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ABSTRACT 

A large-scale fire test was conducted on a compartment constructed from cross laminated timber (CLT). The 
internal faces of the compartment were lined with non-combustible board, with the exception of one wall and 
the ceiling where the CLT was exposed directly to the fire inside the compartment. Extinction of the fire 
occurred without intervention. During the fire test, measurements were made of incident radiant heat flux, 
gas phase temperature, and in-depth temperature in the CLT. In addition, gas flow velocities and gas phase 
temperatures at the opening were measured, as well as incident heat fluxes at the facade due to flames and 
the plume leaving the opening. The fuel load was chosen to be sufficient to attain flashover, to achieve steady-
state burning conditions of the exposed CLT, but to minimize the probability of uncertain behaviors induced 
by the specific characteristics of the CLT. Ventilation conditions were chosen to approximate maximum 
temperatures within a compartment. Wood cribs were used as fuel and, following decay of the cribs, self-
extinction of the exposed CLT rapidly occurred. In parallel with the large-scale test, a small scale study 
focusing on CLT self-extinction was conducted. This study was used: to establish the range of incident heat 
fluxes for which self-extinction of the CLT can occur; the duration of exposure after which steady-state 
burning occurred; and the duration of exposure at which debonding of the CLT could occur. The large-scale 
test is described, and the results from both the small and large-scale tests are compared. It is found that self-
extinction occurred in the large-scale compartment within the range of critical heat fluxes obtained from the 
small scale tests. 

KEYWORDS: compartment fires; heat transfer; CLT; self-extinction. 

INTRODUCTION 

The demand for cross laminated timber (CLT) construction has significantly increased in the last few years 
with substantial media interest around “tall timber”, and a large body of research effort around the 
performance of timber in fire. The aim for many architects and engineers is to deliver high-rise CLT buildings 
where the timber linings are partially or completely exposed. Regulators around the world are currently 
attempting to adapt regulations to the demands of industry by incorporating clauses to permit large-scale 
timber construction.  

Any attempt to create high-rise CLT buildings must address two fundamental issues: 

1. The existing regulatory framework for fire resistance is based on the intention to survive burnout of 
the fuel load inside the compartment – since exposed structural CLT is combustible, the definition 
of burnout is no longer relevant unless it can be demonstrated that, following the consumption of 
the fuel load in the compartment, the CLT eventually self-extinguishes. 

2. Existing fire safety provisions to prevent vertical fire spread assume that the area of combustible 
material is limited to the floor – since the exposed CLT is on the walls and ceiling, this will 
substantially increase the area of fuel involved in the fire, create an excess of pyrolysis gases [1], 
and hence also increase the size/intensity of the external plume. It must therefore be demonstrated 
that any proposed safety measures are sufficient to prevent external floor-to-floor fire spread. 

This paper focuses on the first of these issues, and presents a description of the background behind a large-
scale CLT test. A description and preliminary analysis of the test results is presented. 
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Project Context 

The large-scale fire test that is reported in this paper was part of a wider project investigating the feasibility 
of modular systems, and the construction methodologies for CLT. The project was based on a real case study 
of a proposed apartment building in Brisbane, Australia. Consequently at every stage of the test design, the 
constraints of a real project were considered. This included developing design arrangements intended to 
deliver compliance with the Building Code of Australia [2] (whether using deemed to satisfy provisions or 
alternative solutions) – including structural design, acoustic performance, termite resistance, and fire safety.  

The outcome of this design process was that the team proposed a medium rise CLT apartment building that 
had architecturally expressed (i.e. exposed) CLT on one wall and the ceiling. It was identified that for this 
project (and any future projects) it would be necessary to demonstrate as part of the approvals process that 
exposed timber linings are capable of self-extinction in this arrangement. 

SELF-EXTINCTION 

Principles of Self-Extinction 

The burning of timber is enabled by the imposition of an external source of heat. When this heat flux is 
completely removed, self-extinction of flaming combustion of timber occurs [3]. This is due to the fact that 
the heat flux provided by the flames of the burning timber is not sufficient to sustain the mass loss rate needed 
to sustain flaming combustion at the surface of the timber [4]. A critical mass loss rate and associated external 
heat flux value exists for specific species and air velocities [5]. 

