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A modular framework for the optimisation of an offshore wind farm using a discrete genetic algorithm is presented. This approach uses a 

bespoke grid generation algorithm to define the discrete positions that turbines may occupy thereby implicitly satisfying navigational and 

search and rescue constraints through the wind farm. The presented methodology takes a holistic approach optimising both the turbine 

placement and intra-array cable network, while minimising the levelised cost of energy and satisfying real world constraints. This tool 

therefore integrates models for the assessment of the energy production including wake losses; the optimisation of the intra-array cables; 

and the estimation of costs of the project over the lifetime. This framework will allow alternate approaches to wake and cost modelling as 

well as optimisation to be benchmarked in the future.  

 

KEY WORDS:  offshore wind farm layout optimisation; genetic 

algorithm 

 

INTRODUCTION 

 

With the growth of the offshore wind sector and the development of 

large offshore wind farms in the coming years, it has become an 

important point to ensure that the wind farms are developed in such a 

way as to maximise their potential. In order to meet this need, the field 

of wind farm layout optimisation has been in development since the 

seminal paper by Mosetti, Poloni, and Diviacco (1994). Though this 

field has been in development for the past twenty years, there still 

remains much work before layout optimisation displaces the industry 

standard rules-of-thumb approach to layout design. This paper 

presents a new framework that has been developed to address the 

layout optimisation problem with the goal of ultimately developing a 

tool that would be deployed by wind farm site developers.  

 

This framework takes a holistic approach to layout optimisation based 

around the objectives and constraints that would be faced by an 

offshore wind farm developer in the UK. This approach introduces a 

generalised means of discretising the wind farm area in such a way 

that a grid of potential turbine positions is first generated. The use of 

this grid ensures that the final turbine positions which are selected 

from this grid satisfy the requirement of having turbines along straight 

lines.  

 

From the perspective of an offshore wind farm operator, it is important 

not only to maximise the energy yield from the wind farm, but also to 

optimise the levelised cost of energy (LCOE). The full layout 

optimisation problem therefore represents striking a balance between 

maximising the energy yield and minimising the lifetime costs. 

 

To this end, a number of projects have looked at the optimisation of 

wind farm layouts. This project has addressed this problem in a similar 

approach to previous schemes by using a genetic algorithm (GA) to 

minimise the LCOE (Mosetti et al. 1994, Grady et al. 2005, Elkinton 

2007, Fagerfjäll 2010, Guillen 2010). 
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where 𝐶𝑡 are the costs incurred in year 𝑡, 𝑛 is the project lifetime time, 

𝐴𝐸𝑃𝑡 is the annual energy production (AEP) in year 𝑡, and 𝑟 is the 

discount rate of the project. The LCOE measured in £/MWh 

effectively gives a measure of the cost effectiveness of the layout 

proposed and therefore acts as a means to compare the layouts under 

consideration on a relative basis.  

 

Existing approaches do not apply tools and methodologies that have 

considered all the constraints faced by a developer, nor do they 

consider the full impact the layout has on the LCOE. Many of the 

previous studies opted to use simpler cost models thereby ignoring the 

effect the layout has on costs (Mosetti et al. 1994, Grady et al. 2005). 

The studies that have considered detailed cost models however, have 

not considered the full set of constraints that a developer would be 

faced with (Elkinton 2007, Larsen et al. 2011, Larsen and Réthoré 

2013). The tool developed as part of this work seeks to reconcile this 

by including both detailed models for assessing the layout dependent 

elements as well as a full set of constraints in order to generate layouts 

which would be acceptable from a developer perspective.  

 

The work presented has developed a flexible framework by which the 

energy, cost, and electrical infrastructure are assessed independently 

for each layout. Due to the modularity, alternate wake, cost, or 

electrical infrastructure models can easily be implemented in the 

future for comparison purposes and sensitivity studies. The approach 

presented has also included constraints for maintaining navigation 

channels through the sites, minimum separation between turbines, and 

seabed restrictions, constraints that are less frequently seen in existing 

tools. The tool also generates an optimised intra-array electrical 

configuration simultaneously satisfying not only seabed constraints, 

but also cable capacity, cable crossing, and junction box capacity 

constraints.  

 

A GA with bespoke crossover and mutation operators has been 

developed and applied successfully to this problem. The modular 

platform constructed would allow other optimisation algorithms such 

as particle swarm, ant colony optimisation, or simulated annealing to 

be implemented using the same evaluation function and tool approach.  

 

This paper summarises the initial application of this holistic approach 

to layout optimisation of offshore wind farms. The optimisation 

framework is applied to a hypothetical wind farm made up of 30 wind 

turbines in order to demonstrate the capabilities of the approach. The 

discussion section explores further improvements that will be made to 

the framework to increase the relevance to a wind farm developer. 

 

METHODS 
 

As this tool has been developed as part of a larger project which seeks 

to assess the suitability of different wake models, cost models, 

optimisation objectives, and optimisation algorithms, it has 

intentionally been designed to be as flexible as possible while also 

adhering to the realistic challenges which would be faced by a project 

developer.  

