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Abstract—The recent advances in microelectronics and com-
munications have led to the development of large-scale IoT net-
works, where tremendous sensory data is generated and needs to
be processed. To support real-time processing for large-scale IoT,
deploying edge servers with storage and computational capability
is a promising approach. In this paper, we carefully analyze the
impacting factors and key challenges for edge node deployment.
We then propose a novel three-phase deployment approach which
considers both traffic diversity and the wireless diversity of
IoT. The proposed work aims at providing real-time processing
service for the IoT network and reducing the required number of
edge nodes. We conducted extensive simulation experiments, the
results show that compared to the existing works that overlooked
the two kinds of diversities, the proposed work greatly reduces
the number of edge nodes and improves the throughput between
IoT and edge nodes.

Index Terms—IoT, Large-scale, Edge Computing, Deployment

I. INTRODUCTION

The recent advances in low-power wireless communica-

tions and computing technologies have enabled the large-

scale implementation of Internet of Things (IoT) systems [1],

where massive sensors, micro-controllers and transceivers are

embedded to the facilities of buildings, vehicles, wearable

items and wild areas [2], [3], [4]. The IoT aims at making

the Internet even more immersive and pervasive, providing

interactive cyber-physical access and control services [5], [6].

Based on the IoT infrastructure, various large-scale real-time

applications emerge, which makes the real-time processing a

fundamental and critical service for IoT [7], [8]. For example,

the smart building system [4] consists various types of IoT

sensory nodes including HD cameras, wearable sensors, lo-

calization anchor sensors, gym equipment sensors, etc. Those

sensors need to keep collecting the sensory data continuously

and provide real-time response to the upper level applications.

For example, the health monitoring system needs to collect

various health data from the wearable sensors from users and

alarm when abnormal phenomenon is detected.

The large amount of sensory data and the corresponding

real-time processing workload pose significant challenges to
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the practical application of large-scale IoT systems. Mean-

while, edge computing [9] emerges as a promising solution to

the above challenge as it provides instant storage and data

processing services to the resource-constrained IoT nodes.

Figure 1 shows the edge architecture for IoT systems. Multiple

edge computing servers are deployed to cover part of the IoT

nodes. The computational tasks and sensory data from the IoT

nodes are sent to the edge nodes (ENs) for processing. The

results are then returned to the IoT nodes or transmitted to the

cloud for big data analytics [10].
Deployment of the edge nodes is a fundamental problem

for the above architecture. Different from the existing works

on sink deployment in multi-sink sensor networks, the de-

ployment of edge nodes have several distinct challenges. First,

compared to traditional sensor network nodes, IoT nodes are

more diverse and have largely different traffic demands. For

example, the video cameras produce much more data than

the equipment maintenance sensor nodes. Second, unlike the

mobile edge computing where WiFi/Cellular communications

are utilized, IoT nodes often employ the low-power radios

[11], [12] and are more prone to the wireless interference.

Considering the edge servers are responsible for collecting

data as well as disseminating data (e.g., for software update

or computational feedback), the wireless interference can

significantly affect the EN deployment.
To address the above challenges, we propose a deployment

approach for edge servers in large-scale IoT. The proposed

work has three building blocks. First, a traffic aware discretiza-

tion approach is devised, which divides the whole IoT network

area into a number of candidate positions. The discretization

considers the traffic diversity of the IoT nodes and normalizes

the demands/resources of the IoT nodes. Second, we propose a

utility metric considering wireless diversity – link quality and

link correlation to evaluate the candidate positions. Third, a de-

ployment algorithm based on the utility metric is proposed. By

incorporating both diversity information, the proposed work is

expected to improve the throughput and reduce the required

number of edge nodes. We conduct extensive simulation exper-

iments and compare the proposed work to the existing works.

The results show that our work achieves smaller number of

edge nodes and greatly reduces the transmission count. The

main contribution of this paper is summarized as follows.

1) We propose a discretization scheme to generate candi-

date positions, where traffic diversity is considered and

the demands/resources of IoT nodes are normalized.