The process of timber combustion involves both a transient and steady-state phase. The transient regime of 
burning is marked by an initial peak in mass loss rate when the char layer begins to form. As the char layer 
increases in thickness, the heat flux entering the pyrolysis front of the timber is regulated by the insulating 
thermal properties (and volume) of the char. As the thickness increases, the heat flux reaching the pyrolysis 
front decreases until an approximate constant value (proportional to the incident heat flux) is reached. 

This process can be explored by analyzing the energy balance for the char layer as described by Emberley et 
al. [6]. The mass loss rate can be defined in accordance with Equation (1): 

𝑚"
## = %

∆'(
𝑞*+,## + 𝑞./## − 𝑞1233## − −𝑘 56

5+ +7+89
− : ;<===

:,
     (1) 

Where 𝑚"
## is the mass loss rate per unit area, ∆𝐻? is the heat of pyrolysis, 𝑞*+,##  is the external heat flux per 

unit area (corresponding to the summation of the contributions of any heat source independent of the fuel 
being produced and the heat feedback from the combustion of the fuel being produced), 𝑞./##  is the energy 
generated due to reaction of the char per unit area, 𝑞1233##  is the heat losses from the surface per unit area, k is 
the thermal conductivity of the timber, 56

5+ +7+89
 is the thermal gradient of the heat losses into the virgin 

timber, 𝛿 is the thickness of the char layer and 𝛿𝑞###  is the energy stored in the char layer per unit area. 

When the timber starts to burn, the exposed surface tends towards the oxidation temperature of the char and 
the surface losses, therefore, tend towards a steady state. As the timber continues to burn, the char layer 
becomes thicker but the exposed surface begins to regress. In the absence of debonding, the thickness of the 
char layer (𝛿) and the energy stored in the char eventually tend to a constant and subsequently the right hand 
term of Equation (1) approaches zero. During this period, the in-depth temperature gradients (56

5+ +7+89
) will 

reach a steady-state minimum, and therefore the external heat flux required to maintain the burning rate 
reaches also a steady-state minimum. This condition requires the minimum supply of external energy to 
maintain a constant burning rate [6].  

Extinction of a diffusion flame occurs when the supply of reactants is insufficient to maintain the flame 
temperature above a critical value [5]. If the flow conditions remain constant, then the mass loss rate is the 
only variable that affects whether extinction occurs. In the context of Equation (1), and under steady state 
conditions, the only variable that can cause a drop in the mass loss rate is the external heat flux. 

To identify conditions for self-extinction, it is necessary to identify the critical mass loss rate for extinction 
and the corresponding heat flux. The mass loss rate for extinction will be the same during the transient and 
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steady state conditions of burning. However, during the transient period, the magnitude of the different terms 
in Equation (1) evolves which means that the heat flux at which extinction occurs will vary as a function of 
time. During the transient phase, self-extinction could occur at a relatively high heat flux; however, during 
the steady state, self-extinction will not occur until the external heat flux decreases below the minimum value 
described above. Consequently, the worst case condition for self-extinction in a compartment fire is once the 
timber has attained the steady state burning condition.  

If separation of lamellae occurs as the thermal wave penetrates the CLT, then fresh timber is exposed and 
there is a rapid increase in mass loss rate (and associated flaming combustion).  

Consequently, to investigate the viability of self-extinction of timber in a compartment fire, it is necessary to 
ensure that any CLT linings are not in the transient phase of burning. Any debonding may cause re-ignition 
of the linings and prevent self-extinction – hence it is also necessary to minimize the likelihood of debonding. 

For the purposes of this paper, separation of the lamella and associated fall off of timber/char shall be referred 
to using the term debonding. To investigate the critical mass loss rate, associated incident heat flux value, 
and potential for debonding – a series of small scale tests were performed.  

Small Scale Testing Methodology 

To investigate the self-extinction criteria for CLT, timber blocks (150 mm thickness) with surface area of 
120×120 mm were exposed to a range of external heat fluxes by a cone heater [6]. The samples were 
comprised of five layers of thicknesses 45 mm, 20 mm, 20 mm, 20 mm, and 45 mm, respectively – the CLT 
samples were sourced from XLam and were Radiata Pine.  

