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We consider a vector-like gauge theory of fermions that confines at the multi-TeV scale, and that
realizes the Higgs particle as a composite Goldstone boson. The weak interactions are embedded
in the unbroken subgroup Sp(4) of a spontaneously broken SU(4) flavour group. The meson reso-
nances appear as poles in the two-point correlators of fermion bilinears, and include the Goldstone
bosons plus a massive pseudoscalar η′, as well as scalars, vectors and axial vectors. We compute
the mass spectrum of these mesons, as well as their decay constants, in the chiral limit, in the
approximation where the hypercolour Sp(2N) dynamics is described by four-fermion operators, à
la Nambu-Jona Lasinio. By resumming the leading diagrams in the 1/N expansion, we find that
the spin-one states lie beyond the LHC reach, while spin-zero electroweak-singlet states may be
as light as the Goldstone-boson decay constant, f ∼ 1 TeV. We also confront our results with a
set of available spectral sum rules. In order to supply composite top-quark partners, the theory
contains additional fermions carrying both hypercolour and ordinary colour, with an associated
flavour symmetry-breaking pattern SU(6)/SO(6). We identify and analyse several non-trivial fea-
tures of the complete two-sector gauge theory: the ’t Hooft anomaly matching conditions; the
higher-dimension operator which incorporates the effects of the hypercolour axial-singlet anomaly;
the coupled mass-gap equations; the mixing between the singlet mesons of the two sectors, result-
ing in an extra Goldstone boson η0, and novel spectral sum rules. Assuming that the strength of
the four-fermion interaction is the same in the two sectors, we find that the coloured vector and
scalar mesons have masses & 4f , while the masses of coloured pseudo-Goldstone bosons, induced
by gluon loops, are & 1.5f . We discuss the scaling of the meson masses with the values of N , of the
four-fermion couplings, and of a possible fermion mass.
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I. INTRODUCTION

After the first LHC 13 TeV data have been analysed, we are left with a 125 GeV Higgs boson and no evidence for
other new states. Yet, it is too early to remove from consideration sufficiently weakly-coupled new particles in the
sub-TeV range, or even new coloured particles in the multi-TeV range. Even though the little hierarchy between the
Higgs mass and the new states seem to require an adjustment of parameters, the theories addressing the quantum
stability of the electroweak scale may still solve larger hierarchy problems. A classical possibility is a strongly-coupled
sector that dynamically generates the electroweak scale. The observation of a scalar state, significantly lighter than
the strong-coupling scale, suggests that the Higgs particle may be composite and, in good approximation, a Nambu-
Goldstone boson (NGB) associated to the global symmetries of the new sector [1–4]. While an effective description
of the composite Higgs couplings is possible without specifying the strong dynamics, the spectrum of additional
composite states essentially depends on the underlying ultraviolet theory. Barring extra space-time dimensions, the
simplest, well-understood, explicit realization is provided by a gauge theory of fermions that confines at the multi-TeV
scale, with quantum chromodynamics (QCD) as a prototype. The historical incarnation being technicolor [5, 6], in
recent years models of this sort featuring the Higgs as a composite NGB have been built [7–12] and classified in some
generality [13][11]. Alternative ultraviolet completions of composite Higgs models are discussed in Refs. [14–17].

Our motivations to analyse in detail such a scenario are manifold. A characterisation of the spectrum of composite
states is critical to confront with the LHC program: does one foresee Standard Model (SM) singlet resonances close
to one TeV? what are the expectations for the masses of the lightest charged and colour states? These intrinsically
non-perturbative questions are especially pressing, in order to compare with the well-defined predictions of weakly-
coupled theories. In addition, a quantitative description of the composite masses and couplings would allow for an
explicit computation of the Higgs low energy properties, improving on the predictivity of the composite Higgs effective
theory. Furthermore, decades of QCD studies have provided us with a notable collection of non-perturbative, analytic
techniques to study strongly-coupled gauge theories, that have been hardly exploited in the context of models for the
electroweak scale. A partial list includes anomaly matching [18], spectral sum rules [19], large-N expansions [20, 21],
and the Nambu-Jona Lasinio (NJL) effective model [22, 23] (see also Refs. [24, 25]). With this approach one can
reach several non-trivial results, holding within well-defined approximations, with a relatively small computational
effort, and thus one may broadly characterise several, different, possible models. This is complementary to lattice
simulations, which are suitable for potentially more precise computations, in specific and/or simplified scenarios.
Interestingly, we will also find that the peculiar structure of composite Higgs models requires a gauge theory that is
qualitatively different from QCD, in a handful of significant features.

We engage into this program by choosing, as a case study, an electroweak sector with global symmetry SU(4)
spontaneously broken to Sp(4). This is the most economical possibility to obtain a Nambu-Goldstone Higgs dou-
blet with custodial symmetry, starting from a set of constituent fermions. This model, with a hypercolour gauge
group Sp(2N), emerges as the minimal benchmark for an ultraviolet-complete composite Higgs sector. The most
significant challenge facing this class of theories is to generate the large top quark Yukawa coupling, as it requires
non-renormalisable operators to couple the top to the electroweak symmetry breaking (EWSB) order parameter. A
promising way to circumvent the potential suppression of the top Yukawa is partial compositeness [26], which calls
for composite fermion resonances with the quantum number of the top quark. A minimal realization of top partial
compositeness is provided by an additional sector of hypercolour fermions, which are charged under QCD, with global
symmetry SU(6) spontaneously broken to SO(6). While this particular choice for the colour sector appears less
compelling than the one for the electroweak sector, we will show that it is instructive to study it explicitly in detail.
Indeed, one needs to surmount a number of model-building difficulties, which require quite technical complications:
on the one hand this assesses the price to pay for top partners, on the other hand the interplay of the two sectors
reveals a few novel physical phenomena, whose interest transcends the specific model under consideration.

Our analysis builds on an early, enlightening study [8], which employed four-fermion operators to understand the
dynamics of this SU(4) × SU(6) model with hypercolour group Sp(2N), in close analogy with the NJL description
of QCD (NJL techniques have been applied to different ultraviolet-complete composite-Higgs models as well [15]).
We will provide the first, thorough computation of the spectrum of the meson resonances in this scenario. To this
end, we will perform a detailed scrutiny of the symmetry structure of the model, which allows for several non-trivial
consistency checks, as well as for an accurate determination of the allowed range of parameters. In most of our
analysis, we will stick to the chiral limit, where the constituent fermions have no bare masses, and the SM gauge
and Yukawa couplings are neglected. In this limit the Higgs and the other NGBs are massless. When relevant, we
will discuss in some detail the effect of fermion masses and of switching on the SM gauge fields, however we will not
study the generation of Yukawa couplings and of the NGB effective potential: the usual effective theory techniques to
address these issues [27, 28] hold in the present scenario as well, but we leave for future work a more specific treatment
of this subject.

The paper is organised as follows. In section II we review exact results on vector-like gauge theories, especially
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concerning the spontaneous breaking of the flavour symmetries, the associated spectral sum rules, the NGB couplings
to external gauge fields. The reader more interested in the phenomenology of a specific model may just consult
this part to inspect general formulas and conventions. In section III we study the electroweak sector with coset
SU(4)/Sp(4), in terms of four-fermion operators, à la NJL. The symmetry breaking is examined through the gap
equation for the dynamical fermion mass, while the spin-zero and spin-one meson masses are extracted from the poles
of resummed two-point correlators. The spectrum of resonances is analysed in units of the NGB decay constant, and
compared with available lattice results, as well as with spectral sum rules. This analysis of the electroweak sector
in isolation is self-sufficient and it already illustrates the main potentialities of our approach. The following sections
require some extra model-building and rather technical computations, that however may be skipped to move directly
to the phenomenological results. In section IV we introduce additional, coloured constituent fermions, in a different
representation of Sp(2N), to provide partners for the top quark. The consequences include non-trivial anomaly
matching conditions, mixed sum rules across the two sectors, and mixed operators induced by the hypercolour gauge
anomaly. In section V we study the system of coupled mass-gap equations for the two sectors and derive the masses
of coloured mesons. In addition, the mixing between the two flavour singlet (pseudo)scalars leads to a peculiar mass
spectrum and phenomenology. Finally, in section VI we summarise the main results of the analysis and delineate
future directions. Technical material is collected in the appendices: the generators of the flavour symmetry group in
appendix A, the relevant loop functions in appendix B, some details on the computation of two-point correlators in
appendix C, and the Fierz identities relating different four-fermion operators in appendix D.

II. GENERAL PROPERTIES OF FLAVOUR SYMMETRIES IN VECTOR-LIKE GAUGE THEORIES

The composite-Higgs model that we will study belongs to the class of vector-like gauge theories, namely an asymp-
totically free and confining gauge theory, with a set of Nf Dirac fermions transforming under a (possibly reducible)
self-contragredient (i.e. unitarily equivalent to its complex conjugate) representation of the gauge group, in such a way
that it is possible to make all fermions massive in a gauge invariant way1. Exact results concerning non-perturbative
dynamical aspects in these theories are scarce, and in this section we briefly review some of those that are actually
available. They concern issues related to the spontaneous breaking of the global flavour symmetries and the spectrum
of low-lying bound states.