2) We propose a novel utility metric to evaluate the can-

didate positions, where the wireless diversity is consid-
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Fig. 1. An illustrative example for the system model. There are various types of IoT sensor nodes and wireless access points (AP) deployed in the target
area. The edge nodes needs to cover the IoT nodes and try avoiding the interference from the wireless APs.

ered.

3) Based on the above schemes, we propose a deployment

algorithm which improves the IoT-Edge throughput and

reduces the number of edge nodes.

The remainder of the paper is organized as follow. Section

II presents the preliminaries and system model for the edge

deployment problem. Section III analyzes the challenges for

the problem and presents the three-phase deployment ap-

proach. Section IV presents the simulation results and analysis.

Section V presents the related works with edge computing and

deployment in large-scale networks. Section VI concludes this

paper and discusses future directions.

II. PRELIMINARIES AND SYSTEM MODEL

Our aim is to deploy a number of edge nodes to a large-scale

IoT network, where diverse IoT sensor nodes are in an area

possibly with pedestrians and wireless interference. Figure 1

shows a typical IoT network in an airport, which consists

a number of HD camera sensors with high traffic demands

and a number of ordinary sensors with low traffic demands.

The ordinary sensors are used for building monitoring, indoor

navigation, equipment monitoring, etc. Although those IoT

sensor nodes generates large amount of data, they usually

have very limited computational resources for real-time data

processing [7]. To support real-time data processing for the

large-scale IoT network, a promising alternative is to deploy

a number of edge nodes hierarchically with the IoT network,

which are connected to the IoT nodes and processes the IoT

data in real time. All IoT nodes then send the sensory data to

the connected edge servers for data processing.

Compared to the traditional large-scale sensor network, the

large-scale IoT network has two main differences.

1) First, the IoT networks are heterogeneous rather than

homogeneous, which consists much more diverse IoT

nodes. For example shown in the figure, the camera

sensors and equipment sensors have largely different

demands on data traffic and data processing.

2) Second, the IoT networks are often deployed in indoor

environments rather than unmanned areas. Consider-

ing WiFi has been pervasively deployed for wireless

access, the co-existence problem of edge nodes and

the environmental wireless networks also needs to be

considered. Specifically, as low power radios are often

employed in the IoT nodes, they can be easily affected

by WiFi communications, Bluetooth communiations, etc

[13], [14].

Our goal now is to deploy a number of edge nodes to

the IoT network to cover all the IoT nodes. The problem of

minimizing the number of edge nodes is equivalent to the

problem of Knapsack problem [15], which is NP Complete.

Therefore in this paper, we design a heuristic to reduce

the number of edge nodes and provide high-throughput data

collection/dissemination service for real-time data processing

in the IoT networks.

III. DIVERSITY AWARE DEPLOYMENT OF THE EDGE

SERVERS

In this section, we present the three-phase deployment

approach. Specially, we will present the details on considering

traffic diversity and wireless diversity.

A. Challenges

There are two challenges to deploy edge nodes for real-

time data processing in large-scale IoT – Traffic diversity and

wireless diversity.

1) Traffic diversity. The IoT nodes are diverse in data

types and traffic demands. Different types of data have
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different processing requirements and will require dif-

ferent amount of computational resources. Considering

the edge nodes are often powerful, in this paper, we

mainly consider the diversity of traffic demands. Differ-

ent amount of traffic demands will directly affect the

deployment of edge nodes in two ways. First, the edge

nodes are targeted to receive data from the IoT nodes.

Intuitively, the edge nodes should be deployed nearer

to the IoT nodes with more traffic demands. Second,

the traffic demands may not be consistent with the node

density because different nodes have different demands.

The two factors need to be jointly considered in the

deployment process.

2) Wireless diversity. For wireless diversity we mainly

consider link quality and link correlation. For many

large-scale IoT systems, especially for those deployed

in indoor environments, the WiFi networks, Bluetooth

communications, even microwave ovens can have large

impact on the transmission quality between the edge

nodes and the IoT nodes as they typically use low-

power radios (e.g., ZigBee). Considering that edge nodes

are used to collect sensory data and disseminate remote

commands and maintenance instructions, both inbound

and outbound performance can be largely impacted by

the interference. Therefore, the link quality/correlation

distribution and the impact on the performance of both

collection/dissemination should also be considered in the

deployment process.

