in the introductory 112 

paper of the Inter-Sectoral Impact Model Intercomparison Project Phase 2 ISI-MIP2 (Krysanova and Hattermann, 113 

2016). The WATCH forcing dataset is used to calibrate and validate the hydrological models. It is based on the 114 

40-yr ECMWF Re-Analysis (ERA-40) and reordered reanalysis data for 1958-2001 and 1901-1951, respectively. 115 

The dataset contain several climatological variables including air temperature, rainfall rate, specific humidity, 116 

amongst others, which are regularly distributed grids with 0.5 degree resolution. For details on WATCH and ERA-117 

40 refer to Weedon et al., 2011 and Uppala et al., 2005. 118 

Climate change scenario data are based on five GCMs participating in the Coupled Model Intercomparison Project 119 

Phase 5 (Taylor et al., 2012): HadGEM2-ES, IPSL CM5A-LR, MIROC-ESM-CHEM, GFDL-ESM2M, and 120 

NorESM1-M. These models are based on a set of different scenarios accounting for anthropogenic fossil-fuel 121 

emissions as well as land use and land cover change. We use 20 combinations consisting of five GCMs and four 122 

representative concentration pathways (RCP2.6, RCP4.5, RCP6.0 and RCP8.5) scenarios; last identified by the 123 

approximate gain in radiative forcing in year 2100 mostly due to human emissions of greenhouse gases compared 124 
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to the baseline level in 1750 (IPCC 2013). These climate projections were downscaled and bias corrected following 125 

Hempel et al., 2013. 126 

 127 

 128 

2.2 Hydrological models  129 

 130 

Parameter values affect the outcomes of a model. This may induce not negligible variations of the simulated 131 

discharges. In order to account for this effect, two conceptual hydrological models, namely HBV and HYMOD 132 

are used to evaluate this interdependence. A large number of robust parameter sets (see section 2.3) is search for 133 

and the variations in the simulations is compared for each model.  134 

The semi-distributed HVB model is a rainfall-runoff type originally developed  by the Swedish Meteorological 135 

and Hydrological Institute (SMHI) (Bergström, 1995; Lindström et al., 1997). This conceptually based model 136 

comprises routines for calculating snow accumulation and melt, soil moisture, and runoff generation as a function 137 

of soil water content and infiltration rates, runoff concentration and discharge flood routing within the river 138 

network. Our HBV version uses modified components; for example, the incorporation of a new parameter in the 139 

degree-day factor for accounting additional energy available in rainwater at positive temperatures, and a non-140 

linearity of the rainfall-runoff proportion expressed by a power-law relationship. Details can be found in  Hundecha 141 

and Bárdossy, 2004, and  Hundecha Hirpa, 2005.  142 

The HYMOD is a relatively simpler conceptual rainfall-runoff model defined by two components, namely the 143 

rainfall excess (two parameters) and two series of linear reservoirs (three parameters) arranged in parallel. The 144 

first reservoir represents a quick response and the second one a slow response. The version used here also considers 145 

a snow routing routine as in the HBV model. Details can be found in Moore, 1985, Boyle et al., 2001 and Wagener 146 

et al., 2001. 147 

 148 

 149 

2.3 Robust Parameter Estimation 150 

 151 

Robust Parameter Estimation (ROPE) optimization procedure is performed to get an estimation of the uncertainty 152 

in the expected discharge variation due to parameter choice. The analysis of geometrical properties of parameter 153 

sets is key. It has been investigated by Bárdossy, 2007 in a 2D case showing a well-defined structure of the sets. 154 
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Later, Bárdossy and Singh, 2008, Singh, 2010, investigated these properties in a hydrological modeling framework 155 

in higher dimensions.  The parameter search aims to find robust sets that have important features such as good 156 

model performance in the selected period, a reasonable representation of the modelled processes, small sensitivity 157 

and transferability to other time periods. This was investigated in detail by Bárdossy and Singh, 2008. However, 158 

to the best of our knowledge a robust parameter estimation has not been performed to generate an ensemble of 159 

well-performing parameter sets in the scope of climate change uncertainty assessment. Hereafter, we briefly 160 

describe the ROPE algorithm and the underlying calculations of parameter depth, the key concept in the search of 161 

optimum parameter sets.  162 

 163 

 164 

Depth function 165 

 166 

The depth function was first introduced by Tukey, 1975, as a measure of centrality of a data set within a population 167 

set in a multi-dimensional space. Let x be a vector from a set S such that 𝒙 ∈ 𝑺, and 𝑺 ⊆ 𝑅𝑝. A depth function is 168 

