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Abstract 

A structure activity model which incorporates the desolvation, lipophilicity, dipole moment 

and molecular volume of a series of modafinil like analogues has been compared to a series 

of saturated heterocyclic analogues in their ability to inhibit the dopamine transporter (DAT). 

It has been found that hydrophilicity or lipophilicity has a larger inhibitory effect for the 

heterocyclic analogues than the modafinil like analogues, but the heterocyclic inhibitors show 

no dependence on dipole moment unlike the modafinil like analogues. The modafinil like 

analogues have a higher desolvation requirement than the heterocyclic analogues prior to 

binding with DAT as expected for the more polar structures. 

 

Evidence is presented that strongly implicates the involvement of free radical species in the 

eugeroic ability of modafinil like and 9-fluorene analogues via a dissociative electron 

attachment mechanism. This eugeroic ability is largely separate from a DAT inhibition 

mechanism. 

 

Introduction 

The neurotransmitter dopamine (DA) determines many body functions including cognition, 

mood, movement, and reward. The levels of DA in the brain is modulated by the dopamine 

transporter (DAT), which is a plasma membrane protein that actively transfers released DA 

from the extracellular space into the presynaptic neuron. The DAT is a target for addictive 

drugs including cocaine, amphetamines and for drugs prescribed for the treatment of attention 

deficit hyperactivity disorder (ADHD), depression, and other dopamine imbalance diseases 

such as Parkinson’s disease, Alzheimer’s disease, bipolar disorder, depression and 

alcoholism. Cocaine binds to the protein and inhibits transport, while amphetamines are 

transported and stimulate reverse transport (efflux) of intracellular DA. Other related drugs 

include nocaine (CPCA) originally developed as a less potent substitute for cocaine, and 

modafinil (Provigil or Nuvigil) a wake promoting agent used for the treatment of narcolepsy. 



A number of comprehensive studies have examined the structure activity relationships of 

modafinil analogues with the DAT. [1-4][Zhou 2004, Cao 2011, 2016, Kalaba 2017] 

DAT belongs to the SLC6 family of transporters that couple inward solute transport to 

downhill movement of Na
+
 and Cl

−
. It is thought that Na

+
 ions bind to the extracellular 

domain of the transporter before dopamine can bind. After dopamine binds, the protein 

undergoes a conformational change, which allows both sodium and dopamine to unbind on 

the intracellular side of the membrane. [5][Sonders 1997]  

While many drugs are routinely used to treat DA disorders, there is no clear consensus about 

the mechanism of how these drugs affect the action of DAT. In particular the mechanism of 

how modafinil exerts its wake-promoting effect is controversial. Modafinil is known to 

weakly but selectively bind with DAT and exert its eugeroic effect by disrupting the transport 

effect of DAT and hence raising extracellular concentrations of DA, which results in 

wakefulness. Modafinil is thus thought to be a dopamine reuptake inhibitor. DAT knockout 

mice are known to be unresponsive to modafinil. [6,7][Wisor 2001, 2013]  However, there is 

significant evidence that the eugeroic action of modafinil includes other processes beside 

acting as a dopamine reuptake inhibitor. For example, a structure activity study of modafinil 

analogues found that DAT inhibition did not correlate with wakefulness-promoting effects in 

animals, and a number of analogues without any significant inhibition of the DAT still 

produced wakefulness-promoting effects. [8,9][Dunn 2012] Other possible mechanisms for 

the eugeroic effect besides the dopamine reuptake inhibition include activation of the orexin 

system. [10][Mereu 2013] 

However there is also evidence that free radicals may be related to sleep induction as well as 

cellular damage, and that modafinil has the ability to oppose both of these effects. It is 

thought that modafinil could directly act on enzymes in the brain’s free-radical scavenging 

system (eg. glutathione peroxidase or superoxide dismutase) and hence directly reduce free-

radical levels. This may account for modafinil’s known ability to increase the 

cortical creatine-phosphocreatine pool. Cytochrome enzymes in the inner mitachrondrial 

membrane transport chain may be involved with modafinil’s electron accepting ability from 

superoxide species in this environment. Modifinil is known to suppress the CYP2C9 enzyme 

and hence reactive oxygen species in the brain, and hence possibly promoting better 

mitachrondrial function and wakefulness. [11][[Gerrard 2007] There is evidence that 

modifinil causes oxidative damage in the amygdala, hippocampus, and striatum of rats at 

high doses. [12][Ornell 2014] 