 

Grid Generation 

 

In the UK, project developers have been urged to use symmetric 

layouts with turbines placed along a regular grid in order to comply 

with the navigational safety and search and rescue requirements 

(NOREL Group 2013). Rather than defining navigational channels, 

this constraint has been proposed as requiring the turbines to be placed 

in straight lines with no deviation from these lines. As a result of this, 

most optimisation approaches have limited the optimisation process to 

specifying the regular spacing between turbines. The tool developed 

here, however, looks instead to give the optimiser greater freedom by 

designing a grid which has more potential turbine positions than there 

are turbines to place. This allows the optimiser to change the spacing 

between turbines throughout the wind farm while still keeping the 

turbines in straight lines. It is believed that even though this creates a 

regular grid with holes, the final layout will still satisfy the 

navigational requirements. 

 

The first step in this optimisation approach is therefore to produce this 

grid of potential turbine positions. To do this, the tool first identifies 

the dominant wind direction based on the wind rose describing the 

wind resource at the site and converting this to an energy rose 

representing the kinetic energy flux of the wind and the relative 

occurrence of the wind speed and wind direction combination. The 

dominant wind direction is then defined as the weighted circular mean 

of the wind direction sector where the wind direction is weighted by 

the kinetic energy flux. The dominant wind direction, once identified 

will act as one of the principle axes along which the grid of points is 

generated. By aligning the principle axis with the dominant wind 

direction, the optimiser will be able to align turbines in rows 

perpendicular to the dominant wind direction, thereby minimising the 

interaction of wakes. At the same time, having a large grid with more 

possible positions than turbines to be placed allows the optimiser to 

introduce space for wakes to recover where necessary. This approach 

also allows the optimiser flexibility in adjusting the spacing relative to 

each individual turbine rather than for the entire wind farm. 

 

Once the dominant wind direction is identified, the algorithm expands 

and contracts the spacing as necessary until a grid with the desired 

number of valid turbine positions is generated. For each spacing, the 

grid is produced with a fixed ratio between downwind and crosswind 

spacing. After this each point is checked to ensure that it satisfies the 

geographical information system (GIS) constraints of where turbines 

can be placed. If after this, it is found that: 

a) insufficient grid points are in valid positions, then the 

spacing is decreased, and the process repeated; 

or 

b) too many grid points exist, then the spacing is increased, 

and the process is repeated. 

 

The desired number of grid positions is treated as a minimum and a 

small tolerance of the range of 10% is introduced to ensure that a valid 

grid can always be generated. In this way, “too many” is defined as 

more grid points present than the desired range, and likewise 

“insufficient” refers to grids which have fewer valid turbine positions 

than desired.    

 

Annual Energy Production 
 

The principle output of a wind farm is the energy produced by the 

wind farm which is represented in the LCOE by the annual energy 

production term. In order to accurately assess the impact the layout 

has on LCOE, it is important to characterise the effect that the layout 

has on the AEP and the lifetime energy yield. The energy yield 



 

 

assessment in turn can be said to be made up of two components, an 

understanding of the wind resource at the site, and modelling of 

potential wakes behind each proposed turbine.  

 

Any device which extracts energy from a natural flux such as the wind 

is known to directly impact and alter the natural flux as a result of the 

energy extraction. In the case of wind turbines, the wake behind a 

wind turbine is characterised by lower extractable wind speeds, but 

higher levels of turbulence intensity (Barthelmie et al. 2006, 2009, 

Burton et al. 2011). These wakes are also known to interact with one 

another leading to a more significant reduction in available energy as a 

result of the superposition of multiple upwind wakes (Katic et al. 

1986, Schlez and Neubert 2009).  

 

Wake models, can broadly be categorised into two categories: analytic 

wake models and field models. Analytic wake models are simpler 

models while field models are generally based on solving the Navier-

Stokes equations. Though the annual energy production module can 

either be run independently or as part of the optimisation tool, it was 

decided to use an analytic wake model as opposed to a field model to 

predict the wakes, as this results in substantially quicker 

computational times (Renkema 2007, Sanderse et al. 2011).  

 

Previous work by the authors (Pillai et al. 2014) as well as other 

studies (Gaumond et al. 2012) had shown that for existing wind farms, 

the Larsen model (Larsen 1988) represents a good balance between 

accuracy and computational complexity when compared to a) the 

Jensen/PARK model (Katic et al. 1986), b) the Ishihara model 

(Ishihara et al. 2004, Crasto and Castellani 2013), and c) the Ainslie 

eddy-viscosity model (Ainslie 1988, Anderson 2009). The Larsen 

model is an analytic model based on a closed-form solution of the 

Reynolds-Averaged Navier Stokes (RANS) equations and Prandtl 

mixing theory (Larsen 1988, Renkema 2007). For this study, the 

Larsen model has therefore been deployed, however, other wake 

models can easily be implemented if need be.  

