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Abstract

In this paper we tackle the problems of dimensionality of welfare and that of iden-
tifying the multidimensionally poor by first finding the poor using the original space
of attributes, and then reducing the welfare space. The starting point is the notion
that the ‘poor’ constitutes a group of individuals that are essentially different from the
‘non-poor’ in a truly multidimensional framwework. Once this group has been iden-
tified, we propose reducing the dimension of the original welfare space by solving the
problem of finding the smallest set of attributes that can reproduce as accurately as
possible the ‘poor/non-poor’ classification in the first stage.
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1 Introduction

Well-being and its related notions, like deprivation or inequality, are elusive concepts, and

the efforts leading to define them precisely cannot be disentangled from the practical need

to quantify them to make valid comparisons, or to assess their importance. To complicate

matters, a massive body of recent literature points towards the multidimensional nature of

welfare (Kakwani and Silber, 2008). The mere notion of a concept being ‘multidimensional’

is elusive as well, but it clearly suggests the inability to measure it based on a single scalar

dimension, like income or consumption in the case of welfare. Moreover, even when there is

agreement on the multidimensionality of well-being, there remains the problem of deciding

how many dimensions are relevant, and which attributes or variables should be considered

for a more accurate assessment.

The multidimensionality of welfare translates almost directly into that of poverty or

deprivation. A recent line of research has focused on first solving the problem of dimen-

sionality of welfare, that is, to identify how many relevant dimensions must be considered

to measure welfare, and then proceeding to identify the poor, based on this reduced set of

variables. For example, Gasparini et al. (2009) and Ferro Luzzi et al. (2008) start with

a rather large set of variables that can be seen as alternative measures of an underlying

welfare space, and then use factor analytic methods in order to produce a small set or vari-

ables (factors) that appropriately capture the variability of welfare. The fact that more

than one factor is needed to appropriately welfare is interpreted as evidence of its multidi-

mensionality. After reducing the dimensionality of the problem, they proceed to find the

poor based on this reduced set of factors. Gasparini et al. (2009) identify the poor along

each of the relevant dimensions, whereas Ferro Luzzi et al. apply cluster techniques on all

relevant dimensions, to find a group of individuals that can be safely labeled as ‘poor’, in

a multidimensional sense.

In this paper we adopt and alternative route that first identifies the poor and then

explores the dimensionality of welfare. The starting point is the notion that the ‘poor’

constitutes a group of individuals that are essentially different from the ‘non-poor’, in a

multidimensional framework. Once this group has been identified, we propose reducing

the dimension of the original welfare space by finding the smallest set of attributes that
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can reproduce as accurately as possible the ‘poor/non-poor’ classification obtained in the

first stage. More concretely, we start by applying cluster methods on a rather large set of

attributes, in order to identify a group that can be reasonably be labeled as ‘the poor’.

Once this satisfactory classification has been produced, in order to reduce dimensional-

ity, we use recent methods on variable selection for cluster analysis. We implement the

blinding approach of Fraiman, et al. (2008) to find the smallest set of variables that is

able to reproduce the ‘poor/non-poor’ classification of the first stage. In this context, the

multidimensionality of welfare (and hence poverty) is related to the fact that this reduced

set includes more than one variable.

A first important advantage of this approach is that by construction, cluster methods

guarantee high similarity within groups and high dissimilarity between groups, and hence,

if it exists, the poor is a coherent group, by construction. Reducing the dimensionality

first may unnecessarily complicate the goal of finding the poor based on the similarity-

dissimilarity requirements of the cluster based approach. For example, the usual ‘single

dimensional’ classification based on poverty lines produces a sharp and unambiguous char-

acterization of the ‘poor/non-poor’ status, but a well known drawback is that individuals

close to the poverty line are indistinguishable among them, inducing a classification of poor-

non/poor that does not satisfy the dissimilarity requirements imposed on the groups. An

advantage of our approach is to allow all variables in the welfare space to contribute towards

the goal of identifying the deprived. Second, factor methods have well known identification

problems, that are usually by-passed by imposing orthogonality requirements, and/or the

adoption of sometimes arbitrary ‘rotations’ (see Hardle and Simar, 2003, Ch.10). The usual

output of standard factor analysis is a set of variables (factors) that are linear combinations

of the original ones, and there is substantial controversy regarding the interpretability of

these factors. Our approach is free from this ambiguities, since by construction, the re-

duced set of variables identified in the second stage is composed of variables originally in

the welfare space.