A. Restrictions on the pattern of spontaneous symmetry breaking

An important result for the spontaneous breaking of the global flavour symmetry group G for fermions with vector-
like couplings to gauge fields has been obtained by Vafa and Witten [29]. The theorem they have proven makes
the following statement: in any vector-like gauge theory with massless fermions and vanishing vacuum angles, the
subgroup Hm of the flavour group G that corresponds to the remaining global symmetry when all fermion flavours are
given identical gauge invariant masses, cannot be spontaneously broken. In other words, if G undergoes spontaneous
breaking towards some subgroup H, then Hm ⊆ H (in the absence of any vacuum angle). This theorem is particularly
powerful when Hm corresponds to a maximal subgroup of G, since it then allows only two alternatives: either G is
not spontaneously broken at all, or G is spontaneously broken towards Hm. This is actually what happens in the
three cases that we can encounter in vector-like theories [31, 32]: G = SU(Nf )L × SU(Nf )R and Hm = SU(Nf )V

2;
G = SU(2Nf ) and Hm = SO(2Nf ); G = SU(2Nf ) and Hm = Sp(2Nf ).

Of particular interest for the discussion that follows are the Noether currents J Aµ , corresponding to the generators

TA of the unbroken subgroup Hm, and J Âµ , corresponding to the generators T Â in the coset G/Hm. Since the latter

is a symmetric space for the three cases that have just been listed, we will usually refer to the currents J Aµ (J Âµ ) as
vector (axial) currents. When the fermions transform under an irreducible but real (ε = +1 below) or pseudo-real
(ε = −1) representation of the gauge group, G = SU(2Nf ), and Hm = SO(2Nf ) or Hm = Sp(2Nf ), respectively. In
these two cases, it is convenient to write the fermion fields in terms of left-handed Weyl spinors ψα. The currents

are then defined as follow [ψi ≡ ψ†j (Ωε)ji, where i and j denote gauge indices, while spinor and flavour indices are

omitted]:

J Aµ =
1

2
(Ωε)ij

[
εψiσµT

Aψj − ψiσµ
(
TA
)T
ψj

]
, J Âµ =

1

2
(Ωε)ij

[
εψiσµT

Âψj − ψiσµ
(
T Â
)T
ψj

]
. (2.1)

1 It is also possible to give all fermions gauge invariant masses in the case of an odd number of Weyl fermions in the same real representation
of the gauge group. Such theories do not have a conserved fermion number, and are not vector-like [29, 30]. Although it can provide
interesting composite-Higgs models, as discussed, for instance, in Ref. [10], this class of theories will not be addressed here.

2 The issue of the U(1)V symmetry is somewhat subtle, but we will not need to discuss it here.
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The gauge contraction Ωε is an invariant tensor under the action of the gauge group, which is symmetric for ε = +1

and antisymmetric for ε = −1, with
(
Ω2
ε

)
ij

= εδij . The generators TA and T Â are characterised by the properties

TAΣε + Σε
(
TA
)T

= 0 , T ÂΣε − Σε
(
T Â
)T

= 0 , (2.2)

and are normalised as

Tr(TATB) =
1

2
δAB , Tr(T ÂT B̂) =

1

2
δÂB̂ , Tr(TAT B̂) = 0 . (2.3)

The 2Nf × 2Nf matrix Σε is an invariant tensor of the subgroup Hm of the flavour group. It plays for this subgroup
a role analogous to the role played by Ωε for the gauge group. In particular, it can be chosen real, it is symmetric for
ε = +1 and antisymmetric for ε = −1, and satisfies Σ2

ε = ε11, where 11 denotes the 2Nf × 2Nf unit matrix in flavour
space.

B. ’t Hooft’s anomaly matching condition

Whereas the theorem of Vafa and Witten restricts the pattern of spontaneous breaking of the global flavour
symmetry groupG, it does not by itself provide information on which alternative will eventually be realized. Additional
information is required to that effect. The anomaly matching condition proposed by ’t Hooft [18] can prove helpful in
this respect. This condition uses the fact that the Ward identities satisfied by the three-point functions of the Noether
currents corresponding to the symmetry group G receive anomalous contributions from the massless elementary
fermions [33–35]

i(q1 + q2)ρ
∫
d4x1

∫
d4x2 e

iq1·x1+iq2·x2〈vac|T{J Aµ (x1)J Bν (x2)J Ĉρ (0)}|vac〉 = −dHC
8π2

εµναβq
α
1 q

β
2 d

ABĈ , (2.4)

with dABĈ = 2tr({TA, TB}T Ĉ), where the trace is over the flavour group only, and dHC denotes the dimension of
the representation of the gauge group under which the fermions transform. These anomalous contributions imply
that the corresponding three-point functions have very specific physical singularities at vanishing momentum transfer
[18, 36, 37]. Moreover, this type of singularities can only be produced by physical intermediate states consisting either
of a single massless spin zero particle, or of a pair of massless spin one-half particles. If the symmetries of G are not
spontaneously broken, the first option is excluded. If the theory confines, this then implies that it has to produce
massless spin one-half bound states (that we will call baryons). These fermionic bound states will occur in multiplets
of G, and their multiplicities must be chosen such as to exactly reproduce the coefficient of the singularities in the
current three-point functions. If it is not possible to saturate this anomaly coefficient with the exchange of massless
fermionic bound states only, then massless spin-zero bound states coupled to the currents of G are required, and hence
G is spontaneously broken. If this anomaly matching condition can be satisfied with massless spin one-half bound
states only, the spontaneous breaking of G towards Hm is not a necessity, but it cannot be excluded either.

In particular, the global symmetry is necessarily spontaneously broken if, after confinement, the theory cannot
produce fermionic bound states at all. If we restrict ourselves to constituent fermions in the fundamental representation
of the gauge group, this happens when the gauge group is SU(2N), SO(2N), or Sp(2N). In these cases, the flavour
group G therefore necessarily suffers spontaneous breaking towards Hm. On the contrary, fermionic bound states can
be formed in the case of SU(N) or SO(N) gauge groups with N odd. Novel fermionic bound states may be possible if
one admits elementary fermions transforming in other representations than the fundamental under the gauge group.
We will discuss one such scenario below in section IV.

C. Mass inequalities

Various inequalities [38–42] involving the masses of the gauge-singlet bound states in confining vector-like gauge
theories provide additional insight into the fate of flavour symmetries in these theories, complementary to the con-
straints arising from the Vafa-Witten theorem and from ’t Hooft’s anomaly matching condition. The most rigorous
versions of these inequalities hold under the same positivity constraint on the path-integral measure in euclidian
space as required for the proof of the Vafa-Witten theorem, namely the absence of any vacuum angle. A review on
these inequalities is provided by Ref. [43]. Of particular interest in the present context is the inequality of the type
[38, 40–42]

M1/2 ≥ C(N,Nf )M0 , (2.5)
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involving, on the one hand, the mass M1/2 of any baryon state and, on the other hand, the mass M0 of the lightest
quark-antiquark spin-zero state having the flavour quantum numbers of the G/Hm currents. The precise value of the
(positive) constant C(N,Nf ) and its dependence on the number of hypercolours N and/or number of flavours Nf
is not so important here, the main point being that such an inequality again provides a strong indication that the
flavour symmetry G is necessarily spontaneously broken towards G/Hm.

D. Super-convergent spectral sum rules

Assuming that G is spontaneously broken towards Hm, correlation functions that are at the same time order
parameters become of particular interest, since they enjoy a smooth behaviour at short distances. These improved
high-energy properties allow in turn to write super-convergent sum rules for the corresponding spectral densities. The
paradigmatic example is provided by the Weinberg sum rules [19], once interpreted [44] and justified in the framework
of QCD and of the operator-product expansion [45], including non-perturbative power corrections [46].

Here we will consider two-point functions of certain fermion-bilinear operators, when the fermions transform under
an irreducible but real or pseudo-real representation of the gauge group. Specifically, these operators comprise the
Noether currents defined in Eq. (2.1), to which we add the scalar and pseudoscalar densities defined as

SÂ =
1

2
(Ωε)ij

[
ψiT

ÂΣεψj + ψiΣεT
Âψj

]
, S0 =

1

2
(Ωε)ij

[
ψiT

0Σεψj + ψiΣεT
0ψj
]
,

(2.6)

PÂ =
1

2i
(Ωε)ij

[
ψiT

ÂΣεψj − ψiΣεT Âψj
]
, P0 =

1

2i
(Ωε)ij

[
ψiT

0Σεψj − ψiΣεT 0ψj
]
.

The singlet densities are normalised consistently with the other densities by taking T 0 = 11/(2
√
Nf ). The two-point

correlation functions of interest are then defined as

ΠV (q2)δAB(qµqν − ηµνq2) = i

∫
d4x eiq·x〈vac|T{J Aµ (x)J Bν (0)}|vac〉 ,

ΠA(q2)δÂB̂(qµqν − ηµνq2) = i

∫
d4x eiq·x〈vac|T{J Âµ (x)J B̂ν (0)}|vac〉 , (2.7)

ΠS(q2)δÂB̂ = i

∫
d4x eiq·x〈vac|T{SÂ(x)SB̂(0)}|vac〉 ,

ΠP (q2)δÂB̂ = i

∫
d4x eiq·x〈vac|T{PÂ(x)PB̂(0)}|vac〉 , (2.8)

where Â 6= 0, B̂ 6= 0, and

ΠS0(q2) = i

∫
d4x eiq·x〈vac|T{S0(x)S0(0)}|vac〉 ,

ΠP 0(q2) = i

∫
d4x eiq·x〈vac|T{P0(x)P0(0)}|vac〉 . (2.9)

The combinations

ΠV -A(q2) ≡ ΠV (q2)−ΠA(q2) , (2.10)

ΠS-P (q2) ≡ ΠS(q2)−ΠP (q2) , ΠS-P 0(q2) ≡ ΠS(q2)−ΠP 0(q2) , ΠS0-P (q2) ≡ ΠS0(q2)−ΠP (q2) , (2.11)

are order parameters3 for the spontaneous breaking of SU(2Nf ) towards Hm for all values of q2. As a consequence,
these two-point functions behave smoothly at short distances (Q2 ≡ −q2 > 0):

lim
Q2→+∞

(
Q2
)2 ×ΠV -A(−Q2) = 0 , lim

Q2→+∞
Q2 × {ΠS-P (−Q2) ; ΠS0-P (−Q2) ; ΠS-P 0(−Q2)} = {0 ; 0 ; 0} . (2.12)