The samples were placed on a scale to measure the rate of mass loss over time – as illustrated in Fig. 1. The 
external heat flux was instantaneously applied to the samples and caused the surface of each sample to 
increase in temperature and then auto-ignite. The samples were allowed to burn until flaming combustion 
ceased or until the sample was completely burned. As the surface regressed away from the cone heater, the 
external heat flux on the exposed surface decreased due to the increased distance from the heat source. The 
time to self-extinction and the corresponding distance away from the heater were measured. A Schmidt-
Boelter heat flux gauge was used to measure the external heat flux at the location of the exposed surface 
when self-extinction occurred. This value corresponded to the critical heat flux for self-extinction. A total of 
27 samples were tested across various heat fluxes. The minimum number of repetitions was two, and the 
maximum number of repetitions was eight. The methodology was rigorously tested and the data was 
consistent both between samples and with values from literature [7]. 

The critical mass loss rate for self-extinction could be identified as the mass data was collected over time; 
the transient and steady-state phases of burning could also be distinguished. 

 
 

a) b) 

Fig. 1. a) Schematic of the experimental setup; b) Image of test. 

External 
heat flux 

Cone heater 

Scale 

CLT sample 
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Small Scale Test Results 

Figure 2a shows the 2 minute averaged mass loss data for each of the heat fluxes applied (with the maximum 
and minimum for all data shown in grey); the two phases of burning are clearly evident. These results show 
that ignition is faster with higher external heat fluxes and that after ignition, a peak mass loss rate occurred 
in the early stages of heating. The peak value increases with the external heat flux. As the burning continued, 
the mass loss rate began to decrease. This behavior is consistent with the process described above. The 
transition to steady state burning was not instantaneous; however, it can be observed that it occurred faster 
for high heat fluxes than for low heat fluxes; this was due to the time taken to form the char layer. For the 
lower heat fluxes it was estimated that steady state occurred after approximately 13 minutes, and for higher 
heat fluxes steady state occurred after approximately 8 minutes. Given the range of heat fluxes common in a 
compartment fire, it was assumed that 10 minutes is a representative time for transition to steady state. Figure 
2(a) shows that beyond this representative steady-state time the mass loss rate continues to decay. 
Nevertheless, for the purposes of this study this further decay will be neglected and the terminal mass loss 
rate is assumed to be reached at 10 minutes from the onset of exposure. The average and terminal mass loss 
rates depend on the external heat flux with higher heat fluxes resulting in higher mass loss rates.  

  
a) b) 

Fig. 2. Mass loss rate of timber exposed to external heat fluxes. 

Figure 2b shows the mass loss rate and the associated heat flux values for each test. For each heat flux value, 
the peak (upper bound) and average steady-state (terminal) mass loss rate is included to show the upper and 
lower bounds for the test. Values above or below the range are not physically possible for the test 
configuration and parameters. The peak values occurred just after ignition while the average steady-state 
values were recorded just after 10 min of burning. The critical mass loss rate for flame extinction was 
measured as 3.7±0.2 g/m2s while the critical heat flux was 45±1 kW/m2.  

Debonding 

Debonding can occur in CLT [8] and is characterized by large peaks in the mass loss rate data. The large 
peaks occur when a significant portion of either the char layer or the timber plies fall off – reducing the 
insulation and exposing the virgin timber to higher heat fluxes. The mass loss rate remains higher than steady-
state values until the char layer increases to sufficient depth to reduce the heat flux delivered to the pyrolysis 
front. Debonding occurred in several of the tests described above. The resulting peaks in mass loss rate can 
be seen in Fig. 3. 
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Fig. 3. Mass loss rate over time – debonding events are annotated. 

Achieving Self-Extinction in a Compartment Fire 

The small scale tests above were used to inform the development of the large-scale fire test. It is clear from 
the test that if self-extinction occurred before 10 min of burning had occurred – then the timber was still 
within its transient burning phase. However, it was also clear that if the test lasted beyond 30 min, then 
debonding would be likely to occur – and therefore significant uncertainties would be introduced into the 
test. 

Steady-state burning occurred after approximately 10 min (as evidenced by the small scale tests shown in 
Fig. 2a); debonding of CLT started to occur 30 min after ignition (as evidence by Fig. 3). It was therefore 
concluded the target burning time for the large-scale compartment after the ignition of the CLT (or flashover) 
should be between 10 and 30 min. 

