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Abstract: This paper focuses on the development of a method for damage detection and localization in 

pipeline structures. These structures are subject to variation of environmental and operational conditions 

(EOCs) which have an impact on the collected signals. Since damage detection is generally based on 

comparison between the reference signals and the current signals acquired from the structure, the effects 

of EOCs will give rise to false alarm. This issue is addressed by selecting from the database of reference 

signals those with similar or very close EOCs. Such an operation can be performed by calculating a 

sparse estimation of the current signal. The estimation error is used as an indication of the presence of 

damage. Actually, a damage signal will be characterized by a high estimation error compared to that of a 

healthy signal. The position of the detected damage is obtained by calculating the estimation error on a 

sliding window over the damaged signal. This method was tested on signals collected on a small scale 

pipeline placed in laboratory conditions. Results have shown that the created damage was successfully 

detected and localized. 

Keywords: Sparse estimation, damage detection and localization, structural health monitoring, environ-

mental and operational conditions. 



1. INTRODUCTION 

Pipelines are very critical structures, especially those used for 

transporting oil, gas and other chemical substances. To en-

sure better working conditions of these structures, they must 

be continuously monitored. Structural health monitoring 

(SHM) systems were proposed to tackle this issue (Farrar and 

Worden, 2007). They aim at detecting, localizing and esti-

mating the degree of severity of damage in the structure. 

Damage detection is performed by comparing the reference 

signals obtained from the healthy state and the current signal. 

For pipeline structure, the signals are generally acquired 

using Ultrasonic Guided Waves (UGW) technique (Lowe et 

al., 1998). UGW are stress waves which propagate through a 

medium and are guided by the structure boundary. These 

waves can travel in all directions ensuring hence a volumetric 

coverage and they interact with the structure discontinuities 

(damage, welds, structure ends, etc.).  

The task of comparison between the reference signal and the 

current signal is not easy to achieve because the healthy state 

of the structure could vary due to the changes in the environ-

mental and operational conditions (EOCs) (e.g. temperature, 

humidity, vibration loads, etc.) (Sohn, 2007). The effects of 

these EOCs could be similar to those produced by damage. 

This would result in false warnings. The differentiation be-

tween the aforementioned types of changes is a challenging 

task. Some methods were proposed to compensate the effects 

of these EOCs namely BSS (Baseline Signal Stretch) and 

OBS (Optimal Baseline Selection) (Croxford et al. 2010). 

However, damage detection with these methods is based on a 

simple subtraction between the reference signal and current 

signal which is not reliable. Data-driven methods were also 

proposed to tackle this issue. For example, Eybpoosh et al. 

(2017) have proposed a supervised method based on sparse 

representation of UGW signals which can discriminate be-

tween damage and variation in EOCs. However, this method 

requires the use of signals from damage state which are not 

usually available. Besides, the fact of having reference sig-

nals with limited range of EOCs in the training step does not 

guarantee the robustness of the proposed method in the case 

of abrupt variation in EOCS. Liu et al. (2015) have proposed 

an unsupervised damage detection method using Singular 

Value Decomposition (SVD) of the matrix of collected sig-

nals. It was developed on the premise that the effect of dam-

age and the effect of EOCs will be represented in different 

singular vectors. In this case, damage is detected by observ-

ing a jump of the mean in the right singular vectors. But the 

question here is in which singular vector the jump can be 

observed and how can we automatically detect this jump. 

Also, this can be only done in the case where the following 

hypotheses are fulfilled. Firstly, it supposes that damage 

occurs abruptly, which is not always true because in real 

cases, damage may develop progressively during a long peri-

od of time. Secondly, EOCs should be constantly changing so 

a jump cannot be observed in their associated singular vec-

tors, otherwise it will be considered as indication of presence 

of damage. In the present case, temperature changes, for 

example, could have a clear trend, so the latter hypothesis 

might be not verified.  

