
HAL Id: hal-01763775
https://hal.archives-ouvertes.fr/hal-01763775

Submitted on 11 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Iterative Virtual Guides Programming for
Human-Robot Comanipulation

Susana Sanchez Restrepo, Gennaro Raiola, Pauline Chevalier, Xavier Lamy,
Daniel Sidobre

To cite this version:
Susana Sanchez Restrepo, Gennaro Raiola, Pauline Chevalier, Xavier Lamy, Daniel Sidobre. It-
erative Virtual Guides Programming for Human-Robot Comanipulation. 2017 IEEE Interna-
tional Conference on Advanced Intelligent Mechatronics (AIM), Jul 2017, Munich, Germany. 9p.,
�10.1109/AIM.2017.8014021�. �hal-01763775�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archive Ouverte en Sciences de l'Information et de la Communication

https://core.ac.uk/display/157607252?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01763775
https://hal.archives-ouvertes.fr

Iterative Virtual Guides Programming for Human-Robot
Comanipulation

Susana Sánchez Restrepo1,2, Gennaro Raiola1,3,4, Pauline Chevalier3, Xavier Lamy1 and Daniel Sidobre2

Abstract— In human-robot comanipulation, virtual guides
are an important tool used to assist the human worker by
reducing physical effort and cognitive overload during tasks
accomplishment. However, virtual guide’s construction often
requires expert knowledge and modeling of the task which
restricts the usefulness of virtual guides to scenarios with
unchanging constraints. To overcome these challenges and
enhance the flexibility of virtual guide’s programming, we
present a novel approach that allows the worker to create
virtual guides by demonstration through an iterative method
based on kinesthetic teaching and Akima splines. Thanks to
this approach, the worker is able to locally modify the guides
while being assisted by them, increasing the intuitiveness and
naturalness of the process. Finally, we evaluate our approach
in a simulated sanding task with a collaborative robot.

I. INTRODUCTION
The aim of human-robot comanipulation is to combine

the cognitive capabilities of humans and the mechanical
performances of robots to carry on exhausting tasks. Such
devices are generally called cobots. The term cobot was
first introduced to refer to wheeled robots using computer-
controlled steering for motion guiding [Colgate et al., 1996].
Despite its specific initial meaning, the term cobot is now
often used to refer to robots capable of safe physical interac-
tion with human operators within a shared workspace. These
cobotic systems must be intrinsically safe (e.g, lightweight
robots with collision detection features), must reduce human
physical effort [Lamy, 2011] and cognitive overload, and
take advantage of the user’s gesture expertise. Furthermore,
cobots must be flexible enough to handle mutable process
and uncertainty, while being intuitive enough to be set and
programmed by non robotic-experts. In light of those assess-
ments, the virtual guides approach appears as a promising
solution to overcome some of the human-cobot interaction
challenges by confining robot motion to the task-relevant di-
rections [Rosenberg, 1993], [Marayong et al., 2003], though
reducing physical effort and cognitive overload. Virtual
guides (also known as virtual fixtures) are especially useful
in contexts where human decision making is still required
to perform the overall task, but where constraints on the
accuracy or required forces of the motion motivate humans
to perform such tasks with robot assistance [Lin et al., 2006],
[Vozar et al., 2015]. Virtual guides could be functionally
equivalent to fixtures in the real world. An example of a non-
virtual, but real guide, is a straight edge system clamped to

1Interactive Robotics Laboratory (LRI), CEA-List, Gif-sur-Yvette, France
2LAAS-CNRS, University of Toulouse, CNRS, UPS, Toulouse, France
3ENSTA ParisTech, University Paris-Saclay, Palaiseau, France
4FLOWERS Team, at INRIA Bordeaux Sud-Ouest

Fig. 1: Experimental setup for user study with a 3-DOF
ISYBOT collaborative robot.

a wood panel to aid in making a perfectly straight cut with
a circular saw. During both virtual and real guiding, the user
is responsible for the progress of the task, and particularly
benefits from the accurate positioning of the tool (cobot
end-effector / circular saw) offered by the passive guiding
system (computer-generated guide / straight edge system), in
the form of haptic feedback. This concept has been used in
industrial and surgical comanipulation applications [Becker
et al., 2013], [Dumora, 2014] and teleoperation [Abbott,
2005], [Bowyer and y Baena, 2013]. In our work we are
interested in generating paths for the robot that can be used
as virtual guiding fixtures in a comanipulation context, see
Fig.1.

One issue in using virtual guides is that their definition
often requires robot programming skills and task’s modeling.
So the usefulness of the method is limited in presence of
changing constraints or where multiple tasks need to be
solved sequentially but in an undefined order. In the previous
work [Raiola et al., 2015], we proposed a probabilistic
framework to allow non-expert users to demonstrate new
guides by kinesthetic teaching even if already known guides
are active. Users may also select the appropriate guide from a
set of guides through physical interaction with the robot. This
probabilistic framework involves modeling a demonstrated
set of guides with Gaussian Mixture Models (GMM) and
retrieving a generalized representation of the data set using
Gaussian Mixture Regression (GMR). Unfortunately, when
working with a comanipulation robot, it could be exhausting
to repeat several times the desired movement in order to
generate a data set to encode the virtual guides. Indeed, the
inertia of the cobot itself (the weight of a cobot is typically

around 15 kg but could go up to 40 kg) and remaining
articular friction, can typically disrupt the fluent execution
of movements.