 

In order to assess the AEP, the wind distribution at the site is used to 

determine the frequency of occurrence for each wind speed/direction 

combination. For each of these bins, the turbines in the layout are 

sorted such that the first turbine is the turbine furthest upwind. For 

each turbine, the free wind speed is then updated to account for the 

wakes created by any upwind turbines and the superposition of these 

wakes. The variation in power generation and thrust coefficient are 

considered based on the modified wind speed as a result of the wake 

effect and bins are generated related to speed and directionality. The 

aggregate power generated for the entire layout for these bins, are then 

multiplied by the frequency of this wind speed and direction 

combination. The sum of each of these powers for the bins represents 

the AEP for the proposed layout. This approach is similar to that taken 

by other tools and AEP computations (Mosetti et al. 1994, Grady et al. 

2005, Elkinton 2007, Pérez et al. 2013, DNV GL - Energy 2014). 

 

Electrical Infrastructure Optimisation 
 

Previous layout optimisation tools have generally assumed a constant 

inter-turbine spacing, and therefore the changes in total cost due to the 

intra-array cables are not characterised. However, as the layout 

changes, the total length of infield cable required can change quite 

significantly thereby affecting the costs. As the turbine layout has a 

direct impact on the cable layout it is important for a layout 

optimisation tool to take this into account.  

 

This tool therefore implements an intra-array cable optimisation tool 

in order to determine the cost of the electrical system for each turbine 

layout under consideration.  

 

The authors have previously developed an optimisation methodology 

for optimising the intra-array cable network of an offshore wind farm 

(Pillai et al. 2015). This approach accounts for real wind farm 

planning constraints in order to determine the optimal positions for the 

necessary offshore substations and then designs an intra-array 

collection network which minimises both the cost and the peak losses.  

 

The optimisation tool first determines the optimal positions of the 

substations based on a modified ‘kmeans++’ algorithm. Kmeans++ is 

a modified version of the commonly used kmeans clustering algorithm 

which uses a weighted-random approach to seed the initial cluster 

centres resulting in both better solutions and quicker runtimes than the 

original kmeans algorithm (MacQueen 1967, Arthur and Vassilvitskii 

2006). For this tool, the kmeans++ algorithm is further constrained to 

account for the capacity constraints of each substation and the fact that 

within the wind farm area, there are regions where substations cannot 

be placed. From here, a pathfinding algorithm based on Delaunay 

Triangulation is used to determine possible cable paths for each 

turbine and the respective cost of these paths. The pathfinding 

algorithm is used to account for the areas in which cables cannot be 

laid due to seabed constraints and obstacles. Finally, a capacitated 

minimum spanning tree (CMST) is constructed based on the cable 

costs found in the pathfinding step. The CMST represents the optimal 

network and is solved using Gurobi, a commercial mixed-integer 

linear programming (MILP) software. An iterative approach is taken 

in order to eliminate any cable crossings in the solution.  

 

This tool has previously been applied to large wind farms and has 

been found to offer significant reductions in the total cable needed 

when compared to industry standard approaches (Pillai et al. 2015).  

 

Cost Assessment 
 

Previous works that have included a cost breakdown typically have 

not been able to validate their cost models and as a result have 

introduced significant uncertainty into the optimality of their solutions 

(Elkinton 2007, Fagerfjäll 2010). As this tool has been developed in 

conjunction with EDF Energy R&D UK Centre, it has been possible to 

directly develop and validate the cost assessment methodologies. 

Consequently this work presents costs that have been parameterised 

and validated against real costs expected to be incurred by large 

offshore wind farms deploying wind turbines in the 5-8 MW range in 

UK waters.  

 

The total cost of the wind farm is broken down into eight major cost 

elements: 

1. Turbine Supply 

2. Turbine Installation 

3. Foundation Supply 

4. Foundation Installation 

5. Intra-array Cables (Supply & Installation) 

6. Decommissioning 

7. Operations and Maintenance (O&M) 

8. Offshore Transmission Assets 

 

Turbine supply. The turbine supply costs are determined based on the 

price per turbine that turbine manufacturers have provided. This cost 

therefore does not vary due to the layout unless the total number of 

turbines or installed capacity changes.  

 



 

 

Turbine installation. The turbine installation costs are based on 

market values for vessel costs and capacities and are modelled by first 

modelling the total amount of time needed to install all the turbines at 

their specific locations. This includes not only the computation of the 

travel time between the turbines, but also the necessary time to go to 

and from the construction port. To calculate this, the turbines are 

clustered based on the capacity of the installation vessel, and for each 

cluster a shortest path is computed between the port, each turbine in 

the cluster, and the port again. This approach therefore accurately 

computes the distance that the vessel must travel over the installation 

process. From this, the total time is computed based on assumed 

weather availability and the costs computed based on the vessel and 

equipment day rates. The turbine layout, therefore, has a direct impact 

on the time needed to travel between turbine positions as well as to 

and from the port.  

 

Foundation supply. Foundation costs are found to be highly 

dependent on the site conditions where the foundation is to be 

installed. To account for this dependence, previous cost models have 

attempted a bottom up approach based on the soil characteristics at the 

installation site to model the costs. Unfortunately this approach has 

proven difficult to validate for all foundation types (Elkinton 2007). 