 

A meta analysis of published studies on sleep deprivation and oxidative stress in the brain 

was used to test the hypothesis that that sleep is a dynamic-resting state with antioxidative 

properties. Wakefulness is thought to involve high neuronal metabolism and neuronal 

electrical potentials, and requires high oxygen levels, and therefore oxidants. Sleep is a state 

with an increased antioxidant activity which promotes a brain protection against free radicals 

by lowering oxidant production. ROS and other oxidative stress markers can accumulate in 

the brain during wakefulness, and so behave as sleep promoters. [13][Villafuerte 2015]  

 

We have previously developed a structure activity model that has been shown to apply to the 

transport and anti-cancer and metabolic efficacy of various drugs. The four parameter general 

model is based on establishing linear free energy relationships between the four drug 



molecular properties and various biological processes. The equation has been previously 

applied to passive and facilitated diffusion of a wide range of drugs crossing the blood brain 

barrier, the active competitive transport of tyrosine kinase inhibitors by the hOCT3, 

OATP1A2 and OCT1 transporters, cyclin-dependent kinase inhibitors and HIV-1 protease 

inhibitors, and the penetration of drugs into tumours.  The model also applies to PARP 

inhibitors, the anti-bacterial and anti-malarial properties of fluoroquinolones, and active 

organic anion transporter drug membrane transport, and some competitive statin-CYP 

enzyme binding processes. There is strong independent evidence from the literature that 

ΔGdesolvation, ΔGlipophilicity/hydrophobicity, the dipole moment and molecular volume are good 

inherent indicators of the transport or binding ability of drugs. As such the model differs from 

docking studies or molecular dynamic studies of the inhibitor-transporter interaction, in that 

the model represents how the inhibitor-ligand undergoes (de)solvation (within the transporter 

environment) just prior to the actual binding interaction but after the inhibitor leaves the bulk 

solvent. The model allows the prediction of new analogues in a structure activity series using 

easily available quantum mechanical molecular properties and allows insights into molecular 

mechanisms. [14-20][Fong 2015-17] 

 

Study objectives:  

Apply the previously developed structure activity model to two widely different series of 

modafinil analogs using available literature DAT inhibitor data to gain mechanistic insights 

into the inhibitory process and possibly the wakefulness promotion processes. 

Investigate whether modafinil could be involved in free radical processes when exerting its 

eugeroic effect. 

 

Results 

 

(a) Structure activity DAT inhibitory models of modafinil analogues 

 

Table 1 shows the structures of the substituted modifinil like analogue series of Cao 2011, [2] 

and Table 2 shows the substituted heterocyclic piperidine analogues series of Zhou 2004 [1] 

Table 3 shows the DAT binding data and their calculated -ΔGdesolv,CDS (free energy of 

desolvation in water, as calculated by ΔGCDS,w), ΔGlipo,CDS (free energy of lipophilicity or 

hydrophobicity in n-octane, as calculated by ΔGCDS,O), DM (dipole moment in water), Volume 

(molecular volume in water) for the two series of DAT inhibitors. 

 

The DAT binding data has been analysed according to the equations below which has been 

previously shown to apply to a wide range of transport or binding of drugs to proteins, and in 

particular transport of drugs across the blood brain barrier:  

 

The free energy of water desolvation (ΔGdesolv,CDS) and the lipophilicity free energy 

(ΔGlipo,CDS) where CDS represents the non-electrostatic first solvation shell solvent 

properties. These molecular properties may be a better approximation of the cybotactic 

environment around the drug approaching or within the protein receptor pocket, or the cell 

membrane surface or the surface of a drug transporter, than the bulk water environment 

outside the receptor pocket or cell membrane surface. The CDS includes dispersion, 

cavitation, and covalent components of hydrogen bonding, hydrophobic effects. Desolvation 

of water from the drug (ΔGdesolv,CDS) before binding in the receptor pocket is required, and 

hydrophobic interactions between the drug and protein (ΔGlipo,CDS) is a positive contribution 

to binding. ΔGlipo,CDS is calculated from the solvation energy in n-octane. 

 



Application of the general equation to the 20 DAT modafinil analogues gives the following 

equation 1, where the molecular volumes have been multiplied by 0.03 to normalize the 

volumes to being similar in magnitude to the other three independent variables to allow direct 

comparison of the relative contributions of the variables. 