In this study, since signals from healthy state are the only 

available information which can be provided in the training 



 

 

     

 

step, the proposed method for damage detection is based on a 

novelty detection technique. To deal with variation in EOCs, 

we consider a learning method in non-stationary environ-

ment. This method consists in estimating the current signal 

using only few signals among the reference database.  Physi-

cally, if the current signal is from a healthy state it will be 

estimated using few reference signals with similar or very 

close EOCs, the others being discarded. As all identification 

methods, the proposed approach is based on the assumption 

that the database of reference signal contains sufficient varia-

tion of EOCs. Otherwise, an update of the reference database 

is necessary to ensure viable damage detection. Such devel-

opment is not implemented in the present study. To localize 

the damage, we suggest applying the sparse estimation on a 

sliding window over the damaged signal. This is motivated 

by the fact that when dealing with UGW the effect of damage 

is only local on the signal. 

In the next section, the proposed methodology for damage 

detection and localization in pipeline structure is presented. 

In section 3, the procedure for collecting the database of 

healthy and damaged signals is explained. Also, the pre-

processing of these signals is exposed. Section 4 is devoted to 

discussions on the obtained results. Finally, section 5 con-

cludes the paper.  

2. METHODOLOGY  

2.1 Sparse estimation 

The idea behind using sparse estimation of the current signal 

is that an undamaged signal should be well estimated by 

reference signals which have similar EOCs. Initially, an esti-

mation of the current signal 𝒙 ∈ ℝ𝑚 by the matrix of refer-

ence signals 𝐶 ∈ ℝ𝑚×𝑛 could be provided by minimizing the 

quadric error given below: 

                  J(𝜽) =  ‖𝐶𝜽 − 𝒙‖2
2                                                   (1) 

𝜽̂ = arg min
𝜽

 J(𝜽)                                                     (2) 

where 𝜽 ∈  ℝ𝑛 is the vector of regression coefficients, 𝑚 and 

𝑛 are the number of samples and the number of reference 

signals respectively. 

The optimal regression coefficients 𝜽̂ provide an estimation 

of the current signal by all the reference signals. But, the 

current signal is measured in specific EOCs while the refer-

ence signals are generally acquired in a wide range of EOCs. 

Hence, such estimation could give rise to an overfitting. This 

will jeopardize damage detectability because the regression 

model will tend to minimize the estimation error for a dam-

age signal which should be very high compared to that of a 

reference signal. Besides, the coefficients should be positive 

to avoid the compensation between the reference signals. To 

overcome this issue, sparsity on the regression coefficients 

must be defined. It can be obtained by adding a regularisation 

term to equation (2) as following: 

𝜽̂ = arg min
𝜽

 (J(𝜽) + λ ‖𝜽‖1)                            (3) 

       subject to 𝜽 ≥ 𝟎 

This optimization problem can be solved using the lasso 

method with non-negative constraint (Efron et al., 2004). The 

optimal solution will select from the reference signals a sub-

set which will be used to estimate the current signal and as-

sign zero to the others. The tuning parameter λ controls the 

power of regularization and it must be chosen in the training 

step. Generally, it is very difficult to determine a value of this 

parameter.  It requires the use of cross validation technique. 

In this context, some studies have shown that in the case of 

positively correlated signals, least squares method with non-

negative constraint is an efficient regularization technique 

(Meinshausen, 2013; Slawski et al. 2013). In other words, we 

can say that the method has a self-regularization property 

which means that it automatically generates a regularization 

term. Thus, there is no need to determine the tuning parame-

ter λ. The condition of positively correlated variable is gener-

ally true for UGW signals. Mathematically, this condition is 

fulfilled if all the entries of the covariance matrix 𝑆 of 𝐶 are 

strictly positive: 

min
𝑖,𝑗

(𝑆 (𝑖, 𝑗)) ≥ 𝜎 > 0                                              (4) 

the covariance matrix 𝑆 being calculated by: 

              𝑆 =
1

𝑛
𝐶𝑇𝐶                                                                    (5) 

It must be noted here that the farther the parameter σ is to 

zero the higher the self-regularizing effect. 