For this tool therefore, a depth dependency has been developed from 

discussions with manufacturers and the specific soil conditions are not 

included. Larger turbines in the 5-8 MW range are more likely to use 

jacket foundations which have been found to be less sensitive to the 

soil conditions than to the depth (Elkinton 2007).  Detailed bathymetry 

of the site is therefore necessary in order to accurately estimate the 

variation in foundation supply costs as a function of the turbine layout. 

For a jacket foundation, the cost from discussions with manufacturers 

was found empirically to follow the below non-linear relationship: 

 

𝐶𝑓𝑜𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛 ∝ 𝐷0.7574                 (2) 

 

Foundation installation. The foundation installation process like the 

turbine installation module is based on estimating the time needed to 

complete the operations and converting this time to a cost. Unlike the 

turbine installation though, this is modelled as three distinct phases 

which each uses a different vessel to complete. 

 

Regardless of the foundation type (gravity-based, monopile, or jacket), 

some seabed preparation is necessary. For a gravity-based foundation 

this might be the necessary dredging and levelling of the seabed, while 

for monopiles and jackets this would more likely be pre-pilling works 

including surveying and drilling. After this step, the foundations will 

be installed as a separate operation following which some kind of 

scour protection will often be added. The installation of scour 

protection is again modelled as a separate step involving a different 

vessel from either the site preparation or foundation installation 

processes. In some conditions, the scour protection will not be 

necessary, however, for the time being this model has assumed that all 

turbines will require scour protection.  

 

Intra-array cable costs. The total horizontal length of intra-array 

cables required is computed from the intra-array cable optimisation 

tool described earlier. This tool is described in detail in previous work 

by the authors (Pillai et al. 2015). This tool has the support for 

optimising the layout for different cable cross-section sizes and 

therefore can output not only the total length of cable, but the 

horizontal lengths required for each segment and the required cross-

section. From this, the intra-array cable cost module computes the 

necessary vertical cable and the necessary spare cable before 

computing the costs.  

 

Following the calculation of the supply cost, the installation cost is 

computed in a similar manner to the turbine and foundation 

installation modules. This is done based on data available for cable 

trenching vessels and therefore assumes that all cables are trenched 

and buried.  

 

Decommissioning. The decommissioning costs include the removal of 

the turbines and foundations. At the moment, it is unclear what will 

happen to the transmission and export cables. The model therefore 

assumes that these cables are not removed at the time of 

decommissioning, but simply cut at the turbines and substation, 

leaving the buried lengths as they are. The decommissioning costs are 

therefore modelled similar to the installation processes with the time 

each vessel is required first computed before this is converted to a 

cost. Like the installation processes it is assumed that the vessels have 

some finite capacity and must return to the decommissioning port 

during the overall operation. The turbines and foundations are 

assumed to be decommissioned in separate steps requiring separate 

vessels. Like the installation phases, this term is therefore dependent 

on the turbine positions and is affected by the proposed layout.  

 

Operations and Maintenance. The operations and maintenance costs 

are based on a tool developed by EDF Energy R&D UK Centre which 

models the anticipated operations and maintenance cost of a project to 

vary with the project’s distance from the operations and maintenance 

port and the capacity of the project. As this term is affected by 

distance of the wind farm to the operations and maintenance port, this 

too is affected by the layout. The operations and maintenance costs are 

classed as operational expenditure (OPEX) as these are incurred each 

year of operation as opposed to the preceding cost elements which are 

only incurred during the construction period and are therefore classed 

as CAPEX elements. 

 

Offshore Transmission Assets. The final cost element of this cost 

model is the inclusion of the offshore transmission assets and the 

offshore transmission asset transfer fees. In the UK, the offshore 

substation, export cables, and onshore substation must be owned and 

operated by a separate company from the wind farm operator. 

Practically, therefore, most wind farm developers build these assets, 

and then transfer them to a transmission operator before 

commissioning the wind farm. As a result, only some of the CAPEX is 

incurred by the project, and the rest is incurred as a component of the 

transmission fee along with regionally based costs set by the network 

operator, in the UK this is National Grid. Both the CAPEX and OPEX 

components of the Offshore Transmission Owner’s assets have been 

computed in discussion with National Grid and equipment 

manufacturers based on the capacity of the assets.  

 

Table 1: Cost Element Contribution to CAPEX/OPEX 

Cost Element CAPEX OPEX Sensitivity 

to Layout 

Turbine Supply Yes - Low 

Turbine Installation Yes - Medium 

Foundation Supply Yes - Medium 

Foundation Installation Yes - Medium 

Intra-array Cable Yes - High 

Decommissioning Yes1 - Medium 

Operations and Maintenance - Yes Medium 

Offshore Transmission Assets Yes Yes Low 
1Though categorised as a CAPEX term, this cost is only applied to the years during which 

decommissioning occurs at the end of life. 

 



 

 

Constraints 
 

An important step for all optimisation routines is to clearly define the 

constraints which must be applied and which limit the solution space. 

In this case, the intra-array cables are optimised as part of the 

evaluation function for the larger turbine placement problem, and 

there are a number of constraints to be considered just for this sub-

problem separate from those which explicitly constrain the turbine 

placement.  