For this reason, we propose an iterative approach that
allows the worker to locally modify the guides while be-
ing assisted by the robot. Only one demonstration without
assistance is needed. One contribution of this paper is the
use of virtual guiding assistance to program virtual guides
iteratively. We demonstrate a concrete implementation of
our method using kinesthetic teaching and Akima splines.
Our approach enables users to define virtual guides by
demonstration. They may also iteratively modify the guides
by changing cartesian points or a portion of the guide through
physical interaction with the robot.

This paper is organized as follows. After describing the
state of the art in Section II, we explain in Section III
our virtual guiding fixtures implementation using virtual
mechanisms [Joly and Andriot, 1995] and Akima splines
[Akima, 1970]. In Section IV we present our iterative virtual
guides programming method. We evaluate our approach with
a comanipulation robot in Section V and conclude with
Section VI.

II. RELATED WORK

A. Virtual guides definition

Virtual guides are used to passively enforce virtual con-
straints on the movements of cobots, in order to assist the
user during a collaborative task. Virtual guides have been
first introduced by Rosenberg [Rosenberg, 1993] as Virtual
Fixtures. The fundamental concept is that virtual fixtures
can reduce mental workload, task time and errors during
teleoperated manipulation tasks. After Rosenberg’s initial
work, the use of virtual fixtures has been extended to robotic
surgery under the name of active constraints [Davies et al.,
2006] and to industrial applications in the context of Intelli-
gent Assist Devices [Colgate et al., 2003]. Nowadays, virtual
fixtures have been featured in several different works, but
unfortunately ”there is currently no definitive concept which
unifies the field” [Bowyer et al., 2014] because of the dif-
ferent definitions, applications and implementation methods.
Generally, virtual fixtures have been used in teleoperation
[David et al., 2014], [Xia et al., 2013] or comanipulation
contexts [Lin et al., 2006], [Dumora, 2014]. The type of
assistance offered by the virtual fixtures can vary among
different definitions [Abbott et al., 2007], but in general,
they are either used to guide the user along a task-specific
pathway [Marayong et al., 2003], [Burghart et al., 1999],
[Bettini et al., 2004] or to limit the user to move the robot
within a safe region [Abbott and Okamura, 2003]. In the
first case, we refer to the virtual fixtures as virtual guiding
fixtures or simply as virtual guides.

The particular implementation of virtual guides we use
is based on the work presented by Joly [Joly and Andriot,
1995], where a passive virtual mechanism is connected
to the robot end-effector by a spring-damper system in a
teleoperation context. Virtual mechanisms have also been
used in [Pezzementi et al., 2007], where they are called

proxies. Virtual guides may also be implemented by using
anisotropic admittances to attenuate the non-preferred user
force components [Marayong et al., 2003], [Bettini et al.,
2004]. These methods require sensing external inputs, such
as the force or the velocity applied by the user on the robot
end-effector. This is not required in our control scheme.

B. Virtual guides construction

There are many possible solutions to construct virtual
guides. Usually, the way to create them is strictly related
to the goals of the final application. In general, virtual
guides have often been limited to pre-defined geometric
shapes [Marayong et al., 2003] or combinations of shapes
[Aarno et al., 2005], [Kuang et al., 2004] or well-defined
geometric models [Joly and Andriot, 1995], [Dumora, 2014]
or defined through high level tasks models [Xia et al., 2013].
In [David et al., 2014], David &. al. proposed a supervisory
control system using virtual guides to speed up a disk-
cutter insertion process. Virtual guides are created on the
fly into a physical engine using linear interpolations. In this
teleoperation context, environment modeling is also required.
One drawback of this method is the possible position errors
induced by the fact that the model may be mis-referenced
with the reality. In a comanipulation context, it would be
more natural to program virtual guides in the real workspace
rather than in a simulated one. Therefore, Programming by
Demonstration (PbD) [Calinon et al., 2010] appears as a
promising strategy to program robots in a fast and simple
way when the task is known by the user. During PbD, the
operator can directly manipulate the robot end-effector to
teach a desired movement.

Generating guides from demonstrations has been explored
by Aarno & al. [Aarno et al., 2005]. Their adaptive approach
used Hidden Markov Models to model and detect optimum
guides obtained by demonstration and represented as a
sequence of linear guides. In previous work [Raiola et al.,
2015], we proposed a framework for multiple probabilistic
virtual guides where kinesthetic teaching and GMM were
used to implement virtual guiding fixtures. This probabilistic
framework involves modeling a demonstrated set of guides
with GMM and retrieving a generalized representation of the
data set using GMR. Unfortunately, a compromise must be
made between the number of demonstrations (time and effort
demanding) and the level of information in the training data.

C. Virtual guides modification

The virtual guides obtained with the mentioned PbD
approaches cannot be modified online. If the task changes,
the operator has to do a new set of demonstrations with the
robot to obtain a new task representation. To overcome this
flexibility drawback, in the approaches presented by Rozo
et al. [Rozo et al., 2014] and Aarno et al. [Aarno et al.,
2005], the robot is able to automatically adapt. However, in
the first approach, this is done for tasks where initial and
end points are more relevant than the trajectory itself. In the
second, the fixtures are made flexible and adaptive by decom-
posing the trajectory into straight lines. The probability that

the user is following a certain trajectory is estimated and
used to automatically adjust the compliance of the virtual
guide. Similarly, we previously explored in [Raiola et al.,
2017] an iterative method combining an incremental GMM
training and clustering, but, given the probabilistic nature of
GMM, multiple complete demonstrations are still needed to
correctly modify the guides.

