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Some materials are strong if deformed slowly, yet weak if deformed rapidly — a behaviour
known as strain-rate softening in materials mechanics [1]. Snow falls into this category: it
is comparatively strong at low deformation rates where it shows quasi-plastic behaviour, but
weak at high rates where it deforms in a quasi-brittle manner [2]. During deformation, strain-
rate softening materials from metals [3, 4] to micellar systems [5] exhibit complex spatio-
temporal deformation patterns including regular or chaotic deformation rate oscillations and
travelling deformation waves [6]. Here we report a first systematic investigation of such phe-
nomena in snow. We show that snow may deform by formation and propagation of localized
deformation bands accompanied by oscillations of the driving force and propose a model for
these observations. Our findings demonstrate that in snow, strain localization can occur even
in initially homogeneous samples deforming under homogeneous loads.

Irreversible deformation of snow plays an important role in a number of problems ranging from the in-
teraction of snow with winter sports equipment [7], vehicle traction [8], to snowpack stability and avalanche
release [9]. Snow strength depends strongly on cohesive bonds between ice granules in the snow microstruc-
ture. Shear deformation reduces snow strength as bonds are broken or sheared [10], whereas formation of
new cohesive bonds between ice granules — a thermodynamically driven sintering process [11, 12, 13] — leads
to strengthening of snow over time (ageing) [14]. Rapid deformation leaves insufficient time for sintering

to restore broken bonds, therefore snow is at high rates of deformation weaker than at low rates. This



goes along with a transition from quasi-plastic (low rates) to quasi-brittle deformation behavior (high rates)
which has been observed in shear [14] as well as in compressive deformation [15].

Here we report the results of confined compression experiments performed at strain rates intermediate
between the quasi-plastic and quasi-brittle regimes. Specimens of both natural and artificially produced dry
snow with densitiesp between 275 kg/m3 and 370 kg/m3 and mean grain size £ &~ 0.2 mm were contained
within a rectangular transparent container with aluminium alloy side walls and a glass front and back.
After different waiting (ageing) times at a temperature of —10°C, the specimens were compacted by a
piston moving at fixed rates ranging from 0.0lmm/s to 5mm/s, providing nominal strain rates from éey; =
5x 107%s7! to 2.5 x 1072571, The axial driving force acting on the specimens was recorded by load cells
located both above the piston and between the specimens and the apparatus ground plate. A 18 megapixel
camera recorded images of the specimens, which were illuminated from behind, at 0.25 s intervals. To
quantitatively characterize the deformation patterns, digital image correlation (DIC) was used to obtain
spatio-temporal displacement records from which local strain and strain rate tensors were calculated. For
details of the experimental set-up, specimen preparation, and data analysis, see Supplementary Material S1.

Fig. 1 shows an image taken from the record of a typical compression test of an artificial snow sam-
ple, together with the corresponding e,,(x, z) and strain rate é,,(x, z) fields. The full record is shown in
Supplementary Movie 1. Compaction proceeds in a strongly heterogeneous manner: a compacted region,
visible as a darker area, is separated from an uncompacted region by a moving front where the strain rate
concentrates. This front is perpendicular to the compression axis (in the Figure: vertical, z axis). We
visualize band motion by space-time plots where we average over the horizontal z coordinate and plot the
averaged strain rate éyot(x,t) = (€zo(w,2,t)), in colorscale as a function of x and t (Fig. 2 and Fig. 3).
In these plots we use Lagrangian coordinates where = denotes the position along the compression axis in
the initial, i.e., undeformed configuration. The color contrast demonstrates strong deformation localization.
The moving deformation bands appear on the space-time plots as inclined zones of high strain rate. The
slope of inclination defines the band velocity vp in the Lagrangian frame. The first band nucleates at the
top of the sample and moves at constant (Lagrangian) speed downwards until it reaches the bottom of the
sample, leaving the sample in an almost homogeneously deformed state with strain eg ~ 0.2 (‘band strain’).
The band is then reflected and moves upwards across the sample until it reaches the top. Repetition of this
process leads to a bouncing motion of the locus of deformation (see Supplementary Movie 1). Oscillatory
features are also manifest on the force vs. time curves, as band nucleation is associated with an up-down
oscillation of the driving force. Occasionally the bouncing pattern is interrupted as seen in Fig. 2(c) and

Supplementary Movie 2 where the first band gets stuck and deformation is accommodated by a second band



nucleating at the bottom and moving upwards until it merges with the first, whence a new band nucleates
at the top and the bouncing pattern is resumed.