B. Overview

To address the above challenges and deploy the edge nodes

effectively, we incorporate the two kinds of diversities into

the deployment process and propose a three-phase deployment

approach. Figure 2 shows the overview of the proposed

approach.

1) Discretization. Before determining the positions for

deploying edge nodes, we first discretize the whole IoT

network area into many small sections and the centroid

of each section is a candidate position. In the discretiza-

tion, we combine both wireless transmissions and the

data traffic demands to define “effective” transmission

levels, with which all nodes’ levels are normalized

and the traffic diversity is incorporated. The details are

described in Section III-C.

2) A utility metric. Next, we propose a comprehensive

metric to evaluate the impact of each candidate position.

The utility metric calculates the expected performance

gain of the candidate position regarding the expected

number of transmissions required for both data collec-

tion and message dissemination. Wireless diversity in-

cluding link quality and link correlation among multiple

links are considered in the metric. The detailed design

of the metric is described in Section III-D.

3) The deployment algorithm. Based on the proposed

utility metric, we further devise a heuristic to select

the best candidate positions for deploying the edge

nodes. The input is the traffic demands and wireless

Traffic demands 
aware discretization

Discretizing the 
network area into 
several candidate 
positions 

A utility metric for 
candidate positions

Evaluating the 
candidate postions 
considering both 
kinds of diversities

Deploying edge 
nodes to the best 
candidate postions 
based on the 
proposed metric

Deployment based 
on the metric

Fig. 2. Overview of the proposed work.

measurements (link quality/correlation) from the IoT

network; The output is the positions for deploying edge

nodes. We discussed the possible ways to reduce the

measurement overhead in Section III-E.

The notations used throughout this paper is listed as follows.

TABLE I
THE NOTATIONS USED THROUGHOUT THIS PAPER.

Notations Description
Pc The set of all candidate positions.
Ps The set of selected positions for deployment.
pi The i-th candidate position.
ρi The proposed metric ρ for candidate position pi.
lni The distance of the i-th level of IoT node n.
dn The data traffic demand of node n.
tnr The transmission rate from n to position r.
u The total number of levels considered in the discretization.
pck The collection performance for candidate position pk .

pdk The dissemination performance for candidate position pk .

qij The packet delivery ratio of link i → j.
cn
i/j

The link correlation between links n → i and n → j.

cn
Ni/Nj

The set link correlation between subset Ni and Nj .

C. Discretization

Given the positions of the IoT nodes, we can obtain a

series of candidate positions for edge nodes deployment. In

the existing works, the areas are divided by the levels of the

communication quality. For example in Figure 3(a), the area

is divided by the circles denoting the different transmission

rates. Each block that lies in a combination of different

levels of the IoT nodes is a candidate position. For each

candidate position, the corresponding transmission rates are

used for position selection. In the case shown in Figure 3(a),

the optimal position for deploying en edge node is close to

the three IoT sensors because it achieves the best average

transmission rate.

However, while the transmission rate is a useful indicator

for the sink nodes’ effectiveness in homogeneous networks,

it is no longer useful for heterogeneous networks. The reason

is that different nodes have largely different traffic demands,

leading to different task transfer delay. For example, the cam-

eras have much more traffic loads than the ordinary sensors.

The same transmission rate can lead to different task transfer

delay for cameras and the ordinary sensors. Therefore, we re-

define the levels for discretization, which incorporates the data
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Fig. 3. The discretization approach with different leveling schemes. (a) shows
the case that uses the transmission-rate levels for discretization; (b) shows the
normalized levels which consider the data traffic demands from different IoT
nodes.

traffic demands. The defined “normalized” level i of node n
is calculated as

lni = argr(
tnr
dn

= 1− i

u
) (1)

where i ∈ [0, u] denotes the i-th level and the percentage of

the transmitted data out of the total transmission demand in

unit time equals 1- i
u ; u denotes the total number of levels; dn

denotes the transmission demand of node n and tnr denotes

the expected transmission rate at the circle with radius r. For

example, if we calculate ten levels for node n, then the second

level of n is ln0.8 which equals to the radius r with which
tnr
dn

= 0.8. By such leveling scheme, the relationship between

a node’s effectiveness and the distance can be normalized.