From another point of view, the authors of [Boy et al.,
2007] introduced the concept of collaborative learning to
design ergonomic virtual guides to a tricycle cobot and adapt
motion to changes in the environment. PbD is used to teach
the cobot a path to follow. A dedicated GUI path editor
is provided for offline definition and modification of guide
paths. In the same manner, it was suggested in [Mollard
et al., 2015] to improve interaction in a PbD context by
including a GUI in the programming loop to show the learned
information. A relevant difference between the approaches
of Boy et al. [Boy et al., 2007] and Mollard et al. [Mollard
et al., 2015] is that the second approach intends to optimize
the learning of a task aimed to be automatically reproduced
by the robot, while the first approach uses the operator not
only as a part of the teaching phase but as a part of the
task execution. Thus, motion guidance is not implemented
in [Mollard et al., 2015].

In our approach, we suggest to assist the user through-
out the teaching process. A first virtual guide assistance
is created using PbD with only one demonstration or a
preprogrammed trajectory. The virtual guide is defined by an
Akima spline [Akima, 1970], created using the 3D points of
the demonstrated or preprogrammed trajectory. At this stage,
the user is able to test the guide assistance by haptic feedback
and modify it online while the assistance is active, by
changing a single point or a portion of the virtual guide. This
is possible because Akima splines allows local deformation
of the control points.

Under this perspective, the work in [Martin Tykal and
Kyrki, 2016] appears to be much closer to our motivations.
This method was proposed to ease kinesthetic teaching by
assisting the user during teaching using virtual tool dynamics
[Kosuge et al., 1995]. However, the assistance is gradually
increased based on the accumulated demonstrations. There-
fore, several demonstrations are still needed to refine the
task before getting the correct assistance. Moreover, after
each iteration, it is the robot who chooses an assistance and
not the operator who decides where to refine the trajectory,
which might be counterintuitive to the user. One of the
advantages of our method is that the operator is the master
of the teaching and decides when and where a trajectory
modification has to be done.

III. VIRTUAL GUIDES IMPLEMENTATION

We propose a framework for virtual guides programming
and demonstrate a concrete implementation of virtual guides
using kinesthetic teaching. Our approach enables non-expert
user to design virtual guides by demonstration while being
assisted by them. Next we describe our particular imple-
mentation of virtual guides using the virtual mechanisms

proposed by Joly [Joly and Andriot, 1995] and Akima splines
[Akima, 1970].

A. Control law

The idea of virtual guiding fixtures is to provide a clear and
simple perception of the desired behavior of the cobot. To
do so, we use the concept of virtual mechanisms introduced
in [Joly and Andriot, 1995] where the cobot end-effector is
virtually connected to a virtual mechanism through a spring-
damper system. The result is a confined motion of the cobot
end-effector if the virtual mechanism possesses less number
of degrees of freedom (DOFs) than the cobot.

We use a 1 DOF virtual mechanism, implemented as a
desired 3D path (see Fig.2). The cartesian position and ve-
locity of the virtual mechanism and the cobot end-effector are
described by {xvm, ẋvm} and {x, ẋ}, respectively. The virtual
mechanism is connected to the cobot end-effector with a
spring-damper system, which corresponds to a proportional-
derivative controller whose coupling gains are the stiffness
K and the damping B. The current position of the virtual
mechanism is described in its parameterized space by the
parameter svm. The evolution of the virtual mechanism is de-
scribed by ṡvm. The direct geometric and kinematic models of
the virtual mechanism are defined by Ls and Js, respectively.

xvm = Ls(svm) (1)

ẋvm = Jsṡvm (2)

where Js is the virtual mechanism’s Jacobian.

Js =
∂xvm

∂ svm

The force Fc applied by the spring-damper system to the
cobot is given by:

Fc = K(xvm− x)+B(ẋvm− ẋ) (3)

Fig. 2: Lateral view of the physical analogy of a virtual
mechanism. The desired path is illustrated in red. The point x
of the cobotic system is linked to the point xvm of the virtual
mechanism by a spring-damper system. svm is the current
position of the virtual mechanism.

Fig. 3: Control law scheme of a 1-DOF virtual mechanism.

The cobot’s Jacobian is given by J:

J =
∂x
∂q

where q represents the cobot’s articular position.
The torque applied to the cobot’s joints is described by τc.