MOTIVATION FOR LARGE-SCALE TEST 

The motivation for the large-scale test was to demonstrate that, for the proposed geometry, self-extinction 
could be achieved under conditions where uncertain behaviors (e.g. debonding of the exposed CLT or failure 
of the fire protection) could be prevented. Hence, a test configuration was derived that represented a balance 
between the various constraints on the project. The optimum balance was where the test represented realistic 
configurations and construction detailing, while minimizing the uncertainties associated to the debonding of 
CLT. 

The following considerations were taken into account: 

• The opening factor of the compartment was chosen to induce a temperature that approximately 
corresponded to the maximum temperature in a Regime I [9] compartment fire; 

• The opening factor was also chosen to ensure that the compartment during the fully involved phase could 
be considered as a Regime I fire (the Thomas opening factor was 18.5 m-1/2 [or 10 m-1/2 if the CLT walls 
are omitted from the wall area calculation]); 

• The fuel load and configuration were chosen such that they would be sufficient to induce flashover – 
two wood cribs were provided with a total of 80 kg of fuel and centrally located in the room (indicated 
on Fig. 4); 

• The fuel load was chosen to ensure that the fully developed phase would last beyond the transient period 
of CLT flaming combustion – it was intended that the fully involved phase of the fire should last a 
minimum of 10 min from the ignition of the CLT; 

• The fuel load was chosen to ensure that debonding of the outermost layer of the CLT did not occur (i.e. 
the fire should not last longer than 30 min from the ignition of the CLT).  
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The test design was therefore intended to deliver a worst case scenario in terms of maximum heating exposure 
of the CLT; ensure that the CLT was in the steady-state of burning; and minimize the likelihood of a 
debonding event. 

It should be noted, therefore, that while some aspects of this test were designed to be worst case (e.g. 
maximum incident heat flux), many other aspects of the test could have been adjusted to create a more 
onerous scenario e.g. duration of the fully-developed fire. If the fuel load had been greater (i.e. greater mass 
of wood cribs), then debonding of the CLT could have been more likely and the other elements of 
construction (e.g. fire protection and connection details) would have been tested more severely. Similarly, a 
reduction in the outer lamella thickness would have hastened the onset of debonding. This would have 
introduced uncertainty in terms of the decay phase of the fire and, therefore, possibly reduce the likelihood 
that self-extinction could have occurred. The limitations associated with the outcome of this test are discussed 
further below.  

TEST SETUP 

Geometry and Construction 

The geometry of the compartment (Fig. 4) was based on the dimensions of a living room in the project 
described above. To introduce a level of standardization with other compartment fire testing, the aspect ratio 
of the plan was adjusted to a 1:1 ratio. The ceiling height was not adjusted. This resulted in a base build 
compartment geometry of internal dimensions 3.5×3.5×2.7 m. An opening was provided based on typical 
door dimension (0.85×2.1 m). To meet the structural requirements for the project, each element of CLT was 
150 mm thick, comprised of five lamellae with a buildup of 45×20×20×20×45 mm (this was the same stock 
of CLT that was used for the small scale testing described above). The compartment was raised 500 mm 
above ground level to facilitate access beneath the compartment.  

An internal floor buildup was developed that met the project’s acoustic requirements. This consisted of a 
layer of acoustic rubber; 50 mm mineral wool insulation; 22 mm fiber cement floor panels. In any finished 
apartment there would also be a surface finish (e.g. tiles, or carpet). 50×50 mm wooden battens at 500 mm 
centers were provided in the insulation layer. Where the CLT walls were provided with non-combustible 
linings, this was comprised of 2×13 mm Knauf FireShield plasterboard liners independently secured at 200 
mm spacing. The Knauf FireShield is a commercially available product that is frequently used in Australia 
for fire protection; product datasheets indicate that the core is comprised of calcium sulphate dehydrate with 
small quantities of glass fibre and vermiculite. This boarding solution was a standard fixing applied to a non-
standard (i.e. CLT) substrate. The internal wall linings reduced the overall compartment dimensions 
commensurate to their thickness. 

  
Fig. 4. Drawings of a) the front of the compartment; b) the compartment floor buildup; c) compartment 

plan view and crib location. 
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The CLT was secured with Rothoblass fixings including vertically fixed screws for the roof and wall 
connection; these were fully contained within the CLT. Surface mounted brackets on the floor and wall 
connections were hidden under the raised floor assembly. Cork strips were utilized at wall, floor and roof 
junctions for acoustic control as per the proposed apartment design (with caulking). 