                                                                                                                               Eq 1 

DAT Binding = -4604.8 ΔGdesolv,CDS -4588.9 ΔGlipo,CDS -3244.1 DM -2668.9 Vol -26413.5 
Where R2  = 0.518, SEE = 8332, SE(ΔGdesolvCDS) = 1687.8, SE(ΔGlipoCDS) = 1.413.2, SE(Dipole Moment) = 1679.4, SE(Vol) 

= 1379.2, F=4.022, Significance=0.020 

 

Analysis of the 26 heterocyclic piperidine analogues gave equation 2 (after omitting 

modafinil, cocaine, and Z4, Z17D, Z17F, and Z19 as large outliers, and normalizing the 

volumes by 0.03.  

                                                                                                                                 Eq 2 

 DAT Binding = 23.2 ΔGdesolv,CDS +35.6 ΔGlipo,CDS +24.4 Vol +291.6 

Where R
2  

= 0.250, SEE = 86.3, SE(ΔGdesolvCDS) = 21.1, SE(ΔGlipoCDS) = 18.2, SE(Vol) = 23.5, F=2.44, 

Significance=0.090 

 

Eq 2 is a fairly poor precision equation, compared to eq 1, and particularly shows no 

correlation with dipole moment, with the lipophilicity coefficient being the most significant, 

and the desolvation and volume coefficients of lower significance and relative importance. 

Most notable is the change of signs for dependence on lipophilicity (and desolvation and 

volume) between eqs 1 and 2, and no dependence on dipole moment for the piperidine 

analogues in eq 2.    

(b) Free radical eugeroic mechanism of modafinil analogues 

 

The possibility of modafinil exerting its eugeroic effect by a free radical mechanism has been 

investigated by examining the behaviour of modafinil after attachment of an electron in 

water. This bioreduction process may arise in the brain from superoxide species and or 

mitochondrial sources or cytochrome sources. The anion radical formed from the attachment 

of an electron to modafinil is shown to exhibit extension and then cleavage of the 

diphenylmethyl carbon to sulphoxide (C---S) bond, as shown in the transition state in Figure 

1. This dissociative electron attachment reaction [21,22][Malan 2002, Saveant 1994] also 

occurs in the substituted modafinil analogues (C6H4X)2-CH-S(=O)-Z and is driven by the 

delocalized resonance stabilization of the excess electron over the (C6H4X)2-CH-S(=O)- 

moiety in the HOMO. There is a decrease of negative charge on the benzylic (C6H5)2-CH- 

atom and a decrease of positive charge on the S atom when elongation of the C---S bond 

occurs upon the attachment of an electron to modifinil in water. The free energy of activation 

ΔG
*
 for the water solvated modafinil transition state shown in Figure 1 is estimated to be 

about -30 kcal/mol assuming a ΔG for the hydrated electron of -34.6 kcal/mol. [23][Zhan 

2003]  



Figure 1. Transition state for dissociative electron attachment of Modafinil in water

 

Examination of the analogue (11B in Table 3) 

piperazine-1N)-CH2-CH(OH)

2.5 nM) [3][Cao 2016] compared to modafinil (

upon electron attachment as that for modafinil. 

(C6H4X)2-CH-S(=O)-CH2-C(=O)NH

elongation upon electron attachment

Figure 2  

 

Another analogue which shows quite different behaviour to modafinil is the compound 9

fluorenyl-S(=O)-CH2-C(=O)-(4N

a weak DAT inhibitory effect compared to modafinil

shows the effect of an electron attachment to this compound with elongation of the fluorenyl

9 carbon to S(=O) bond, very similar to t

delocalized over the fluorenyl and sulphoxide groups, with the LUMO delocalized over the 

fluorenyl group. The free energy of 

analogue in Figure 3 is estimated to

modafinil. 

 

        
Figure 3   9-fluorenyl-S(=O)-

state for dissociative electron attachment in water

 

However Dunn [8,9] reported that fluorenol which is the 9

formed from 9-Fluorenyl-S(=O)

 
Transition state for dissociative electron attachment of Modafinil in water

(11B in Table 3) where X = 4-F and Z = -(CH

-C6H5 (Figure 2) which has a high DAT binding affinity (

[Cao 2016] compared to modafinil (Ki = 3800 nM) shows the same behaviour 

upon electron attachment as that for modafinil. Similarly substitution of the X groups in 

C(=O)NH2 shows the same behaviour of benzylic C

elongation upon electron attachment.  