τc = JtFc (4)

It is possible to specify a stiffness-damping coupling (Ks
and Bs) of the virtual mechanism to a reference position scons
along the desired path. It is then possible to create virtual
boundaries at the extremities of the path by applying to scons
the following law:
• If svm ∈ (0,smax) then scons← svm and ṡcons← ṡvm.
• If svm > smax then scons← smax and ṡcons← 0.
• If svm < 0 then scons← 0 and ṡcons← 0.
The behavior of the virtual mechanism’s impedance is

given by:
Tvm = Ks(scons− svm)+Bs(ṡcons− ṡvm) (5)

The equilibrium of the forces applied to the virtual mech-
anism is given by: Jt

sFc = Tvm (6)

Using equations (2), (3), (5) and (6), we obtain:

Jt
s(K(xvm− x)+B(Jsṡvm− ẋ)) =−Bsṡvm +Ks(scons− svm)

+Bsṡcons (7)

By solving equation (7) with respect to ṡvm, we obtain a
first order dynamical system that expresses the evolution of
the virtual mechanism svm:

ṡvm = (Bs + Jt
sBJs)

−1(−Jt
s(K(xvm− x)−Bẋ))

+Ks(scons− svm)+Bsṡcons (8)

svm can be determined at every instant by integrating the
controller state equation (8) in real time. From equations (1),
(2), (3), (4), (5) and (8) we obtain the control law scheme
presented in (Fig. 3).

The gains specifications (K and B) of the coupling are
independent from the guide specification (Ls, Ks and Bs).
Gains tunning for (K and B) is similar to the tunning of a
cartesian PD position loop.

The passivity1 of the virtual mechanism controller is
proven by Joly, in [Joly and Andriot, 1995], by using the

1A system is considered passive when it does not provide more energy
than it has received.

mechanical analogy of the system and studying the energy
dissipation. Moreover, it was proven by Hogan [Hogan,
1988] that the passivity of the system guarantees the stability
of the controlled system when it interacts with any passive
environment, including a human operator.

B. Virtual guides construction

In the first teaching phase, the operator can use a pre-
programmed path or show to the cobot the desired trajec-
tory. The user manually moves the cobot end-effector and
records points by demand or continuously with a determined
sampling time2. In both cases, the cartesian position xvm
of the cobot end-effector is stored as a list of N points:
{xi,yi,zi}i=0:N−1.

Tool orientation programming is not addressed here, but
will be published in a future article as an extension of this
work.

We reconstruct the virtual guiding fixture from the stored
points by using a local cubic polynomial Akima interpolation
[Akima, 1970]. This method is a continuously differentiable
sub-spline interpolation. It is built from piecewise third order
polynomials, where only data from the next and previous
two neighbor points are used to determine the coefficients
of the interpolation polynomial. The slope of the curve is
locally determined at each given point by the coordinates of
five points centered on the studied point. This spline type
creates a smooth curve between the recorded points and
always passes directly through them.

Some of the advantages of this interpolation method are:
• There is no need to solve large equation systems. It is

therefore computationally very efficient.
• Akima spline interpolation reduces oscillatory effects.
• Local changes do not affect the interpolation beyond

neighbor points.
• Akima spline points are intuitive to use in the trajectory

modification.
In our implementation, the direct geometric model Ls of

the virtual mechanism (see Eq.1) is defined by the Akima
spline interpolation. Thus, the direct kinematic model Js
(see Eq.2) is defined by the spline’s derivate function.

Virtual guide parameterization:
If we use time as the parameter for the spline, the Jacobian

Js will correspond to the virtual mechanism’s velocity. Since
the trajectory is shown by demonstration, this velocity is
variable and could be null. Jacobian variations could affect
the user’s interaction with the virtual mechanism (see Eq.8).
In order to guarantee a normalized virtual mechanism’s
Jacobian, it is desirable to evaluate the Akima spline at points
based on its arc-length instead of its recording sampling
time. For that matter, we propose to separate spacial and
temporal aspects of the trajectory. Let t be the time, s be
the path-length curvilinear parameter (which corresponds to
svm in Fig.2); M the 3D vector containing the Akima spline
points; f :R→R3, f : t→M, the Akima spline parametrized

2The interested reader on key points definition for PbD trajectory learning
can refer to [Vakanski et al., 2012].

with time; g : R→ R, g : s→ t the transformation function
between path-length curvilinear parameterization and time.
We approximate the computation of s by:

si =
i−1

∑
j=1
‖M j−M j−1‖

where M j = {x j,y j,z j}.

The Akima spline is now defined as a composition
of the curve f parameterized with time and the space
transformation g as: f (g(s)) = f ◦g(s).

IV. ITERATIVE VIRTUAL GUIDES PROGRAMMING

When asking a user to perform several times the ideal path
he has in mind, there may be many variations. These varia-
tions could exist due to the presence of friction and gravity
forces that the user must compensate, the poor repeatability
inherent to human gestures, the variability in the task and,
often, simply concentration errors on a trajectory portion.
For these reasons and the ones enlightened in Section II, we
suggest that the user program the virtual guides by iteratively
modifying them while being assisted by the cobot. In this
section, we present a local guide’s refinement method. The
refinement is done directly on the workspace by manually
manipulating the cobot end-effector to show a new portion
of the guide. During local refinement, the operator may be
more focused than during the previous demonstration since
he is able to demonstrate again only the portion and not the
entire trajectory. The main advantage of this approach is that
the worker is assisted throughout the iterative teaching phase
and only one entire demonstration of the task is needed.

A. Scaled force control

In order to show the new portion of trajectory while the
virtual guide is active, the user needs to momentarily escape
the guide. To this matter, we use the concept of soft virtual
guides and force scaling presented in [Nolin et al., 2003],
[Raiola et al., 2015] to allow the user to go off the path
and locally modify the virtual guide. When the user tries
to go off the path, the virtual guide controller’s force fade
proportionally with the distance between the guide’s position
xvm and the current position of the robot end-effector x.
The user would feel an attractive force F when escaping
or approaching the guide, up to a defined distance dmax.