The goals of this paper require the use of a data set that contains a large set of vari-

ables that together represent the relevant dimensions of welfare. This has usually been a

hindrance in applied studies since available data usually focuses on some specific dimen-

sions like those included in standard household surveys (typically income, expenditure and
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other socioeconomic variables), but usually exluding aspects that the recent literature on

multidimensional welfare emphasizes, in particular those related to subjective notions of

welfare. In this paper we implement the proposed strategy using the Gallup World Poll,

a comprehensive data set that includes questions on objetive and subjective attributes of

welfare, that can appropriately provide a starting point for the goals of identifying the poor

and studying the multidimensionality of welfare. In spite of being a very rich source of

information, its use for research purpose is relatively new, see Gasparini et al. (2009) for

a detailed review of this data set and a comparisson with other more standard sources like

national household surveys.

The paper is organized as follows. The next section discusses with more detail the

problems of multidimensional welfare and poverty and its empirical consequences. Section

3 describes the proposed methodology, based on recent cluster variable-selection methods.

Section 4 describes the Gallup Poll data set, and section 5 presents the empirical results.

Section 6 concludes and discusses further research

2 Multidimensional welfare and poverty

The seminal work by Sen (1985) and its related literature (see Kakwani and Silber (2008)

for a recent collection of results) clearly points towards the multidimensionality of welfare,

in the sense that it cannot be appropriately represented by a single dimensional notion

like income or consumption. Consequently, the status of poor arises as a consequence of

assessing all relevant dimensions involved in determining well being. Were these dimensions

conceptually known in advance, the natural way to quantify welfare is to measure each

of them empirically, in which case the number of variables coincides exactly with the

dimension of the welfare space. The mere fact that welfare is multidimensional simply

states that one variable is not enough to properly capture it, without clear signs of which

variables to measure and map to each dimension. In this context, a large socioeconomic

household survey can be seen as a collection of variables that together capture the variability

of welfare. Two natural and related questions are the following: 1) how to find the poor

based on the information provided by such a large set of attributes?, 2) which is the

dimensionality of welfare? That is, how many underlying variables are relevant to capture
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welfare and, eventually, if it is possible to represent the whole welfare space in terms of a

few variables or indexes.

A recent line of research has relied on factor analytic methods to attack the problem

of dimensionality. That is, welfare is thought as being appropriately represented by a

few latent, not directly observed factors. Observed variables are then seen as being con-

structed as linear combinations of these factors, hence the empirical problem consists in

recovering these latent factors based on the observed variables. The fact that welfare is

multidimensional is linked to the relevance of more than one factor.

This is the approach adopted by recent papers by Ferro Luzzi et al. (2008) and Gas-

parini et al. (2010), with promising results. Gasparini et al. (2010) base their analysis on

the Gallup World Poll, and their initial data set contains 15 variables, including income,

and other monetary and non-monetary measures of welfare, as well as some indicators

related to subjective welfare. They conclude that their initial space of 15 variables can

be reasonable represented by three factors. The first one is based mostly on income. The

second one is interpreted as related to subjective welfare, since it is composed mostly of

questions related to this concept, and, finally, the third one is related to standard ‘basic

needs’ measures, like water access. Ferro-Luzzi et al. (2008) start with 32 variables from

the Swiss Household Panel, and conclude that they can be appropriately represented by

four latent factors that they relate to financial, health, neighborhood and social exclusion

dimensions.

To summarize, both papers find evidence that the original welfare space, composed

of many relevant measures, can be drastically reduced to a few factors, and that more

than one variable is needed to adequately represent it, even when income (in the case of

Gasparini et al. (2009)) or variables closely related to it (the financial ones in the case

of Ferro-Luzzi et al. (2008)) are included in their data sets. In spite of being strongly

associated to a relevant factor, both studies point towards the inadequacy of income solely

to capture the multidimensional nature of welfare.

Regarding the problem of finding the poor, both papers attempt to derive the poverty

status based on the reduced welfare space, that is, on the factors obtained in the first stage.