The non-negative least squares (NNLS) problem is defined 

as: 

𝜽̂ = arg min
𝜽

 J(𝜽)                                                   (6) 

    subject to 𝜽 ≥ 0 

To get an optimal solution of this problem, the Karush-Kuhn-

Tucker (KKT) conditions must be satisfied. These conditions 

are defined as follows (Bertsekas, 1999): 

𝜽̂  ≥ 0                                                                         (7) 

∇J(𝜽̂)  ≥ 0                                                                  (8) 

∇J(𝜽̂) 𝑇𝜽̂ = 0                                                             (9) 

where ∇ denotes the gradient of J(𝜽̂). Its expression is given 

by: 

         ∇J(𝜽̂) = 2𝐶𝑇(𝐶𝜽̂ − 𝒙)                                          (10) 

The constrained minimization problem described in equation 

(6) can be solved using different numerical approaches. The 

most common ones are: active set method, projected quasi 

Newton approach, principal block pivoting method and inte-

rior point method (Chen and Plemmons, 2009). A compari-

son between these approaches is beyond the scope of this 

study. However, we have chosen to use the active set method 

because a recursive version of this method can be easily im-

plemented. This will be used later for the purpose of localiza-

tion of damage. Active set method divides the constraints into 

active and passive ones. Actually, active constraint refers to 

zero regression coefficient, otherwise it is considered as pas-

sive. At each iteration, the algorithm calculates the solution 



 

 

     

 

by the least squares method on the passive set. Then, it tests 

if the new regression coefficients satisfy the KKT conditions. 

Afterthat, it updates the set of active coefficients until a final 

set is found. Lawson and Hanson (1995) have proposed an 

algorithm to solve NNLS problem which is an active set 

method. Let us denote by 𝐶𝑃 the matrix associated with the 

constraints in the passive set 𝑃. Similarly, let 𝒔 be a vector of 

same length as 𝜽. Let 𝒔𝑷 denote the subvector with indexes 

from 𝑃 and 𝒔𝑹 the subvector with indexes from the active 

constraints 𝑅. The algorithm is described hereafter: 

Algorithm 1: Non Negative Least Squares 

Inputs: 𝐶, 𝒙 and ϵ a real value fixing the tolerance for stop-

ping criterion. 

Initialization: 𝑃 = ∅, 𝑅 = {1,2, … , 𝑛}, 𝜽̂ = 0, 𝒘 =
1

2
∇J(𝜽̂)  

While: 𝑅 ≠ ∅ and (𝑚𝑎𝑥𝑖∈𝑅(𝑤𝑖) > ϵ) do 

𝑗 = arg 𝑚𝑎𝑥𝑖∈𝑅(𝑤𝑖) 

Include the index 𝑗 in 𝑃 and remove it from 𝑅 

 𝒔𝑷 = [(𝐶𝑃)𝑇𝐶𝑃]−1(𝐶𝑃)𝑇𝒙,  𝒔𝑹 = 0 

While:  min (𝒔𝑷) ≤ 0 do 

              𝛼 = 𝑚𝑖𝑛𝑖∈𝑃[
𝜃̂𝑖

(𝜃̂𝑖−𝑠𝑖)
] where 𝑠𝑖 ≤ 0 

              𝜽̂ = 𝜽̂ + 𝛼(𝒔 − 𝜽̂) 

              Move to 𝑅 all indices in 𝑃 such that 𝜽̂𝑗 = 0 

              𝒔𝑷 = [(𝐶𝑃)𝑇𝐶𝑃]−1(𝐶𝑃)𝑇𝒙, 𝒔𝑹 = 0 

end while 

        𝜽̂ = 𝒔, 𝒘 =
1

2
∇J(𝜽̂) 

end while 

It was proved that this algorithm converges within a finite 

number of iterations. However, an exact number of these 

iterations cannot be known in advance and it could be very 

high. 