F = β (X)Fc

For computational efficiency purposes, β (X) is defined as

a 4th degree polynomial with X =
‖ x− xvm ‖

dmax
, and null when

X > 1:

if X <= 1 then
β (X) = x4−2x2 +1

else
β (X) = 0

end if

Fig. 4: Local refinement applied to the constraint points X1
and X2 lying on the base guide. X

′
1 and X

′
2 are the initial and

final points of the new guide portion.

The parameter dmax can be tuned manually to modify the
basin of attraction of the virtual guide.

A more distinctive feature of this function is the possibility
to go back to the base guide intuitively without needing to
change the control mode.

B. Local guide’s refinement

Initial and final positions of the partial demonstration do
not always match a control point of the guide. To merge
the new portion with the rest of the guide, we propose
a method to modify the closest points on the base guide
for matching the first and last points on the new guide
portion. We got inspiration from the SCODEF (Simple
Constrained Object Deformation) concept. This method was
introduced by Borrel, [Borrel and Rappoport, 1994] in the
field of geometric modeling and interactive shape edition, for
producing controlled spatial deformations. Our contribution
is to implement a simplified version of the SCODEF method
to locally modify the virtual guides, reconstructed as Akima
splines.

Let X1 and X2 be the constraint points of the current guide.
X
′
1 and X

′
2 are the initial and final points of the new guide

portion, respectively (see Fig.4). The constraint points are
defined as the two base guide’s points which are closest to X

′
1

and X
′
2, respectively. We obtain X1 and X2 by calculating the

distance from X
′
1 and X

′
2 to the base guide’s control points.

Then we select the two control points of minimum distance.
Displacement vectors

#»

d1 and
#»

d2 are determined between X1
and X

′
1, and between X2 and X

′
2. A radius of influence r

must be defined for both constraints. We choose the radius
proportional to the magnitude of the displacement vector.

#»

d 1 =
»

X1X
′
1; r1 = α1 ‖

#»

d 1 ‖
#»

d 2 =
»

X2X
′
2; r2 = α2 ‖

#»

d 2 ‖

The radius r1 and r2 allow a more intuitive control
of the deformation. The only parameters to tune are α1
and α2, where a compromise must be done between the
smoothness of the curve and the area of influence of the
deformation, i.e, the neighbor points that will be deformed.
We define a local deformation function F centered at the
constraint points and decreasing to zero for points beyond
the radius. In order to obtain a smooth displacement of the
spline points, we determine a fourth degree polynomial as

the deformation function F(x), where x =
(svm,i− svm,0)

r
.

{svm,i}i=0:N−1 represent the curvilinear abscissa parameter
of the Akima spline, and N is equal to the number of
interpolation points.

f (x) = x4−2x2 +1

The deformation function F(x) is though defined as:

F(x) = f (x)
#»

d

The deformation function F(x) is applied to the X1 and
X2 neighbor points within the radiuses of influence r1 and
r2, in order to obtain the new control points that would
now include X

′
1 and X

′
2. These new guide’s control points

are stored in a vector defined by the modified base guide’s
control points before X1 and after X2, along with the new
guide portion’s control points. Finally, we perform a new
Akima spline interpolation to define the new virtual guide.

V. EXPERIMENTAL EVALUATION

The following experiment was conducted with a 3-DOF
ISYBOT collaborative robot (see Fig.1) and a sander. The
general task was to use the cobot to simulate a sanding task.
The simulated task consisted in using the tool to clean a
metal sheet while following a sweeping trajectory defined
by 2 red erasable marks. We used black tape to mark the
trajectory in order to always draw the same red marks. It was
necessary to choose a simple task to minimize the impact of
different skill levels of the user. However, the system could
be applied to more complex scenarios.

Two tasks were studied: Case A consisted on the cleaning
task explained before and Case B consisted in performing
the same task with an obstacle blocking the trajectory. In
both cases, we compared two assistance modes: Mode A
uses gravity compensation and Mode B uses virtual guiding
assistance. In Mode A, the user was able to move the robot
freely. For Mode B, we asked an expert user to program the
virtual guide.

A. Programming virtual guides by an expert user

To program a virtual guide for Mode B - Case A, we
used a function that takes two nonadjacent vertices of a
rectangle and generates a set of points describing a sweeping
trajectory filling the rectangle. These vertices were shown
by demonstration to the robot and recorded using a button
located on the robot’s third axis (cf. video supplement3).
With this set of points {xi,yi,zi}i=0:N−1, we generated a
virtual guide as explained in Section III (see Fig.5,i). For
Mode B - Case B, it was not possible to entirely use the
previous guide since there was an obstacle blocking the
trajectory. We asked the expert user to modify the guide using
the approach explained in Section IV (cf. video supplement).
While the guide was active, the user was able to move along
the trajectory. When the user arrived near the obstacle, he/she

2Back-drivable cobot with screw-and-cable transmission, weight = 40 kg
and payload = 8 kg. More details at: http://www.sybot-industries.com/