Figure 3(b) shows the normalized levels. We can see that

compared to the original levels, the normalized levels for cam-

era sensors become geographically smaller and the normalized

levels for ordinary sensors become geographically larger. As a

result, the optimal deployment position become closer to the

camera. Since the cameras have high traffic demand and the

ordinary sensors have low traffic demand, the new deployment

can provide fast task offloading and real-time transmission for

both nodes while the deployment in Figure 3(a) can provide

real-time transmission for only the ordinary nodes.

It is also worth noting that the actual transmission rate at

a given radius can be largely different due to the wireless

interference. We will consider the impact of the wireless

interference in the evaluation metric for the candidate positions

in Section III-D. Once we have obtained the normalized levels

for all IoT nodes, the target area has been divided into many

candidate positions for EN deployment. We then use the utility

metric to estimate the effectiveness of the candidate positions

and then select the best deployment positions.

D. A utility metric for candidate positions

As the traffic diversity is considered in the discretization,

now we need to take the wireless link diversity into account.

Considering the the edge nodes are responsible for collecting

data from the candidate nodes and sometimes disseminating

the update codes or maintenance instructions to the IoT nodes,

we need to consider the performance for both collection and

dissemination. According to the weights of data collection and

dissemination, we devise a comprehensive performance metric

ρ for a candidate position k as follows:

ρk = αpck + (1− α)pdk (2)

where pck denotes the performance for data collection and pdk
denotes the performance for data dissemination. pck is given

by the sum of all packet delivery ratio (PDR) of one-hop IoT

nodes:

pck =
∑

i∈N

qik × liidx(i,k) (3)

where qik denotes the link quality from node i to node k;

idx(i, k) denotes the level index for candidate position k in the

range of IoT node i; N denotes the set of all IoT nodes. Then

the physical meaning of pck is the effective transmission rate for

all connected IoT nodes of edge node k. The calculation for the

dissemination performance pdk is more complex as it involves

both link quality and link correlation [16]. We calculate the

dissemination performance by combining both link quality and

link correlation. Link quality is defined as the packet delivery

ratio (PDR) and link correlation is defined for link pairs as

follows. Given two links k → i and k → j, the link correlation

is calculated as the probability that k → i fails a packet given

that k → j fails the same packet. We denote the above link

correlation as cki/j .

Next, we combine link quality and link correlation to cal-

culate the dissemination performance in terms of the expected

transmissions required for edge node k to deliver a packet to

all target receivers, denoted as pdk. pdk can be calculated as

follows according to its definition:

pdk =

+∞∑

m=1

mP k
n (X = m) (4)

where P k
n (X = m) denotes that m packet transmissions are

required for k to deliver a packet to all n nodes. P k
n (X = m)

can be calculated as:

P k
n (X = m) = P k

n (X > m− 1)− P k
n (X > m) (5)

where P k
n (X > m) denotes the number of transmissions

for covering n nodes is larger than m, which equals to the

probability that m transmissions cannot cover all n nodes:

P k
n (X > m) = (1−qkn)

m+P k
n−1(X > m)−((1−qkn)×ckNn−1/n)

m

(6)

where (1−qkn)
m denotes the probability that m transmissions

cannot cover the n-th node, P k
n−1(X > m) denotes the

probability that m transmissions cannot cover the remaining

n − 1 nodes, i.e., there is at least one node which cannot be

covered by m transmissions in the n − 1 nodes. There is an

overlap between the first two items, which is the case that the

n-th node loses the packet and the n−1 nodes are not covered

at the same time. Therefore, we need to minus the overlapped

probability, i.e., the third item ((1− qkn)× ckNn−1/n
)m, which

is calculated as the probability that m transmissions cannot

cover the n-th node and at least one node in the remaining

n− 1 nodes is not covered. Please note that “k covers i” here

means that node i successfully receives the packet from k.
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With Eq.(6), we can calculate P k
n (X > m) recursively

starting from P k
1 (X > m) = (1− qk1)

m as follows:

P k
n (X > m) =

n∑

r=1

((1− qkr)
m − ((1− qkr)× ckr−1/r)

m) (7)

Apparently, ck0/1 = 0 according to the definition.