 

Another analogue which shows quite different behaviour to modafinil is the compound 9

(4N-piperazine-1N)-C(=O)-CH3 [8,9][Dunn 2012] 

effect compared to modafinil but a potent eugeroic effect. Figure 3

shows the effect of an electron attachment to this compound with elongation of the fluorenyl

9 carbon to S(=O) bond, very similar to the anion radical of modafinil. The HOMO is 

delocalized over the fluorenyl and sulphoxide groups, with the LUMO delocalized over the 

The free energy of ΔG
*
 for the bond elongation shown for 

is estimated to be about -29 kcal/mol, similar to that shown for 

 
-CH2-C(=O)-(4N-piperazine-1N)-C(=O)-CH3

state for dissociative electron attachment in water  

reported that fluorenol which is the 9-hydroxyfluorene derivative 

S(=O)-CH2-C(=O)-(4N-piperazine-1N)-C(=O)-CH

Transition state for dissociative electron attachment of Modafinil in water 

(CH2)2-(4N-

high DAT binding affinity (Ki = 

) shows the same behaviour 

Similarly substitution of the X groups in 

benzylic C---S bond 

Another analogue which shows quite different behaviour to modafinil is the compound 9-

[Dunn 2012] which shows 

potent eugeroic effect. Figure 3 

shows the effect of an electron attachment to this compound with elongation of the fluorenyl-

he anion radical of modafinil. The HOMO is 

delocalized over the fluorenyl and sulphoxide groups, with the LUMO delocalized over the 

ongation shown for the fluorenyl 

29 kcal/mol, similar to that shown for 

3 and the  transition 

hydroxyfluorene derivative 

CH3 itself shows a 



stronger eugeroic effect but a 59% weaker DAT binding ability than modifinil. This result is 

unusual since fluorenol is vastly structurally different from modifinil indicating a quite 

different mechanism to that of modafinil. Since the fluorene moiety can easily accommodate 

electron attachment, an investigation of electron attachment to fluorenol showed no evidence 

of bond elongation of the fluorene C9—OH bond ruling out formation of a fluorene radical 

anion species similar to that shown by 9-fluorenyl-S(=O)-CH2-C(=O)-(4N-piperazine-1N)-

C(=O)-CH3. However, an examination of electron attachment to the protonated fluorenol 

species 9-fluoreneOH2
+
 did show fluorene---OH2

+
 bond elongation as illustrated in Figure 4, 

indicating a dissociative electron attachment reaction. This proposed process may have 

validity since the brain pH varies from slightly acidic to neutral, and the brain pH 

environment is known to vary regularly with acidic surges. [24][Magnotta 2012] The 

electroreduction of the bond cleavage of the C-OH bond of 9-fluorenol has been previously 

shown to be initiated by electron transfer.[25][Mendkovich 2016] 

 

 

 
Figure 4 showing the 9-fluorenyl-S(=O)-CH2-C(=O)-(4N-piperazine-1N)-C(=O)-CH3, 9-

fluorenol and protonated 9-fluorenol 

 

Dunn 2012 [8,9] and Louvet 2012 [26] have also reported that biphenyl analogues and 

diphenylether derivative of modafinil also exhibit similar eugeroic effects  and DAT binding 

to modafinil. These compounds all possess benzylic carbon atoms adjacent to the sulphoxide 

group. Figure 5.  Both of these drugs did not show dissociative electron attachment upon 1 

electron attachment, but did show dissociation of the benzylic C---S bond upon 2 electron 

attachment. It is clear from examination of the HOMOs that the (C6H4X)2CH- and 9-

fluorenyl moieties (see Figures 1 and 2) can better stabilize electron density than can the 

benzylic moieties in Figure 5, and the TSs for CH2---S bond dissociation in these two drugs 

requires a second electron to be attached to activate the CH2---S bond. The free energy of 

activation ΔG
*
 for the water solvated ether analogue transition state shown in Figure 5 is 

estimated to be about -44 kcal/mol, which compares to the TS shown in Figure1 for modafinil 

of -30 kcal/mol. 