Externally, the front wall of the compartment was extended vertically by an additional 2.7 m (intended to 
represent one additional story). This vertical facade was constructed using a light timber frame. The entire 
front of the compartment (i.e. CLT, and upper facade) was covered with 2×13 mm Knauf FireShield board. 

Instrumentation 

The compartment was instrumented as follows: 

• Nine thermocouple trees (i.e. thermocouples positioned at various heights) were provided in a square 
grid within the compartment. Each thermocouple tree had seven thermocouples distributed over the 
height of the compartment (min 250 mm, max 2600 mm). The thermocouple trees were comprised of 
1.5 mm diameter, type K thermocouples with Inconel sheath. Thermocouple wires passed through holes 
the floor of the compartment and connected to the data logger. 

• Fifty-nine Thin Skin Calorimeters (TSCs) were positioned within the compartment. Each TSC was 
comprised of a thin (1.2 mm) circular disk of 10 mm diameter with a type K thermocouple welded to the 
unexposed face. The disk was mounted on the surface of piece of insulation (50 mm thick, and 80 mm 
in diameter). The devices were calibrated using a cone heater; a full description of theory and calibration 
process for the TSCs may be found elsewhere [10]. The TSCs were orientated to face into the 
compartment (refer to Fig. 5a). These were mounted on a frame that was offset from the walls by 575 
mm and ceiling by 340 mm. The intent of offsetting the frame was to minimize local radiative 
interaction/feedback between the instrumentation devices and the exposed CLT inside the compartment.  

• Type K thermocouples were placed in-depth within the CLT. In the exposed CLT, measurements were 
made at seven locations at depths from the exposed surface of 3, 5, 10, 20, 45, 55, 65, and 150 mm. In 
the unexposed CLT, measurements were made at 1, 20, 45 and 150 mm from the interface CLT-
protection. 

• The opening of the compartment was provided with a single thermocouple tree (comprised of eight  
evenly spaced thermocouples) and four evenly spaced bidirectional McCaffrey probes [11] (shown in 
Fig. 5b). 

In addition, 3D laser scanning and compartment pressure testing was carried out before and after the test. 
Three cameras were located to record the behavior of the external plume. The upper facade was instrumented 
with 20 TSCs and 20 associated thermocouples positioned at different heights above the opening (shown in 
Fig 5b). 

  
a) b) 

Fig. 5. Instrumentation locations (internal and external). 
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To generate the conditions required for flashover, two wood cribs each comprised of 40 kg of timber were 
provided. The cribs consisted of 25×25×1000 mm sticks stacked in a 1:1 ratio of air to solid. There were six 
layers of sticks in each crib. Ignition of the cribs was executed using two 300 ml trays of kerosene placed 
directly underneath the cribs. These were ignited by kerosene soaked rags. Based on the crib configuration, 
it would be expected that the maximum heat release rate (for each free burning crib) would be approximately 
2 MW [12]. 

RESULTS 

This paper will not present a detailed breakdown of the results because, at time of writing, these are still 
undergoing analysis. Nevertheless, the key results are described and allow some general conclusions to be 
drawn. 

Test Description 

The timeline of the test was as described in Table 1. Many of the events have some level of qualitative 
judgment in terms of defining the time at which they occurred. Hence to avoid inappropriate precision, times 
are reported to the nearest 15 s. 

Table 1. Timeline of test. 

Time Event 
00:00:00 Start of test 
00:00:45 Ignition of pans 
00:10:00 Cribs fully involved 
00:12:15 Involvement of ceiling 
00:12:30 Flames reach base of CLT wall 
00:23:30 Extinction at base of wall 
00:28:00 Extinction of top of wall and ceiling 
05:32:00 Test terminated 

Visual Observations 

Figure 6 shows images from several notable features of the test (and the time after ignition at which the 
images were captured) specifically: 

a) Ignition of the ceiling at approximately 12 min and 14 s; 

b) Rapid spread of flame down the exposed CLT wall at 12 min 24 s; 

c) Flaming reaching the base of the CLT wall at 12 min 33 s; 

d) Fully involved compartment and associated plume at 19 min 58 s (note that this image is illustrative of 
the conditions throughout the duration of the fully involved fire); 

e) Visibly flaming CLT wall at 20 min 13 s; 

f) Notable reduction in flame length at the base of the CLT wall at 21 min and 42 s; 

g) Very significant reduction in flaming at the base of the CLT wall at 23 min and 22 s; 

h) Localization of flames to the top of the CLT wall and ceiling at 27 min 15 s; and 

i) Extinct CLT elements at 30 min 36 s. 