Combining Eq.(4)-(7), we can then obtain the performance

for data dissemination from an edge node k to all its potential

IoT receiver nodes. Then with Eq.(2), we can calculate the

utility for each candidate position and sort all candidate

positions according to the utility.

Determining the weighing factor in Eq.(2). The α deter-

mines weights of collection and dissemination tasks. Suppose

there are sc collection traffic and sd dissemination traffic, then

we have:
α

1− α
=

sc
sd

(8)

By solving the above equation, α can be obtained:

α =
sc

sc + sd
(9)

It is worth noting that we assume the offloaded task execution

and data processing does not incur noticeable delay for the

transmission. Otherwise, the delay incurred by the computa-

tional tasks also needs to be considered in the calculation of α.

The task information sc and sd is provided by the IoT network

operator.

Wireless link measurement. As shown in the calculation

of the ρ metric, link quality and link correlation need to be

measured. We have two alternatives for link measurement:

First, link predictions based on the SINR measurements using

the model proposed in [17]. By measuring the SINR at all

candidate positions, both link quality and link correlation can

be predicted. Second, link estimation using the in-packet RSSI

sampling. By increasing the sampling rate of the wireless

radios, we can extract the byte-wise RSSI readings. For

example, we can obtain 127 RSSI samplings from an 127-

byte packet. As studied in [18], the difference between a given

RSSI value and the lowest RSSI value is a good indicator to

the error rate for the corresponding byte. Based on the RSSI-

based error estimation method [19], we can obtain a series of

BER and the variations from the RSSI samplings. Then PDR

can be inferred using BER as follows:

q =
t∏

i=1

(1− be[i]) (10)

where be[i] denotes the estimated BER for i-th byte and t
denotes the packet length in terms of bytes.

Link correlation can be estimated using either single packet

or multiple packets.

1) If single packet is used, the expected link correlation

between two links k → i and k → j is given by:

cki/j =

t∑

m=1

bki[m]&bkj [m]

bkj [m]
(11)

where bki[m] denotes the binary indicating whether m-th

byte is erroneous in the packet from k to i and & denotes

the binary AND operation. Specifically, bki[m] = 1 if

the byte is estimated erroneous.

2) If multiple packets are used, link correlation is calculated

as in Eq.(11). The difference is that bki[m] can be

directly obtained instead of estimated from the RSSI

sampling.

Compared to the measurement with multiple packets, the

measurement with single packet can be done more quickly.

The drawback is that the accuracy will be decreased. Both

measurement schemes can be used according to the application

scenario.

E. Deployment algorithm

Based on the metric ρ proposed in Section III-D, we can

sort all the candidate positions. As discussed in Section II, the

problem is NP complete. We then propose a heuristic solution

by selecting the candidate positions from the position with the

best ρ. When a candidate position is selected, the IoT nodes

within the m-th utility level are included as its subscribing re-

ceivers. Then we exclude all the covered subscribing receivers,

update the ρ values for all candidate positions (expected the

chosen positions) and select the position with the highest ρ
for deploying the next edge node. The above process continues

until all IoT nodes are covered by the edge nodes. The detailed

deployment algorithm is described in Alg. 1.

Algorithm 1 The deployment algorithm

Input:
1) The set of all candidate positions, Pc;

2) The set of all IoT nodes, N ;

3) The link quality/correlation for all positions which is

used for calculating the ρ metric for the candidate

positions;

Output: The selected positions for edge node deployment Ps

1 while There exists n ∈ N that is not covered by any pi ∈ Pc.
do

2 for each candidate position pi ∈ Pc do
3 ρi = mCal(pi);

if ρi ≥ ρi−1 then
4 pbest = pi
5 end
6 end
7 Ps.insert(pbest);

Pc = Pc.remove(pbest);
for each IoT node ni ∈ N(pbest) do

8 N = N.remove(ni);
9 end

10 end

By excluding the selected positions and corresponding IoT

nodes, the updated ρ metric still represents the effectiveness of

candidate positions. To reduce the computational complexity,

we can judge whether the ρ metric is affected before updating.

