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Abstract

Induction motors are fundamental components of several modern automation system, and they are one of the central pivot of the
developing e-mobility era. The most vulnerable parts of an induction motor are the bearings, the stator winding and the rotor
bar. Consequently, monitoring and maintaining them during operations is vital. In this work, authors propose an induction motor
bearings monitoring tool which leverages on stator currents signals processed with a Deep Learning architecture. Differently from
the state-of-the-art approaches which exploit vibration signals, collected by easily damageable and intrusive vibration probes, the
stator currents signals are already commonly available, or easily and unintrusively collectable. Moreover, instead of using now-
classical data-driven models, authors exploit a Deep Learning architecture able to extract from the stator current signal a compact
and expressive representation of the bearings state, ultimately providing a bearing fault detection system. In order to estimate the
effectiveness of the proposal, authors collected a series of data from an inverter-fed motor mounting different artificially damaged
bearings. Results show that the proposed approach provides a promising and effective yet simple bearing fault detection system.
© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of KES International.
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1. Introduction

Induction Motors (IMs) are ubiquitous in many industrial systems, such as modern automation systems, and e-
cars1,2. In particular, IMs are cheap, characterized by a reasonably high efficiency, and require low maintenance
activities2,1. Hence, IMs are a perfect industrial workhorse3.

However, IMs are subject to different types of undesirable faults which cause additional costs and losses in produc-
tion time3. Moreover, decayed components inside the IMs often result in a higher power consumption with respect to
properly maintained ones, thus requiring additional costs in energy supply1. As a result, IMs maintenance is a critical
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problem which requires the optimization of both costs and performance4,5. Hence, new methods for assessing the
status of the IM components are becoming vital in order to maximize availability and performance6.

As far as IMs are concerned, the most vulnerable parts are the bearings, the stator winding, the rotor bar, and the
shaft2. In particular, bearings play a primary role in the reliability and performance of an IM because they are subject
to continuous mechanical stress and because they produce undesirable vibrations when degraded7. Results on various
studies show that bearing decay account for the 41% of all IMs failures8. Stator winding and rotor bar faults are
responsible for respectively 37% and 10% of the total IMs faults. The remaining 12% of IMs faults are associated
with other components (e.g. the shaft).

According to the literature on this subject9,10, a common approach for monitoring the IMs bearing is to monitor the
vibrations. By installing vibration sensors it is possible to easily analyse fault signatures and salient fault features11,12.
Unfortunately, this procedure is not free from technical and economic downsides: placing sensors on the IM might
not be effective nor economical. In fact, vibration sensor are not cheap, are prone to faults, are hard or impossible to
install on many systems, and are sensible to corrosive and dusty environments13.

An alternative way, with respect to study the vibration signals, is to consider the stator currents14. This approach
has many advantages with respect to the previous one since it does not require the installation of any additional sensor
and no direct access to the device is needed15. In fact, the stator currents signals are already commonly available,
or easily and unintrusively collectable14. Among the different techniques found in literature, developed to predict
bearings damages from the stator current signal, two main approaches exist4. The first one is based on the analysis of
the spectrum of the current and thrust while the second one is based on Data Analytics (DA) tools applied to the raw
signals.

In literature, a general review of the different frequency domain techniques applied to the analysis of motor currents
can be found16, and recently other approaches have been proposed17,1,6. However, all these methods rely on a simple
idea: collecting raw data, filter them and then apply frequency analysis to study the variations in the frequency
spectrum before and after the damage is injected. The drawback of all these methods is the high dependence on the
motor specific characteristics, whose parameters need to be known in advance, to determine a reference frequency
spectrum function describing the nominal bearings state16. Moreover, the frequency spectrum vibration analysis tend
to be inaccurate if there are some slight variations on the load and current, due for example to different operative
conditions or noise18,19.

In this context, many DA tools have been developed to overcome the limitation of the frequency-based ap-
proaches16. In fact, DA tools do not need any a-priory information about the IM and are robust to noise20. Among
the DA tools developed for bearings fault detection purposes different works have been proposed in literature20,21,22

but these methods do not exploit state-of-the-art approaches developed in the last years like the Deep Neural Network
(DNN). In fact, before learning, feature learning is required and conducted in many applications to achieve a satis-
factory accuracy23,24. DNN represents a state-of-the-art choice in this context25,26. The deep architecture extracts
features through a multilayered feature representation framework where the higher layers represent more abstract
information than those from the lower ones.