3 Concerning ΠS-P (q2), this statement and the ensuing sum rule hold only to the extent that the tensor dÂB̂Ĉ ≡ 2tr({T Â, T B̂}T Ĉ) does
not vanish identically, which is not the case, for instance, when G = SU(2)L ×SU(2)R and Hm = SU(2)V , but also, more interestingly
for our purposes, when G = SU(4) and Hm = Sp(4).
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From these short-distance properties, one then derives the following super-convergent spectral sum rules∫ ∞
0

dt ImΠV -A(t) = 0 ,

∫ ∞
0

dt t ImΠV -A(t) = 0 , (2.13)

∫ ∞
0

dt ImΠS-P (t) = 0 ,

∫ ∞
0

dt ImΠS0-P (t) = 0 ,

∫ ∞
0

dt ImΠS-P 0(t) = 0 . (2.14)

We will examine in the following to which extent these Weinberg-type sum rules, whose validity is quite general in
view of the short-distance properties of asymptotically-free vector-like gauge theories, are actually satisfied in the
specific NJL four-fermion interaction approximation. For the sake of completeness, let us mention that the two-point
function

ΠAP (q2)δÂB̂qµ =

∫
d4x eiq·x〈vac|T{J Âµ (x)PB̂(0)}|vac〉 , (2.15)

also defines an order-parameter. However, there is no associated sum rule, since, as a consequence of the Ward
identities, this correlator is entirely saturated by the Goldstone-boson pole (〈S0〉 denotes the vacuum expectation
value of S0)

ΠAP (q2) =
1

q2

〈S0〉√
Nf

. (2.16)

It may be useful to stress, at this stage, that the sum rules displayed above are only valid in the absence of any
explicit symmetry breaking effects. Introducing, for instance, masses for the fermions would modify the short-distance
properties of these correlators, and thus spoil the convergence of the integrals of the corresponding spectral functions.
Let us briefly illustrate the changes that occur by giving the fermions a common mass m, so that the currents belonging
to the subgroup Hm remain conserved. For the remaining currents, one now has

∂µJ Âµ = 2mPÂ . (2.17)

As far as the current-current correlators are concerned, while the two-point function of the vector currents remains
transverse, the correlator of two axial currents receives a longitudinal part,

i

∫
d4x eiq·x〈vac|T{J Âµ (x)J B̂ν (0)}|vac〉 = δÂB̂

[
ΠA(q2)(qµqν − ηµνq2) + ΠL

A(q2)qµqν
]
. (2.18)

If one considers only corrections that are at most linear in m, then one can still write a convergent sum rule [47],∫ ∞
0

dt
[
ImΠV (t)− ImΠA(t)− ImΠL

A(t)
]

= O(m2) . (2.19)

Notice that the Ward identities relate this longitudinal piece to the two-point function of the pseudoscalar densities
and to the scalar condensate,

(q2)2ΠL
A(q2) = 4m2ΠP (q2) + 2m

〈S0〉√
Nf

. (2.20)

The presence of a fermion mass m also shifts the masses of the Goldstone bosons away from zero, by an amount
∆mM

2
G whose expression, at first order in m, actually follows from this identity and reads

F 2
G∆mM

2
G = −2m

〈S0〉√
Nf

+O(m2 lnm) . (2.21)

This formula involves the Goldstone-boson decay constant FG in the limit where m vanishes, defined as

〈 vac | J Âµ (0) |GB̂(p)〉 = ipµFGδ
ÂB̂ , p2 = 0 . (2.22)

Defining the coupling of the Goldstone bosons to the pseudoscalar densities,

〈 vac | PÂ(0) |GB̂(p)〉 = GGδ
ÂB̂ , p2 = 0 , (2.23)
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the identity obtained in Eq. (2.16) implies

FGGG = − 〈S
0〉√
Nf

, (2.24)

in the massless limit.
In contrast to the symmetry currents and to quantities derived from them, like FG or ΠV/A(q2) for instance, the

(pseudo)scalar densities and their matrix elements, whether ΠS/P (q2) or GG, need to be multiplicatively renormalised,
and are therefore not invariant under the action of the renormalisation group. This dependence on the short-distance
renormalisation scale does not impinge on the validity or usefulness of the sum rules in Eqs. (2.14) or (2.19), which
hold at every scale. Likewise, this scale dependence is exactly balanced out between the right- and left-hand sides of
relations like (2.16) or (2.24).

E. Coupling to external gauge fields

Eventually, some currents of the global symmetry group G become weakly coupled to the standard model gauge
fields. If, in the absence of these weakly coupled gauge fields, the global symmetry group G is spontaneously broken
towards Hm, turning on the gauge interactions will produce two effects. First, the Goldstone bosons will acquire
radiatively generated masses. Second, transitions of a single Goldstone boson into a pair of gauge bosons are induced
and, at lowest order in the couplings to the external gauge fields, the amplitude describing the transition towards a
pair of zero-virtuality gauge bosons is fixed by the anomalous Ward identities in Eq. (2.4). Let us briefly discuss
these two aspects in general terms.

Let |GÂ(p)〉 denote the massless Goldstone-boson states corresponding to the generators T Â spanning the (symmet-
ric) coset space G/Hm. In the presence of a perturbation that explicitly breaks the global symmetry, these Goldstone
bosons become pseudo-Goldstone bosons, and their masses are shifted away from zero. At lowest order in the external
perturbation, these mass shifts are given by

∆M2
GÂ

= −〈GÂ(p)|∆L(0)|GÂ(p)〉 , p2 = 0 , (2.25)

with ∆L(x) the symmetry-breaking interaction term in the Lagrangian. We are interested in particular in an inter-
action due to the presence of massless gauge fields that is considered weak (in particular non confining) at the scale
under consideration, so that its effect can be considered as a perturbation. These external gauge fields couple to some
linear combinations of the currents of the global symmetry group G. For a single gauge field Wµ, this interaction
reads

Lint = −igWWµJWµ , JWµ =
1

2
(Ωε)ij

[
εψiσµT

Wψj − ψiσµ
(
TW

)T
ψj

]
, (2.26)

where TW is an element of the algebra of G. At first non trivial order in the corresponding coupling gW , one has

∆L(x) =
g2
W
2

∫
d4q

(2π)4

ηµν

q2

∫
d4y eiq·yT{JWµ (x+ y)JWν (x)} . (2.27)

Decomposing TW as TW = TW + T Ŵ , where TW (T Ŵ ) is a linear combination of the generators TA (T Â) of Hm (of
G/Hm), and taking further the soft-Goldstone-boson limit in Eq. (2.25), then results in the following expressions for
the mass shifts [31, 48]

∆M2
GÂ

= − 3

4π
× 1

F 2
G

× g2
W

4π
×
∫ ∞

0

dQ2Q2 ΠV -A(−Q2)×

∑
B̂

(
f ÂWB̂

)2

−
∑
B

(
f ÂŴB

)2

 . (2.28)

Again, FG refers to the Goldstone-boson decay constant in the limit where any explicit symmetry-breaking effects
vanish, see Eq. (2.22), and we have used the short-hand notation

Tr
(
TW [T Â, T B̂ ]

)
≡ 1

2i
f ÂWB̂ , Tr

(
T Ŵ [T Â, TB ]

)
≡ 1

2i
f ÂŴB , (2.29)

with the generators normalised as in Eq. (2.3). Since, according to the Witten inequality [39], −Q2 ΠV -A(−Q2) is
positive, the sign of ∆M2

GÂ
, and hence the misalignment of the vacuum, hinges on the sign of the last factor on the
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right-hand side of Eq. (2.28). If it is positive, ∆M2
GÂ

is positive, and the vacuum is stable under this perturbation

by a weak gauge field. If it is negative, then ∆M2
GÂ

is negative, which signals the instability of the unperturbed

vacuum under this perturbation. In particular, if the gauge field couples only to the currents J Aµ corresponding to

the unbroken generators (i.e. T Ŵ = 0), then ∆M2
GÂ
≥ 0. This is the case, for instance, of the electromagnetic field

in QCD, which gives the charged pions a positive mass [49] (see also the discussion in Ref. [50]),

∆M2
π± = −3

4
× 1

F 2
π

α

π
×
∫ ∞

0

dQ2Q2 ΠQCD
V -A (−Q2) , (2.30)

while the neutral pion remains massless. If several gauge fields are present, the total mass shift is given by a sum of
contributions of the type (2.28), one for each gauge field, and the stability of the vacuum may then also depend on
the relative strengths of the various gauge couplings. For instance, if a subgroup HW of Hm is gauged, and if the
Goldstone bosons transform as an irreducible representation RW under HW , the (positive) induced mass shift can be
expressed [48] in terms of the quadratic Casimir invariant of HW for the representation RW ,

∆M2
GÂ

= − 3

4π
× 1

F 2
G

× g2
W

4π
×
∫ ∞

0

dQ2Q2 ΠV -A(−Q2)× C(HW )
2 (RW ) . (2.31)

The expression (2.28) can also be rewritten as a contribution to the effective potential induced by a gauge-field loop.
In terms of the Goldstone field

U(x) = eiG(x)/FGΣε , G(x) = 2
∑
Â

GÂ(x)T Â , (2.32)

the relevant terms of the effective low-energy Lagrangian read [51]

Leff =
F 2
G

4
〈∂µU†∂µU〉 − CW〈TWU

(
TW

)T
U†〉+ · · · , (2.33)

with 〈· · · 〉 denoting the flavour trace, and

CW = − 3

8π
× g2

W
4π
×
∫ ∞

0

dQ2Q2 ΠV -A(−Q2) . (2.34)

As a side remark, let us notice that the procedure used here in order to determine the induced mass shifts of the
Goldstone bosons can also be applied in the case where ∆L in Eq. (2.25) stands for a mass term for the fermions, e.g.