If the previously selected positions have no overlapped IoT

nodes with the current position pi, then the metric ρi will

remain unchanged for the next round selection. Besides, we

can boost the algorithm by selecting the top τ non-overlapped
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positions in each iteration. With a larger τ , the algorithm runs

fast but the selected positions may have worse utilities; With

a smaller τ , the algorithm runs slow but the selected positions

have better utilities. We will consider using energy efficient

clustering algorithms [20], [21], [22] to find the deployment

positions in our future work.

IV. EVALUATION

In this section, we evaluate the proposed deployment

scheme in comparison with [23], which deploys multiple

sinks to a sensor network. The sink nodes are responsible for

collecting the sensor data, which play similar role with the

edge nodes in our scenario.

A. Experimental settings

We simulate a 100-node IoT network, where the data traffic

in unit time for all IoT nodes are randomly generated. The

edge nodes are assumed to be able to receive T = 150 KBps.

For a given candidate position, the top m IoT nodes with the

best ρ are selected to be connected to the position. The sum

of the traffic from the selected m nodes does not exceed T .

Hence m is given by:

m = max
n

n∑

k=0

rk ≤ T (12)

Apparently, m is varying for different positions. The positions

of the IoT nodes are randomly placed. We repeat each simu-

lation 100 times to reduce the random variations. We compare

the following metrics:

1) The number of edge nodes used to cover all IoT nodes.

2) The performance gain in terms of the average throughput

between IoT nodes and the edge nodes.

We tune the following parameters to see in which cases the

proposed work performs better or worse.

1) The fraction of high-demand IoT nodes. The high-

demand IoT nodes generate five times traffic of the

ordinary IoT nodes. We tune the fraction of the high-

demand nodes and see the performance gain achieved

by the proposed work.

2) The fraction of dissemination tasks. Different IoT net-

works may have different designing goals, leading to

different fractions of dissemination tasks [24]. This

fraction has impact on the calculation of ρ.

3) The wireless interference. We change the number of

interfering wireless APs and compare the performance

gains. The interference impacts the wireless diversities,

which further impacts the selection of candidate posi-

tions.

B. Simulation results

Figure 4 shows the reduction of deployed edge nodes with

different fractions of the high-demand IoT nodes. We change

the number of high-demand IoT nodes to see the impact on

the reduction. We can see that 1) compared to the existing

work based solely on wireless communications, the proposed

work always reduces the number of edge nodes. The reason
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is that although link quality is important, the throughput may

not be good as high-demand nodes may be assigned to poor-

quality links. 2) The reduction increases and then decreases,

which means our work better suits for the case with more

diverse traffic demands from IoT nodes. The reason is that

we explicitly consider the traffic diversity in the candidate

positions. As a result, when the IoT nodes are more diverse,

we have more room for optimization.

Figure 5 depicts the performance gain for both collection

tasks and dissemination tasks with varying fraction of the

dissemination tasks. We set that the IoT network contains

60% high-demand nodes. Recall that the dissemination tasks

are used for network maintenance or periodic network update.

From the results we can see that 1) the performance for data

collection is consistently improved. The reason is two-fold.

First, wireless link diversity is considered in the proposed

work, which reduces the expected packet losses. Second,

although the fraction of collection tasks deceases, for each

specific collection task, the link diversity is still considered

and thus the throughput is improved; 2) the performance

for data dissemination significantly increases. This is because

the existing works overlook the dissemination task demands.

When the fraction of the dissemination tasks increase, the

throughput gain increases accordingly. It is also worth noting

that in most IoT networks, dissemination is not the dominating
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Fig. 6. The throughput gains with varying interfering wireless APs.
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Fig. 7. The reduction on the number of edge nodes with varying interfering
wireless APs.

traffic as the main aim is to collect the interesting data from the

target area. For some IoT applications with more controlling

tasks, the fraction of dissemination tasks should be larger.

Figure 6 shows the throughput gains for collection and

dissemination under different number of wireless APs (WiFi).