 

First, the site boundary defines the area in which turbine foundations 

can be placed. As developers are required to keep the entire wind 

turbine within their leased turbine area, the boundary is adjusted using 

GIS software to include the necessary “negative buffer” to account for 

the size of the turbine blades. The boundary used by this tool therefore 

represents a smaller region than the overall turbine area.  

 

Second, within the site there may be areas containing unexploded 

ordnance (UXOs) or wrecks. These areas generally cannot contain 

turbines or cables and are therefore treated as exclusion areas by the 

optimiser. Similarly, turbines can generally not be placed in areas 

where the seabed slope is too steep. Generally, areas over 5% slope 

will be considered as too steep for turbines and are similarly treated as 

exclusion areas. All areas also have an additional 50 m buffer area. By 

using the grid generation method, these placement constraints are 

implicitly satisfied for the turbines within the wind farm and need only 

be considered for the substation and intra-array cables.  

 

Third, the turbines generally need to be a minimum distance away 

from one another, for safety and navigational reasons. These are 

generally given as exclusion circles around each turbine, however, 

consenting bodies may alternatively give separate downwind and 

crosswind distances defining an exclusion ellipse. These ellipses will 

generally require more significant separation in the downwind 

direction than in the crosswind direction. 

 

Finally, in the case of most UK offshore wind farms, consenting 

bodies have stipulated that the layout of turbines in offshore wind 

farms should have some degree of uniformity to ensure safe passage 

through the farm as well as not act as a hindrance to search and rescue 

operations (NOREL Group 2013). This constraint is explicitly 

satisfied by the grid generation approach prior to execution of the GA. 

By doing this, a clear grid is defined on which turbines can be placed. 

As this constraint is already considered, it is not implemented within 

the framework of the GA. 

 

The intra-array cable optimisation also has a number of constraints 

unique to its sub-problem. These include not only that the cables and 

the substations must be within the turbine area and may not enter the 

exclusion areas (seabed slope is not an exclusion area for cables), but 

also that power cannot be stored at a turbine and therefore the intra-

array cable network must be balanced; turbines have a limited number 

of connection points and therefore a maximum number of cables that 

connect to a turbine exists; cables may not intersect except at the 

substation or at turbines; and cables have a finite capacity which 

cannot be exceeded (Pillai et al. 2015).  

 

Genetic Algorithm 
 

GAs are a type of population based evolutionary algorithms that are 

well suited to a variety of problem types (Holland 1992). GAs have 

previously been deployed for optimising offshore wind farm layouts 

and have generally been found to offer good solutions to the problem 

at hand (Elkinton 2007, Guillen 2010, Larsen et al. 2011).  

 

GAs are so named as they borrow from biological evolution and have 

analogous algorithms to genetic principles. In a GA, the solutions are 

thought of as genomes with each turbine position thought of as gene. 

GAs operate on a population basis that is to say that a population of 

solutions is considered in which the best solutions have a higher 

probability of passing on genes to members of the next generation. 

The flowchart in fig. 1 outlines the operating principles of a GA and 

the steps involved. The unique aspect of the GA at hand is that rather 

than implementing a generic GA and then testing for compliance 

within the evaluation function, the crossover and mutation steps have 

been designed specifically to include the constraints. In this case, 

because a predefined grid has been created during the grid generation 

step, the genes of the GA are binary and represent the presence of a 

turbine at the specific grid locations; one gene per grid location.  

 

For the implementation at hand, the problem was formulated as a 

minimisation problem in which the fitness of an individual was given 

by its LCOE. In this case, individuals with lower LCOE values 

correlate to a higher fitness. For this tool, the fitness values have not 

been scaled. 

 

Initial Population Selection Crossover Mutation

ReplacementTerminate Evaluation

No

End

Yes

Start

 

Fig. 1: Layout optimisation approach. 

 

The initial population is created by generating random strings of 1’s 

and 0’s representing potential individuals. The individuals are created 

in such a way that all have the correct number of turbines and are 

unique individuals. Each individual is then checked to ensure that the 

placement satisfies all constraints, and if any individuals are invalid 

they are regenerated. This ultimately produces a population containing 

random, valid individuals from which the evolution can proceed.  

 

Selection. Selection is the process by which two individuals of the 

population are chosen to contribute genetic material to member(s) of 

the new population. The selected individuals then act as parents to 

children (new solutions) of the new generation. Though there are a 

number of different types of selection approaches, a roulette wheel 

section algorithm was deployed for this. Roulette selection, also 

known as fitness proportionate selection, assigns a probability to each 

member of the population based on their fitness value. In this sense, 

better solutions have a higher probability of selection than worse 

solutions. The probability of selection is given by: 

 

𝑃𝑠,𝑖 = 1 −
𝑓𝑖

∑ 𝑓𝑖𝑖
                  (3) 

 



 

 

where 𝑃𝑠,𝑖 is the probability that individual 𝑖 is selected and 𝑓𝑖 is the 

fitness of individual 𝑖. As this problem is structured as a minimisation 

problem, lower LCOE values will correspond to a higher probability 

of selection.  