In this paper authors propose to use a DNN for detecting the state of decay of the IM bearings able to extract
from the stator current signal a compact and expressive representation of the bearings state, ultimately providing a
bearing fault detection system. In order to estimate the effectiveness of the proposed procedure, authors collected a
series of data from an inverter-fed motor with different damaged bearings. As endurance tests would have resulted
in the bearings break-down, thus compromising the approach test settings, the authors decided to artificially induce
different kinds of damage to the bearing to trace the evolution of their degradation state. The test was repeated with
different motor loads for each damaged condition of the bearings, to asses the developed DNN in different operative
conditions. Results show that the proposed approach provides a promising and effective yet straightforward bearing
fault detection system.

2. Induction Motor Bearings

Three-phase IMs are asynchronous speed machines, their low cost, ability to operate in hostile environments, good
dynamic performance, and wide speed range operation make them a perfect candidate for industrial applications. IMs
are subjected to different modes of failures. The most common failure mode is the bearing failure, followed by stator
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Fig. 1: Induction Motor. Fig. 2: Bearing characteristic pa-
rameters.

Table 1: Ball bearing parameters
detail.

Bearing Parameter Value

Outer diameter 52.0 mm
Pitch diameter D 38.5 mm
Roller diameter d 7.9 mm
Rollers number n 8
Contact angle γ 0°

winding and rotor bar failures. In Figure 1 an exploded view of an IM is reported. In Figure 2, the geometry of a
rolling-element bearings (REB) is reported. It consists of two rings (one inner and the other outer), where a set of
rolling elements placed in the raceways rotates inside these rings27. Under normal operating conditions, considering
a balanced load and a proper alignment, fatigue failure begins with small fissures, positioned below the surfaces of
the raceway and rolling elements and slowly propagates to the surface producing detectable vibrations and increasing
noise levels.

From a mechanical point of view, local defects inside an IM bearing cause periodic impulses in vibration signals27.
Period and amplitude of these impulses are in a relationship with the fault position, the shaft rotational speed and the
bearing geometry27. REBs related defects can be categorized as outer bearing race defects, inner bearing race defects,
ball defects, and train defects28. The vibration frequencies to detect these faults can be described by the following
relationships29:
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where fod is the outer race defect frequency, fid is the inner race defect frequency, fbd is the ball defect frequency
and ftr is the train defect frequency. In these expressions, fs is the shaft rotation frequency, n the rollers number, d and
D are the roller and the pitch diameter of the bearing respectively and γ the contact angle, as depicted in Figure 2.

The knowledge of the bearing characteristic frequencies can be used to detect the cause of the defect. Based
on this information it is possible to implement a condition monitoring system of the REB using vibration spectrum
analysis to find the location, the cause, and the severity of defects. Traditionally, IMs condition monitoring was
developed considering measurements such as vibration and temperature. The implementation of these systems could
be expensive and is economical in the case of large motors or for critical applications1. Recently, most of the recent
research1,30 has been directed towards the monitoring of the IMs inspecting the phase current. In fact, the use of
quantities that are already measured for command and control purposes in an IM, such as the machine’s stator current,
is favoured because allow the realization of cheaper, noninvasive and more reliable monitoring and diagnostic systems.

Moreover, since defects generate components in both vibration and current signals and the impact vibration gener-
ated by a bearing faults in their early stages have relatively low energy, it is difficult to identify the bearing fault in the
spectra using conventional frequency-based approaches. The authors proposed to use a DNN for detecting the state
of decay of the IM bearings able to extract from the stator current signal a compact and expressive representation of
the bearings state, ultimately providing a bearing fault detection system.

To estimate the effectiveness of the proposed approach, authors carried out an experimental campaign collecting
the stator current signal from an inverter-fed IM mounting different artificially damaged bearings.

The bench set has been designed within the University of Genoa, using a classic Motor-Transmission-User (MTU)
system with a configuration that facilitates the bearings replacement procedure. The experimental setup consists of a
three-phase IM directly connected to a brushless motor, acting as an electrical brake. An inverter controls the driving
IM. In Table 2 the IM plate data are reported, while Figure 3 shows the experimental setup for collecting healthy and
faulty stator current waveforms.