defined as: 169 

𝐷: 𝑅𝑝 → 𝑅 170 

{𝒙 ∈ 𝑅𝑝} → 𝑦 171 

in which to each vector 𝒙,  a number (depth) y is associated so that an ordering of 𝒙 ∈ 𝑆 in the center-outward 172 

direction is defined. It can be seen as a quantitative measure of how central a vector is located when compared 173 

with a given vector set. Several definitions of depth function have been proposed; for example, Liu, 1990 indicated  174 

non-negativeness and a bounded domain as a prerequisite to be fulfilled. Others include Affine invariance, 175 

maximality at center, monotonicity relative to deepest point and vanishing at infinite (Zuo and Serfling, 2000). 176 

From the listed properties follow that the data lying in the vicinity of the center of the cloud have a high depth 177 

value; conversely, those located far from the center have a low depth value. More details can be found in Donoho 178 

and Gasko, 1992, Miller et al., 2003. Others depth functions include the L1 depth ((Hugg et al., 2006), Oja median 179 

(Oja, 1983), Convex Hull Peeling (Barnett, 1976; Liu et al., 1999), Likelihood-based depth functions (Fraiman et 180 

al., 1997) and a method for constructing individual depth functions (Vardi and Zhang, 2000). 181 

 182 

 183 

Halfspace depth function 184 
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 185 

Tukey, 1975, proposed the halfspace depth function as a kind of generalization in the multivariate space of the 186 

univariate rank (order statistics). The depth of a point 𝒑 = {𝑝𝑖}𝑖=1
𝑑  in dimensional space d with respect to a finite 187 

set X is defined as the minimum number of points in X lying on one side of a hyperplane though the point p. 188 

Considering all possible directions for the hyperplane given by its unit normal vector the minimum is then 189 

calculated, and mathematically expressed as:   190 

 191 

𝐷𝒙(𝒑) = 𝑚𝑖𝑛𝒏𝒉
(𝑚𝑖𝑛(|{𝒙 ∈ 𝑿, 〈𝒏𝒉, 𝒙 − 𝒑〉 > 0}|), (|{𝒙 ∈ 𝑿, 〈𝑛ℎ, 𝒙 − 𝒑〉 < 0}|))                       (1)                           192 

 193 

In this equation 〈𝜶, 𝜷〉 and 𝒏𝒉 represent the scalar product and an arbitrary unit vector of a selected hyperplane so 194 

that 𝒏𝒉 ∈ 𝑅𝒅. The dimension of the space is denoted by d. The scalar product represents the projection of the 195 

vector (𝒙 − 𝒑) onto the unit vector 𝒏𝒉. It can be shown  that this depth function satisfies all properties listed in the 196 

previous point (Zuo and Serfling, 2000). In this study, the calculation of the depth is based on that suggested by 197 

Rousseeuw and Struyf, 1998, which is an approximate estimation of the location depth, especially appropriate 198 

when dealing with large data sets or a high-dimension parameter space (number of parameters).   199 

 200 

 201 

ROPE algorithm 202 

 203 

As suggested by Bárdossy and Singh, 2008, the following optimization procedure is used to find a set of good 204 

performing and deep parameter vectors for robustness in the modelling step. Given the dimension of the parameter 205 

vector d, 206 

 207 

1. Identify the limits for the d selected parameters. 208 

2. Generate n random parameter vectors conforming the set 𝑿𝒏 = {𝜽𝟏, … , 𝜽𝒏}, 𝜽𝒋 ∈ 𝑹𝒅, 𝑗 = 1, … 𝑛. The 209 

limits are those defined in 1 210 

3. Run the hydrological model For each parameter vector 𝜽𝒊 ∈ 𝑿𝑛, and calculate the performances of the 211 

model {𝑔𝜃𝑖
}

𝑖=1

𝑛
. 212 

4. Define a new set 𝑿𝑚 containing the m-parameter vectors with the best performance. The number of the 213 

m selected vectors can be for example the 10% of best performing vectors from 𝑿𝒏. 214 
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5. Generate a set of p new random vectors 𝒀𝑝 such that  215 

𝒀𝑝 = {𝜽𝟏, … , 𝜽𝒑/𝐷(𝜽𝒊) ≥ 𝐿, 𝑖 = 1, … , 𝑝} 216 

In this step, the depth 𝐷(𝜽) is calculated with respect to the set  𝑿𝑚defined in the previous step. 217 

6. Relabel the constructed vector set 𝒀𝑝 as 𝑿𝑛 and repeat the procedure from point 3 218 

 219 

As expected, for increased number of iterations in step 3, the run time involved in each step also increases. 220 