3The HD version of the video is available at: goo.gl/cSnJht

Fig. 5: i) Base guide and new guide portion. The areas
of influence are represented by the red circles which are
centered at the constraint points X1 and X2, lying on the
base guide. Each radius of influence is α times proportional
to the magnitude of the correspondent displacement vector,
as explained in Section IV. Here, α1 = 1 and α2 = 2. X

′
1 and

X
′
2 are the initial and final points of the new guide portion.

ii) Resulting virtual guide after local refinement. The choice
of each α has an impact on the final curve. In our case, we
compare α2 = 1 and α2 = 2 (α1 is fixed to 1). α2 = 2 allows
to reach another key point of the base guide, thus improving
smoothness of the resulting curve.

was able to escape the guide as presented in Section IV.A.
Then, the new points of the partial modification were shown
by demonstration to the robot and recorded using a button
located on robot’s third axis (see Fig.5,i). After the last point
was recorded, the upper black button launched the refining
algorithm and a new guide was created (see Fig.5,ii). For
the virtual guide assistance, the stiffness was set as K = kI,
with k = 10000 N/m and I = [1;1;1]. The damping was set
as B = bI, with b = 400 N/ms−1 and I = [1;1;1]. Sampling
time is 1ms. During the virtual guide’s modification, we set:
dmax = 0.01m, α1 = 1 et α2 = 2. These values were chosen
through trial-and-error to meet the conditions described in
Section IV. An example of the influence of the choice of α1
et α2 is shown in Figure 5,ii.

Our approach allowed the expert user to modify the first
guide while being assisted by the it, in order to adapt to a
change of environment. In this case of application, only the
demonstration of two points and of a portion of trajectory
were needed to obtain two guides. Without our method, the
user would have had to do an entire demonstration with the
cobot in order to create a new guide to avoid the obstacle.

B. User study
We designed a pilot study to observe how novice users

perceived the virtual guide assistance and performed with

goo.gl/cSnJht

Mode A Mode B

Question Mean SD Mean SD F p-value

Do you think that you performed the task well? 5.21 1.19 5.89 0.91 F(1,12)=9.7028 0.0089
Did you feel you performed the task precisely? 4.82 1.19 5.64 1.06 F(1,12)=11.207 0.0058
Do you think the robot was helpful during the task execution? 3.82 1.58 5.29 1.65 F(1,12)=4,6126 0.0529
Do you think the robot was easy to work with? 5.11 1.26 5.39 1.37 F(1,12)=,50585 ns

Table I
Survey results of the user study in Mode A and Mode B

the cobot. We recruited 14 participants from our research
laboratory (between 22 and 33 years old, 5 females). Nine
participants stated they had prior experience with robots,
ranging from robotic courses to hands-on experience with
industrial robots.

Three hypotheses were tested:
• H1: Virtual guides assistance reduces the task’s execu-

tion time.
• H2: Virtual guides assistance improves task’s perfor-

mances.
• H3: Virtual guides are easy to use.
All participants were asked to perform the tasks Case

A and Case B (ie. cleaning task; cleaning task with an
obstacle), in both modes, Mode A and Mode B (ie. gravity
compensation; virtual guide assistance), resulting to four
test conditions. The four test conditions were presented
in a randomized order to avoid training effects. For each
condition, the participants were asked to perform the task
3 times in a row (Repetitions). At the beginning of each
condition, the Case and the Mode were presented to the
participants and they were able to familiarize themselves
with the system. When a condition was completed, it was
asked to the participants to fill a post-condition survey
(Likert-scale survey with a rating from 1 to 7, with 1 as
strong disagreement and 7 as strong agreement, the same
for each condition). In total, the participants performed 12 =
2×2×3 (Case*Mode*Repetition) cleaning tasks.

To validate our hypotheses, we recorded the participants’
times of execution of the 12 tasks and the answers to the four
post-condition surveys. The measures we were interested in
are the following:
• Execution time, to validate H1 and H3.
• Observed collisions in case B, to validate H2.
• Survey results, to validate H2 and H3.

These results are summarized in Fig. 6, Fig. 7 and
Table I. We performed a repeated-measure ANOVA on
three factors: (1) Cases, (2) Modes, and (3) Repetitions.
Participants were grouped by their habit to use a robot. Post
hoc pairwise comparisons were computed using non-pooled
error terms (i.e., by computing separate paired-samples t
tests; sequentially acceptive step-up Benjamini [Benjamini
and Hochberg, 1995] procedure, with an alpha level of .05.

User study results:

A B

Mode

5

10

15

20

M
e
a
n
 t
im

e
 e

x
e
c
u
ti
o
n
 (

s
)

Fig. 6: Task’s execution time. Comparison between Mode A
(gravity compensation) and Mode B (virtual guiding).

1 2 3

Repetition

5

10

15

20

25

30

M
e
a
n
 t
im

e
 e

x
e
c
u
ti
o
n
 (

s
)

not used to robots

used to robots

Fig. 7: Task’s execution time. Comparison between repeti-
tions for participants used and not used to work with robots.