Systematic investigation of a series of artificial snow samples of different age ¢, ranging from 3 x 102
s to 3 x 10° s reveals that the stress required for initiation and propagation of the first deformation band
and also the band strain increase with specimen age (Supplementary Figure S6). Increasing the strain rate
from €exy = 5.6 X 1072 571 t0 €eyy = 2.5 x 1072 57! increases the band velocity proportionally but leaves
the overall deformation pattern unchanged. A decrease in strain rate to values of éexy = 5 X 1074 s or
less makes the deformation bands disappear: at low strain rates, band formation gives way to homogeneous
plastic flow (Fig. 2(a)).

While artificial snow samples have the advantage of known specimen history and reproducible microstruc-
ture, it is essential to ascertain that natural snow shows similar behaviour. To this end we deformed natural
snow samples harvested in the Cairngorm Mountains. The corresponding space-time plots in Fig. 3 demon-
strate the ubiquity of propagating compaction bands. Samples that were saw-cut from a block of natural
snow, Fig. 3 (a,b), show irregular band propagation patterns where bands often nucleate in the centre of the
sample and propagation is jerky with multiple band arrests and jumps of activity between different locations
(Supplementary Movie 3). Nevertheless, the band strains eg ~ 0.2 and band velocities vg deduced from
the space-time plots compare well with those of artificial snow samples. Samples that were homogenized
by sieving the snow into the sample container before the experiment deform differently, see Fig. 3 (c) and
Supplementary Movie 4: in such samples the band sequence is extremely regular, with bands bouncing
repeatedly between the sample top and bottom, and the overall behavior is quite similar to artificial snow.

The interplay between softening and ageing processes which makes snow a strain rate softening material
has been modelled by a number of authors, e.g. Louchet [18] and Reiweger et. al. [19]. However,
these models cannot describe spatio-temporal strain localization because they do not account for the spatial
structure of the deformation field. To model the observed phenomena we use a phenomenological plasticity
model which we present here in a simplified, scalar version. The reader is referred to Supplementary Material
S2 for a derivation of the scalar equations from a fully tensorial constitutive model. Deformation is described
in terms of the spatially homogeneous stress s, the plastic strain e(x) which is a function of the axial position,
and an internal variable S which characterizes the structural strength contribution of intergranular bonds.
This variable accounts, in a phenomenological manner, for the competing processes of bond breaking and
bond recovery (sintering/ageing).

The stress is calculated from the plastic strain e(z) and the strain eyt that is imposed by the downward



motion of the piston according to

5= E (eexs — (€)), (1)

where () denotes the spatial average and F is the Young's modulus of the sample. Eq. (1) states a quasi-
static relation between stress and strain: it neglects dynamic effects associated with elastic wave propagation.
This is motivated by the observation that, with typical sound velocities in dense snow above 500 m/s [16],
sound propagation times in our samples are below 5 x 1074 s — over four orders of magnitudes less than all
other characteristic times in our experiments. By contrast, Guillard et al. [17] relate propagating compaction
bands in brittle porous materials such as cereals, which exhibit some remarkable similarities with the present
observations, to viscoelastic waves. A detailed discussion of this issue is provided in Supplementary Material
S3.
The plastic strain rate is given by

Bre = éq (q))m H(®) 2)

Oy

where m is the strain-rate exponent, éy a prefactor with the dimension of a strain rate, and H is Heaviside’s
function, H(¢) = 1 for ® > 0 and H = 0 otherwise. The yield stress o, and yield function ® depend on

stress, strain, and on the internal variable S according to

1 b
ay=“0<1_e/ec> 1+S) , @=s-0y+ 00t (3)

The yield stress oy is a measure of the compressive strength of the material. It increases with increasing
density (increasing compressive strain e) and diverges at a critical compressive strain e.. This divergence is
characterized by the exponent b which for a cohesionless granulate corresponds to the jamming exponent.
The factor oo characterizes the strength of the unbonded (S = 0) and uncompacted (e = 0) granulate.
The yield function ® is evaluated as the difference between the compressive stress s and the yield stress
oy, corrected by a spatial coupling term with length scale . This term increases the rate of plastic flow in
locations where e has a minimum (e, > 0) and decreases it in locations where e has a maximum; it is thus
of a diffusive nature.