The visual observations indicate that all fire protection remained in place, and that self-extinction of the 
compartment occurred, and that this occurred during the decay phase of the wood cribs. The extinction of the 
CLT panels was notable because, initially, the burning at the base of the CLT wall became less vigorous – 
with the flames reducing in length until flameout occurred. Over the course of 4.5 min, this process occurred 
across the full height of the wall. Once the wall ceased flaming, the CLT ceiling ceased flaming immediately. 
It was also notable from visual observations that during the progression of the self-extinction, extinction at 
the left side of the ceiling occurred, while flaming continued on the CLT wall i.e. there was uneven 
distribution of flaming at the ceiling – with more flaming above the CLT wall. It was observed that the 
maximum char depth (excluding local imperfections) was approximately 20 mm. 
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a) 12 min 14 s after ignition b) 12 min 24 s after ignition c) 12 min 33 s after ignition 

   
d) 19 min 58 s after ignition e) 20 min 13 s after ignition f) 21 min 42 s after ignition 

   

g) 23 min 22 s after ignition h) 27 min 15 s after ignition i) 30 min 36 s after ignition 
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Fig. 6 Selection of images from test. 

Gas Phase Temperature 

The gas phase thermocouple data were recorded with relatively high density, and thus it is possible to analyze 
the temperature data as a function of space and time. For simplicity, Fig. 7 illustrates the overall temperatures 
in the compartment. The time associated with some of the observations illustrated in Fig. 6 are overlaid onto 
the plot. 

Figure 7 shows the mean temperature in the compartment, the maximum temperature, and the minimum 
temperature recorded by any thermocouple at each sampling time. It was found that that the highest 
temperature at any time in the compartment was 1125°C, the maximum average temperature was 1000°C, 
and the maximum lowest temperature was 706°C. It should be noted that the lowest temperature was 
consistently recorded at the base of the thermocouple tree adjacent to the opening. Correction of radiation 
errors [13] has not been completed at this stage. 

The data indicated that at the average temperature in the compartment dropped below 100°C after 63 min, 
and that the maximum temperature dropped below 50°C after 126 min. When the test was terminated at 5 h 
and 32 min, the average temperature in the compartment was 26°C. 

 
Fig. 7. Gas phase thermocouple data for the first 60 min after ignition. Plot shows mean temperature for all 

sensors, minimum temperature recorded anywhere in the compartment, and maximum temperature 
recorded anywhere in the compartment. Letters indicate observations as per Fig. 6. 

Incident Radiant Heat Flux 

The readings from the TSCs were used to calculate incident radiant heat fluxes using the calibration 
procedure described in [10]. Of the 59 TSCs in the compartment, 36 failed to provide continuous readings 
throughout the tests. Nevertheless, key data were recorded for each wall. 

It was found that immediately after flashover, the heat flux readings fluctuated significantly. However, as the 
compartment progressed towards steady-state conditions and during the decay phase the readings were more 
consistent. 

Figure 8 shows the heat flux data from TSCs towards the top and base of the exposed CLT wall throughout 
the test. In addition, the plot shows the critical heat flux for self-extinction derived from the small scale test. 
The events illustrated in Fig. 6 are also plotted on the diagram, and the visually observed self-extinction 
events are annotated on the plot.  
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Fig. 8. Heat flux readings during the first 60 min after ignition. Plot shows an upper and lower TSC 

associated with the CLT wall. Letters indicate observations as per Fig. 6. 

DISCUSSION 

At time of writing, most of the data generated during the test was still being analyzed in detail. Hence, a 
detailed discussion of each aspect of the results would be premature. Nevertheless, based on the overall 
results and most easily analyzed data there are some aspects of the test that are worthy of immediate 
discussion. 

There are several notable observations with regard to the success of the test planning: 

1. Time to flashover was longer than had been anticipated. Hence there was less crib fuel available to burn 
during the fully involved phase. As such, the duration of the fully involved period of the test was 
approximately 11 min. Hence, the CLT (particularly at the base of the panels where extinction occurred 
first) was only just within the steady-state burning phase. 