    

     



Figure 5 Showing biphenyl and ether analogues and transition state for two electron 

dissociative electron attachment to the ether compound. 

 

A study of the possibility of free radical species being involved in the heterocyclic piperidine 

series studied for inhibition of DAT showed as expected that electron attachment to 

compound 16A (see Table 2) did not produce any possible reactive intermediates such as 

those discussed above for the modafinil and its analogues, or fluorenyl analogues. This can be 

anticipated since the heterocyclic compounds do not have benzylic type structures that can 

stabilize electron attachment. 

 

It has been shown that diphenylmethyl p-nitrophenyl sulphide (DNPS) in dimethylformamide 

undergoes an electrochemical one-electron transfer to form the radical anion of DNPS (as 

identified by ESR spectrometry), followed by fission of the activated C–S bond to form the p-

nitrothiophenolate anion and diphenylmethyl radical. The dissociation of the radical anion is 

the rate determining step of the electrochemical processes. [27][Farnia 1978] Since the 

sulphide modafinil analogs (4b, 4c, 4d, 6a, 6b, 6c, 6d in Table 3) are known to inhibit DAT 

and show some eugeroic behaviour, it was instructive to see if these drugs also underwent 

dissociative electron attachment like the parent modifinil. It was found that (C6H5)2CH-S-

CH2C(=O)NH2 also undergoes dissociative electron attachment with elongation of the 

methine –(H)C---S bond, and the free energy of activation for the TS shown in Figure 6 is 

estimated to be -25.5 kcal/mol in water which can be compared to a value of -30 kcal/mol for 

the modafinil TS in Figure 1. The same dissociative behaviour was observed in 

dimethylformamide as in water.  

 

 
Figure 6.  Transition state for dissociative electron attachment of (C6H5)2CH-S-

CH2C(=O)NH2 in water 

Discussion 

 

The effectiveness of eugeroic drugs is dependent on the bioavailability of the drug, 

particularly its ability to enter brain cells as well as its cognition altering neurochemical 

action.  

 

The ability of modafinil analogues to cross the blood brain barrier, and bind to the DAT, has 

been examined using equations 1 and 2. The modafinil like analogues used to construct eq 1 

are closely related to modifinil itself, whereas the analogues used in eq 2 are structurally 

different, with higher proportions of saturated carbons and higher hydrophobicity or 

lipophilicity. The relative magnitudes of the coefficients in eq 1 and 2 give insights into the 



molecular factors influencing DAT binding in the two series of analogues. The three ratios 

{ΔGdesolv,CDS / ΔGlipo,CDS}, {DM / ΔGlipo,CDS}, {Volume / ΔGlipo,CDS} measure the importance 

of the molecular properties relative to hydrophobicity or lipophilicity. Eq 1 gives values of 

1.0 (-4604.8/-4588.9), 0.7 (-3244.1/-4588.9), and 0.6 (-2668.9/-4588.9) respectively, while eq 

2 gives values of 0.65 (23.2/35.6), no dependence on DM, and 0.7 (24.4/35.6) respectively. 

What is noteworthy is the change of signs for the coefficients in the two equations, showing 

that hydrophobicity has a major and opposite effect on DAT binding for modafinil like 

analogues, whereas the heterocyclic saturated analogues behave completely differently driven 

by their higher hydrophobicity. Also the heterocyclic series shows no dependency on dipole 

moment, indicating no dipole-dipole interaction between the DAT and the heterocyclic 

analogues.  This is opposite to that found for the modafinil like analogues in eq 1 where the 

substituted phenyl groups can exert significant π (di)polar effects. The larger desolvation 

ratio of 1.0 for the modafinil like analogues compared to the value of 0.65 for the 

heterocyclic analogues is also consistent with an expected stronger desolvation effect to be 

operating for the more polar modafinil like analogues in water. 

With respect to the cognition altering neurochemical action of modafinil and analogues, there 

is little systematic investigation available. The in vivo CNS activity of various modifinil like 

analogues has also been evaluated. For the series  (C6H5)2CHS(=O)CH2C(=O)NH(C6H4X) 

where X = H, 3-Cl, 4-Cl, 4-Et, 3,4-Cl, 4-NO2, 4-Br,  all these analogues were CNS 

stimulants, except where X = H. The psychological performances of mice for wakefulness, 

exploratory activity, depression and anxiogenic and anxiolytic like effects were measured. 