The stator current signals have been collected from the current sensors connected to the power inverter. This
configuration ensured the maximum distance between the current sensor and the motor, reducing the noise generated
by the inverter magnetic field. Since it was not possible to carry out endurance tests, which would have led to the
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Fig. 3: Principle scheme of the experimental setup.

Table 2: IM plate data (delta-connected wind-
ings).

Value Unit

Rated mechanical power Pn 1.5 [kW]
Rated line-to-line voltage Vn 230 [V]
Rated line current In 5.90 [A]
Polar pairs p 2
Base frequency fn 50 [Hz]

Fig. 4: Bearings Condition: New (H0), 1.6 mm hole (H1)
and 5 mm hole (H2).

breakdown of the bearings, the authors decided to introduce artificially damage into the bearing, to trace the evolution
of the degradation state. The damage taken into account is located on the outer track of the bearing and can be easily
inspected at the end of the tests to verify the integrity of the component. The parameters detail of the bearing used
are reported in Table 1. Three identical bearings have been used covering the following bearing fault scenarios: no
damages, size-1 artificial induced hole (1.6 mm), size-2 artificial induced hole (5 mm). These damages will be lately
respectively referenced as H0, H1, and H2. As a first step, the experiments were carried out for the healthy bearing
condition to establish the base-line data. In Figure 4 the artificially damaged bearings condition is reported. For
each bearing damaged condition, four different mechanical conditions have been investigated, applying to the motor
shaft different resistive torques at the same rotational speed. In the following, each mechanical condition will be
identified by the corresponding stator current: 25%, 50%, 75% and 100% of the rated line current In, and will be
lately referenced as L1, L2, L3 and L4. For each experiment, once the steady-state conditions have been reached, the
stator currents have been acquired for 30 seconds. Experiments have been repeated many times in different conditions
in order to build a large enough set of experiments.

3. Data Analytic Techniques

In this section, authors report the adopted workflow for the purpose of monitoring the bearings decay status. In
particular authors will focus their attention on the following phases: (i) raw data collection and cleaning, (ii) data
segmentation, (iii) initial simple feature mapping, (iv) advance feature mapping via deep unsupervised learning, and
(v) bearings decay status prediction via deep supervised learning. These phases are depicted in Figure 5.
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Fig. 5: Bearings decay status monitoring system workflow.

The first phase, described in details in Section 2, consists in the process of collecting the raw data with an analog to
digital converter device cleaned from the higher noise frequencies. The result of this process is a time series reporting,
with a sampling frequency of 20 KHz, the value of two of the three stator currents, Ia and Ib. The third one is not
informative, since it can be retrieved with a simple linear combination of these two, in fact Ia + Ib + Ic = 0.

The second phase consists in segmenting these raw data in overlapping sliding time windows of 24 s. This quantity
has been selected considering the peculiar characteristic of the studied IM, so to have a window large enough to
capture the dynamics of the IM.

In the third phase, authors extracted from the windowed raw data a series of simple yet informative features, which
have been chosen based on previous studies on similar context31. The list of these features is reported in Table 3.
The result of this feature mapping is a sample x ∈ X ⊆ Rd with d = 155 (see Table 3) with associated its label

Table 3: Simple feature set extracted from the windowed raw data.

Time Domain Frequency Domain

Signal magnitude area of Ia and Ib Mean value of Ia and Ib Largest frequency component of Ia and Ib
Correlation coefficient between Ia and Ib Standard deviation of Ia and Ib Frequency signal average of Ia and Ib
Average sum of the squares of Ia and Ib Median absolute value of Ia and Ib Frequency signal Skeewness of Ia and Ib
Interquartile range of Ia and Ib Largest values of Ia and Ib Frequency signal Kurtosis of Ia and Ib
Signal Entropy of Ia and Ib Smallest value of Ia and Ib Energy at 60 different band frequencies of Ia and Ib
Autoregression coefficients of Ia and Ib

y ∈ Y, where y1 ∈ Y1 = {1, 2, 3} represents the decay state of the bearing (see Figure 4) and y2 ∈ Y2 ⊆ R represents
the load level (see Section 2). For each experiment and each window, a different sample which composes the data
Dn = {(x1, y1), · · · , (xn, yn)} is then provided. Based on the experiments described in Section 2 a total of n = 1400
samples have been collected. Consequently, authors deal with a multioutput (two labels) and multitasks problem (one
label brings to a classification task while the other to a regression one)32.

