Factors influencing usage of extended functionalities on smartphone while driving

Marie-Pierre Bruyas Myriam Hugot Hugues Julliand

DDI 2017 – Paris

Soutenir la recherche pour prévenir les risques

Introduction: Objectives

Investigate phone usages while driving

- Technological advances in mobile telephony multiply functionalities that can be used on the phone
- Internet access facilitated by unlimited packages
- New usages? Equipment (speech-based interfaces)?
- Driver profiles?

Investigate driver' motives, attitudes towards phone use

- Social norm, peer pressure
- Perceived risk
- Perceived control
- Phone dependence, addiction (Walsh, White & young, 2010)
- Driving behavior (Mini DBQ, Martinussen, Lajunen, Møller, Ozkan 2013)

Method: Two complementary approaches

• Focus groups: Qualitative study

- 6 focus groups => 36 participants (different profiles in terms of age, car equipment...)
- To identify and describe phone usages
- To understand when and why drivers use their phone
- Survey: Quantitative study

Sample **3,189 Internet users** (aged 18 and over) representative of French people (sex, age, socio-professional categories, locality) \Rightarrow **2,843 drivers** (89% of French people aged 18 and over)

 \Rightarrow **1 081 phone users while at the wheel** (38% of French drivers)

Main usages of phone while driving

• 38% of the French drivers use their phone while driving

- FOR:

Main usages of phone while driving

• 38% of the French drivers use their phone while driving

- FOR:

Phone usage While driving	% of drivers	% of phone users	Texting:
Conversations	36%	94%	
Other usages	33%	87%	GPS: 55%
Ph So			

Phone for communication: Texting and emails

• Texting: 70% of phone users

- 19% only read messages (auto-limitation? Lower perceived control, higher peer pressure when requested to answer)
- Age: very common among the youngers
 - 84% of 18-34 year olds, but still 75% of 35-44 year olds
 - Perceived control higher for the younger
- Handheld phone is the preferred option:
 - For 73% of drivers who read messages & 77% of drivers who write
- Perceived risk is high (whatever the driver profile & the frequency of use)

Emails: 23% of phone users

- Generally not read in full (so as attach files)
- Profile: More men than women, high mileage, professional drivers
- Used for professional exchanges rather than SMS

Phone for communication: Photos & Social network

Photos/Selfies: 20% of phone users

- Age: determinant factor:
 - 29% of 18-34 year olds, but still 21% of 35-44 year olds
 - => not reserved to the youngest
- High mileage: 49% of those who drive more than 50 000 km/year

• Social network: 17% of phone users

- Age: determinant factor
 - 28% of 18-34 year olds, but still 15% of 35-44 year olds
- Higher perceived control,
- Higher phone dependence, addiction,
- Engagement in risky behavior, more violations of highway code

Phone for communication

Radical changes in the communications

- New contents: combine text + images + sounds
 - Of statics become dynamic
- New types of exchanges via instant messaging that facilitate group communications
 - Of dual become collective
- Increased number of notifications during short times
 - Each notification provokes a solicitation that encourages the consultation

Age effect or generational effect?

- It seems that new behavior are experienced by the youngest ones, but when experienced, still used when getting older:
 - E.g. Facebook vs Snapchat

Phone for getting information – Driving aid

Internet: 22% of phone users

- Apps & internet navigation
- Significant share of drivers doing complex operations
- Multiplies the demands and diverts cognitive and visual attention for a time often longer than initially envisaged (linking of the windows)

• GPS : 21% of phone users

- The most used function of the phone for 29% of phone users
- Frequent use: 37% of phone users
- Parameters generally set while driving
- GPS apps acclaimed: (preferred to embedded and nomadic systems)
 - free, judged more reliable, more complete (real-time information),
 - automatic update,
 - Can be integrated into other phone functions (ex calendar)
- One regret: no dedicated space in the car!

Phone for getting information – Driving aid

- Concentration of different functions on one single device
 - End of proliferation of screens around the driver's?
 - But multiplication of solicitations (frequency of appearance and relevance)

=> Major factor of distraction

Drivers' classification

PCA (Principal Component Analysis)

- 38 variables: sex, age, type of uses (conversation, SMS, GPS, internet, photo...), phone dependence, control perceived, risk perceived, driving behavior
- 788 participants,
- 10 axis,
- 60.5% variance explained

Drivers' classification

- Class 1 : Low users (N=288) => "cautious and not at ease"
- Class 2 : Frequent conversations (N=248) => "basic functions of the telephone users"
- Class 3 : "Averages users" (N=157) => "good perceived control & self limitation"
- Class 4 : Frequent and varied uses (N=95) => "intensive users"
 - Quite homogeneous
 - Phone dependence, intense use of all phone functionalities

Intensive use of smartphone

• Linear regression on intensive uses (backward selection)

- **Dependent variable** : maximum frequency of extended functionalities (SMS, photos, social networks, email, films, games, internet)
- Significant regression (*p=0,0001*)

– Adjust R² = 0,464

Model	В	Bêta	t	Sig.
(Constante)	0,223		1,278	0,202
Engagement in risky behavior	,368	,419	13,328	,000
Perceived control	,066	,126	4,294	,000
Phone dependence	,054	,094	3,460	,001
Frequency of long trips (100km)	,113	,085	3,417	,001
Error & Violation ¹	,134	,064	2,410	,016
Pressure to answer	-,021	-,055	-2,226	,026
Age	-,207	-,217	-8,440	,000

¹ Mini BBQ (Martinussen et al., 2013)

 Perceived risk does not appear as a factor influencing phone usage (Atchley, Atwood, Boulton, 2011)

Conclusion

- New content & new types of exchanges could become increasingly prevalent
 - Animated pictures, films...
 - Group channels
- Age is a determinant factor
 - But could be more a generational effect than an age effect
- Perceived risk decrease with frequency of usage
 - Not for texting and phone manipulation => perceived risk remain high => not sufficient to restrain
- Smartphones concentrate many functions that were held by other devices
 - Multiply solicitations => multiply factors of distraction at the wheel

marie-pierre.bruyas@ifsttar.fr

Intervenant - date