∆mL = −2
√
Nf mS0 . (2.35)

Going successively through the same steps, one then reproduces the expression given in Eq. (2.21).
We now turn to the second issue, namely the matrix element for the transition of a Goldstone bosons into a pair of

external gauge bosons with zero virtualities. At lowest order in the gauge couplings, and for q2 = (p − q)2 = 0, this
matrix element reads

g2
W × i

∫
d4x eiq·x〈vac|T{JWµ (x)JWν (0)}|GÂ(p)〉 = −g

2
WdHC
8π2FG

εµνρσq
ρpσdWWÂ [1 +O(m)] , (2.36)

with dWWÂ ≡ 2Tr({TW , TW }T Â), and dHC denotes the dimension of the representation of the hypercolour gauge
group to which the fermions making up the current JWµ (x) belong. Here we are assuming (this will be the case of
interest in the context of the composite Higgs models discussed below) that only generators of Hm are weakly coupled

to the external gauge fields (i.e. T Ŵ = 0). The expression on the right-hand side is then obtained by saturating the
Ward identity in Eq. (2.4) with the Goldstone poles. Again, if the fermions are given masses, there are corrections,
indicated as O(m). At the level of the low-energy theory, this coupling is reproduced by the Wess-Zumino-Witten
effective action [52–54]. Writing only the relevant term, one has

LWZW
eff = − g

2
WdHC

64π2FG
εµνρσWµν(x)Wρσ(x)

∑
Â

dWWÂGÂ(x) + · · · . (2.37)
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III. THE ELECTROWEAK SECTOR

In this section we analyse a composite model for the Higgs sector of the SM. We consider a flavour symmetry group
G = SU(4) ' SO(6), spontaneously broken towards a subgroup Sp(4) ' SO(5). The five Goldstone bosons transform
as (1L, 1R) + (2L, 2R) under the custodial symmetry SU(2)L×SU(2)R ⊂ Sp(4), corresponding to a real scalar singlet
plus the complex Higgs doublet. Composite Higgs models based on this coset have been studied in Refs. [55–57], as
effective theories with a non-specified strongly-coupled dynamics. A simple UV completion is provided by a gauge
theory with four Weyl fermions ψa in a pseudo-real representation of the gauge group, and which form a condensate
〈ψaψb〉 6= 0. Such a theory was considered in Refs. [7, 9, 13, 58], as a minimal hypercolour model. The first analysis
of the low energy dynamics of this theory in terms of four-fermion interactions (à la NJL) was provided in Ref. [8].
We extend this former study by deriving additional phenomenological predictions. We will particularise the general
results of section II to this specific case, and in addition we will compute the masses of the spin-zero and spin-one
bound states, as well as their decay constants, by using NJL techniques.

A. Scalar interactions of fermion bilinears and the mass gap

Let us consider a Sp(2N) hypercolour gauge theory and introduce four Weyl spinors ψa, in the fundamental repre-
sentation of Sp(2N), which is pseudo-real. The transformation properties of these elementary fermions are summarised
in Table I. The dynamics of the SU(4)/Sp(4) spontaneous symmetry breaking can be studied in terms of four-fermion
interactions, constructed out of hypercolour-invariant, spin-zero fermion bilinears, in a NJL-like manner [22–25]. The
Lagrangian reads [8]

Lψscal =
κA
2N

(ψaψb)(ψa ψb)−
κB
8N

[
εabcd(ψ

aψb)(ψcψd) + h.c.
]
, (3.1)

where a, b, · · · = 1, 2, 3, 4 are SU(4) indices, εabcd is the Levi-Civita symbol and κA,B are real, dimensionful couplings.
The phase of κB can be absorbed by the phase of ψ, so that we may take κB real and positive without loss of
generality.4 Each fermion bilinear between brackets is contracted into a Lorentz and Sp(2N) invariant quantity. The
hypercolour-invariant contraction is defined as

(ψaψb) ≡ ψai Ωijψ
b
j = −(ψbψa), (3.2)

where Ω is the antisymmetric 2N × 2N matrix

Ω =

(
0 11N
−11N 0

)
. (3.3)

Lorentz Sp(2N) SU(4) Sp(4)

ψai (1/2, 0) i 4a 4

ψai ≡ ψ
†
ajΩji (0, 1/2) i 4a 4∗

Mab ∼ (ψaψb) (0, 0) 1 6ab 5 + 1

Mab ∼ (ψaψb) (0, 0) 1 6ab 5 + 1

aµ ∼ (ψaσ
µψa) (1/2, 1/2) 1 1 1

(V µ, Aµ)ba ∼ (ψaσ
µψb) (1/2, 1/2) 1 15ab 10 + 5

TABLE I. The transformation properties of the elementary fermions, and of the spin-0 and spin-1 fermion bilinears, in the
electroweak sector of the model. Spinor indexes are understood, and brackets stand for a hypercolour-invariant contraction of
the Sp(2N) indexes.

4 In comparison to Ref. [8], we choose an opposite sign for κB , and a different but equivalent vacuum alignment defined by Eq. (3.6).
Combining these two different conventions, the mass gap defined by Eq. (3.17) has the same expression as in Ref. [8]. This is because
the two vacua are related by a U(4) transformation with determinant minus one, that changes the sign of εabcd.
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The antisymmetry of the hypercolour contraction implies antisymmetry in the flavour SU(4) indices. Other four-
fermion interactions, involving spin-one fermion bilinears, are irrelevant for the discussion of spontaneous symmetry
breaking. We will introduce them later, in section III C, when we discuss spin-one resonances.

Note that for κB = 0 there is an additional global U(1)ψ symmetry, which reflects a classical invariance of the
Sp(2N) gauge theory, the associated Noether current being

J 0
ψµ = −1

2
Ωij

[
ψiσµψj + ψiσµψj

]
, (3.4)

as follows from Eq. (2.1) upon taking ε = −1 and a singlet generator normalised to 114. At the quantum level, this
current has a hypercolour gauge anomaly,

∂µJ 0
ψµ =

Nψ
f g

2
HC

32π2

N(2N+1)∑
I=1

εµνρσG
I,µν
HC G

I,ρσ
HC , (3.5)

and the corresponding symmetry is explicitly broken by instantons [59, 60]. Here Nψ
f = 2 denotes the number of

Dirac flavours. The effect of the instantons can be represented by an effective vertex [59–61] that breaks the U(1)ψ
invariance. The important observation here is that for 2Nψ

f = 4 Weyl fermions in the fundamental representation of

the Sp(2N) gauge group, this effective vertex is precisely given by the term proportional to κB . It is both quartic

in the fermion fields, which provides the amount of U(1)ψ breaking required, for Nψ
f = 2, by the index theorem and

the instanton solution with unit winding number, and invariant under the SU(4) global symmetry [62]. It plays the
same role as the analogous six-fermion ’t Hooft determinant effective Lagrangian [59–61] for QCD with three flavours,
which parameterises the instanton-induced anomaly interactions, explaining an η′ mass much larger than the masses
of the other Goldstone boson states. Such a term was originally constructed in the quark model [63], and later also
introduced in the NJL model [64, 65], see also [66]. Similarly, in the present case, κB 6= 0 is therefore crucial in order
to evade the additional U(1)ψ Goldstone boson.

While this picture is essentially correct when considering the electroweak SU(4) sector in isolation, we stress that
it will be significantly modified when a coloured sector is introduced, in order to provide composite partners for the
top quark, as we will discuss in section IV. This sector also has an anomalous extra U(1)X symmetry, but one linear
combination of the two U(1) currents remains anomaly free, which implies that the effective ’t Hooft determinant term
is no longer given by the κB operator. This will have some important consequences on the spectrum of resonances,
but at a first stage we prefer to neglect the mixing with the coloured sector, as the results are much more transparent
and it will be easy to generalise them.

We assume that the SU(4) global symmetry is exact, that is, we work in the chiral limit where ψa has no elementary
mass term. The SU(4) Noether currents are given by Eq. (2.1), with Ωε = Ω defined in Eq. (3.3). The SU(4) generators

decompose into five broken ones, T Â, living in the SU(4)/Sp(4) coset, and ten unbroken ones, TA, whose explicit
expressions are given in appendix A. They satisfy the conditions spelled out in Eq. (2.2), where Σε stands for

Σ0 ≡


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

 . (3.6)

By introducing in a standard manner [8, 24, 25] an auxiliary (antisymmetric) scalar field M , transforming as a
gauge singlet and a flavour SU(4) sextet, the Lagrangian (3.1) can be rewritten equivalently as

Lψscal = − 1

κA + κB

[(
κAM

∗
ab −

κB
2
εabcdM

cd
)

(ψaψb) + h.c.
]

− 2NκA
(κA + κB)2

MabM∗ab +
1

2

NκB
(κA + κB)2

(εabcdM
abM cd + h.c.) , (3.7)

where the equation of motion for M gives

Mab = −κA + κB
2N

(
ψaψb

)
. (3.8)

The matrix field M , being complex and antisymmetric, can always be rotated by an SU(4) transformation into the
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form

M =


0 0 m1 0

0 0 0 m2

−m1 0 0 0

0 −m2 0 0

 . (3.9)

Once a (ψaψb) condensate forms, M acquires a vacuum expectation value (vev) and the Yukawa couplings induce
dynamical fermion masses. One can derive from Eq. (3.7) the one-loop Coleman-Weinberg effective potential [67], by
integrating over fermions, and study the occurrence of spontaneous symmetry breaking by looking for a non-trivial
minimum with 〈m1,2〉 6= 0 [8]. One finds that spontaneous symmetry breaking is only possible for 2〈m1〉 = 2〈m2〉 ≡
Mψ, in agreement with the Vafa-Witten theorem. Below we provide an alternative derivation of the same result,
which will also be useful for studying the spectrum of scalar resonances.