 

Crossover. Crossover is the principle genetic operator that is used to 

combine the selected parents to create children. In crossover, part of 

the genetic material from each parent is combined in such a way that 

does not violate the constraints in order to create two new individuals 

who will potentially be added to the population. As a discrete GA has 

been implemented here, approximately 50% of the genes should come 

from each of the parents. In order to do this, a uniform crossover or 

crossover mask approach is applied. In a crossover mask, each gene is 

randomly assigned to one of the parents. If a gene is assigned to a 

parent, then the first child has the same value for this gene as their 

parent. To generate a second child that is a foil to the first child, the 

crossover mask is flipped (all 1s become 0s and vice versa). Each of 

the children is checked against the minimum separation constraint, and 

in the event of an invalid solution, the mask is regenerated. The 

crossover mask generation procedure maintains the number of turbines 

such that this constraint does not need to be checked following 

crossover. If crossover will occur is itself a probabilistic event, and 

there exists a chance that crossover will not occur and that the two 

children solutions will identically match the parents. This could also 

happen even if crossover does occur, though the probability is very 

low.  

 

Mutation. The other genetic operator that is applied to solutions is 

mutation. Mutation randomly changes part of the solution. In this 

implementation, there is a low probability that a bit gets flipped (i.e. a 

1 becomes a 0, and a 0 becomes a 1). Where crossover explores 

solutions similar to the existing solutions, mutation randomly explores 

the remaining regions of the solution space. The mutation operator is 

necessary to ensure that the solution does not converge to a local 

solution, but rather finds the global solution. Like crossover, the 

mutated children are checked against the constraints as well as the 

number of turbines, and mutation happens repeatedly until a valid 

solution is generated. 

 

In this tool, adaptive crossover and mutation operators based on 

existing literature have been applied (Srinivas and Patnaik 1994). The 

adaptive crossover and mutation rates are implemented to allow the 

algorithm to self-tune and to correctly ensure that bad solutions have 

higher probability of changing. Similarly, this adaptive approach to 

these parameters allows the algorithm to better maintain a diverse 

population of the solution as the solution converges thereby allowing 

the GA to continue to operate effectively without terminating 

prematurely. These adaptive parameters are given by: 

 

𝑝𝑐 =
𝑘1(𝑓𝑚𝑎𝑥−𝑓

′)

𝑓𝑚𝑎𝑥−𝑓̅
  for  𝑓′ ≥ 𝑓̅              (4) 

𝑝𝑐 = 𝑘3   for  𝑓′ < 𝑓̅                             (5) 

𝑝𝑚 =
𝑘2(𝑓𝑚𝑎𝑥−𝑓)

𝑓𝑚𝑎𝑥−𝑓̅
  for 𝑓 ≥ 𝑓̅                             (6) 

𝑝𝑚 = 𝑘4   for 𝑓 < 𝑓̅                             (7) 

 

where 𝑝𝑐 is the probability of crossover, 𝑝𝑚 is the probability of 

mutation, 𝑓𝑚𝑎𝑥 is the fitness of the best individual of the population, 𝑓′ 
is the fitness of the best parent, 𝑓 ̅ is the mean fitness value of the 

individuals in the population, and 𝑓 is the fitness of the individual 

under consideration. The constants are defined such that 𝑘1 = 𝑘3 = 1 

and 𝑘2 = 𝑘4 =
1

2
. 

 

Replacement. The final step of a steady-state GA procedure is to 

introduce the newly generated individuals into the next generation of 

the population. As an elitism parameter is used, the very best 

individuals within the population are carried over to the next 

generation and the remaining members of the population are replaced 

by the newly generated individuals. In this routine, a replace first 

weakest approach is taken. In this replacement strategy, child solutions 

are compared against the worst members in the current generation's 

population. If the child solution has a superior fitness value compared 

to the worst member of the population then the child is marked for 

inclusion in the next generation and the worst member is marked for 

removal. The process continues each time comparing the child's 

fitness against the worst member of the population that has not yet 

been marked for removal. In this specific case, an elitism parameter of 

50% is used. The process, therefore, continues until 50% of the 

population has been replaced with new individuals. 

 

This entire GA process is repeated until the solutions converges or the 

termination criteria are met. 

 

For this study, a test case involving 30 turbines in a 47 km2 area was 

considered. For this area, bathymetry and seabed surveys were 

available defining the depth, areas where turbines cannot be placed, 

and areas where cables cannot be placed.  

 

Table 2: GA Parameters 

GA Encoding Discrete 

Population Size 50 

Maximum Generations 100 

Probability of 

crossover 

Adaptive 

Probability of mutation Adaptive 

Elitism 50% 

Stop Criteria Loss of diversity or  

maximum number of generations reached 

 

The GA was executed with a population size of 50. Previous work has 

found that for specific problem instances a smaller population size on 

the order of 20-30 individuals may work effectively (Haupt and Haupt 

2004, Grefenstette 2006). For this problem, however, it was found that 

a smaller population size than 50 led to a loss in diversity after very 

few generations resulting in little improvement in the best individual 

before termination. Diversity in this case was defined as the 

proportion of the population which was unique solutions. A larger 

population size was therefore selected in order to ensure that diversity 

was maintained through the optimisation process.  