2.2 Damage indicators 

To detect the presence of damage, an indicator must be de-

rived from the sparse estimation of the current signal. If the 

signal is damaged, we expect that the estimation error will be 

very high compared to that of an undamaged signal. Hence, a 

damage indicator could be chosen as the quadratic estimation 

error J(𝜽̂) given by the solution of NNLS problem described 

in equation (6): 

The sparsity of the regression coefficients (𝑆𝑟) could be also 

used as damage indicator (Eybpoosh et al., 2016). It is de-

fined as the ratio of the number of zero coefficients in 𝜽̂ to 

the total number of reference signals: 

𝑆𝑟 =
𝑛 − card(𝑃)

𝑛
× 100                                     (11) 

where card(𝑃) denotes the cardinal of the final set of the 

passive constraints 𝑃. In fact, a damaged signal will be char-

acterized by a very small number of passive coefficients. 

Hence, the value of 𝑆𝑟 will converge to unity. While, for a 

reference signal, the value of 𝑆𝑟 will be theoretically a little 

far from unity. Furthermore, this sparsity will increases as the 

damage size increases. Thus, the damage severity can be 

assessed using this factor. 

A joint damage indicator 𝐼 that account for both the quadratic 

estimation error and the sparsity ratio could be established to 

maximize the chances for damage detectability as proposed 

in (Boracchi et al., 2014). It is defined by the vector: 

  𝐼 = (J(𝜽̂), 𝑆𝑟)                                                           (12) 

To ensure automatic damage detection, a threshold must be 

defined. For this purpose, in the case of one dimensional 

damage indicator (i.e. J(𝜽̂) or 𝑆𝑟), an empirical distribution 

for damage indicators, calculated from reference signals, has 

to be established. Afterthat, the threshold can be chosen by 

fixing the confidence limit of the distribution. The current 

signal is considered as damage if its damage indicator ex-

ceeds the value of the specified confidence limit. When using 

a bivariate indicator as defined in equation (12), the signals 

will be represented in a two-dimensional space. In this case, 

the threshold can be chosen by defining a metric to measure 

how close the damage indicator vector of the current signal to 

those of the reference signals. This metric can be calculated 

using multivariate statistical tools such as the Mahalanobis 

Square Distance (Johnson and Wichern, 2014). 

2.3 Damage localization using recursive NNLS 

To get the position of damage, we suggest calculating the 

sparse estimation of the damaged signal on a sliding window 

over the matrix of reference signals. The already found re-

gression coefficients, obtained for the entire signal, are no 

longer suitable. Hence, the solution of NNLS problem must 

be obtained for every sliding window. Taking into considera-

tion the fact that adding and removing one sample at a time 

do not change significantly the regression coefficients found 

in the previous window, it is of interest to apply a recursive 

version for the solution of the NNLS. 

In the case of classical least squares method (unconstrained), 

a method to update the regression coefficients already exists 

(Björck, 1996). It is known as Recursive Least Squares 

(RLS). Since the NNLS solving method requires the use of 

least squares on the passive set, the RLS could be applied to 

update NNLS solution. However, the non-negativity of the 

new regression coefficients is not guaranteed. In other words, 

the KKT conditions could be violated. Thus, to get an opti-

mal solution of the recursive NNLS problem, these KKT 

conditions must be verified. Afterthat, a pivoting exchange 

between the passive set and the active set could be eventually 

needed (Mosesov, 2014). Under the assumption of minimal 

set changes, we expect that only a single pivoting exchange is 

made between the active set and the passive set. Hence, block 

pivoting is not necessary in this case.  

The calculation of the RLS on a sliding window includes two 

successive steps: updating and downdating (Zhang, 2000). 

The former adds a new sample to the window and the latter 

removes a sample which is excluded from the sliding win-

dow. Let us denotes by 𝐻 the window width and by 𝑘 the 

index of the sample. The algorithm starts first with a window 



 

 

     

 

which comprises samples from 𝑘 to 𝑘 + 𝐻 − 1. This window 

corresponds to the matrix of reference signals 𝐶𝑘+𝐻−1 and the 

current signal 𝒙𝑘+𝐻−1. The solution in this case is denoted 

as 𝜽̂𝑘+𝐻−1.When adding a new sample (𝒄𝑘+𝐻 , 𝑥𝑘+𝐻) where 

 𝐶𝑘+𝐻 = (𝐶𝑘+𝐻−1
𝒄𝑘+𝐻

) and 𝒙𝑘+𝐻 = (𝒙𝑘+𝐻−1
𝑥𝑘+𝐻

), the updating oper-

ation can be written as: 

