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Abstract

In this paper, we combine a descriptor approach to stability and control of linear systems
with time-varying delays, which is based on the Lyapunov - Krasovskii techniques, with a
recent result on sliding mode control of such systems. The systems under consideration have
norm-bounded uncertainties and uncertain bounded delays. The solution is given in terms of
linear matrix inequalities (LMIs) and improves the previous results based on other Lyapunov
techniques. A numerical example illustrates the advantages of the new method.

1 Introduction

The interest in robust control of time-delay systems this last decade is witnessed by the rich ded-

icated literature (see for instance, [1]- [17] and the numerous references therein). Many existing

results concern systems with unknown but constant delays. But in some applications, such as net-

worked control or tele-operated systems, the assumption of a constant delay is too restrictive: this

can lead to bad performances or, even worse, to unstability

This paper combines two previous results so to obtain a more efficient sliding mode controller

for uncertain systems with time-varying delays and norm-bounded uncertainties. Other results [9]

concern varying delays but may lead to strong conditions which reduces the dynamic performances.

The first of these results is the sliding mode design given in [9], which copes with stabilization

of systems with time-varying delays. The approach relies on the construction on a Lyapunov-

Razumikhin function which allows fast variations of the delay but leads to some conservatism on

the upper bound of the time-delay.
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The second result given in [3] concerns the construction of a new class of Lyapunov-Krasovskii

functionals using a descriptor model transformation. Unlike previous transformations, the descrip-

tor model leads to a system which is equivalent to the original one (from the point of view of

stability) and requires bounding of fewer cross-terms. Furthermore, following this approach, stabil-

ity criteria have been given in [6] for systems with time-varying delays without any assumption on

their derivatives (which was the case with the usual Lyapunov-Krasovskii functionals).

The paper is organized as follows: In section 2, we develop a Lyapunov-Krasovskii approach on

a descriptor representation for an uncertain, linear, time-delay system. This provides a stability

condition expressed in term of feasibility of a linear matrix inequality (LMI) (see [1]). Then,

the design of a stabilizing memoryless state feedback is derived. Section 3 deals with the design

of a sliding mode controller. This is achieved through the resolution of a generalized eigenvalue

problem which can be solved efficiently using semi-definite programming tools. In the last section,

an illustrative example is solved using our approach and comparison with previous results are

provided.

Notation:

Throughout the paper the superscript ‘T ’ stands for matrix transposition, Rn denotes the n

dimensional Euclidean space, Rn×m is the set of all n ×m real matrices. The notation P > 0, for

P ∈ Rn×n means that P is symmetric and positive definite. In represents the n×n identity matrix.

2 Stabilization of linear systems with norm-bounded un-

certainties by delayed feedback

In this section we consider the following uncertain linear system with a time-varying delay:

ẋ(t) = (A0 + H∆(t)E0)x(t) + (A1 + H∆(t)E1)x(t− τ(t)) + (B0 + H∆(t)E2)u(t) + B1u(t− τ(t)),

x(t) = φ(t), t ∈ [−h, 0],

(1)

where x(t) ∈ Rn is the system state, u(t) ∈ Rm is the control input, h is an upper-bound on the

time-delay function (0 ≤ τ(t) ≤ h, ∀t ≥ 0). The matrix ∆(t) ∈ Rp×q is a matrix of time-varying,

uncertain parameters satisfying

∆T (t)∆(t) ≤ Iq ∀ t. (2)

For simplicity, we consider only one delay, but the results of this section may be easily generalized

to the case of multiple delays.

We seek a control law

u(t) = Kx(t) (3)

that will asymptotically stabilize the system.