We found a significant main effect of the Modes on the ex-
ecution time of the participants (F(1,12) = 14.78; p < .01).
In Mode A, participants were slower than with in Mode B
(Mode A: M = 15,SD = 4.73; Mode B: M = 12.06,SD =
3.90) (see Fig.6). This indicates that the virtual guides
reduced the execution time. This validates H1. We also found
a significant main effect of the Repetitions on the execution
time of the participants (F(2,24) = 14.79; p < .001). Post
hoc analyses showed that the first repetition was longer than
the second (p < .025) and the third repetitions (p < .001).
This confirms there is a training effect. Moreover, there is a
significant effect of the interaction between repetitions and
one’s experience with a robot (F(2,24) = 5.76, p < .01) (see
Fig.7). Post hoc analyses showed that the first repetition was
longer than the second (p < .025) and the third repetitions
(p< .025) only in the group of participants not used to work

with robots. This indicates us that the participants who had
never worked with a robot before had a greater improvement
in their execution time than those who had. These results
support the hypothesis H3.

For clarity reasons, the answers to four questions of our
user study for each Mode are summarized in Table I. With
this survey, we observed a significant effect on the Mode. In
Mode B, ie. with the virtual guide, participants found that: (1)
they performed better the task; (2) they felt more precise in
the execution in the task; (3) the robot was more helpful than
in Mode A. Moreover, for Case B, collisions only occurred
when the users were not assisted. These results validate H2.

The results of this study are similar/comparable to previ-
ous work [Lin et al., 2006], [Vozar et al., 2015] and confirm
the interest of virtual guiding.

VI. CONCLUSION

We presented a novel approach for using virtual guiding
assistance to program virtual guides. We proposed a novel
implementation of virtual guides using virtual mechanisms
and Akima splines. Our approach enables users to create
virtual guides by demonstration. Users may also iteratively
modify the guides by modifying a portion of the guide
through physical interaction with the cobot. We suggested
to use a scaled force control to escape the active guide
in order to modify it. The experimental evaluation of the
system with an expert user showed an application of our
approach to a sanding task with a cobot where the task
changes and the virtual guides must be reprogrammed by
the operator. Furthermore, the user study demonstrates that
these guides improve the performance and the execution time
of comanipulation tasks. Also, the virtual guide assistance is
perceived as helpful by novice users.

In our future work, we will perform an user study on
the proposed approach for virtual guides iterative modifi-
cation, in order to evaluate the intuitiveness of our method.
An important enhancement would extend the programming
approach to a 6D assistance, where orientation would be
taught by demonstration. Moreover, it would be interesting to
study if splitting the orientation from the position trajectory
programming would lead to an easier and qualitatively better
experience for the users.

REFERENCES

[Aarno et al., 2005] Aarno, D., Ekvall, S., and Kragic, D. (2005). Adaptive
Virtual Fixtures for Machine-Assisted Teleoperation Tasks. In ICRA.

[Abbott et al., 2007] Abbott, J., Marayong, P., and Okamura, A. (2007).
Haptic virtual fixtures for robot-assisted manipulation. Springer Tracts
in Advanced Robotics.

[Abbott, 2005] Abbott, J. J. (2005). Virtual Fixtures for Bilateral Telema-
nipulation. PhD thesis.

[Abbott and Okamura, 2003] Abbott, J. J. and Okamura, A. M. (2003).
Virtual fixture architectures for telemanipulation.

[Akima, 1970] Akima, H. (1970). A New Method of Interpolation and
Smooth Curve Fitting Based on Local Procedures. J. ACM.

[Becker et al., 2013] Becker, B. C., MacLachlan, R. A., Lobes, L. A.,
Hager, G. D., and Riviere, C. N. (2013). Vision-Based Control of
a Handheld Surgical Micromanipulator With Virtual Fixtures. IEEE
Transactions on Robotics.

[Benjamini and Hochberg, 1995] Benjamini, Y. and Hochberg, Y. (1995).
Controlling the false discovery rate: A practical and powerful approach
to multiple testing. Journal of the Royal Statistical Society. Series B
(Methodological).

[Bettini et al., 2004] Bettini, A., Marayong, P., Lang, S., Okamura, A. M.,
and Hager, G. D. (2004). Vision assisted control for manipulation using
virtual fixtures. In IROS.

[Borrel and Rappoport, 1994] Borrel, P. and Rappoport, A. (1994). Sim-
ple Constrained Deformations for Geometric Modeling and Interactive
Design. ACM.

[Bowyer et al., 2014] Bowyer, S. A., Davies, B. L., and y Baena, F. R.
(2014). Active constraints/virtual fixtures: A survey. IEEE Transactions
on Robotics.

[Bowyer and y Baena, 2013] Bowyer, S. A. and y Baena, F. R. (2013).
Dynamic frictional constraints for robot assisted surgery. In World
Haptics Conference (WHC).

[Boy et al., 2007] Boy, E. S., Burdet, E., Teo, C. L., and Colgate, J. (2007).
Investigation of Motion Guidance With Scooter Cobot and Collaborative
Learning. IEEE Transactions on Robotics.

[Burghart et al., 1999] Burghart, C., Keitel, J., Hassfeld, S., Rembold, U.,
and Woern, H. (1999). Robot controlled osteotomy in craniofacial
surgery. In Proceedings of the 1st International Workshop on Haptic
Devices in Medical Applications.

[Calinon et al., 2010] Calinon, S., D’halluin, F., Sauser, E., Caldwell, D.,
and Billard, A. (2010). Learning and Reproduction of Gestures by
Imitation. IEEE Robotics Automation Magazine.

[Colgate et al., 2003] Colgate, J., Peshkin, M., and Klostermeyer, S.
(2003). Intelligent assist devices in industrial applications: a review.
In IROS.