Consequently, the algorithm can be stopped when the performance of two consecutive simulation steps does not 221 

differ more than expected from the observation errors (Bárdossy and Singh, 2008). Note that it depends on specific 222 

factors such as the amount of data (range of the period used for calibration and validation); the entire process may 223 

be computationally expensive. Here, the performance of the parameters plays also an important role in the required 224 

iterations. 225 

  226 

 227 

2.4 Experimental setup 228 

 229 

Uncertainty in model projections due to good performing robust parameter vectors is based on the 𝑛𝑜𝑝𝑡 = 1000 230 

parameters from the last iteration of ROPE showing the best performance. The commonly-used Nash-Sutcliffe 231 

function was chosen (Nash and Sutcliffe, 1970) as objective function for model evaluation. The initial number of 232 

parameter vectors randomly generated is set to 𝑛0 = 100,000; each parameter having plausible lower and upper 233 

limits previously defined. The number of best performing parameter vectors after running the model is set to 𝑚 =234 

1,000. Finally 𝑛𝑝 = 5,000 number of vectors are generated in each iteration through Monte Carlo Simulations 235 

constrained to depth>1 (eq.1). Parameter related uncertainty is calculated based on the range of projected discharge 236 

out of this final set.   237 

As pointed, the effect on this uncertainty due to model structure is analyzed comparing the hydrologic simulation 238 

given by the two hydrological models HBV and HYMOD. Effects of GCMs and RCPs on the parameter 239 

uncertainty are also included in this analysis. An ensemble of simulations is performed for each basin considering 240 

one GCM and one RCP. A set of 20 combinations is compared for HBV and HYMOD, and for the two basins 241 

Rhine and Ganges. Finally, we summarize the relative contribution of parameter sets, rainfall-runoff model and 242 

GCM choice to the overall uncertainty. 243 
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 245 

3 Results and discussion 246 

 247 

3.1 Optimization results 248 

 249 

An iteration traduces in a set of better performing parameter sets. This can be easily observed by comparing the 250 

distribution of the set performance step by step. Figure 1 shows the histograms for the two models HBV and 251 

HYMOD and for the two basins, Rhine and Ganges. Each histogram is built out of  5,000 parameter sets generated 252 

so that depth>1 (eq. 1). The subplots include the histograms of three consecutive iterations showing the evolution 253 

of the parameter set performance. It is observed that the mean value as well as the spread in each iteration varies 254 

significantly. The range for the objective function evaluation corresponding to the last iteration involving selected 255 

best 𝑛𝑜𝑝𝑡 = 1,000 vectors used for simulations varies from  𝑁𝑆 = 0.845 to 𝑁𝑆 = 0.867 for HBV and from  𝑁𝑆 =256 

0.70 to 𝑁𝑆 = 0.79 for HYMOD. Performances show a larger spread for the Rhine basin from standard deviation  257 

𝑠𝑡𝑑 = 0.012 to 𝑠𝑡𝑑 = 0.016 in contrast to Ganges with limits 𝑠𝑡𝑑 = 0.004 and 𝑠𝑡𝑑 = 0.006. Statistics as the 258 

mean, minimum and maximum values for the best n=1000 performing final sets are summarized in table 1.  259 

 260 

 261 

3.2 Parameter related uncertainty in future projections  262 

 263 

The prime focus of this study is on the quantification parameter uncertainty has in future discharge projections. A 264 

large number (n=1,000) well performing parameter sets derived from the last iteration of ROPE are used to draw 265 

the range/uncertainty out of all possible simulated discharge for each basin and model. We consider the 90% 266 

confidence interval of the simulated discharge curves for the three defined time periods.  267 

The analysis reveals differences depending on the model used and region under consideration. When comparing 268 

parameter uncertainty contrasting HBV and HYMOD, uncertainty associated to HBV is smaller than that observed 269 

by HYMOD in terms of the mean values. This occurs in both the Rhine and the Ganges basins. While HBV shows 270 

expected uncertainties of  d = 4.67% and d = 1.69% for Rhine and Ganges respectively, HYMOD present 271 

uncertainties of d = 5.389% and d = 6.921%. Analyzing results given by HBV model, uncertainty might be 272 

considered not significant when compared with differences given by other sources such as GCMs. This is clear in 273 

the case of Ganges in which parameter associated uncertainty shows a significant smaller mean value in the 274 
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projection range (about 1/3 of that corresponding to Rhine with a magnitude of 1.69% in the complete period). 275 