 

For each proposed solution, the energy yield was first assessed, 

followed by execution of the intra-array cable optimiser after which 

the cost for the proposed layout was assessed. From this, the LCOE is 

evaluated assuming a constant capital expenditure (CAPEX) spend 

profile (50% each over 2 years), a 20 year project lifetime prior to 

decommissioning, and a discount rate of 8%.  

 

A representative wind rose for a UK offshore site is assumed. This 

wind rose has strong winds principally from the south/south-west 

directions identifying this as the principle direction with which 

turbines should be aligned. This wind rose does not represent any site 

in particular, but is simply used for the demonstration of the 

capabilities of this tool.  

 

Given the wind rose shown in fig. 2, the tool next generates a grid of 

potential turbine positions. This grid contains 50 possible turbine 



 

 

positions aligned roughly perpendicular to the dominant wind 

direction. The grid generation algorithm removes positions on the grid 

which are in illegal positions (shown in grey in fig. 3). These illegal 

positions can be due to wrecks, UXOs, or the seabed slope. Each row 

of the grid is offset to ensure that the distance between turbines is 

increased along this dominant wind direction. 

 

 
Fig. 2: Wind rose representing the wind resource for the test case. 

 

 

 
Fig. 3: Generated grid of valid turbine positions from which turbine 

positions are selected. 

 

RESULTS 
 

Executing the full approach for a wind farm containing 30 turbines 

resulted in the layout shown in fig. 4 after 13 generations. This 

solution was based on generating a grid made up of 50 potential 

turbine positions. This grid size was selected to ensure there were 

more possible turbine positions than turbines. The solution produced 

does adhere to the site constraints and produces a solution that 

conforms to a regular grid thereby satisfying the necessary 

navigational and search and rescue constraints. The solution produced 

also leaves larger gaps between turbines in the interior of the wind 

farm which is consistent with the relevant theory of wind turbine 

wakes and allows the wakes to recover before a new turbine is placed. 

Though significant gaps are left, the optimiser does not eliminate 

turbines from the centre of the wind farm. This indicates that AEP 

could still be increased, but likely at a higher cost. The presence of the 

turbines in the centre of the wind farm indicates the importance of not 

only considering the wakes, but also the cost of the wind farm. 

 

Fig. 5 shows an inferior turbine layout proposed during the first 

generation of the optimisation process which has a higher LCOE of 

£92.45/MWh. As can be observed, fewer holes are left through the 

site, while a few turbines are isolated. The combined effect of this is 

that wake effects are not effectively minimised and costs are 

unnecessarily increased to accommodate the inclusion of the isolated 

turbines.  

 

In this way, the approach ensures that all constraints are satisfied 

while at the same time using a dynamic spacing parameter to minimise 

the effect of wind turbine wakes and thereby the LCOE.  

 

 
Fig. 4: Optimised turbine placement. LCOE for this layout is 

£89.51/MWh. 

 

 
Fig. 5: An inferior layout proposed by the optimiser during the first 

generation. LCOE for this layout is £92.45/MWh. 

 

From the convergence plot (fig. 6) it can be seen that over the 

execution of the algorithm, both the best and mean solution scores 

progressively improved. This is indicative that the GA was operating 

as expected. The final solution identified by the GA has an LCOE of 
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£89.51/MWh.  

 

 
Fig. 6: Minimal and mean LCOE over generations. 

 

 
Fig. 7: The layout proposed by using DNV-GL WindFarmer’s 

Symmetrical Optimiser. LCOE for this layout is £90.53/MWh. 

 

 

Running DNV GL WindFarmer’s Symmetrical Layout Optimisation 

as a benchmark on the same site yields a layout optimised for AEP 

(fig. 7). This layout which represents the industry standard approach to 

designing offshore wind farms produces a layout with an LCOE of 

£90.53/MWh when evaluated using our evaluation function. This is 

slightly higher than the solution produced by this tool, and broken 

down represents a 0.69% decrease in discounted AEP and a 0.44% 

increase in discounted cost compared to the solution generated by the 

GA shown in fig. 4. Though WindFarmer does not allow LCOE 

optimisation, it does represent the industry standard approach to 

designing wind farms. Further improvements to the proposed layout 

using the methodology at hand, could likely be found if the GA was 

run for more generations. Unfortunately, diversity was not maintained 

in the population and the optimiser was forced to stop prematurely.  

 

The scatter diagram in fig. 8 indicates the mean wind speed 

experienced by all turbines in each wind speed bin for different 

layouts relative to the mean free wind speed in each directional sector. 

Using this approach for comparing the layouts, the relative wake loss 

by wind direction can be observed. From this figure, it can be 

observed that the inferior layout considered in fig. 5 leads to more 

significant reductions in the average wind speed in all wind directions 

than the more optimal layout shown in fig. 4. Though the relative 

decrease in wind speed is small, it is important to note that the power 

extracted by a wind turbine varies with the cube of the wind speed. 

This figure does also not consider the frequency of the wind 

directions, but is simply used to illustrate one of the key drivers of the 

LCOE. The overall wake loss is 4.39% for the inferior layout and 

3.50% for the more optimal layout resulting in a change in AEP of 

10,000 MWh per year.  