It is convenient to introduce the combination

Mab =
1

κA + κB

(
κAM

∗
ab −

κB
2
εabcdM

cd
)
, (3.10)

which can be expanded around the vacuum as

M =
1

2
MψΣ0 + (σ + iη′) Σ0T

0
ψ +

(
SÂ + iGÂ

)
Σ0T

Â . (3.11)

The matrix M decomposes, according to 6SU(4) = (1 + 5)Sp(4), into a scalar singlet σ, a pseudoscalar singlet η′, a

scalar quintuplet SÂ, and a pseudoscalar quintuplet GÂ, which will be identified with the physical meson resonances.
Using the identity εabcd = −(Σ0)ab(Σ0)cd+ (Σ0)ac(Σ0)bd− (Σ0)ad(Σ0)bc, and since, as already noted, κB can be taken
real and positive without loss of generality, the Lagrangian (3.7) can be rewritten as

Lψscal = −(ψMψ + h.c.)−N
[
P−(σ2 +G2

Â
) + P+(η′2 + S2

Â
)
]
, (3.12)

where

P± =
κA

κ2
A − κ2

B

± κB
|κ2
A − κ2

B |
=

1

κA ∓ κB
. (3.13)

The sign in the last equality corresponds to the case κ2
A > κ2

B , which will turn out to be the relevant region of
parameter space. Eqs. (3.11) and (3.12) define the Feynman rules for the fermion Yukawa couplings to the mesons:

the four-fermion interactions mediated by σ and GÂ are proportional to P−1
− , while the interactions mediated by η′

and SÂ are proportional to P−1
+ .

Indeed, the Lagrangian in Eq. (3.1) can be directly written in terms of the fermion bilinears coupled to the
mesons, upon using Fierz identities for SU(4) and Sp(4), derived in Appendix D. The replacements δcaδ

d
b − δdaδcb =

4(Σ0T
0
ψ)ab(T

0
ψΣ0)cd + 4(Σ0T

Â)ab(T
ÂΣ0)cd and εabcd = −4(Σ0T

0
ψ)ab(Σ0T

0
ψ)cd + 4(Σ0T

Â)ab(Σ0T
Â)cd in Eq. (3.1), lead

to

Lψscal = 2
κA

(2N)

[(
ψΣ0T

0
ψψ
) (
ψT 0

ψΣ0ψ
)

+
(
ψΣ0T

Âψ
)(

ψT ÂΣ0ψ
)]

+
κB

(2N)

[(
ψΣ0T

0
ψψ
) (
ψΣ0T

0
ψψ
)
−
(
ψΣ0T

Âψ
)(

ψΣ0T
Âψ
)

+ h.c.
]
. (3.14)

Most of the resonance spectrum calculations could be performed directly from the four-fermion interactions in
Eq. (3.14). Nonetheless, the introduction of auxiliary fields is convenient, because Eq. (3.11) identifies the rele-
vant scalar degrees of freedom, which will become dynamical resonances upon 1/N resummation of the interactions
in their respective channels, as we will examine below.

The first important step for the dynamical calculations of the resonance spectrum is to determine the mass gap,
namely whether a non-trivial dynamical fermion mass, signalling the spontaneous breaking of SU(4) to Sp(4), develops
within the NJL approximation. Let us consider the self-consistent mass gap equation [22, 24, 25], obtained from the
one-loop tadpole graph, as illustrated in Fig. 1. It is well-known that this is equivalent to computing the minimum of
the one-loop effective potential. Note that, just like for the standard NJL model, only the σ-exchange does contribute,
namely only the spin-zero, parity-even, Sp(4)-singlet fermion bilinear can take a vev. Therefore the mass-gap equation
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involves solely the inverse coupling P−. The computation of the diagrams in Fig. 1 leads to a self-consistent condition
on the dynamical fermion mass Mψ,

− iMψ = 2

(
i

2P−1
−

8(2N)

)
(−2)Tr[Ω2]Tr[Σ2

0]

∫ Λ d4k

(2π)4

iMψ

k2 −M2
ψ + iε

, (3.15)

where the first factor 2 accounts for the normalisation Mψ ≡ 2〈m1,2〉, (−2) is the trace over Weyl spinor indices in
the loop, Tr[Ω2] = −2N is the trace over hypercolour, and Tr[Σ2

0] = −4 the one over flavour. Note that the factors
2N cancel, thanks to the appropriate large-N normalisation of the original couplings κA,B in Eq. (3.14). Thus, one
obtains

1− 4P−1
− Ã0(M2

ψ) = 0 , (3.16)

where the basic one-loop scalar integral Ã0 is defined in appendix B. In order to regularise the otherwise divergent
integral, we introduce a (covariant 4-dimensional) cut-off Λ, which parameterises the scale at which the effective
four-fermion interaction ceases to be valid and all degrees of freedom of the underlying gauge theory become relevant.
Computing the integral, the gap equation takes the explicit form

1−
M2
ψ

Λ2
ln

(
Λ2 +M2

ψ

M2
ψ

)
=

4π2

Λ2
P− ≡

1

ξ
, (3.17)

in full agreement with the minimisation of the one-loop effective potential in Ref. [8].
Eq. (3.17) has a non-trivial solution, Mψ 6= 0, as long as ξ > 1, which implies κ2

A > κ2
B and P−1

− = κA+κB > 4π2/Λ2.
The existence of a minimal, critical coupling to realise spontaneous symmetry breaking is a characteristic property of
the NJL model. On the other hand, the consistency requirement Mψ/Λ . 1 implies an upper bound on the coupling,
ξ ≡ Λ2(κA + κB)/(4π2) . (1 − ln 2)−1 ' 3.25, see also Fig. 3 below. Note that if the underlying Sp(2N) gauge
theory confines, it necessarily breaks SU(4) into Sp(4) as a consequence of the anomaly matching discussed in section
II B, because the fermions ψ cannot form baryons. This means that the true strong dynamics has to correspond to a
super-critical value of κA +κB . This conclusion holds for the ψ-sector in isolation, but it may not be the case when a
coloured X-sector will be added in section IV, and baryons become possible, see the discussion in section IV A. Note
also that, in the NJL large-N approximation, the mass gap Mψ and the fermion condensate,

1

2
〈(ψaψb) + (ψ

a
ψ
b
)〉 ≡ 〈ΨΨ〉Σab0 , 〈ΨΨ〉 =

1√
Nψ
f

〈Sψ0 〉, (3.18)

corresponding to the tadpole in Fig. 1, are trivially related:

〈ΨΨ〉 ≡ −2(2N)MψÃ0(M2
ψ) = − N

κA + κB
Mψ. (3.19)

We have also indicated the direct relation between the quark condensate and the vacuum expectation value 〈Sψ0 〉 of

the singlet scalar density, at this level of NJL approximation, with Sψ0 defined in Eq. (2.6).

= +

ψ ψ

2κA

(2N)
2κB

(2N)

ψ ψ ψ ψ ψ ψ

FIG. 1. Graphical illustration of the mass gap equation, in the leading 1/N -approximation. Thick and thin lines represent
dressed and bare fermion propagators, respectively.
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B. Masses of scalar resonances

The masses and the couplings of the composite mesonic resonances can be computed, at first order in 1/N , by
performing the resummation of the dominant large-N graphs contributing to the two-point functions with the appro-
priate quantum numbers, according to a well-known procedure [22, 24, 25, 66, 68]. The resummation takes the form
of a geometric series, as illustrated in Fig. 2. For the two-point functions defined in Eqs. (2.8) and (2.9), the outcome
of this procedure translates into the generic formula

Πφ(q2) ≡ Π̃φ(q2)

1− 2KφΠ̃φ(q2)
, (3.20)

where Kφ are combinations of the four-fermion couplings in Eq. (3.14). The expressions of Kφ and of the one-loop

correlators Π̃φ(q2) have been collected in Table II. They involve the one-loop two-point function B̃0(q2,M2
ψ) defined

in appendix B. In this section, we will discuss the scalar and pseudoscalar channels, while the spin-one channels will
be discussed in section III D.

Before starting this discussion, we would like to make a few remarks on the resummed correlators, some of which
being also relevant for the spin-one channels.

• Expression (3.20) is not applicable in this simple form in the pseudoscalar channel, φ = GÂ, η′, due to the
fact that, at one loop, the axial two-point function also receives a longitudinal part, which will then mix with
the pseudoscalar two-point function when the resummation in Fig. 2 is performed. For the time being, we can
ignore these aspects, which will be treated in detail in Section III E, and, in the meantime, we proceed with the
general discussion of masses and couplings on the basis of Eq. (3.20).

• The corresponding resonance masses Mφ are determined by the poles of the resummed propagators,

1− 2Kφ Π̃φ(q2 = M2
φ) = 0 . (3.21)

In order to discuss some general features of this type of equation, let us point out that the functions Π̃φ(q2) can
be defined in the cut complex q2-plane, where the cut lies on the real positive axis and starts at q2 = 4M2

ψ. The

cut results from a logarithmic branch point, so that the functions Π̃φ(q2) become multi-valued through analytic

continuation across the cut. These properties simply reflect those of the function B̃0(q2,M2
ψ) itself. In general,

Eq. (3.21) has solutions for complex values of q2, lying on the second Riemann sheet, which are interpreted as
resonances, generated dynamically through the resummation procedure.