Similar to [25], the impact of WiFi interference is introduced

in the simulation by deliberately failing some packet transmis-

sions. The packet losses generated at the sender side will be the

correlated packet losses and the packet losses generated at the

receiver side will be the independent packet losses. According

to the studies in [25], WiFi interference is a dominating reason

for correlated packet losses, as a result the packet loss link

correlation becomes stronger when WiFi interference becomes

stronger. From the results it can be inferred that as the interfer-

ence becomes stronger, the throughput gain of dissemination

becomes larger and the throughput gain of collection remains

similar. From the calculation process in Section III-D we can

see that link correlation mainly impacts the performance of

data dissemination. When link correlation becomes stronger

with the interference, there are more optimization space for

dissemination.

Figure 7 depicts the reduction of edge nodes with varying

number of interfering wireless APs. Different from the exper-

iment in Figure 4, the fraction of high-demand IoT nodes is

fixed and the number of interfering nodes is varying. We set

40% nodes with high traffic demand and 20% dissemination

tasks. It can be inferred that 1) the reduction increases as the

interference becomes stronger. From the above analysis on

dissemination, we can infer that the increments come from

the portion of nodes that have 20% dissemination tasks. In

order to meet the dissemination throughput threshold, more

edge nodes will be required for the work without considering

dissemination performance. 2) Compared to the results in

Figure 4, the reduction changes are much smaller. Therefore,

we can conclude that the number of edge nodes is mainly

determined by the traffic diversity. The impact of interference

on reducing the edge nodes is limited.

V. RELATED WORKS

The combination of mobile edge servers and IoT as well

as the corresponding benefits are discussed in [26]. Our work

differs from the scenario described in [26] in the following

ways. First, we consider a large-scale and more practical IoT

network, where different IoT nodes are with more diverse

demands. Second, we focus on the deployment problem of

edge nodes for IoT network while the authors in [26] consider

a general idea of combining mobile edge computing and IoT

applications.

Although there are few existing works on deploying edge

servers for large-scale IoT network, the problem is closely

related to the powerful node deployment problem in large-

scale sensor networks, where the powerful nodes can be either

relay nodes or sink nodes [27], [28], [29], [23], [30], [31],

[32]. Next, we mainly introduce and discuss the literature

for deploying relay nodes or multiple sink nodes in large-

scale sensor networks. Bredin et al. [28] studied the relay

node deployment problem which should meet a survivability

requirement. Cheng et al. [29] considers the connectivity

constraint in the relay node deployment. Similar to our work,

each IoT node is required to be connected to a relay node.

Misra et al. [23] additionally consider limiting the candidate

positions and propose to select candidate positions before

deployment. Our work differs from [23] in that we incor-

porate the traffic diversity (traffic demand distribution) in

the candidate position generation process, therefore providing

more reasonable and efficient candidate positions. Nikolov

et al. [32] aim at deploying a given number of relays to

the network to maximize the communication gains. Bagaa

et al. [27] is a recent work that achieves optimal placement

of the relays over limited candidate positions. Different from

these works, IoT networks contains more diverse nodes and

experience more wireless interference. Therefore in our work,

we jointly consider the traffic diversity and wireless diversity

(especially the link correlation characteristic). As a result, the

proposed work is more suitable for large-scale heterogeneous

IoT networks and can achieve better throughput gains.

Some works have specific requirements according to the

target scenarios. Wu et al. [30] consider the relay node de-

ployment with pipeline inspection. Ma et al. [31] additionally

consider the delay constraint for the deployment. Our work is

orthogonal to these works, i.e., the above constraints can be
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easily added into our scheme. Besides, the traffic diversity

and link correlation are overlooked in these works, which

may lead to performance degradation under strong interference

scenarios.

VI. CONCLUSION

In this paper, we propose to deploy edge nodes for real-

time data processing in large-scale IoT networks. We identified

the key challenges for edge node deployment – the traffic

diversity and the wireless diversity. We then propose a novel

three-phase deployment approach considering both kinds of

diversities. The proposed work aims at minimizing the number

of edge nodes and providing real-time processing service for

the IoT network. We have conducted simulation experiments

and the results show that compared to the existing works that

overlooked the two kinds of diversities, the proposed work

greatly reduces the number of edge nodes and improves the

throughput for both data collection and dissemination.
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