[28][Lari 2013] These results were similar to those previously found by De Risi for the series 

(C6H5)2CHS(=O)CH2C(=O)NH-R where R = Me, iPr, tBu were found to be stimulants, but 

where X = Et, piperidine or morpholine were found to be sedatives. For the series  

(C6H4X)2CHS(=O)CH2C(=O)NH2  where X = 4-F, 4-Cl,4-H and 4-F,4-H, these analogues 

were also found to be stimulants. These CNS activities were measured using electrically-

evoked tritiated serotonin ([
3
H]5-HT) efflux from rat cortical slices. [29][De Risi 2008] 

These in-vivo results overall suggest that substitutions at the amide N group or at the phenyl 

groups adjacent to the sulphoxide moiety have little effect on CNS activity, since the majority 

of these substitutions result in stimulatory outcomes. These observations are consistent with a 

common and dominant cognition altering neurochemical mechanism which may be 

modulated by smaller steric effects at the amide N atom.  

 

It has also been reported that modafinil exhibits antioxidant and neuroprotective properties, 

while also increasing the cortical phosphocreatine pool, and that there is evidence of the 

involvement of free radicals. [11,30][Gerrard 2007, Pierard 1995] Dimethylsulfoxide 

(DMSO) is a well known free radical scavenger, and has been recommended as a treatment 

for endotoxemia and systemic inflammatory response syndrome in horses because of its anti-

inflammatory and reactive oxygen species (ROS)–scavenging benefits. DMSO was found to 

be a scavenger of hydroxyl radicals and an effective inhibitor of platelet aggregation in an in-

vivo mouse model of pial arteriolar injury. [31,32][Rosenblum 1982, Sprayberry 2015] 

Hence there is literature evidence that sulphoxides can form free radicals. 

 

It has been shown that diphenylmethyl p-nitrophenyl sulphide (DNPS) undergoes 

electrochemical dissociative electron attachment in dimethylformamide, [27][Farnia 1978] 

which is consistent with this study which shows that the sulphide analogue of modafinil 

(C6H5)2CH-S-CH2C(=O)NH2 also undergoes the same process in water. 



 

The dissociative electron attachment behaviour shown by modafinil like analogues is strongly 

indicative of a free radical mechanism for cognition altering neurochemical action of 

modafinil and analogues in the CNS. Similarly the eugeroic abilities of 9-fluorenyl 

derivatives can also be explained by a free radical mechanism. Since the modafinil like 

analogues are vastly different in structure from the 9-fluorenyl derivatives, but both have a 

common basis in that both possess benzylic carbon moieties that can form stable radicals 

which can delocalize electron density over aryl groups. 

 

The observation that 9-Fluorenyl-S(=O)-CH2-C(=O)-(4N-piperazine-1N)-C(=O)-CH3 which 

has been shown to exert a potent eugeroic effect but is a weak inhibitor of DAT shows a 

strong dissociation of the C9---S bond upon electron attachment is indicative of a free radical 

eugeroic effect that is largely independent of acting as a dopamine reuptake inhibitor. 

Previous structure activity studies of modafinil analogues found that DAT inhibition did not 

correlate with wakefulness-promoting effects in animals, and a number of analogues without 

any significant inhibition of the DAT still produced wakefulness-promoting effects. 

[8,9][Dunn 2012] 

 

Conclusions 

 

A structure activity model which incorporates the desolvation, lipophilicity, dipole moment 

moment and molecular volume of a series of modafinil like analogues has been compared to 

a series of saturated heterocyclic analogues in their ability to inhibit the dopamine transporter 

(DAT). It has been found that hydrophilicity or lipophilicity has a larger inhibitory effect for 

the heterocyclic analogues than the modafinil like analogues, but the heterocyclic inhibitors 

show no dependence on dipole moment unlike the modafinil like analogues. The modafinil 

like analogues have a higher desolvation requirement than the heterocyclic analogues prior to 

binding with DAT as expected for the more polar structures. 

 

Evidence is presented that strongly implicates the involvement of free radical species in the 

eugeroic ability of modafinil like and 9-fluorene analogues via a dissociative electron 

attachment mechanism. This eugeroic ability is largely separate from a DAT inhibition 

mechanism. 