Unfortunately, even if the simple feature mapping of Table 3 is quite informative, it is characterized by some
drawbacks. The first one is that this feature mapping is quite high dimensional and consequently hard to interpret for
a human operator. The second one is that due to this high dimensional space and the low number of experiments (see
Section 2), and consequently low number of samples, the risk is to overfit the available data instead of learning some
meaningful information out of them.

To overcome these issues, an unsupervised dimensionality reduction approach must be applied to reduce the space
and do not overfit the data. A simple approach is to use the Principal Component Analysis (PCA)33. PCA assumes
that data lie in a low dimensional informative space, which have been roto-translated in a higher dimensional space.
PCA can be thought of as fitting an n-dimensional ellipsoid over the data. Each axis of the ellipsoid represents a
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Fig. 6: NN Architectures.

new component. The larger is the axis, the higher is the variance of the data along that dimension and, consequently,
the more relevant is that component as it varies more. In other words, the components with low variance are less
informative. Unfortunately, as reported in Section 4, this approach is too naive, and also scaling-dependent. Hence,
PCA did not allow the authors to obtain an informative low dimensional representation of the data.

For this reason, in this paper authors propose to exploit the DNN as an unsupervised dimensionality reduction
approach. DNN, contrarily to the PCA, does not make any assumption on the distribution of the data and is not so
sensitive to scaling. DNNs are a subfamily of the Neural Networks (NNs). NNs are a DA technique which aims at
emulating the components of the brain (the neurons) with a simple mathematical abstraction, the perceptron34, and
their interaction by connecting more perceptrons together35. The neurons are organized in stacked layers connected
together, their parameters are learned based on the available data via backpropagation35. If the architecture of the NN
consists of a single hidden layer it is called Shallow NN (SNN), while if it is composed by multiple layers stacked
together, the network is defined as DNN26,25. Recently, many advances have been made in this field or research by
developing new neurons36, new activation functions37, new optimization techniques38, new regularization methods
in order to reduce the overfit tendency of complex and deep networks39. These advances allowed the researcher to
successfully apply these methods on increasingly different and difficult real world problems. In particular, DNN have
been shown to be an extremely powerful tool for feature selection and extraction purposes, both in the supervised and
unsupervised context25,26,24.

To perform the unsupervised learning feature selection process, DNNs, instead of learning the relationship between
the input space X and the output space Y, try to perform an often lower24 (but sometimes higher26) dimensional
feature mapping, which is able to explain, in a more informative way, the point sampled from X. This architecture
is called autoencoder24 and is depicted in Figure 6.A. By staking many autoencoders it is possible to obtain a deep
autoencoder24, depicted in Figure 6.B. The stacked autoencoders can be learned incrementally by adding and learning
one simple autoencoder at a time in order to avoid the gradient vanishing effect24. Once the representation has been
learned, it is possible to use the latter in order to learn the relation between X and Y with the final DNN architecture
depicted in Figure 6.C26. The final architecture uses the unsupervised learned representation as starting point, which
is then fine-tuned based on the desired target tasks.

DNNs, as one can easily understand from the previous description, are characterized by many hyperparameters,
which deeply influence the representation and generalization abilities of the architecture. In particular, the hyperpa-
rameters of a DNN are40,24:
• the activation function (e.g. sigmoidal, hyperbolic tangent, and rectified linear);
• the number of layers;
• the number of neurons for each layer;
• the type of regularizes and magnitude of regularization (e.g. norm of the weights, dropout, and early stopping);
• the loss function (e.g. quadratic and linear);
• the optimizer and optimization time (e.g. stochastic gradient descent and mini-batch gradient descent).
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Normalization [-1,1] Normalization zero mean and unit variance

Fig. 7: Projected test point in the two-dimensional space defined by the two most informative PCA.

Moreover, after fixing the above mentioned hyperparameters the resulting architecture depends also on the initializa-
tion of the weights of the network41. Note that, in a DNN, this last variability is not so pronounced if the hyperparam-
eters have been appropriately set.