• Other solutions to Eq. (3.21) than poles on the second sheet are possible. For instance, there can exist a critical
value Kcrit

φ , such that if the coupling Kφ satisfies Kφ ≥ Kcrit
φ > 0, then Eq. (3.21) possesses (in addition) a real

solution 0 ≤Mφ ≤ 2Mψ [69], corresponding to a two-fermion bound state. As we will see below, this situation
arises in the singlet pseudoscalar channel (and also in the vector channel, but this time for Kφ ≤ Kcrit

φ < 0).

As Kφ moves towards Kcrit
φ from above, the bound-state mass moves from zero towards the value 2Mψ. When

Kφ < Kcrit
φ , this solution of Eq. (3.21) moves back towards the origin, but now on the real axis of the second

Riemann sheet, and thus becomes a “virtual-state” solution [69].

• Another aspect concerning the solutions of Eq. (3.21) is intimately connected to the fact that, in order to make

this equation meaningful, it has been necessary to introduce a regularisation for the function B̃0(q2,M2
ψ). As

a consequence, there are solutions corresponding to real, but negative, values of q2, q2 = −M2
gh-φ >∼ − 3Λ2.

These “ghost” singularities5 of the functions Πφ(q2) occur quite far from the physical region, and have only

= + · · ·φ φ + + φφ φφφφ Kφ KφKφ

FIG. 2. Resummation of leading 1/N graphs for a mesonic two-point correlator, corresponding to a composite meson exchange.

5 These pathologies are absent if the Pauli-Villars regularisation is adopted [70], but they reappear in another guise.
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a small influence on, for instance, the values of the resonance masses. When determining the latter, we thus
systematically discard them. But they have to be taken into account when considering more global properties of
the functions Πφ(q2), like the spectral sum rules of Section II D. These will be discussed within the framework
of the NJL approximation below, in Section III G.

• From a practical point of view, resonance solutions to Eq. (3.21) will not be determined by looking for poles on
the second sheet, but rather by solving a real equation as follows. We rewrite the denominator of Eq. (3.20) as

1 − 2KφΠ̃φ(q2) = cφ0 (q2) + cφ1 (q2)q2, where the q2-dependence of the coefficients cφ0,1(q2) comes from the loop

function B̃0(q2,M2
ψ) only, see table II. The meson mass is then defined implicitly by

M2
φ = Re[gφ(M2

φ)] , gφ(q2) ≡ −c
φ
0 (q2)

cφ1 (q2)
. (3.22)

The value Mφ obtained this way remains a good approximation to the mass given by the real part of the
resonance pole, as long as the imaginary part of gφ(M2

φ) remains small,∣∣∣∣∣ Im[gφ(M2
φ)]

Re[gφ(M2
φ)]

∣∣∣∣∣ < 1 . (3.23)

Indeed, the solution of Eq. (3.22) may be larger than the threshold, M2
φ > 4M2

ψ, so that the loop function

B̃0(M2
φ,M

2
ψ) develops an imaginary part. This may happen in the case of the Sp(4)-singlet pseudoscalar

state, see Eq. (3.26), and it always happens in the case of the non-singlet scalar state, see Eq. (3.28). This
imaginary part corresponds to the unphysical decay of a meson into two constituent fermions, and reflects the
well known fact that the NJL model does not account for confinement. In what follows, it will be understood
that resonance masses are defined as the solutions of Eq. (3.22) and, in order to define a consistency condition
for the NJL approximation to be reliable, we will require that Eq. (3.23) holds. Note also that, when extracting
the expressions of the pole masses, it will be often convenient to take advantage of the gap equation (3.16), in
order to obtain a simpler form of the solutions.

After these general considerations, we now turn to the analysis of the scalar and pseudoscalar channels of the
model. The functions Π̃S/P (q2) correspond to the one-loop estimates of the two-point functions ΠS/P (q2) defined in
Eq. (2.8). Notice that one needs Kφ ∝ 1/N , in order for the 1/N -expansion to be well-defined. Indeed, according to
section III A (see also Table II), we have Kσ,G = 2(κA + κB)/(2N) and KS,η′ = 2(κA − κB)/(2N).

φ Kφ Π̃φ(q2)

GÂ 2(κA + κB)/(2N)
Π̃P (q2) = (2N)

[
Ã0(M2

ψ)− q2

2
B̃0(q2,M2

ψ)
]

η′ 2(κA − κB)/(2N)

SÂ 2(κA − κB)/(2N)
Π̃S(q2) = (2N)

[
Ã0(M2

ψ)− 1
2
(q2 − 4M2

ψ)B̃0(q2,M2
ψ)
]

σ 2(κA + κB)/(2N)

V Aµ −2κD/(2N) Π̃V (q2) = 1
3
(2N)

[
− 2M2

ψB̃0(0,M2
ψ) + (q2 + 2M2

ψ)B̃0(q2,M2
ψ)
]

AÂµ −2κD/(2N) Π̃A(q2) = 1
3
(2N)

[
− 2M2

ψB̃0(0,M2
ψ) + (q2 − 4M2

ψ)B̃0(q2,M2
ψ)
]

aµ −2κC/(2N) Π̃L
A(q2) = −2(2N)M2

ψB̃0(q2,M2
ψ)

AÂµ −GÂ
Π̃AP (q2) = −(2N)MψB̃0(q2,M2

ψ)
aµ − η′

TABLE II. The couplings Kφ and the expressions of the one-loop spin-0 and spin-1 two-point functions. We also give the
expression of the mixed (one-loop) pseudoscalar-longitudinal axial correlator, that enters in the analysis of both the quintuplet

and singlet sectors. The explicit calculation of the correlators Π̃φ(q2) is detailed in appendix C.
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Let us consider first the pseudoscalar channels, ignoring, for the time being, the issue of mixing with the longitudinal
part of the axial correlator. After taking the traces and evaluating the momentum integral, the pseudoscalar two-point
correlator in the SU(4) sector takes the form

Π̃P (q2) = (2N)

[
Ã0(M2

ψ)− q2

2
B̃0(q2,M2

ψ)

]
. (3.24)

In the case of the Goldstone states GÂ, Eq. (3.21) becomes

1−4
(κA + κB)

2N
Π̃P (M2

G) = 1−4(κA+κB)

[
Ã0(M2

ψ)− M2
G

2
B̃0(M2

G,M
2
ψ)

]
= 2M2

G (κA+κB)B̃0(M2
G,M

2
ψ) = 0 , (3.25)

and the term proportional to Ã0 cancels out upon using the mass-gap equation, Eq. (3.16), a well-known feature of
the standard NJL model [22, 24]. As a consequence, one is left with an exactly massless inverse propagator, MG = 0,
as it should be for the Goldstone boson state.

A similar computation for the Sp(4)-singlet pseudoscalar η′, using the information provided by Table II, leads to

M2
η′ = gη′(M

2
η′) =

2Ã0(M2
ψ)

B̃0(M2
η′ ,M

2
ψ)

(
1− P+

P−

)
= − κB

κ2
A − κ2

B

1

B̃0(M2
η′ ,M

2
ψ)

, (3.26)

where we have again used Eq. (3.16). In the above equation and in the following expressions of the resonance masses,
it is implicitly assumed that only the real part of gφ(M2

φ) is taken into account, according to Eq. (3.22). Note that

the constraint κ2
A > κ2

B , needed for the existence of a non-trivial solution of the gap equation, also ensures that M2
η′ is

positive. As it will be discussed in subsection V E, a similar but stronger constraint holds when the coloured sector is
introduced. To roughly estimate the expected range for Mη′ , one may notice that B̃0(q2,M2

ψ) is real and has a rather

moderate q2 dependence for q2 � 4M2
ψ, so that if M2

η′ lies in this range, one can use the approximate expression

M2
η′ ' −

κB
κ2
A − κ2

B

1

B̃0(0,M2
ψ)
' 4

ξ

κB/κA
1− κB/κA

Λ2

ln(Λ2/M2
ψ)− 1

, (3.27)

where the expression for B̃0(0,M2
ψ) is given in Eq. (B3). Thus Mη′ may become arbitrarily small for κB/κA → 0,

as the extra U(1)ψ symmetry is restored when κB = 0, and η′ turns into the associated Goldstone boson. However,
Mη′ rapidly increases with κB/κA to become of order Λ. Note that, in the large-N limit, one expects M2

η′ ∼ 1/N , as

for the η′ mass in QCD [71]. This indicates that the four-fermion couplings, normalised as in Eq. (3.1), should scale
as κB/κA ∼ 1/N . Large-N arguments indicate that κA is N -independent, as the associated four-fermion operator
is generated from the hypercolour current-current interaction (for details see appendix D 1). Therefore, the correct
scaling is reproduced for κB = κB/(2N), with an N -independent κB , and the associated four-fermion operator,
induced by the hypercolour anomaly, scales as 1/N2.