          𝐴𝑘+𝐻−1 = (𝐶𝑘+𝐻−1
𝑇 𝐶𝑘+𝐻−1)−1                                      (13) 

         𝜷𝑘+𝐻 =
𝐴𝑘+𝐻−1𝒄𝑘+𝐻

𝑻

1 +  𝒄𝑘+𝐻
 𝐴𝑘+𝐻−1𝒄𝑘+𝐻

𝑻                                     (14) 

         𝜽̂𝑘+𝐻
 =  𝜽̂𝑘+𝐻−1 + 𝜷𝑘+𝐻 (𝑥𝑘+𝐻 − 𝒄𝑘+H𝜽̂𝑘+𝐻−1)     (15) 

These values will be then used to perform the downdating 

operation by removing the sample (𝒄𝑘 , 𝑥𝑘). It is expressed as 

follows: 

𝐴𝑘+𝐻−1 = 𝐴𝑘+𝐻−1 −  
𝐴𝑘+𝐻−1𝒄𝑘+H

𝑇 𝒄𝑘+H
 𝐴𝑘+𝐻−1

1 + 𝒄𝑘+H
 𝐴𝑘+𝐻−1𝒄𝑘+H

𝑇  
      (16) 

          𝜷𝑘+H−1 =
𝐴𝑘+𝐻−1𝒄𝑘

𝑇

1 − 𝒄𝑘𝐴𝑘+𝐻−1𝒄𝑘
𝑇                                          (17) 

 𝜽̂𝑘+H−1
 =  𝜽̂𝑘+𝐻

 − 𝜷𝑘+H−1 (𝑥𝑘 − 𝒄𝑘
 𝜽̂𝑘+𝐻

 )              (18) 

Finally, the algorithm for recursive NNLS can be described 

hereafter:  

Algorithm 2: Recursive Non Negative Least Squares 

Inputs: data 𝐶𝑘+𝐻−1 and 𝒙𝑘+𝐻−1 

Update 𝐬𝐏 = arg min𝜃‖𝐶𝑘+𝐻−1
𝑃 𝜽 − 𝒙𝑘+𝐻−1‖2

2 using RLS by 

adding sample (𝒄𝑘+𝐻 , 𝑥𝑘+𝐻) as in equation (15) and removing 

 (𝒄𝑘, 𝑥𝑘) as in equation (18). 

If (𝑚𝑖𝑛 (𝒔𝑷) ≤ 0) then remove index 𝑗 = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑖( 𝑠𝑖) from 

𝑃 and add it to 𝑅. 

Calculate 𝒘 =
1

2
∇J(𝜽̂), if (𝑚𝑎𝑥 (𝒘) ≥ 0) then move index 

𝑗 = arg 𝑚𝑎𝑥𝑖( 𝑤𝑖)  into 𝑃 

While (KKT conditions are not fulfilled) do 

Calculate 𝒔𝑷 = [(𝐶𝑘+𝐻−1
𝑃 )𝑇𝐶𝑘+𝐻−1

𝑃 ]−1(𝐶𝑘+𝐻−1
𝑃 )𝑇𝒙𝑘+𝐻−1  

 If (𝑚𝑖𝑛 (𝒔𝑷) ≤ 0) then remove index 𝑗 = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑖( 𝑠𝑖) from 

𝑃 and add it to 𝑅. 

Calculate 𝒘 =
1

2
∇J(𝜽̂), if (𝑚𝑎𝑥 (𝒘) ≥ 0) then move index   

𝑗 = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑖( 𝑤𝑖)  into 𝑃 

end while 

Notice that the window width (𝐻) must be chosen in order to 

ensure the invertibility of the matrix ((𝐶𝑘+𝐻−1
𝑃 )𝑇𝐶𝑘+𝐻−1

𝑃 ) 

which not does represent a difficult issue. However, when 

this matrix is not invertible, QR decomposition might be used 

to enforce the stability of the proposed recursive algorithm 

(Björck, 1996). The QR decomposition could be also used to 

calculate recursively the vector 𝒔𝑷 in the case of adding 

and/or removing a column from the matrix 𝐶𝑘+𝐻−1
𝑃  which 

results from the single pivoting exchange made between the 

active set and the passive set.  