Consequently, to tune these hyperparameters, it is necessary to adopt a reliable model selection strategy42. A
common approach for tuning the hyperparameters of a leaning algorithm is to build a grid of possible configuration of
hyperparameters, or to randomly select a subset of possible configurations43, and then select the best one according
to the K-Fold Cross Validation42 of the Bootstrap44. Unfortunately, in a DNN, the number of hyperparameters is too
high to perform this task effectively and, for this reason, the configurations are often chosen based on the experience
of the data scientist and with a bit of data snooping45. This approach, even if commonly exploited, may lead to
significant biases in estimation46. For this reason it is always necessary to keep apart a set of unused data, the test set,
that can be seen just once, in order to test the validity of the applied procedure and selected architecture in order to
report unbiased results24,45,46.

4. Results

In this section, authors will report the results obtained by adopting the DA workflow described in Section 3, over
the data collected during the trial described in Section 2, to obtain an IM Bearings fault detection system.

It is worth recalling the different campaigns of experiments performed for collecting the stator current data for a
better understanding of the results. In particular, authors tested three different configurations of bearing damages: no
damages, hole of 1.6 mm, and hole of 5.0 mm, respectively H0, H1, and H2. Moreover, authors tested different load
conditions: 25%, 50%, 75% and 100% of the rated line current In, respectively L1, L2, L3, L4. Each experiment has
been repeated for each condition and for a long period.

The main purpose of this study is to obtain, from the initial simple feature mapping (see Section 3 and Table 3), a
compact and expressive representation of the bearings state.

For this purpose, the first approach that authors adopted was to use the PCA for reducing the dimensionality of
the original data to check whether, in a lower dimensional space that can be interpreted by an operator, it is possible
to give a meaningful low dimensional representation of the IMs bearing fault phenomena. Since PCA is scaling-
sensitive, authors tested many normalization methods. Figure 7 reports the results obtained via PCA with different
normalization methods. From Figure 7 it possible to note that PCA it is not able to represent the phenomena in a
two-dimensional space since the data cloud of the different operational conditions (faults H0, H1, and H2 and loads
L1, L2, L3, and L4) are overlapped.

Based on the result obtained with the PCA, authors decided to exploit an SNN and then a DNN trying to compress
all the information in the two neurons in the second-last layer. Moreover, to simulate in a more realistic scenario,
authors assume not to have a significant amount of labeled samples. For this reason authors exploited just n ∈
{100, 150, 200} labeled samples to train the network and in Figure 8 the projected test points in the two-dimensional
space, defined be the different networks, is depicted. Note that the training and the validation phases have been
performed according to what described in Section 3. From Figure 8 it is possible to observe that:
• DNN and partially SNN, differently from PCA, are able to find a compact and expressive representations of the

bearings damage status, by grouping the data in separate clusters based on load and damage conditions;
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SNN n=100 SNN n=150 SNN n=200

DNN n=100 DNN n=150 DNN n=200

Fig. 8: Projected test point in the two-dimensional space defined by the different networks.

• both in SNN and DNN learned representation groups are ordered by load and entity of the damage;
• DNN provide clearer and more defined clusters with respect to SNN ones, showing higher classification perfor-

mances even when the number of training samples is extremely limited.
In conclusion, based on the reported results, it is possible to state that the DNNs are able to extract from the

stator current signal a compact and expressive representation of the bearings state, ultimately providing a bearing fault
detection system.

5. Conclusions

In this paper authors dealt with the problem of assessing the performance of the induction motor bearings. In-
duction motors are fundamental components of any modern automation system and bearings are their first cause of
faults, followed by stator winding and the rotor bar. To detect faults in the bearings, contrarily to the state-of-the-
art approaches exploiting vibration signals, collected by easily damageable and intrusive vibration probes, in this
paper authors exploit the stator currents signals, which are already commonly available, or easily and unintrusively
collectable. Moreover, authors showed that using state-of-the-art deep neural network, instead of the now classic tech-
niques like the PCA, it is possible to extract from the stator current signal a compact and expressive representation of
the bearings state, ultimately providing a bearing fault detection system. By exploiting a series of real-data collected
from an inverter-fed motor mounting different artificially damaged bearings, authors showed the effectiveness of their
proposal.
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