[Colgate et al., 1996] Colgate, J. E., Edward, J., Peshkin, M. A., and
Wannasuphoprasit, W. (1996). Cobots: Robots For Collaboration With
Human Operators.

[David et al., 2014] David, O., Russotto, F.-X., Da Silva Simoes, M., and
Measson, Y. (2014). Collision avoidance, virtual guides and advanced
supervisory control teleoperation techniques for high-tech construction:
framework design. Automation in Construction.

[Davies et al., 2006] Davies, B., Jakopec, M., Harris, S. J., Baena, F. R. Y.,
Barrett, A., Evangelidis, A., Gomes, P., Henckel, J., and Cobb, J. (2006).
Active-constraint robotics for surgery. Proceedings of the IEEE.

[Dumora, 2014] Dumora, J. (2014). Contribution à l’interaction physique
homme-robot : Application à la comanipulation d’objets de grandes
dimensions. PhD thesis.

[Hogan, 1988] Hogan, N. (1988). On the stability of manipulators per-
forming contact tasks. IEEE Journal on Robotics and Automation.

[Joly and Andriot, 1995] Joly, L. and Andriot, C. (1995). Imposing motion
constraints to a force reflecting telerobot through real-time simulation of
a virtual mechanism. In IROS.

[Kosuge et al., 1995] Kosuge, K., Itoh, T., Fukuda, T., and Otsuka, M.
(1995). Tele-manipulation system based on task-oriented virtual tool.
In ICRA.

[Kuang et al., 2004] Kuang, A., Payandeh, S., Zheng, B., Henigman, F.,
and MacKenzie, C. (2004). Assembling virtual fixtures for guidance in
training environments. In HAPTICS.

[Lamy, 2011] Lamy, X. (2011). Conception d’une interface de pilotage
d’un Cobot. PhD thesis.

[Lin et al., 2006] Lin, H. C., Mills, K., Kazanzides, P., Hager, G. D.,
Marayong, P., Okamura, A. M., and Karam, R. (2006). Portability and
applicability of virtual fixtures across medical and manufacturing tasks.
In ICRA.

[Marayong et al., 2003] Marayong, P., Li, M., Okamura, A. M., and Hager,
G. D. (2003). Spatial motion constraints: theory and demonstrations for
robot guidance using virtual fixtures. In ICRA.

[Martin Tykal and Kyrki, 2016] Martin Tykal, A. M. and Kyrki, V. (2016).
Incrementally assisted kinesthetic teaching for programming by demon-
stration.

[Mollard et al., 2015] Mollard, Y., Munzer, T., Baisero, A., Toussaint,
M., and Lopes, M. (2015). Robot programming from demonstration,
feedback and transfer. In IROS.

[Nolin et al., 2003] Nolin, J. T., Stemniski, P. M., and Okamura, A. M.
(2003). Activation cues and force scaling methods for virtual fixtures.
In HAPTICS.

[Pezzementi et al., 2007] Pezzementi, Z., Hager, G. D., and Okamura,
A. M. (2007). Dynamic guidance with pseudoadmittance virtual fixtures.
In ICRA.

[Raiola et al., 2015] Raiola, G., Lamy, X., and Stulp, F. (2015). Co-
manipulation with multiple probabilistic virtual guides. In IROS.

[Raiola et al., 2017] Raiola, G., Sánchez Restrepo, S., Chevalier, P.,
Rodriguez-Ayerbe, P., Lamy, X., Tliba, S., and Stulp, F. (2017). Co-
manipulation with a library of virtual guiding fixtures. Autonomous
Robots, Special issue on Learning for Human-Robot Collaboration.

[Rosenberg, 1993] Rosenberg, L. (1993). Virtual fixtures: Perceptual tools
for telerobotic manipulation. In IEEE Virtual Reality Annual Interna-
tional Symposium.

[Rozo et al., 2014] Rozo, L., Calinon, S., and Caldwell, D. (2014). Learn-
ing force and position constraints in human-robot cooperative transporta-
tion. In ROMAN.

[Vakanski et al., 2012] Vakanski, A., Mantegh, I., Irish, A., and Janabi-
Sharifi, F. (2012). Trajectory Learning for Robot Programming by
Demonstration Using Hidden Markov Model and Dynamic Time Warp-
ing. SMC.

[Vozar et al., 2015] Vozar, S., Léonard, S., Kazanzides, P., and Whitcomb,
L. L. (2015). Experimental evaluation of force control for virtual-fixture-
assisted teleoperation for on-orbit manipulation of satellite thermal
blanket insulation. In ICRA.

[Xia et al., 2013] Xia, T., Léonard, S., Kandaswamy, I., Blank, A., Whit-
comb, L. L., and Kazanzides, P. (2013). Model-based telerobotic control
with virtual fixtures for satellite servicing tasks. In ICRA.

	INTRODUCTION
	RELATED WORK
	Virtual guides definition
	Virtual guides construction
	Virtual guides modification

	VIRTUAL GUIDES IMPLEMENTATION
	Control law
	Virtual guides construction

	Iterative virtual guides programming
	Scaled force control
	Local guide's refinement

	EXPERIMENTAL EVALUATION
	Programming virtual guides by an expert user
	User study

	Conclusion
	References