2



2.1 The stability issue

In this subsection, we consider the following equation:

ẋ(t) = (Ā0 + H∆(t)Ē0)x(t) + (Ā1 + H∆(t)Ē1)x(t− τ(t)). (4)

Representing (1) in an equivalent descriptor form [3]:

ẋ(t) = y(t), 0 = −y(t) + (ĀT + H∆ĒT )x(t)− (Ā1 + H∆Ē1)
∫ t

t−τ(t)
y(s)ds

or

E ˙̄x(t) =

 0 In

ĀT + H∆ĒT −In

 x̄(t)−

 0

Ā1 + H∆Ē1

 ∫ t

t−τ(t)
y(s)ds, (5)

with

x̄(t) = col{x(t), y(t)}, E = diag{In, 0},
ĀT = Ā0 + Ā1, ĒT = Ē0 + Ē1,

the following Lyapunov-Krasovskii functional is applied:

V (t) = x̄T (t)EPx̄(t) + V2(t), (6)

where

P =

 P1 0

P2 P3

 , P1 > 0, EP = P T E ≥ 0, (7a-d)

V2(t) =
∫ 0

−h

∫ t

t+θ
yT (s)[R + δ2Ē

T
1 Ē1]y(s)dsdθ.

The following result is obtained:

Lemma 1 The system (4) is asymptotically stable if there exist n×n matrices 0<P1, P2, P3, R > 0

and positive numbers δ1, δ2 that satisfy the following LMI:

Γ =



Ψ hP T

 0

Ā1

 P T

 0

H

 hP T

 0

H


∗ −hR 0 0

∗ ∗ −δ1Ip 0

∗ ∗ ∗ −δ2hIp


< 0 (8)

where

Ψ = Ψ0 +

 δ1Ē
T
T ĒT 0

0 h(R + δ2Ē
T
1 Ē1)

 ,

Ψ0 = P T

 0 In

ĀT −In

 +

 0 In

ĀT −In

T

P,

and ∗ denotes symmetrical entries.
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Proof. Note that

x̄T (t)EPx̄(t) = xT (t)P1x(t)

and, hence, differentiating the first term of (6) with respect to t gives:

d

dt
{x̄T (t)EPx̄(t)} = 2xT (t)P1ẋ(t) = 2x̄T (t)P T

 ẋ(t)

0

 . (9)

Replacing

 ẋ(t)

0

 by the right side of (5) we obtain:

dV (t)

dt
= x̄T (t)Ψ0x̄(t) + η0 + η1 + η2 + hyT (t)[R + δ2Ē

T
1 Ē1]y(t)−

∫ t

t−h
yT (s)[R + δ2Ē

T
1 Ē1]y(s)ds, (10)

where

η0(t)
∆
= −2

∫ t

t−τ(t)
x̄T (t)P T

 0

Ā1

 y(s)ds,

η1(t)
∆
= 2x̄T (t)P T

 0

H

 ∆(Ē0 + Ē1)x(t),

η2(t)
∆
= −2

∫ t

t−τ(t)
x̄T (t)P T

 0

H

 ∆Ē1y(s)ds.

Applying the standard bounding

aT b ≤ aT Ra + bT R−1b, ∀a, b ∈ Rn,∀R ∈ Rn×n : R > 0,

and using the fact that τ(t) ≤ h, we have

η0(t) ≤ τ x̄T (t)P T

 0

Ā1

 R−1[0 ĀT
1 ]Px̄(t) +

∫ t
t−τ(t) yT (s)Ry(s)ds

≤ hx̄T (t)P T

 0

Ā1

 R−1[0 ĀT
1 ]Px̄(t) +

∫ t
t−h yT (s)Ry(s)ds.

(11)

Similarly

η1 ≤ δ−1
1 x̄T (t)P T

 0

H

 [0 HT ]Px̄(t) + δ1x
T (t)ĒT

T ĒT x(t),

η2 ≤ hδ−1
2 x̄T (t)P T

 0

H

 [0 HT ]Px̄(t) + δ2

∫ t

t−h
yT (s)ĒT

1 Ē1y(s)ds.

Substituting the right sides of the latter inequalities into (10), we obtain

dV (t)

dt
≤ x̄T (t)Γ̄x̄(t) (12)
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where

Γ̄ = Ψ + hP T

 0

Ā1

 R−1[0 ĀT
1 ]P + (δ−1

1 + hδ−1
2 )P T

 0

H

 [0 HT ]P.