Finally, the evolution of the internal variable S is given by

08 = — (?:) S+%(SOO—S). (4)

This equation describes the competition between deformation-induced structural softening (first term on



right-hand side of Eq. (4), where eg is the characteristic softening strain) and strength recovery by rapid
sintering /ageing (second term on right-hand side, with ageing time constant 7).

Equations (1),(2),(3), and (4) define a set of integro-differential equations which we solve under the
boundary condition that the plastic strain gradient d,e must vanish at the specimen ends z = 0 and = = h.
A detailed discussion of model parameters and initial conditions is found in Supplementary Material S2. We
use a common set of parameters for both natural and artificial snow samples while accounting for differences
in density by re-scaling the elastic constants and initial strength parameters by density-dependent factors (see
Supplementary Table S2). The remaining differences in deformation behaviour between the different samples
can be related to differences in specimen age, and in the degree of disorder of the snow microstructure. All
simulations shown in Fig. 2 refer to specimens with age t, = 300 s. For specimens of different age, we
adjust the initial strength by an age-dependent factor such that oy (t = 0) o ¢9-? [20]. For saw-cut natural
snow a high initial strength corresponding to an estimated age t, = 10 s was used, whereas for the sieved
samples we set t, = 300 s, corresponding to the time between sieving and testing. Disorder of the snow
microstructure is modelled by assigning statistically distributed initial strength values to the sites of our
discretisation grid of lattice constant £. For the strength distribution we use a Weibull distribution where,
for artificial snow samples as well as for sieved natural snow, we assume a high Weibull exponent 5 = 10
corresponding to quite uniform local strength, whereas for saw-cut natural snow we use a low exponent 5 = 1
which is in line with experimental investigations of the strength statistics of saw-cut natural snow samples
reported by Kirchner et. al. [21]. The simulations reproduce all essential features of the observed band
propagation patterns and stress-strain curves. Nucleation of new bands is associated with stress oscillations.
In homogeneous samples we consistently observe bouncing bands, ¢f. Fig. 2 (b) and Fig. 3 (c¢). Local
strength fluctuations (low Weibull exponent) may induce band arrest and/or intermittent band propagation
as in Fig. 3 (a,b). Increasing the initial strength to reflect increased sample age leads to larger band strains
and higher band propagation stresses consistent with the experimental data (Supplementary Figure S6).

Further experimental work will be needed to directly characterize the microstructural processes occurring
in the compaction bands. To this end, in-situ X-ray microtomography (XRMT) would be the method of
choice. This method has been used to study microstructure evolution during compaction of solid foams (see
e.g. [22]) where local structural softening (cell wall fracture or buckling) and compaction band formation
are intrinsic features of the early stage of deformation [23, 24]. XRMT has also been successfully used
to study microstructure evolution during low-velocity deformation of snow [25, 26]. However, currently
accessible image acquisition rates do not allow for in-situ monitoring of the propagating bands observed in

our experiments, as band propagation times are typically of the order of a few minutes only. Advances in



high-throughput XRMT may enable this in the foreseeable future. Even in the absence of in situ imaging
possibilities, ex-situ XRTM images taken before and after deformation may help, in conjunction with micro-
scale mechanical modelling [27], to parametrize macroscopic constitutive models and to further validate their

predictions.
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Figure 1: Strain and strain rate patterns in a laboratory-made snow specimen. Deformation rate éexy =
5.6 x 1073 s~1, snapshot at 9.94 % compressive strain; left: photographic image showing the compaction
front, the arrow indicates the front propagation direction; centre: corresponding strain pattern as obtained
by DIC; right: corresponding strain rate pattern; note that the outermost edges of the sample are not
covered by the DIC analysis.
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Figure 2: Space-time plots of deformation activity in laboratory-made snow. Snow density p = 370 kgm ™3
specimen age t, = 3 x 10% s; top graphs: deformation activity as deduced experimentally from DIC; bottom
graphs: simulation data; centre graphs: corresponding force vs. time/strain curves; note that all three graphs
in a column have the same x axis. (a) éoxg = 5 X 1077571, (b) €ext = 5.6 x 1073571, () éoxt = 2.5 x 1072571,
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Figure 3: Space-time plots of deformation activity in natural snow. Snow density p = 275kgm 3, defor-
mation rate éey = 5.6 x 1073s71; top: deformation activity as deduced experimentally from DIC; bottom:
simulation data; centre graphs: corresponding force vs. time/strain curves; (a,b) as-harvested samples, (c)
sieved sample; deformation of samples (a) and (c) is also shown in Supplementary Movies 3 and 4.
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