Gasparini et al. (2010) do not attempt to produce a single notion of poverty, instead, they

compute a poverty status for each of the relevant factors, that is, they set poverty lines for
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each of the factors separately, and produce poverty rates for each dimension, see Gasparini

et al. (2010) for further details. Ferro Luzzi et al. (2008), on the other hand, produce a

single notion of poverty by using cluster methods based on their reduced welfare space, that

is, they use the factors produced in their initial stage as an input for standard clustering

algorithms to identify coherent groups. They find that the scores obtained in the factor

analysis stage can be reasonably clustered in three clusters for 1999, two for 2000 and

2001, and four for 2002 and 2003. In all cases, these authors find that one group presents

substantially low values for all scores and hence this particular group is labeled as the

‘multidimensional poor’.

There are several methodological concerns related to this approach, which basically

consists in a first stage where the dimensionality of the original welfare space is reduced

using factor methods, and then the poor are found based on this reduced set. First, though

immensely popular in other disciplines (psychology, for example) covariance methods like

factors or principal components are much scarce in Economics. This is mostly due to their

well known identification issues which harm their direct interpretation. Basically, factors

are linear combinations of the original variables, identified up to orthogonal transforma-

tions (see Elffers, Bethlehem and Gill (1978) for a detailed overview of these problems).

The standard practice, and the one adopted in both Gasparini et al. (2009) and Ferro

Luzzi et al. (2008), is to rely on ‘rotations’ or other algebraic transformations to produce

interpretable results. Second, factors are not directly observable, and hence for practical

reasons, new information must be constructed by sampling the whole set of initial variables.

For example, suppose that the analysis must be repeated for a different period or region,

then all the initial variables must be measured in order to construct the factors, even under

the assumption that the underlying latent structure remains unchanged. Third, reducing

the dimensionality first may unnecessarily complicate the identification of a coherent group

(the poor) that can be safely distinguished from its complement (the non-poor). This is

particularly relevant when most variables in the welfare space consist on categorical (in

most cases, binary) variables. The aggregation process implicit in the factor analytic ap-

proach may smooth out relevant differences contained in the original welfare space. For

example, standard income based poverty lines have serious troubles distinguishing the poor

from the non poor when the distribution of income is densely populated around the poverty

6



line. Other categorical indicators may actually help separating the poor from the non-poor.

3 The Variable-selection cluster analysis approach

Based on the concerns of the previous sections, we will favor and approach that 1) preserves

the original welfare space in order to identify the poor, and 2) can reduce its dimensionality

by producing unambigously interpretable variables, that can be resampled or reconstructed

easily.

Our strategy starts by applying cluster methods to the original welfare space. Once

the poor is satisfactorily identified, the problem of dimensionality is solved by finding the

smallest set of variables in the original welfare space, that can reproduce the poor/non-

poor classification of the first stage, as accurately as possible. To this point, we will use

recent results on variable selection for cluster analysis. As in the case of factor methods,

‘multidimensionality’ will be related to finding more than one variable in this reduced set

of variables. Unlike factor approaches, our strategy produces immediately interpretable

and reproducible variables, since the reduced set is a stric subset of variables sampled and

contained in the original space. Additionally, and unlike latent-based strategies like factor

analysis, further studies would require to collect information only in the optimal subset.

Before describing in detail our empirical strategy, we must comment on some limita-

tions. First, the cluster approach is surely not free from identification and interpretation

issues. Cluster methods cannot guarantee in advance that the optimal number of groups

is necessarily two, moreover, the methods do not guarantee that even if two groups are

found, these are economically different. Second, even if two groups are found, this does not

necessarily mean that one of them is the poor and the other one the ‘non-poor’. For exam-

ple, one group might consist in the ‘extremely rich’ with the complement group containing

all other individuals. The next subsections describe in detail the clustering methods used

in this paper, and how they are exploited to deal with the aforementioned problems. In

particular, to guarantee that there are actually two separate groups (instead of only one

group or more than two) and that one of them can be safely regarded as containing the

poor. The second subsection describes the variable selection approach.
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3.1 Clustering methods and the poor

The underlying idea behind our empirical strategy is to understand the poor as a coherent

group that can be conceptually and practically distinguished from its complement, the

‘non-poor’. Cluster methods seem relevent since, by definition solve a within/between

simmilarity trade-off, that is, they try to assign observations to groups so they are close

to those in the same group and distant to those in other groups. Even though classical

clustering algorithms have long been available in practice, recent advances in data mining

and computer intensive methods has driven considerable attention on such techniques, see

Cherkassky and Mulier (2007) or Bishop (2006) for a recent overview.