For the scalar channels, the two-point function is to be found in Table II, and the corresponding scalar resonance
masses are

M2
σ = 4M2

ψ , M2
S = 4M2

ψ +M2
η′
B̃0(M2

η′ ,M
2
ψ)

B̃0(M2
S ,M

2
ψ)
'M2

σ +M2
η′ , (3.28)

where one recognises the same relation Mσ = 2Mψ, as in the standard NJL model for QCD with two flavours. The

relation M2
S 'M2

η′ +M2
σ holds again if one can neglect the difference between the function B̃0(p2,M2

ψ) evaluated at

p2 = M2
η′ and at p2 = M2

S .
We stress that all previous expressions for the spectrum of spin-zero resonances hold in the pure chiral limit, where

the SU(4)/Sp(4) Goldstone bosons GÂ, including the Higgs, are massless. Eventually, they will receive a non-zero
effective potential, radiatively induced by the SM gauge and Yukawa couplings, which break explicitly the SU(4)
symmetry. In particular, the top quark Yukawa coupling is generically expected to destabilise the vacuum, and to
trigger EWSB, see Refs. [27, 28] for reviews. This implies that the masses of some resonances, obtained in the NJL
large-N approximation, may receive corrections of order O(m2

top/Λ
2). These represent typically mild corrections

for the non-Goldstone resonances, whose masses ∼ Λ are significantly larger than the electroweak scale. Thus, the
qualitative features of the spectrum of meson resonances are not expected to depart from those exhibited here, once
the effect of the explicit symmetry-breaking couplings is added to the picture. One should also remember that, in
any case, the NJL large-N approximation already constitutes a limitation to the precision that can be achieved. The
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radiative contribution to the pseudo-Goldstone Higgs mass, induced from the external electroweak gauge fields, is
given in Eq. (A7) (see also the general discussion in section II E). However, this contribution plays a secondary role
in EWSB: since it is positive, it cannot destabilise the Sp(4)-invariant vacuum, and it should be overcome by the one
from the top Yukawa coupling [27, 28].

In the traditional NJL literature [22, 24, 25, 66], the resonance masses are determined from the resummed scattering
amplitudes for ψψ → ψψ in the various channels. These amplitudes involve the same couplings Kφ and functions

Π̃φ(p2) as in Eq. (3.20). Moreover, they also allow to define couplings between the elementary fermions and the
resonances. The interested reader will find a brief discussion of these issues, not directly related to our main purposes,
in App. C.

C. Vector interactions of fermion bilinears

Let us now consider vector bilinears, in order to study spin-one resonances. There are two independent four-fermion
vector-vector operators, that can be written as

Lψvect =
κ′C
2N

(
ψaσ

µψa
) (
ψbσµψ

b
)

+
κ′D
2N

(
ψaσ

µψb
) (
ψbσµψ

a
)
, (3.29)

where the coupling constants κ′C and κ′D are real. It turns out that consistent (non-tachyonic) spin-one resonance
masses are obtained for κ′C,D > 0, in the same way as for the NJL vector interaction in QCD. Applying the SU(4)

Fierz identity given by Eq. (D22), the Lagrangian can be rewritten in the ‘physical’ channels, corresponding to definite
Sp(4) representations,

Lψvect =
κC
2N

(
ψ T 0

ψ σ
µψ
)2

+
κD
2N

(
ψTAσµψ

)2
+
κD
2N

(
ψ T Â σµψ

)2

, (3.30)

where κD = 2κ′D, κC = 8κ′C + 2κ′D, and contracted flavour indexes are understood, as well as summations over

generator labels A and Â. Introducing auxiliary vector fields, the vector sector Lagrangian takes the form

Lψvect = −aµ(ψ T 0
ψ σ

µψ)− V Aµ (ψ TA σµψ)−AÂµ (ψ T Â σµψ)− N

2κC
aµaµ −

N

2κD

(
V Aµ V

Aµ +AÂµA
Âµ
)
, (3.31)

with vectors V Aµ ∼ 10Sp(4), and axial vectors (aµ, A
Â
µ ) ∼ (1+5)Sp(4). Their transformation properties are summarised

in Table I. This Lagrangian defines the strength of the four-fermion interactions in the three physical channels mediated

by aµ, V Aµ and AÂµ .

We remark that additional spin-one resonances can be associated to the fermion bilinear (ψaσµνψb) ∼ 10Sp(4), or
to its conjugate. However, one can check that the corresponding four-fermion interactions vanish because of Lorentz
and/or SU(4) invariance. Therefore, to describe these resonances one should consider higher-dimensional operators.
Although such an exercise is feasible with analogous NJL techniques, it goes beyond the scope of this paper.

In general, the couplings κC and κD are additional free parameters with respect to those in the spin-zero sector,
and in the following we will provide expressions for the vector masses and couplings as functions of these couplings.
However, κC and κD may be related to the scalar sector coupling κA, if one assumes that the low-energy effective
interactions, between two hypercolour-singlet fermion bilinears, originate from a one-hypergluon exchange current-
current interaction, as determined by the underlying hypercolour gauge interaction. This may be justified in the
large-N approximation (or equivalently ‘ladder’ approximation for the current-current interaction) and it proves to
be a reasonably good approximation in the NJL-QCD case [66, 72]. Under such an assumption, one can apply Fierz
identities for Weyl, as well as for SU(4) and Sp(2N), indices, as detailed in appendix D, in order to relate the
coefficients of the various four-fermion operators. We obtain that the vector couplings of Eq. (3.30) are simply related
to the scalar coupling of Eq. (3.14) by

κA = κC = κD . (3.32)

An analogous relation holds in the NJL-QCD case [66], where the couplings of the scalar-scalar and vector-vector
interactions are identical. We will use Eq. (3.32) as a benchmark for numerical illustration, however one should keep
in mind that the true dynamics may appreciably depart from this naive relation.
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D. Masses of vector resonances

The vector meson masses can be computed, at leading order in the 1/N expansion, similarly to the scalar meson
channels, from the resummed two-point functions, and the geometric series illustrated in Fig. 2 now leads, in this
approximation, to the following expressions for the vector or axial two-point correlators ΠV,A(p2) defined in Eq. (2.7),

ΠV/A(q2) ≡ − Π̃V/A(q2)

q2[1− 2KV/AΠ̃V/A(q2)]
, (3.33)

We have introduced one-loop correlators Π̃V/A(q2) with a normalisation that is more convenient for our purposes,

so that Π̃V/A(q2) ≡ −q2ΠV/A(q2)|1−loop. Similarly, for the one-loop axial longitudinal part we have Π̃L
A(q2) ≡

q2ΠL
A(q2)|1−loop, where ΠL

A(q2) is defined in Eq. (2.18). More precisely, upon taking the traces over spinor indices,
flavour and hypercolour, the one-loop two-point vector and axial correlators take the form,

Π̃µν,AB
V (q) = Π̃V (q2)TµνδAB , Π̃µν,ÂB̂

A (q) =
[
Π̃A(q2)Tµν + Π̃L

A(q2)Lµν
]
δÂB̂ , (3.34)

where the transverse and longitudinal projectors are defined as

Tµν = ηµν − qµqν

q2
, Lµν =

qµqν

q2
, (3.35)

and where the expressions of the functions Π̃V/A(q2) and Π̃L
A(q2) are given in Table II. One should be cautious to adopt

a regularisation that preserves SU(4) current conservation for the one-loop correlators, which is not the case with the
standard NJL cutoff regularisation. There are various ways to deal with this well-known problem [24], the simplest
being to use dimensional regularisation for the intermediate stages of the calculation. In this way the one-loop vector
correlator is automatically transverse. In the final expression for the correlators, the formally divergent loop function
B̃0 can be written as a function of the D = 4 cutoff Λ, see Eq. (B4). The latter is then interpreted as the physical
cutoff of the NJL model.

As compared to the two-point axial correlator in the massless limit, defined by Eq. (2.7), and as already mentioned
in Section III B, the one-loop expression (3.34) also exhibits a longitudinal part. This is a specific trait of the NJL
model, where the dynamically generated mass Mψ acts here like an explicit symmetry-breaking term. We will come
back later on the manner this longitudinal piece is taken care of. For the time being, one may notice that the
transverse part of the two-point axial correlator reproduces the expected physical features. Indeed, the resummed
function ΠA(q2) exhibits the massless pole6 due to the contribution of the Goldstone bosons, but it also has a pole

from the axial-vector state AÂµ . This second pole mass is extracted from Eq. (3.21), by injecting the coupling7 and

the transverse part of the correlator, Π̃A(q2). One obtains

M2
A = − 3

4κDB̃0(M2
A,M

2
ψ)

+ 2M2
ψ

B̃0(0,M2
ψ)

B̃0(M2
A,M

2
ψ)

+ 4M2
ψ . (3.36)

The pole mass equation for the axial vector singlet aµ is obtained with the replacements κD → κC and MA →Ma.
The V Aµ pole mass can likewise be extracted from Eq. (3.21), with the replacements Kφ → KV = −2κD/(2N) and

Π̃φ(p2)→ Π̃V (p2). This leads to

M2
V = − 3

4κDB̃0(M2
V ,M

2
ψ)

+ 2M2
ψ

B̃0(0,M2
ψ)

B̃0(M2
V ,M

2
ψ)
− 2M2

ψ . (3.37)

In estimating the sizes of the spin-one resonance masses, note that B̃0(p2,M2
ψ) is real for 0 ≤ p2 ≤ 4M2

ψ, and

negative in the physically relevant range of 0 < M2
ψ < Λ2, with |B̃0(p2,M2

ψ)| ≥ |B̃0(0,M2
ψ)|. The term proportional to

1/κD on the right-hand side of Eqs. (3.37) and (3.36) is positive for κD > 0, and gives the dominant contribution to

6 As expected, such a massless pole does not occur in ΠV (q2), defined in Eq. (3.33), since, as can be inferred from Table II, Π̃V (q2)
vanishes for q2 = 0.

7 Note the relative minus sign between the four-fermion couplings in the Lagrangian of Eq. (3.30) KA = −2κD/(2N), and the couplings
KV,A that enter in the denominator of the resummed correlators in Eq. (3.33). This follows from the proper definition of the argument
of the associated geometric series.
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MV,A for, roughly, κDM
2
ψ . 4π2, that is (Mψ/Λ)2 . 1/ξ when one takes κD ' κA � κB . By neglecting the difference

between B̃0(M2
V ,M

2
ψ) and B̃0(M2

A,M
2
ψ), we obtain the usual NJL relation between the axial and vector masses,

M2
A 'M2

V + 6M2
ψ . (3.38)

When one adopts the exact self-consistent pole mass definitions, MA is somewhat below the prediction of Eq. (3.38),
by typically 5−10%. Also, the singlet mass Ma is equal to MA when κD = κC as in Eq. (3.32). As already mentioned
in the general considerations at the beginning of Section III B, depending on the values of the couplings, one may
have resonance masses satisfying M2

φ > 4M2
ψ, in which case B̃0(M2

φ,M
2
ψ) develops an imaginary part. Indeed, this is

always the case for MA, as one reads off Eq. (3.38). In such cases, the resonance mass is obtained upon solving Eq.
(3.22), and we consider that the NJL predictions remain sensible as long as the width Γφ of the resonance, defined in
Eq. (3.23), does not exceed its mass.