Therefore, LMI (8) yields by Schur complements that Γ̄ < 0 and hence V̇ < 0, while V ≥ 0, and

thus (4) is asymptotically stable [13], [4]. ♣

2.2 State-feedback stabilization

The results of Lemma 1 can also be used to verify the stability of the closed-loop obtained by

applying (3) to the system (1) if we set in (8)

Āi = Ai + BiK, i = 0, 1, Ē0 = E0 + E2K (13)

and verify that the resulting LMI is feasible. The problem with (8) is that it is linear in its variables

only when the state-feedback gain K is given. In order to find K we apply again Schur formula to

Γ̄, the Ψ term being expanded. We thus obtain the following matrix inequality:

Ψ0 hP T

 0

Ā1R
−1

  0

hIn

  ĒT
T

0

 h

 0

ĒT
1

 δ−1
1 P T

 0

H

 δ−1
2 hP T

 0

H


∗ −hR−1 0 0 0 0 0

∗ ∗ −hR−1 0 0 0 0

∗ ∗ ∗ −δ−1
1 Iq 0 0 0

∗ ∗ ∗ ∗ −δ−1
2 hIq 0 0

∗ ∗ ∗ ∗ ∗ −δ−1
1 Ip 0

∗ ∗ ∗ ∗ ∗ ∗ −δ−1
2 hIp



< 0

(14)

Consider the inverse of P . It is obvious, from the requirement P1 > 0 and the fact that in (8)

−(P3 + P T
3 ) must be negative definite, that P is nonsingular. Defining

P−1 = Q =

 Q1 0

Q2 Q3

 and M = diag{Q, I2(n+p+q)} (15a-b)

we multiply (14) by MT and M , on the left and on the right, respectively. Choosing

R−1 = Q1ε,
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where ε is a positive number, and introducing δ̄1 = δ−1
1 and δ̄2 = δ−1

2 , we obtain the LMI

Φ h

 0

Ā1Q1ε

 QT

 0

hI

 QT

 ĒT
T

0


∗ −hQ1ε 0 0

∗ ∗ −hQ1ε 0

∗ ∗ ∗ −δ̄1Iq

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

hQT

 0

ĒT
1

 δ̄1

 0

H

 hδ̄2

 0

H


0 0 0

0 0 0

0 0 0

−hδ̄2Iq 0 0

∗ −δ̄1Ip 0

∗ ∗ −δ̄2hIp



< 0 (16)

where

Φ =

 0 In

ĀT −In

 Q + QT

 0 In

ĀT −In

T

.

Substituting (13) into (16) and denoting Y = KQ1, BT = B0 + B1, we obtain

Theorem 1 The control law of (3) asymptotically stabilizes (1) if, for some positive number ε,

there exist scalars δ̄1 > 0, δ̄2 > 0 and matrices 0 < Q1, Q2, Q3,∈ Rn×n Y ∈ Rm×n that satisfy the

following LMI: 

Q2 + QT
2 Q1A

T
T + Y T BT

T −QT
2 + Q3 0 hQT

2

∗ −Q3 −QT
3 hε(A1Q1 + B1Y ) hQT

3

∗ ∗ −hεQ1 0

∗ ∗ ∗ −hQ1ε

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

(17)
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Q1E
T
T + Y T ET

2 hQT
2 ET

1 0 0

0 hQT
3 ET

1 δ̄1H hδ̄2H

0 0 0 0

0 0 0 0

−δ̄1Iq 0 0 0

∗ −hδ̄2Iq 0 0

∗ ∗ −δ̄1Ip 0

∗ ∗ ∗ −δ̄2hIp



< 0 (18)

The state-feedback gain is then given by

K = Y Q−1
1 . (19)

3 Sliding mode controller

In this section, we focus on time-delay systems that can be represented, possibly, after a change of

state coordinates and input, in the following regular form ([9],[18]):

dz1(t)

dt
=

(A11 + H∆(t)E0)z1(t) + (Ad11 + H∆(t)E1)z1(t− τ(t))