There are several difficulties that must be sorted out for the case of finding the poor.

First, our data is of a mixed nature, that is, it contains categorical (mostly binary) as

well as continuous variates (income, for example). This impacts in the choice of an ap-

propriate clustering technique, since these methods are sensitive to the choice of distances,

standardizations and initial conditions. Second, as previously discussed, the final goal is

to guarantee that the process finds two essentially different groups, one of them containing

the poor.

Regarding the choice of a clustering method for our mixed data, we started by stan-

dardizing all variables. This is common practice in this literature, to avoid scale effects.

Each variable is divided by its range, i.e. for the observation xij we consider yij , the

standardized observation,

yij =
xij

maxi (xij)−mini (xij)
.

This procedure is applied to all the variables except to monthly household income, a

continuous and highly positive skewed variable. For this case we use standardized based

on its natural logarithm. Consequently, all standardized varaibles have range [0, 1] except

for the monthly household income that range between [−1, 1].

The literature is not clear about specific clustering techniques for mixed data. There

are mainly two approaches: hierarchical and partitioning. The main difference between

them is that in the second case a partitioning rule is obtained, while hierarchical clusters

do not strictly define groups. Lately, several heuristic algorithms have been proposed but

none of them has achieve acceptance in the literature. K-means (MacQueen (1967)) is the
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most well known and widely applied clustering procedure, that yields a partition of the

original space. Some preliminary results on the asymptotic distribution of this clustering

behavior are given by MacQueen (1967) and Hartigan (1978). Pollard (1979) established

conditions that ensure the almost sure convergence of the cluster centers the sample size

increases. In addition, it has a good performance on many real data examples.

The k-means algorithm is sensitive to the choice of an appropriate distance. We have

chosen an additive measure that can handle mixed as well as continous variables. The

L1-norm is a natural choice for our type of data. The distance between two observations

yi and yj is given by

dij =

p∑
l=1

|yil − yjl| .

so it can be seen as being the standard L1-norm for continuous or ordinal variables, and in

the case of binary variables, as the number of points where the observations take different

values), that is, the same information as in the standard Jaccard index (see Hand et al.

(2001)), one of the most well known measures of similarity for binary variables.

K-means procedures are often very sensitive to the choice of initial conditions, that is,

to the position of the initial centroids used to start the algorithm. Several proposals have

been made to handle this effect (see Steinly and Brusco (2007)). We have followed the

recommendations in this last reference and considered ten random initializations and kept

the one with minimum within-cluster sum of squares.

Regarding the number of clusters, most methods produce forced partitions on any data

set, either there is an endogenous structure or not. Hence, in order to find the poor we

are interested in two null hypotheses. The first one is the null that no grouping exists

versus the alternative that there is more than one group. The second one is the null

that only two groups are relevant, against the alternative that more than two groups are

needed. We use the standard Calinski and Harabasz (1974) statistic, the most frequently

used method to find the optimal number of clusters, even though it is not designed to

distinguish between one and more than one cluster. We will also use the more modern

gap statistic introduced by Tibshirani et al. (2001). The intuition behind this statistic

is that within cluster similarity decreases as the number of groups increase. However,

partitioning a group with already high similarity reduces the within cluster similarity less
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than partitioning a heterogeneous group. Then, a sharp decrease will be observed at the

optimal number of groups.

Finally, even when the previous process leads to two significantly different groups,

there is not guarantee that one of them can be safely labeled as containing the poor, i.e.,

the relevant partition might cluster the extremely rich in one group. We will implement

some confirmatory tests, based on multivariate version of the Komogorov-Smirnov test, to

explore the nature of the implied partition and to what extend one of them contains the

poor.

3.2 Dimensionality through variable-selection

After having found an appropriate clusterization that divides the popuplation into poor/non-

poor groups, the problem of reducing the dimensionality of the original welfare space will

be handled as a variable-selection one. The main advantage of this approach is that, by

construction, the resulting variables are directly interpretable since they are originally in

the welfare space.

In the last years, and driven by the increased popularity of data mining methods, several

proposals have been made on this field. In the majority of the cases, the proposals relate a

clustering technique, a rule to determine the number of clusters, and a procedure to select

the variables. We adopt the recent strategy in Fraiman et al. (2008) based on a ‘blinding’

process that eliminates unnecessary variables. These authors show that the process has

good empirical performance, specially as compared to alternative ones like Tadesse, et al.