3. DATA COLLECTION AND PREPROCESSING 

3.1 Data collection 

The specimen considered in this study consists of a tube with 

6.4 m length. It was placed in laboratory conditions where 

temperature fluctuates between 19°C and 26°C during the 

monitoring period. This variation is due to the seasonal tem-

perature changes. The used sensor can excite two separate 

guided waves modes which are: torsion and flexion at five 

different frequencies: 14, 18, 24, 30 and 37 kHz. For the sake 

of brevity, only torsional mode with an excitation frequency 

of 14 kHz is considered in the present study. Figure 1 illus-

trates the pipeline configuration. 

 

Fig. 1. Pipeline configuration showing the used sensor and 

the created damage. 

The specimen has been monitored during a period of almost 3 

months. Each week, multiple measurements were scheduled. 

At each measurement, five signals were acquired in the 

morning and at the evening in order to capture temperature 

changes during the day and to investigate its effects on the 

collected signals. An example of an acquired signal is illus-

trated in Figure 2.  

 

Fig. 2. Example of an ultrasonic guided wave signal excited 

with torsion mode (frequency: 14 kHz). 

The excitation signal has been removed by the acquisition 

system (portion in the middle of the signal). The three echoes 

with the highest amplitude represent multiple reflections from 

the end of the pipe. These echoes have to be removed also 

from the original signal because they are not useful for dam-



 

 

     

 

age detection. Besides, their amplitudes are very high, hence 

they can mask small changes induced by the presence of 

damage.  

Damage was created by removing material from the inside of 

the pipeline in six increasing steps in order to simulate corro-

sion growing within the structure. Figure 1 in bottom left 

shows the defect in the last step. The dimensions and the 

form of the damage were set randomly as in the case of real 

corrosion which results from a natural aging of the pipeline.  

At the end of the monitoring period, a total of 236 signals 

were collected where 207 ones were undamaged and 29 sig-

nals were acquired from a damage state. Table 1 summarizes 

information related to the collected database. 

Table 1.  Characteristics of the collected data 

Monitoring period 3 months 

Reference state 207  signals 

Damage state 6 increasing defects  

(29 signals) 

Temperature 19 °C    26 °C 

 

3.2 Temperature effect  

The analysis of the collected signals in the time domain 

shows that the reference signals underwent drastic changes in 

both amplitude and phase. Since temperature is the only envi-

ronmental factor that varied during the measurements, the 

observed changes in the collected signals are due to the varia-

tion of this factor. This can be clearly noticed in Figure 3 

which illustrates a zoom over a part of two reference signals 

acquired at different temperature. 

 

Fig. 3. Zoom over two reference signals acquired at different 

temperatures. 

3.3 Damage effect 

Figure 4 illustrates an example of a damage signal and a 

reference one. Note that, to clearly see the differences be-

tween the two signals, a zoom was displayed at the position 

of damage. This figure shows that the effect of damage is 

drift in the amplitude with a significant change in the phase. 

These results seem to be very similar to those observed in the 

case of temperature variation. However, the changes in the 

damaged signal are not uniform as in the case of temperature 

variation. We can clearly observe in the beginning that the 

two signals are almost identical while at the end, the ampli-

tude of damaged signal drops suddenly and the time arrival of 

the two signals changes. This confirms the hypothesis that the 

effect of damage is local on the signal while the temperature 

variation impacts the entire signal. 

 

Fig. 4. Zoom at the position of damage for a reference signal 

and a damaged signal. 

Even though, damage could not be detected using classical 

damage sensitive features proposed by Rizzo et al. (2007). 