2. Debonding of any of the CLT elements did not occur. Consequently, this aspect of the test objective was 
achieved. Hence, the test configuration appears to have been balanced for achieving a steady-state 
burning condition in the CLT, but preventing debonding. 

3. Self-extinction of the exposed CLT was achieved. Following a reduction in the size of the fire associated 
with the timber cribs, self-extinction initiated from the base of the CLT wall, and progressed over the 
course of several minutes to the top of the wall. In the final phase of the fire, the CLT ceiling burned 
more vigorously in the region above the CLT wall. The ceiling extinguished at approximately the same 
time as the wall.  

Heat Flux and Self-Extinction 

Although a number of the TSCs were damaged during the fire, it was possible to extract data for the exposed 
timber wall. A comparison between data from the large-scale test, and the critical heat flux for self-extinction 
of Radiata Pine shows that when the maximum heat flux on the wall dropped below 45 kW/m2, self-extinction 
occurred within 30 s. This result aligns well with the data from the small scale testing which suggested that 
self-extinction would occur when the incident heat flux was less than 45 kW/m2. 

However, although the value from the top of the wall aligned well with the critical heat flux for self-
extinction, it was found that at the onset of self-extinction (from visual observations), the heat flux readings 
at the base of the wall were substantially in excess of 45 kW/m2 (approximately 55 kW/m2). 

It should be noted that there are several possible sources or error associated with the measurements obtained 
from the TSCs. For example, previous work [9] has found that a slight overestimation of the heat flux can be 
expected during the cooling phase (overestimation was found to be 9 kW/m2 for the devices in [9]).  
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Limitations of the Results 

Based on the conclusion of these tests, designers may be tempted to draw wide ranging conclusions about 
how and when self-extinction may occur within compartments with exposed CLT linings. While the 
conclusions of these tests demonstrate that, under the right conditions, self-extinction can occur – the authors 
would urge caution in the direct application of this test result to wider design scenarios as there are several 
limitations associated with this test.  

The test was design to minimize the uncertainties that would be introduced by debonding of the CLT or 
failure of any protection elements – and hence minimize the likelihood that self-extinction would be 
prevented by unforeseen events.  

Several different factors could reduce the likelihood of self-extinction: 

• Debonding. Any debonding would result in an increase in the mass loss rate for the timber and produce 
a corresponding increase in the heat release rate of the fire. This would allow the thermal wave to 
propagate further into the timber and potentially induce secondary delamination. These events could 
potentially allow all the CLT to be consumed prior to any self-extinction. 

• Failure of the detailing. If breakout of smoke and flame occurred through the compartment detailing, 
this might result in a secondary fire that would expose CLT to thermal attack from more than one 
direction; this might be sufficient to induce a failure prior to self-extinction. 

The likelihood of any of these factors could be increased by: 

• Increased fuel load. Increased fuel load would result in a longer burning duration, and hence a more 
onerous scenario for many of the considerations above. 

• Reducing lamella thickness. The CLT used during these tests had a thick outer layer, and hence, there 
was a substantial time difference between the occurrence of steady-state, and the onset of debonding 
events. Thinner layers of CLT would result in the more rapid onset of debonding. 

CONCLUSION 

This paper has demonstrated that self-extinction in CLT can occur in both small and large-scale tests.  

Small scale tests have shown that: 

• The critical heat flux for self-extinction of Radiata Pine CLT is 45 kW/m2; 

• The time to steady-state burning for Radiata Pine CLT is 10 min; 

• The minimum time to debonding for Radiata Pine CLT (with lamella 45×20×20×20×45 mm) is 30 min. 

The large-scale test has shown that: 

• If debonding is prevented, self-extinction can occur in a compartment with exposed CLT on a wall and 
ceiling; 

• Self-extinction of the CLT wall and ceiling occurred when the maximum incident heat flux reduced 
below 45 kW/m2; 

• When self-extinction occurred it began at the base of the exposed surface, and progressed to the ceiling. 

It is therefore concluded that if uncertainties associated with debonding are minimized then self-extinction 
can be achieved during the steady-state burning phase of CLT. The limitations of this work are such that it is 
recommended that the key parameters that may induce uncertainty in the compartment conditions are further 
investigated. 
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