The simpler model HYMOD shows more uncertainty attributed to parameter choice in both analyzed regions, 276 

although the difference between them is not as accentuated as for HBV in terms of mean values. This suggests the 277 

effect that model structures have on the expected parameter related uncertainties: A more-complex structure yield 278 

to a smaller uncertainty estimation. Same conclusion has been pointed in others studies from other regions. Wilby, 279 

2005, found that uncertainty in projected river flows changes in Thames basin, UK was more significant in simpler 280 

model structures (comparable to emission scenarios uncertainties) than those from more-complex model 281 

structures. The analysis was based on Monte Carlo simulations by randomly generating parameter values, and 282 

considering the best 100 performing sets for analysis. Considering two sets of hydrological models parameters, 283 

Wilby and Harris, 2006, analyzed Low-flow scenarios for the River Thames and found the uncertainties less 284 

important than those given by GCMs.  285 

The difference in the projected uncertainties has impacts on the contribution to the total uncertainty, as showed in 286 

the next section. Inter-period comparisons considering one RCP separately also present differences, but in general 287 

(with some exceptions, e.g. RCP8.5 and period 2006-2035) they do not exhibit important differences. Figure 2 288 

shows the associated parameter related uncertainties for both impact models and the two regions in the whole 289 

period of analysis (2006-2099). It can be shown that the time periods present similar behavior. Each case consider 290 

n=1,000 well-performing parameter sets found in the optimization step. Each boxplot summarize the calculated 291 

uncertainties for each of the five GCMs and four RCPs comprising a set of 20 points.  Each point of each boxplot 292 

refers to the uncertainty out of 1000 parameter sets for a certain and single GCM and RCP. 293 

 294 

 295 

3.3 Quantifying the contribution of hydrological models and GCMs to future projection discrepancies 296 

 297 

It is acknowledged that GCMs may have a major impact on the projections relative to other sources; for example 298 

rainfall-runoff models in different environments. Teng et al., 2011 showed this in a dry condition, while Chen et 299 

al., 2011, in a snow-dominated area. Recently, Exbrayat et al., 2014, analyzed the uncertainty given by seven 300 

hydrological models in terms of the relative contribution to the total range of projections. In a context with limited 301 

historical calibration data, they found that differences in projections given by different hydrological model 302 

structures may be comparable to GCMs for two SRES scenarios in the near-future. Also, the climate projections 303 

uncertainties grew toward the end of the 21st century. Although we use less (n = 5) GCMs compared to Exbrayat 304 
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et al. (2014), it is observed that they nevertheless dominate the differences in projections in the context of our 305 

study, as shown in Figures 3 and 4.  306 

Here, we analyze the spread of the differences in projections out of GCMs choice and two hydrological models, 307 

and calculate the relative contribution of hydrological models and GCMs to the overall range in the projections. 308 

Projections are calculated by means of a single optimum parameter set calculated for each GCM and hydrological 309 

model, as a part of the Inter-Sectoral Impact Model Intercomparison Project Phase 2 ISI-MIP2 (Krysanova and 310 

Hattermann, 2016).   We also consider the previously defined five GCMs, the four RCPs as well as the three 311 

defined periods independently to disaggregate the effects. Uncertainty given by model parametrization is included 312 

in the final results to provide a general view.  313 

As expected, results indicate that the major contribution to differences is given by GCMs independently of the 314 

RCP and period under consideration. This has been suggested by several authors in the analysis of different 315 

regions. Using a multi-model ensemble consisting of 112 future climate projections from 16 GCMs, Harding et 316 

al., 2012 showed that the effect of different scenarios on projected streamflow changes is small relative to the 317 

effect of GCMs in the Upper Colorado River Basin.  However, our study suggests that this relative contribution is 318 

case dependent. The projection divergences for the Rhine river, with exception of the first period of RCP4.5 and 319 

RCP8.5, is largely explained by GCMs, with a minimum of round 50%. For the Ganges, the minimum value 320 

(contribution) is roughly 70%, which indicates that GCMs explain divergences in large part for both regions. The 321 

maximum expected differences do not differ significantly with each other; they are 78.1% and to 83.9% for the 322 

Rhine and Ganges. These results are in agreement when considering the expected uncertainty contribution as a 323 

function of time (period), which occurs in the mid-century (2036-2065) in both regions. The dependency 324 

difference-Region found here has also been acknowledged by other authors. E.g., Based on the analysis on three 325 

basins with different elevation and geology characteristics in the Willamette River Basin, USA, Jung and Chang, 326 

2011 found that apart from the more significant contribution of GCMs the uncertainty differences depend on the 327 

catchment under study.  328 

The relative contribution of model impacts obtained from the parameter sets is found smaller than those given by 329 