(2005) and Raftery and Dean (2006).

Fraiman et al.’s procedure selects relevant variables after a satisfactory clustering pro-

cedure has been implemented. Their approach is based on the idea of blinding unnecessary

non-informative or redundant variables. We will discuss the main intuitive ideas behind the

procedure, details are provided in the Appendix. For simplicity, suppose there are only two

variabes in the original space, X and Y . Given an appropriate clusterization based on X

solely, Y is redundant if a) it is strongly related to X, so given X it adds little information

to the clusterization, b) it is independent of X and non-informative about any clusteriza-

tion (it only adds ‘noise’). In these cases, the clusterization remains relatiely unaltered if

Y is replaced by its best prediction based on X, its conditional expectation E(Y |X). In
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the extreme versions of the previous cases, Y will be replaced by X (X strongly related to

Y or by a constant (Y just adding noise). Consequently, the goal is to find the smallest

group of original variables that can reproduce the original clusterization as accurately as

possible, by replacing redundant variables by their expectations conditional on this reduced

subset. The algorithm is detailed in the Appendix and in the original paper by Fraiman et

al. (2008). The variable selection procedure is shown to be strongly consistent under mild

regularity conditions on the partitioning method, and on the (nonparametric) estimation of

the conditional expectations in the blinding process. Though intuitively simple, the method

can be computationally extremely expensive. Fraiman et al. introduce a forward-backward

algorithm in order to find a subset of variables with the desired properties.

4 Empirical results

4.1 Data

The main input for our analysis is a set of variables that covers most relevant dimensions

of welfare. To this purpose, the Gallup World Poll, collected by the Gallup Organization,

provides a convenient framework. The Poll is based on a consistent and homogeneous

questionnaire implemented on national samples of adults from 132 countries, providing and

exceptional chance to make cross country comparisons. The Gallup World Poll contains

an ample spectrum of questions related to welfare, including self-reported measures of

quality of life, opinions and perceptions. It also incorporates fundamental questions on

demographics, education, and family income. Respondents are adults (15 years or older),

selected randomly within the household. In spite of its potential, the Gallup Poll is still

relatively unexplored for research purposes. Gasparini et al. (2009) and Gasparini and

Gluzman (2009) provide a detailed account on its adequacy and compare it with standard

household surveys. They conclude that in many comparable dimensions, the information

contained in the Gallup Poll is a valuable and reliable source for welfare analysis.

Consequently, our initial data set consists in the 15 variables used by Gasparini et al.

(2008) as their initial welfare space. They classify variables in three main groups.

1. Monetary welfare: income is the most widely used measure of welfare. We use the

income measure in the Gallup survey, which consists in monthly household income
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before taxes. As in Gasparini et al. (2008), since the original question is posed in

terms of brackets of income, we take a random value in the corresponding range of

the original question in local currency unit, and then translated this value to US

dollars using country exchange rates adjusted by purchasing power parity.

2. Non-monetary welfare: these variables capture alternative access to goods and ser-

vices that impact directly on welfare, but are not necessarily well captured by incone.

We access to running water, electricity, landline telephone, television, computer, in-

ternet or mobile phone.

3. Subjective welfare: the recent literature (Ravallion and Lokshin (2002) is a leading

example) has emphasized the importance of complementing standard measures with

self perceived notions of well-being, finding significant differences between self-rated

and objective measures of welfare concepts like poverty. We include questions on how

individuals perceive themselves regarding welfare.

A complete list of variables with more detailed description, is provided in the Appendix.

4.2 The poor as a cluster

As described in the previous section, the first step consisted in finding the optimal number

of clusters using the k-means algorithm. Table 1 presents results of the Calinsky/Harabasz

index and the the relevant information for the Gap statistics. The Calinsky/Harabasz index

decreases monotonically, achieving a maximum at two clusters. The procedure based on

the Gap statistic suggests that the optimal number of clusters is two.

The previous result and the nature of the clustering algorithm suggest that there are

two essentially different groups, at least under the metric used to define similarty in the

clustering procedure. Nevertheless, as a robustness check, we have explored an alterna-

tive confirmatory route. We have implemented a multivariate variant of the non-parametric

Kolmogorov-Smirnov (KS) test, developed by Cuesta-Albertos et al.’s (2006, see also Opazo

et. al (2009) for a recent application), which can be applied to either functional or mul-

tivariate data. Roughly speaking, it is based on performing a one dimensional KS test

for the projections of the data on randomly selected directions. We proceeded as sug-

gested by Cuesta-Albertos et al. (2006), by selecting 50 random projections, computing
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the KS statistic for every case, and taking the maximum of these values. The correspond-

ing p-value was less than 0.001, meaning that the distributions of both groups induced by

clusterization are significantly different.