Let us consider for example the RMS as a damage sensitive 

feature. As a reminder, the RMS of a signal 𝒙 = {𝑥𝑖} , 𝒙 ∈ ℝ𝑛 
is given by: 

              RMS(𝒙) =  √
1

𝑛
∑ 𝑥𝑖

2𝑛
𝑖=1                                            (19) 

Result in Figure 5 shows that we cannot discriminate be-

tween damage and reference signals using the RMS. The 

variation of temperature is responsible of the great dispersion 

of RMS values. The dispersion is mainly associated with the 

amplitude of the signals since RMS uses only amplitude 

values at each signal sample. 

  

Fig. 5. RMS of the monitoring signals, the damaged signals 

are coloured in red with a circle marker. 



 

 

     

 

4. RESULTS AND DISCUSSIONS 

4.1 Damage detection 

One hundred and forty signals were used as a database of 

reference signals and the others served for the test of the 

proposed method. Due to the seasonal changes in tempera-

ture, the reference signals used for the test could be obtained 

with different variation of temperature which might be not 

included in the database of reference signals. Each new signal 

(𝒙) is estimated by sparse model 𝜽̂ obtained by solving the 

constrained minimization problem described in equation (6). 

Here, the sparse estimation is calculated on the entire signal. 

Let us verify that the reference signals are positively correlat-

ed which is the condition of using NNLS rather than the non-

negative lasso. In this study, the minimum of the covariance 

matrix was calculated for the reference signals. It is equal to 

0.0414 which is strictly positive. Thus, the condition of posi-

tively correlated signals is fulfilled as stated in inequality (4). 

To confirm this, Principal Component Analysis (PCA) was 

firstly performed on the matrix of reference signals (Jolliffe, 

1986). Afterthat, the correlation coefficient between the first 

two representative principal components and the reference 

signals was calculated. The result is presented in Figure 

6.This result shows that the reference signals are well repre-

sented by the first principal component (the correlation coef-

ficient exceeds 0.88). This can be explained by the fact that 

there is a strong positive correlation between the reference 

signals. The variation of the correlation between the reference 

signals and the second principal component is probably due 

to the changes in EOCs namely the temperature. 

 

Fig. 6. Correlation coefficients of the reference signals and 

the first two principal components.   

Since the condition of positively correlated signals is now 

strongly fulfilled, an estimation of a new measured signal can 

be provided using NNLS. Figure 7 shows an example of an 

original undamaged signal and its estimation. It can be clear-

ly noticed that the two signals are almost the same which 

proves that the sparse estimation provides a very good esti-

mation of the undamaged signal. 

 

Fig. 7. Original undamaged signal and its estimation. 

Figure 8 illustrates the error calculated for the original signal 

showed in Figure 7. This error presents a random behaviour, 

except in the zones where the echoes from the end of pipe 

and excitation signal were deleted. When a defect is present, 

the error will tend to deviate from the random behaviour to a 

deterministic one. Also, a damaged signal will be badly esti-

mated by the reference signal; in this case the error will be 

very high. 

 

Fig. 8. Estimation error of the reference signal shown in Fig 7. 

Figure 9 illustrates an example of the estimation error of a 

damaged signal. It can be noticed that orders of the magni-

tude of the estimation error for a damaged signal are far from 

that of a reference signal.  

 Fig. 9. Estimation error of a damaged signal. 



 

 

     

 

The quadratic estimation error J(𝜽̂) was calculated for all test 

signals including undamaged and damaged signals. The result 

is shown in Figure 10. Different comments can be drawn 

from this result: 

 Damaged signals are well separated from the un-

damaged ones. Hence, damage can be detected au-

tomatically by defining a threshold.  

 The quadratic estimation error J(𝜽̂) of the reference 

signals presents very low variation if we compared 

them with the result of RMS shown in Figure 7. 

 The values of J(𝜽̂) increase as the size of damage 

increases. Thus, J(𝜽̂) can be used to assess the se-

verity of damage. 

 

Fig. 10. Quadratic estimation error J(𝜽̂) of undamaged and 

damaged signals. 

As described in section 2.2 the sparsity ratio (𝑆𝑟) can be also 

used for damage detection. Figure 11 shows the 𝑆𝑟 for the 

monitoring signals including damaged and reference signals. 