 

 
Fig. 8: Scatter diagram showing the mean wind speed experienced 

through the wind farm for each direction sector for different layouts 

relative to the mean free wind speed in each direction.  

 

DISCUSSION AND CONCLUSIONS 
 

The present work has highlighted the initial results from the 

development of a framework for the optimisation of offshore wind 

farm layouts using an adaptive genetic algorithm. It is believed that 

this framework will be useful in furthering the field of offshore wind 

farm layout optimisation as well as allowing developers to better 

understand the characteristics of their potential projects. The approach 

taken has introduced as many realistic constraints as possible in order 

to maximise the value of the framework while at the same time 

striving for accurate assessment of the energy yield of the wind farm, 

the costs, and the LCOE.  

 

For the test case considered, a 50 position discrete grid was generated 

prior to execution of the GA. This grid was oriented such that rows of 

turbines were perpendicular to the dominant wind direction. From this, 

the GA selected which 30 of the 50 positions should be used. 

Interestingly looking at the difference between the worst result of the 

first generation and the best result of the last generation, there is a 

difference of approximately £2/MWh indicating that significant 

savings can be reached by applying an optimisation algorithm rather 

than randomly selecting the positions. Comparing the results of the 

GA against the industry standard approach using DNV-GL 

WindFarmer also shows improvements in LCOE by optimising the 

layout considering LCOE using the GA rather than AEP using 

WindFarmer’s built in optimisation approach (£1/MWh 

improvement).  
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The number of valid turbine positions was selected arbitrarily to 

demonstrate the capabilities of this framework. Future work using this 

framework should explore the relationship between the number of 

turbines to be placed and the number of possible turbine positions in 

the discrete grid. Realistically, it would be expected that as the number 

of possible turbine positions increases, the solutions should improve in 

fitness however, at the same time as the number of possible positions 

increases, the regularity of the layout decreases and the search and 

rescue constraints will not remain satisfied. At the same time, the 

computational complexity will increase. With a grid including fewer 

holes than turbines, it was found that the search and rescue and 

navigational constraints were always satisfied, however, further work 

should explicitly explore this. Presently, the number of turbines to be 

positioned is also an input to the tool and further work should explore 

allowing the algorithm to select this as well with a maximum number 

of turbines constraint.  

 

From the minimal and mean LCOE over generations plot (fig. 6) it can 

be seen that even though adaptive mutation and crossover rates are 

used, the GA still has some generations where though the population 

overall improves, the best solution does not. This indicates that further 

work could explore tuning of the GA parameters to improve the 

number of generations it takes to converge. Presently, however, the 

GA is terminating due to a loss in diversity, rather than true 

convergence, and improvements can be expected if methods for 

maintaining diversity in the population are introduced to the GA. 

Having said that, even without any further tuning, the GA still 

manages to identify a layout with a lower LCOE than using the 

industry standard approach with DNV-GL WindFarmer. This 

highlights the need to not only optimise for a metric taking into 

account both energy yield and cost, but also the advantage of 

introducing holes to a regular layout.  

 

Given this platform, future work will expand on this study and look 

not only at further tuning the GA parameters to effectively solve this 

problem, but also to benchmark the GA against alternate optimisation 

algorithms. This platform will also allow alternate objective functions 

such as levelised production cost (LPC) or net present value (NPV) to 

be explored.  

 

Application of this framework will also allow simplifications of the 

evaluation function to be explored. Presently, the evaluation function 

is relatively detailed with the majority of time being spent on 

evaluating the intra-array cable infrastructure and optimising this for 

each turbine layout under consideration. Having said this, each 

evaluation call on an 8 core computer is still completed in under a 

minute. Future work using this framework will also be capable of 

comparing the results using alternate evaluation functions and 

characterising which elements of the layout the objective function is 

most sensitive to. At the same time, however, it is believed that the 

tool can scale to larger problems representing realistic offshore wind 

farms without an unrealistic increase in the computational power 

required. One iteration of 50 individuals has been run on a multi-cored 

desktop machine, however, it is expected that for a full-sized wind 

farm the execution of the tool will be transferred to a cluster allowing 

the larger problem to be solved in similar timescales as the test case by 

utilising more cores in parallel. Moving away from a single processor 

will also allow larger population sizes to be explored potentially 

allowing the premature convergence problems to be avoided. 

Realistically for a full wind farm it would be expected that in lieu of 

using an extremely large population, multiple runs will be completed 

using slightly larger populations with random seeding in order to 

ensure that the search space is effectively explored. 

 

The applicability of this tool to larger offshore wind farms is still 

limited due to the simplification of the wakes, and the omission of the 

interactions between wind turbines and the atmospheric boundary 

layer (Frandsen et al. 2006). This large wind farm or deep-array effect 

has been explored by adding corrections to analytic wake models 

(Barthelmie et al. 2007, Brower and Robinson 2009). Future work 

intends on using the constructed framework to validate and tune these 

correction factors before applying them in the overall layout 

optimisation approach.  
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