The previous results point towards the existence of two statistically different groups,

but it remains to explore whether one of them can be seen as containing the poor. Table 2

presents basic statistics that explore this issue. We use the three optimal factors obtained

by Gasparini et al. (2009), interpreted by these authors as representing monetary, subjec-

tive and non-monetary aspects of welfare. We have computed means for the two groups

obtained in the clustering process. Group one contains 73.5% and group two the remaining

26.48% of the individuals in our sample. Group two present substantially lower values for

the three dimensions of welfare, suggesting that this group contains those individual with

low levels of welfare. Consequently, we will refer to this group as the ‘cluster poor’, that

it, we see group two as a statistically and economically different entity with respect to its

complement, in the sense that it contains individual with significantly low levels of welfare.

4.3 Dimensionality via variable-selection

After having found an acceptable clusterization, we have proceeded to solve the dimen-

sionality problem by finding a reduced set of variables initially in the welfare space, that

can reproduce the initial clusterization. As stressed in the previous section, the Fraiman

et. al’s procedure is computationally very expensive, with required computer time growing

exponentially with the sample size and the number of variables. In our case, it is unfeasible

to perform the procedure with the complete data set (a standard computer needs more than

100 days to attain the optimal data set) then we implement a subsample based strategy.

We considered ten random subsamples proportional to the clusters sizes containing 85% of

the observations of the complete data set.

Remarkably, in all cases the variables selected are: monthly household income; not

having had enough money to buy food over the last year in at least three opportunities and

having a computer at your home or the place you live. The correct cluster reallocation rate

is always between 90% and 92%, that is almost all individuals classified as poor with the

initial set of 12 variables are correctly classified as poor based on this much smaller set of

three variables.
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The fact that the reduced welfare space needs more than one variable to adequately

reproduce the original welfare space is an indication of its multidimensionality. Neverthe-

less, income turns out to be one of the variables chosen in the reduced set. This result is

consistent with those in the literature, that suggest that, though important, income is not

enough to capture welfare. As a matter of fact, when the reduced set of variables is forced

to keep only income, only 60% of the observations are reallocated on the correct cluster.

It is interesting to compare the results of our multidimensional approach, with a stan-

dard one based on income solely. Table 3 uses standard one and two dollars a day lines to

identify the poor. Out of those identified as poor by our cluster approach, only 45% are

labelled as poor by a poverty line set at two dollars a day, and only 25% when the line

is lowered to one dollar a day. Though monotonically increasing with income, this result

speaks about the severe discrepancies between a multidimensional notion of poverty (as

implicity in our cluster analysis) and that based on income solely.

Table 4 offers another perspective. It shows the proportion of individuals in each income

decile that belong to the ‘cluster poor’ group. For example, 54% of those in the first income

decile are classified as poor. This proportion decreases monotonically with income, to the

point that only 3% of those in the 10-th decile are classified as poor by the cluster method.

This result is relevant since it suggest that even though income plays a relevant role in the

cluster based multivariate notion of poverty, the relationship is rather weak, specially in

low levels of income. That is, even tough more income reduces monotonically the chances

of falling in the poverty cluster, low income is not necessary neither sufficient to explain

the multivariate version of the poverty status, to the point that, for example, 46% of the

individuals in the lowest decile are not rendered as poor by the cluster approach. This

result, again, is compatible with the large literature that points towards the inadequacy of

income as a sole factor to identify the poor.

Table 5 explores similarities by country, that is, after implementing the procedure in

the original data base, we have computed cluster and income poor groups. As expected,

the relationship between the two classifications is positive but weak. The cases of Honduras

and Guatemala are interesting. Honduras has the higher proportion of cluster based poor,

even though in terms of income, it ranks relatively in the bottom. Exactly the opposite

occurs in the case of Guatemala. Uruguay and Argentina are cases where the aggregate
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figures match, for example, in the latter, the cluster poor is 21% compared to 22.9% based

on income.