+(A12 + H∆(t)E2)z2(t) + Ad12z2(t− τ(t))
dz2(t)

dt
=

2∑
i=1

(A2izi(t) + Ad2izi(t− τ)) + Du(t) + f(t, zt),

z(t) = φ(t) for t ∈ [−h, 0]

(20)

where z(t) = (z1, z2)
T , z1 ∈ Rn−m, z2 ∈ Rm, Aij, Adij, i = 1, 2, j = 1, 2, Ek, k = 0, 1, 2, H are

constant matrices of appropriate dimensions, D is a regular m × m matrix, the matrix ∆(t) is a

time-varying matrix of uncertain parameters, u ∈ Rm is the input vector, τ is time-varying delay

satisfying 0 ≤ τ(t) ≤ h, ∀t ≥ 0, zt(θ) is the function associated with z and defined on [−h, 0] by

zt(θ) = z(t + θ), φ is the initial piecewise continuous function defined on [−h, 0].

We will assume that:

A1) (A11 + Ad11, A12 + Ad12) is controllable.

A2) f is Lipschitz continuous and satisfies the inequality

‖f(t, zt)‖ < FM(t, zt), ∀t ≥ 0,

where FM(t, zt) is a continuous functional assumed to be known a priori,

A3) ∆(t) is a time-varying matrix of uncertain parameters satisfying ∆T (t)∆(t) ≤ I ∀ t.

Consider the following switching function:

s(z) = z2 −Kz1 (21)
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with K ∈ Rm×(n−m). Let Ω, Θ be the linear functions defined by

Ω(z(t)) =
2∑

i=1
(A2i −KA1i)zi(t),

Θ(z(t)) = E0z1(t) + E2z2(t)
(22)

and let DM be the following functional:

DM(zt) = (‖Ad21 −KAd11‖+ ‖KH‖ ‖E1‖) sup
−h≤θ≤0

‖z1(t + θ)‖

+ ‖Ad22 −KAd12‖ sup
−h≤θ≤0

‖z2(t + θ)‖ . (23)

Following [9] and using the results of previous section, we are able to design a sliding mode

controller that will stabilize system (20) under less conservative assumptions on the delay law.

Theorem 2 Assume A1-A3. If, for some positive number ε, there exist positive numbers δ̄1, δ̄2 and

matrices 0 < Q1, Q2, Q3 ∈ R(n−m)×(n−m), Y ∈ Rm×(n−m) that satisfy the following LMI:

Q2 + QT
2 X12 0 hQT

2

∗ −Q3 −QT
3 hε(Ad11Q1 + Ad12Y ) hQT

3

∗ ∗ −hεQ1 0

∗ ∗ ∗ −hεQ1

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

Q1E
T
T + Y T ET

2 hQT
2 ET

1 0 0

0 hQT
3 ET

1 δ̄1H hδ̄2H

0 0 0 0

0 0 0 0

−δ̄1I 0 0 0

∗ −hδ̄2I 0 0

∗ ∗ −δ̄1I 0

∗ ∗ ∗ −δ̄2hI



<0. (24)

where

X12 = Q1(A
T
11 + AT

d11) + Y T (AT
12 + AT

d12)−QT
2 + Q3,

then the sliding mode control law

u(t) = −D−1

[
Ω(z(t)) + (FM(t, zt) + DM(zt) + ‖KH‖ ‖Θ(z(t))‖+ M)

s(z(t))

‖s(z(t))‖

]
, (25)

where K = Y Q−1
1 , M > 0 and s, Ω, Θ, DM are defined in (21)-(23) , asymptotically stabilizes system

(20) for any delay function τ(t) ≤ h.
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Proof : The proof is divided into two parts. The first one is dedicated to the proof of the

existence of an ideal sliding motion on the surface s(z) = 0 , the second part to the proof of the

stability of the reduced system.