The variation of the 𝑆𝑟 for the reference signals is important 

while the 𝑆𝑟 of damaged signals presents a relatively low 

variation. Besides, the values of 𝑆𝑟 increase as the size of 

damage increases. However, a threshold cannot be defined to 

ensure automatic damage detection without triggering false 

alarms. Thus, J(𝜽̂) outperforms 𝑆𝑟 in terms of damage de-

tectability. In this case, the use of a bivariate indicator which 

was defined in equation (12) will be useless. The quadratic 

estimation error J(𝜽̂) is sufficient to ensure reliable damage 

detection. 

 

   

Fig. 11. Sparsity ratio of undamaged and damaged signals. 

4.2 Damage localization 

To determine the position of damage, the idea which is de-

scribed in section 2.3, is to apply the sparse estimation on a 

sliding window over the signal (i.e. samples). Thus, by mov-

ing the window through the signal, each part of it will be 

examined separately. In this case, the window width may 

influence the final result. It can be determined based on the 

desired precision of localization. In the present study, it was 

set initially at forty samples. Note that larger window width 

could be tested to investigate its influence on the result of 

localization. This window was moved by one sample per 

step. At each step, we calculate the quadratic estimation error 

J(𝜽̂) using recursive NNLS algorithm. At the end, we obtain 

a value of  J(𝜽̂) at each moving window over the damaged 

signal. 

Figure 12 shows the found position of the created defect 

using the proposed method for damage localization. To avoid 

interpretation of false damage position, the damage signal 

was truncated between the first two arrivals of the end of pipe 

echoes. This Figure shows that the position of damage which 

corresponds to the maximum of J(𝜽̂) is 3 m. The real position 

of damage, as shown in Figure 1, is 2.6 m. Thus, we have an 

error of localization of 0.4 m. This error can be explained by 

the fact that the window width (𝐻) induces an error of locali-

zation. This error can be calculated by knowing the propaga-

tion velocity (V) of the waves in the pipeline and the sam-

pling frequency (F). Knowing that this error has been mini-

mized by affecting the value of J(𝜽̂) to the position of the 

half of the window. The error of localization 𝐸 is given as 

follows:  

                             𝐸 =
𝑉

𝐹
× (

𝐻

2
)                                                (20) 

The propagation velocity of the waves in the pipeline is equal 

to 3200 m/s. The sampling frequency is fixed by the acquisi-

tion system at 195 kHz. Finally, the position of damage  𝐷 is:  

     𝐷 = 3 ± 0.41 𝑚                                          (21) 
This result is coherent with the value of the real position of 

damage indicated in Figure 1.  

 

 

Fig. 12. Quadratic estimation error 𝐉(𝜽̂) of a damaged signal 

showing the position damage. 



 

 

     

 

Finally, it is worth noting that the result of localisation could 

be optimized by assigning the position of damage to a value 

of J(𝜽̂) where we estimate that the error is significant and not 

necessarily to the maximum of J(𝜽̂).  

5. CONCLUSION 

In this paper, a method for damage detection and localization 

in pipeline structures was proposed. It is based on sparse 

estimation of the measured signals by the reference signals. A 

simplified form of this estimation using the non-negative 

least squares is investigated. It is based on the fact that the 

acquired UGW signals are highly correlated. The sparsity 

helps to enhance damage detectability because a damaged 

signal will have a high estimation error compared to that of a 

healthy signal. Besides, it can face the problem of variation in 

EOCs provided that the database of reference signals contains 

large variations of these EOCs.  

The detection of defect was ensured by calculating the quad-

ratic estimation error J(𝜽̂) on the entire current signal. While 

the localization of damage was established by implementing 

a recursive version of the sparse estimation on a sliding win-

dow over the damaged signal.  

As a perspective of this work, an update of the database of 

reference signals could be considered in the case where these 

signals present limited variation in EOCS. This can be 

achieved by adding to this database new healthy signals with 

unknown variation in EOCs. Also, the proposed method has 

to be validated on operational pipeline serves in different 

EOCs.   
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