GCMs. Projected discharge time series analysis show that HBV estimates slightly higher discharge values 330 

compared to HYMOD. Same pattern is shown irrespective of the chosen GCM. HBV present a smaller uncertainty 331 

in projections, which is in agreement with the results previously highlighted. As mentioned, this is a general result 332 

independent of the time period and model (GCM). To visualize how model impacts may influence the uncertainty 333 

given by parameter selection, plots of projected discharge contrasting the two rainfall-runoff models are shown in 334 
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figure 5 as cumulative runoff. As pointed earlier, other time periods and models show similar patterns and, hence, 335 

are not shown here for brevity.  336 

Exploring both regions, differences in the discharge projections for the Ganges are mainly driven by GCMs and 337 

models impacts. In contrast, the Rhine shows a different pattern that balances impact models effect and parameter 338 

sets uncertainty, which become even more significant in the period 2006-2035 (disregarding GCMs). Figures 3 339 

illustrates the results for each RCP and time period for the basin Ganges at Farakka, whereas figure 4 summarizes 340 

the same results for Rhine basin at Lobith. The GCMs induces the major differences in projections; parameter 341 

uncertainty contribute to a less extent, but it may become comparable to the RCPs differences.      342 

 343 

 344 

4 Conclusions 345 

 346 

This study focused on the analysis and characterization of model parameterization uncertainty and the effect on 347 

this uncertainty given by different GCMs (n=5), RCPs (n=4) and impact models (n=2). For this purpose, ensemble 348 

of simulated discharge projections were compared for three future periods. The analysis was carried out in two 349 

basins from Europe and Asia. Expected parameter uncertainty was estimated performing the ROPE algorithm 350 

which is based on the half-space depth function to produce robust parameter sets. In each step n=5,000 sets were 351 

generated such that 𝑑𝑒𝑝𝑡ℎ ≥ 1 and found n=1,000 well performing parameter sets. These quasi-optimum sets 352 

were then used to run the models under several projected time series.    353 

Results indicate that uncertainty from parameter choice may become important, either in magnitude or variability 354 

over time. It was also found a dependency between model structure complexity and parameter uncertainty. 355 

Inspection of the discrepancies of projections shows a major contribution due to GCMs in Rhine and Ganges. 356 

Interestingly, these results cannot be generalized as other researchers found an equivalent uncertainty introduced 357 

by model structure. Overall, we conclude that relative discrepancies of impact rainfall-runoff models and its 358 

influence on uncertainty in the parametrization (parameter uncertainty) are not negligible. This pattern was 359 

observed in both regions varying in proportion according to period and RCP projection. This uncertainty might be 360 

reduced by utilizing more sophisticated models that better capture input signals and able to react more accurately 361 

to them; its general influence on global predictive model uncertainty should not be ignored. 362 
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In the light of the results, It is advisable to consider different contributions of uncertainty when performing 363 

projections. As it is shown in this study, parameter uncertainty may contribute to some extent to differences in 364 

projected values.  365 

 366 

 367 
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Figure 1: Histograms of the model performances (NSE) for the 𝑚 = 5,000 parameter sets showing the different 

iterations of ROPE for both basins and both models: Model HBV basin Rhine (top left), HBV Ganges (top right), 

HYMOD Rhine (bottom left) and HYMOD Ganges (bottom right). 

 

 

 

 

 

 

 

 

 

 

Figure 2: Parameter related uncertainty in discharge projections for the models HBV and HYMOD (HD) for the 

basins Rhine at Lobith and Ganges at Farakka. Time period considered 2006-2099. 
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Table 1: Statistics corresponding to the final iteration of ROPE algorithm with the selected 1,000 best performing 

sets for the two basins Rhine and Ganges and both models HBV and HYMOD 

Basin  Min NS Max NS Mean Std 

Rhine HBV 0.836 0.894 0.856 0.012 

 HYMOD 0.770 0.845 0.790 0.016 

Ganges HBV 0.848 0.869 0.854 0.004 
 HYMOD 0.690 0.723 0.701 0.006 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Contribution of GCM (white), rainfall-runoff model (grey) and parameter set (light grey) to the global 

model uncertainty. Basin Ganges at Farakka. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Contribution of GCM (white), rainfall-runoff model (grey) and parameter set (light grey) to the global 

model uncertainty. Basin Rhine at Lobith. 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

Figure 5: Projected discharge plots from the two impact models runs with data from GFDL-ESM2M and RCP2.6. 

Basin Rhine.  

 