 

Experimental 

 

All calculations were carried out using the Gaussian 09 package. Energy optimisations were 

at the DFT/B3LYP/6-31G(d,p) (6d, 7f) level of theory for all atoms. Selected optimisations at 

the DFT/B3LYP/6-311
+
G(d,p) (6d, 7f) level of theory gave very similar results to those at the 

lower level. Optimized structures were checked to ensure energy minima were located, with 

no negative frequencies. Energy calculations were conducted at the DFT/B3LYP/6-31G(d,p) 

(6d, 7f) level of theory with optimised geometries in water, using the IEFPCM/SMD solvent 

model. With the 6-31G(d) basis set, the SMD model achieves mean unsigned errors of 0.6 - 

1.0 kcal/mol in the solvation free energies of tested neutrals and mean unsigned errors of 4 

kcal/mol on average for ions. [33][Marenich 2009] The 6-31G(d,p) basis set has been used to 

calculate absolute free energies of solvation and compare these data with experimental results 

for more than 500 neutral and charged compounds. The calculated values were in good 

agreement with experimental results across a wide range of compounds. [34,35][Rayne 2010, 

Rizzo 2006] Adding diffuse functions to the 6-31G* basis set (ie 6-31
+
G**) had no 

significant effect on the solvation energies with a difference of less than 1% observed in 



solvents, which is within the literature error range for the IEFPCM/SMD solvent model. 

HOMO and LUMO calculations included both delocalized and localized orbitals (NBO). 

 

The ease of bond cleavage of the benzylic methine C---S bond of modafinil by dissociative 

electron attachment was confirmed by observing that this process occurs in the gas phase as 

well as in water. The electron impact mass spectrometry study of modafinil gives the main 

ionization fragmentation pathway involving a fragment m/e of 167, ie the (C6H5)2CH ion. 

[36][Dubey 2009] 

 

It is noted that high computational accuracy for each species in different environments is not 

the focus of this study, but comparative differences between various species is the aim of the 

study. The literature values for DAT Ki used in the multiple regression LFER equations have 

much higher experimental uncertainties than the calculated molecular properties. The 

statistical analyses include the multiple correlation coefficient R
2
, the F test of significance, 

standards errors for the estimates (SEE) and each of the variables SE(ΔGdesolCDS), 

SE(ΔGlipoCDS), SE(Dipole Moment), SE (Molecular Volume), as calculated from “t” 

distribution statistics. Residual analysis was used to identify outliers.  

 

Racemic mixtures of modafinil like analogues (Table 1, using the same nomenclature as Cao 

2011 [2]) were evaluated for DAT binding at the rat brain membrane, Ki (nM). 

Synaptosomal competitive binding of heterocyclic and nocaine analogues (tested as the free 

base) and [
3
H]dopamine by striatum rat brain DAT at pH 7.4 and 37C, Ki (nM). Table 2 

shows the analogues evaluated, using the same nomenclature as Zhou 2004. [1]  

Table 3 shows the DAT binding data Ki for modafinil and piperidine analogues and the 

calculated molecular properties in water. 

 

 

Table 1.   Modafinil analogues DAT inhibitors [2][Cao 2011] 

 

 
 

Compound X,Y,Z,R,R’ Substituents 

(+/-) Modafinil H,O,O,H,H 

4b F,-,O,H,H 

4c Cl,-,O,H,H 

4d Br,-,O,H,H 

5b F,O,O,H,H 

5c Cl,O,O,H,H 

5d Br,O,O,H,H 

6a H,-,O,Me,Me 

6b F,-,O,Me,Me 

6c Cl,-,O,Me,Me 

6d Br,-,O,Me,Me 

7c Cl,O,O,Me,Me 



7d Br,O,O,Me,Me 

7f Cl,O,O,Me,H 

7g Br,O,O,Me,H 

7h H,O,O,H,(CH2)3C6H5 

9a H,O,H,H,(CH2)3C6H5 

9d Cl,O,H,Me,Me 

Cocaine  

  

 

 

Table 2.   Heterocyclic DAT Inhibitors [1][Zhou 2004] 

 

 
 