5 Conclusion

The fact that welfare is progressively accepted as an essentially multidimensional notion

implies many conceptual an practical challenges, which usually suggest a trade-off related to

the desired degree of aggregation. On one hand, and for pragmatic and conceptual reasons

as well, it seems reasonable to attempt to summarize welfare in a few readily available

indexes that can help monitor social performance as well as implement valid comparisons.

On the other hand, the complex nature of well being points toward retaining as many

factors as possible in order to fully characterize it. In this context, this paper suggests a

simple procedure that 1) treats the poor as a coherent, clearly identifiable group that can be

economically and statistically distnguished from its complement, 2) fully exploits available

information to detect it, 3) summarizes the initial welfare space into a few unambiguously

interpretable variables.

The empirical implementation based on the Gallup Poll suggest that three variables can

reproduce quite accurately the role of the original 15 variables in the goal of identifying

the poor. From a practical perspective, once this ‘cluster poor’ group of individuals is

successfully identified using a large data set, further classification or evaluations can be

implemented by just assessing the variables in the reduced set.

From a methodological perspective, the use of multivariate methods in Economics is

scarce, which is surprising in light of the massive acceptance these techniques have in

closely related areas. For this reason we have tried to stay as close as possible to standard

grouping techniques, relegating more modern and sophisticated approaches (like CART

methods as in Keeley and Tan (2008)) for further research.
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Appendix 1: Variable description

We use the set of 15 variables in Gasparini et. al. (2008) for their factor analytic approach.

There are three types of variables in these sample: subjective, non-monetary, monetary

variables.

Subjective variables: the first three variables are integers from 0 to 10, and the remaining

four are binary indicators, resulting from answers to the following questions.

1. Please imagine a ladder/mountain with steps numbered from zero at the bottom to

ten at the top. Suppose we say that the top of the ladder/mountain represents the

best possible life for you and the bottom of the ladder/mountain represents the worst

possible life for you. If the top step is 10 and the bottom step is 0, on which step of

the ladder/mountain do you feel you personally stand at the present time?

2. Please imagine a ladder/mountain with steps numbered from zero at the bottom to

ten at the top. Suppose we say that the top of the ladder/mountain represents the

best possible life for you and the bottom of the ladder/mountain represents the worst

possible life for you. On which step of the ladder/mountain would you say you stood

5 years ago?

3. Please imagine a ladder/mountain with steps numbered from zero at the bottom to

ten at the top. Suppose we say that the top of the ladder/mountain represents the

best possible life for you and the bottom of the ladder/mountain represents the worst

possible life for you. Just your best guess, on which step do you think you will stand

on in the future, say 5 years from now?

4. Are you satisfied or dissatisfied with your standard of living, all the things you can

buy and do?

5. Have there been times in the past twelve months when you did not have enough

money to buy food that you or your family needed?

6. Have there been times in the past twelve months when you did not have enough

money to provide adequate shelter or housing for you and your family?

7. Have there been times in the past twelve months when you or your family have gone

hungry?

Non-monetary variables: all variables in this group are binary indicators that are answers

to the following questions.
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8. Does your home or the place you live have running water?

9. Does your home or the place you live have electricity?

10. Does your home or the place you live have a landline telephone in working order?

11. Does your home or the place you live have television?

12. Does your home or the place you live have a computer?

13. Does your home or the place you live have access to the Internet?

14. Do you, yourself, have a cellular/mobile phone, or not?

Monetary variable:

15. Household income per capita, that income is expressed in local currency and con-

verted in US$ adjusted for PPP with the aim of comparing the purchasing power of

each household

Appendix 2: The Fraiman et al. (2008) algorithm

Let X = (X1, . . . , Xp) be a random vector with distribution P and consider any statistical

procedure whose output is a partition of the space Rp, for instance many non-hierarchical

clustering technics and classification procedures. In many cases, if p is large, there are

dependence among several variables of X or some of them are not relevant. Then, if the

information of the noisy or dependent variables is removed, the cluster allocation should

not change, meaning that the data should be kept in the original partition. It is important

to notice that the partition is defined in the original p-dimensional space and the input

requires data from all the variables.