Attractivity of the manifold:

Consider the Lyapunov-Krasovskii functional

V (t) = sT (z(t))s(z(t)) = ‖s(z(t))‖2 . (26)

Differentiating (26) on the trajectories of the closed-loop system gives

V̇ (t) = 2sT (t)(Ω(z(t)) +
2∑

i=1

[Ad2i −KAd1i] zi(t− τ) + Du(t) +

f(t, zt)−KH∆(t)[Θ(z(t)) + E1z1(t− τ(t))]),

Using the expression of the control law (25), we get

V̇ (t) = 2sT (t)(
2∑

i=1

(Ad2i −KAd1i)zi(t− τ) + f(t, zt)−KH∆(t)[Θ(z(t)) + E1z1(t− τ(t))]−

[FM(t, zt) + DM(zt) + ‖KH‖ ‖Θ(z(t))‖+ M ]
s

‖s‖
)

then we derive that:

V̇ ≤ −2M ‖s(z(t)‖ = −2MV (t)
1
2 .

This last inequality is known to prove the finite-time convergence of the system (20) into the surface

s = 0 ([18]).

Stability of the reduced system:

On the sliding manifold s(z) = 0, the system is driven by the following reduced system:

dz1(t)

dt
= (A11 + A12K + H∆(t)(E0 + E2K))z1(t) + (Ad11 + Ad12K + H∆(t)E1)z1(t− τ(t)) (27)

According to Theorem 1, this system is asymptotically stable for any delay law τ(t) ≤ h if, for some

positive number ε, there exist positive numbers δ̄1, δ̄2 and matrices 0 < Q1, Q2, Q3, Y ∈ Rm×(n−m)

that satisfy the LMI (24). ♣

Remark 1 Note that the explicit knowledge of the time-dependance of the delay is not required in

the expression of the control law u(t), all is needed is the knowledge of an upper bound h.

4 Example

We demonstrate the applicability of the above theory by solving the example from [9] for a system

without uncertainty. Consider system

ẋ(t) = Ax(t) + Adx(t− τ) + B[u(t) + f(x, t)], (28)
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delay upper bound type of delay

Theorem 2 3.999 time-varying

Gouaisbaut et al [9] 1.65 constant

Ivanescu et al.[10] 1.46 constant

Fu et al.[8] 0.984 constant

Li and de Souza[14] 0.51 constant

Table 1: Comparison of results for example (27)-(28)

with a time-varying delay, where

A =

 2 0

1.75 0.25

 , Ad =

 −1 0

−0.1 −0.25

 , B =

 1

1

 . (29)

By an appropriate change of variables, this system is equivalent to:

ż(t) = Ãz(t) + Ãdz(t− τ) + B̃[u(t) + f(x, t)],

where

Ã =

 0.25 0

1.75 2

 , Ãd =

 −0.9 −0.65

−0.1 −0.35

 , B̃ =

 0

1

 . (30)

As the pair (Ã11, Ã12) is not controllable, the system cannot be stabilized independently of the

delay.

For this system, previous published works give the following results:

— In the case of a constant delay and f = 0, the system may be stabilized using a linear

memoryless controller u(t) = Kx(t) for the following maximum values of h: h = 0.51 by [14],

h = 0.984 by [8] and h = 1.46 by [10]. By sliding mode control for the case of constant delay and

f 6= 0 the maximum value of h = 1.65.

— Applying Theorem 2 in the case of a time-varying delay and f 6= 0, the corresponding value

of h = 3.999 is achieved.

This is summarized in table 1.

5 Conclusions

The problem of finding a sliding mode controller that asymptotically stabilizes a system with time-

varying delay and norm-bounded uncertainty has been solved. A delay-dependent solution has been

derived using a special Lyapunov-Krasovskii functional. The result is based on a sufficient condition
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and it thus entails an overdesign. This overdesign is considerably reduced due to the fact that the

method is based on the descriptor representation. As a byproduct for the first time on the basis

of the descriptor model transformation the solution to the stabilization problem by the feedback,

which depends on both, non-delayed and delayed state is solved. Finally, a numerical example

shows the effectiveness of the combined method: sliding mode and descriptor representation.
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