Compound 
Ar = (p-Cl)-C6H4 

X Y Z n 

1(+) CPCA     

4 -OH    

5 -I    

6 -OMe   n=0 

7 -OMe   n=1 

8   -OH n=0 

9   -OH n=1 

10   -OMe n=0 

11   -OMe n=1 

12   -OC(=O)Me n=0 

13   -OC(=O)Me n=1 

14   -OC(=O)C6H5 n=0 

15   -OC(=O)C6H5 n=1 

16(a)  -NH2  n=0 

16(b)  -NH(OH)  n=0 

16(c)  -NH(Me)  n=0 

16(d)  -NMe2  n=0 

16(e)  -NH(iPr)  n=0 

16(f)  -N(-CH2-)5  n=0 

17(a)  -NH2  n=1 

17(b)  -NH(OH)  n=1 

17(c)  -NH(Me)  n=1 



17(d)  -NMe2  n=1 

17(e)  -NH(iPr)  n=1 

17(f)  -N(-CH2-)5  n=1 

18    n=0 

19    n=1 

20     

21    n=0 

22    n=1 

 

 

 

 

Table 3.  DAT binding data Ki for modafinil and piperidine analogues and calculated 

molecular properties in water 

 

 

DAT  Ki 

nM 

ΔGCDS,w  

kcal/mol 

ΔGCDS,o  

 kcal/mol 

Dipole 

Moment 
D 

Molec 

Volume 
cm3/mol 

Cao 2011 
Structures in 

Table 1 

     (+/-) 

Modafinil 2520 5.98 -6.59 3.7 226 

4B 1570 7.59 -5.39 4.84 184 

4C 2230 6.37 -7.6 5.41 200 

4D 1930 4.8 -9.22 5.28 270 

5B 2190 7.34 -5.29 3.65 231 

5C 919 6.11 -7.42 3.81 259 

5D 600 4.53 -9.06 3.74 272 

6A 16500 6.91 -8.3 4.82 220 

6B 9150 8.33 -7 5.12 200 

6C 4510 6.94 -9.05 5.87 235 

6D 2450 5.39 -10.68 6.05 231 

7C 34600 6.98 -8.96 3.27 222 

7D 21300 5.34 -10.59 3.52 282 

7F 24440 6.55 -8.28 4.34 208 

7G 1650 4.98 -9.92 4.38 262 

7H 26660 8.09 -11.73 4.38 261 

9A 194 6.03 -11.24 6.78 316 

7H 26660 8.09 -11.73 4.38 261 

9A 194 6.03 -11.24 6.78 316 

9D 2890 3.5 -8.56 3.77 231 

Cocaine 71.8 6.16 -6.8 0.95 159 

11B* 2.5 5.85 -11.78 4.55 465 

Zhou 

2004 
Structures in 

Table 2 

     Modafinil 3800 5.98 -6.59 3.7 226 



Cocaine 423 6.16 -6.8 0.95 159 

CPCA 233 4.06 -5.85 6.69 175 

Z4 497 1.96 -6.05 5.24 201 

Z5 376 1.43 -5.13 4.66 223 

Z6 80 4.76 -7.36 3.32 246 

Z7 231 4.77 -7.23 6.37 279 

Z8 16 2.84 -7.63 3.11 233 

Z9 12 2.78 -7.53 7.33 221 

Z10 50 3.72 -7.31 3.08 230 

Z11 15 3.68 -7.22 7.31 216 

Z12 35 4.99 -8.31 6.25 242 

Z13 9 4.93 -8.22 9.65 303 

Z14 68 5.81 -10.83 6.54 342 

Z15 32 5.74 -10.7 9.84 284 

Z16A 159 3.68 -6.76 5.33 263 

Z16B 85 5.05 -7.47 5.67 247 

Z16C 13 3.47 -7.65 4.77 255 

Z16D 116 3.94 -8.23 5.08 264 

Z16E 1 4.93 -8.98 4.82 282 

Z16F 83 3.74 -10.2 5.33 286 

Z17A 209 3.76 -6.66 7.2 212 

Z17B 55 5.09 -7.4 7.18 257 

Z17C 164 3.63 -7.6 5.75 235 

Z17D 2884 4.08 -8.06 6.89 224 

Z17E 248 4.89 -8.78 6.45 278 

Z17F 379 3.8 -10.07 7.09 340 

Z18 126 2.17 -7.89 4.78 175 

Z19 1653 2.48 -7.87 7.33 229 

Z20 51 4.97 -6.46 9.37 246 

Z21 114 3.78 -6.08 5.56 191 

Z22 108 3.85 -6 7.66 201 

      Footnote:  Compound 11B from Cao 2016 [3] 
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