They propose to look for a subset of indices I ⊂ {1, . . . , p} for which the original

partition rule applied to a new “less informative” vector ZI ∈ Rp built up from X. The

variables whose indices are in I are the same as those in X, i.e. Zi = Xi while the rest

of the variables will be replace by the optimal predictor based on X[I], the conditional

expectation, Zi = E(Xi|X[I]) (we denote X[I] the set of variables whose indices are in

I), this is the blinding procedure. It is important to notice that in the case of noisy

variables E(Xi) = E(Xi|X[I]). For a fixed integer d < p, the population target is the set

I ⊂ {1, . . . , p}, #I = d, for which the population objective function, given by

h(I) =
K∑
k=1

P
(
f(X) = k, f(Y I) = k

)
,
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attains its maximum. The empirical version of this procedure follows these steps.

1. Given X1, . . . , Xn ∈ Rp i.i.d data, we consider the partitioning procedure fn : Rp →
{1, . . . ,K}.

2. For a fixed value of d < p, given a subset of indices I ⊂ {1, . . . , p}, with #I =

d, fix an integer value r (the number of nearest neighbor to be used). For each

j = 1, . . . , n, find the set of indices Cj of the r-nearest neighbor’s of Xj [I] among

{X1[I], . . . , Xn[I]}, where Xj [I] = {Xj [i] : i ∈ I}. And define,

Z∗
j [i] =

{
Xj [i] if i ∈ I
1
r

∑
m∈Cj

Xm [i] otherwise

where X [i] stands for the i–coordinate of the vector X.

3. Calculate the empirical objective function

hn(I) =
1

n

K∑
k=1

n∑
j=1

I{fn(Xj)=k}I{fn(X∗
j )=k},

where IA stands for the indicator function of set A. The empirical objective function

measures the proportion of observations that are reallocated on the same group as in

the original partition after blinding the variables.

4. Look for a subset Id,n =: In, with #In = d, that maximizes the empirical objective

function hn.

In general, the goal is to find the smallest subset of variables that achieves a certain re-

allocation rate. The variable selection procedure is strong consistent under mild regular

conditions on the partitioning method and on the nonparametric estimation of the condi-

tional expectation.

Remark 1. As performing an exhaustive search can be computationally very expensive

or even impossible Fraiman et al. introduce a forward-backward algorithm in order to find

a subset of variables with the desired properties.

Remark 2. Estimating the conditional expectation can be very expensive computation-

ally, therefor if one is interested in identifying only the noisy variables the mean could be

found instead, in this way the procedure becomes much more faster.
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Table 1: Optimal number of groups

Clusters (k) CH Index Gap(k) Sk Gap(k + 1) - Sk+1

1 0.368760 0.004639 0.553242
2 2087.42 0.586392 0.033150 0.381457
3 1441.01 0.391880 0.010423
4 1570.45
5 1305.30
6 1394.86
7 1283.33

CH stands for the Calinski/Harabasz index. The Gap procedure chooses the optimal number

of clusters (k) by finding the smallest k such that Gap(k) ≥ Gap(k + 1)− Sk+1.

Table 2: The poor as a cluster

Cluster Monetary welfare Subjective welfare Non-Monetary welfare Frecuency

1 232.5077 0.5940948 0.0147273 73.52%
2 96.1865 −1.900604 −0.4567784 26.48%

Columns 1 to 3 compute cluster means for the factors obtained in Gasparini et al. (2010).

The last column computes the proportion of observations in each cluster.

Table 3: Intersection of Poverty Lines

International Poverty Line Identification

Daily 2 USD 45
Daily 1 USD 25

Percentage of cluster poor individuals that are also classified by income poor
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Table 4: Income and Cluster Poor

Decile Cluster 1 Cluster 2

1 46% 54%
2 54% 46%
3 63% 37%
4 70% 30%
5 75% 25%
6 77% 23%
7 79% 21%
8 84% 16%
9 89% 11%
10 97% 3%

Percentage of individuals in each income decile, classified as cluster non-poor (cluster 1) and

poor (cluster 2).

Table 5: Country Comparisson

Country Cluster Poverty Income Poverty

Honduras 47.89% 23.00%
Peru 44.50% 57.80%
Nicaragua 41.88% 59.50%
Paraguay 39.65% 54.9%
Bolivia 38.16% 58.80%
El Salvador 34.29% 60.50%
Ecuador 29.03% 45.80%
Uruguay 28.71% 25.60%
Chile 27.58% 22.00%
Panama 24.64% 32.60%
Colombia 21.77% 35.84%
Argentina 21.10% 22.90%
Costa Rica 20.97% 25.40%
Guatemala 16.89% 50.30%
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