E. Goldstone decay constant and pseudoscalar-axial mixing

A key parameter of the composite sector is the Goldstone boson decay constant FG, the analogous of Fπ in QCD.
We recall that, when the Higgs is a composite pseudo-Goldstone boson, the electroweak precision parameters, such as
S, T (see section III H), and the Higgs couplings receive corrections of order (v/f)2 with respect to their SM value,

where v ' 246 GeV and f ≡
√

2FG. Here f is the Goldstone decay constant in the normalisation that is generally
adopted in the composite Higgs literature.8 Thus, f is the physical scale most directly constrained by precision
measurements, f & (0.5−1) TeV, the exact bound depending on the spontaneous symmetry breaking pattern, as well
as on the flavour representations of the spin-one and spin-one-half composite resonances coupled to the SM fields.
Therefore, it will be convenient to express all the resonance masses in units of f , and in the following we will adopt
the more conservative bound f & 1 TeV.

The decay constant FG, as defined by Eq. (2.22), can most directly be extracted from the two-point axial transverse
correlator, introduced in Eq. (2.7), through the residue of the Goldstone boson pole. Identifying this correlator in the

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0
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1.0

Ξ

fHN=2L

fHN=18L

L

MΨ

FIG. 3. The mass gap Mψ and the Goldstone decay constant f =
√

2FG, in units of the cutoff Λ, as a function of the
dimensionless coupling ξ ≡ (κA + κB)Λ2/(4π2). For ξ ≤ 1 there is no spontaneous symmetry breaking, Mψ = 0, while for
ξ ≥ (1 − ln 2)−1 ∼ 3.25 one has Mψ & Λ and the NJL description is no longer reliable. The decay constant f is proportional

to
√
N , where Sp(2N) is the hypercolour gauge group. In the complete model including a coloured sector (see section IV),

one finds that N ≥ 2 is required to allow for fermion-trilinear top partners, and N ≤ 18 is needed to preserve hypercolour
asymptotic freedom [8]. One further needs N ≤ 6 to avoid Landau poles in the SM gauge couplings below 100 TeV (see

section III F). The red dashed line indicates the non-resummed decay constant f̃ =
√

2F̃G, while the upper (lower) red solid
line corresponds to the resummed f , for κD = κA and κB = 0 (κB = κA).

8 The relation f ≡
√

2FG follows from our definitions of FG, see Eq. (2.22), and of the Goldstone matrix U , see Eq. (2.32). After the
gauging of the SM group, the covariant derivative acting on the Goldstone bosons reads DµU = ∂µU− iVµU− iUVTµ , where the external
source Vµ is defined by Eq. (A6). This determines the non-linear corrections to the electroweak precision parameters in terms of v/f .
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NJL approximation with the resummed correlator defined by Eq. (3.33) and using the explicit expression in Table II,
one obtains

F 2
G = lim

q2→0

[
−q2ΠA(q2)

]
=

Π̃A(0)

1− 2KAΠ̃A(0)
=

F̃ 2
G

1− 2KAF̃ 2
G

= gA(0)F̃ 2
G , (3.39)

where we have defined the axial coupling form factor

gA(q2) ≡ [1− 2KAΠ̃L
A(q2)]−1 =

[
1 +

4κD
2N

Π̃L
A(q2)

]−1

(3.40)

and the one-loop decay constant

F̃ 2
G ≡ Π̃A(0) = −2 (2N)M2

ψB̃0(0,M2
ψ) = Π̃L

A(0). (3.41)

At this point, one should remark that F̃G would be the complete NJL result for the Goldstone decay constant only
if one would consider the scalar sector in isolation, i.e. by switching off the axial vector coupling κD. However,
since by definition the Goldstone boson couples to the axial current, a non-zero κD implies a non-trivial mixing of the
pseudoscalar and axial vector channels, that affects the expression of the decay constant. In order to take into account
this effect and to define consistently FG, one needs to consider the resummed transverse axial-vector correlator ΠA(q2)
of Eq. (3.33), as shown in (3.39) above. This equation gives the complete NJL approximation for FG, which should
be matched with its experimental value, once it becomes available, as is the case of Fπ in the NJL approximation of
QCD [24, 66].

The behaviour of FG is illustrated in Fig. 3, as a function of the dimensionless coupling ξ. Combining the definition
of ξ in Eq. (3.17) with the explicit form of B̃0(0,M2

ψ) given in Eq. (B3), one obtains

F̃ 2
G =

N

4π2
Λ2

(
ξ − 1

ξ
−

M2
ψ

Λ2 +M2
ψ

)
. (3.42)

Closely above the critical coupling, ξ = 1, the mass gap is much smaller than the cutoff, Mψ � Λ, and F̃G grows

rapidly with ξ. As ξ − 1 becomes of order one, the mass gap approaches the cutoff, Mψ . Λ, while F̃G stops growing

and remains below the cutoff by a factor of a few, f̃ ≡
√

2F̃G '
√
NΛ/10. The resummed FG, see Eq. (3.39), is

smaller, as KA is negative. In Fig. 3 we assumed Eq. (3.32) to hold, so that KA = −4π2ξ/[NΛ2(1 + κB/κA)], which

leads to f ' (0.6− 0.8)f̃ .
As already mentioned at several places in this section, a non-vanishing axial-vector coupling κD 6= 0 implies a

nontrivial mixing between the pseudoscalar and the axial longitudinal channel. Therefore, the definition of the
resummed pseudoscalar correlator ΠP (q2) in Eq. (3.20) should be appropriately generalised in order to account for

this mixing. In the process, we will also define a resummed axial longitudinal correlator Π
L

A(q2), we will recover
consistency relations among the Goldstone decay constants, and determine more precisely the properties of the non-
Goldstone pseudoscalar η′. We discuss first the quintuplet G − Aµ mixing, while the similar analysis of the singlet
η′ − aµ mixing is presented at the end of this section.

The mixing phenomenon is best described using a matrix formalism, so that we are led to consider

KG =

(
KG 0

0 KA

)
, Π(q2) =

(
Π̃P (q2)

√
q2 Π̃AP (q2)√

q2 Π̃AP (q2) Π̃L
A(q2)

)
. (3.43)

Explicit expressions for all the entries of these matrices can be found in Table II. Notice the appearance of Π̃AP (q2),
the one-loop expression of the mixed correlator ΠAP (q2) introduced in Eq. (2.15), and of the one-loop longitudinal

axial correlator Π̃L
A(q2) defined in Eq. (3.34). Note that, consistently with the normalisation of Π̃L

A(q2) in Eq. (3.34),

the matrix Π(q2) has been defined so that all its entries have the same dimensions, whence the factor of
√
q2 in front

of Π̃AP (q2). The resummed large-N two-point matrix correlator ΠG in this basis is then given by

ΠG ≡ Π + Π (2KG) Π + · · · = (11− 2ΠKG)−1Π , (3.44)

which is the analog of Eqs. (3.20) and (3.33). From Eqs (3.43), (3.44) one then obtains

ΠG(q2) ≡
(

ΠG(q2)
√
q2 ΠAG(q2)√

q2 ΠAG(q2) q2 Π
L

A(q2)

)

=
1

DG(q2)

(
Π̃P (q2)[1− 2KAΠ̃L

A(q2)] + 2KAq
2Π̃2

AP (q2)
√
q2 Π̃AP (q2)√

q2 Π̃AP (q2) Π̃L
A(q2)[1− 2KGΠ̃P (q2)] + 2KGq

2Π̃2
AP (q2)

)
, (3.45)
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with

DG ≡ det(11− 2ΠKG) = (1− 2KGΠ̃P )(1− 2KAΠ̃L
A)− 4KGKAq

2Π̃2
AP = 2(κA + κB)q2 B̃0(q2,M2

ψ). (3.46)

The last expression in this equation is obtained after using the gap-equation (3.16) and the relation Π̃2
AP (q2) =

−(1/2)(2N)B̃0(q2,M2
ψ)Π̃L

A(q2). Using the relevant expressions in Table II, gives explicitly

ΠG(q2) =
1

2
(2N)

2Ã0(M2
ψ)g−1

A (q2)− q2B̃0(q2,M2
ψ)

DG(q2)
, ΠAG(q2) =

Π̃AP (q2)

DG(q2)
, Π

L

A(q2) = 0. (3.47)

Note in particular that the resummed longitudinal axial correlator Π
L

A(q2) vanishes identically, thus consistently
recovering the conservation of the axial current in the exact chiral limit, in spite of the nonzero mass gap, which
induces a non-vanishing longitudinal axial correlator at the one-loop level, Π̃L

A ∝ M2
ψ . Also the resummed mixed

correlator ΠAG(q2) satisfies the relation (2.16), which shows that it is entirely saturated by the Goldstone-boson pole.
Now one can extract the NJL prediction for the Goldstone constants FG and GG, defined by Eqs. (2.22) and (2.23)

respectively. The residue of ΠG(p2) with respect to the Goldstone boson pole gives the pseudoscalar decay constant,

G2
G = − lim

q2→0
q2ΠG(q2) = − (2N)

8(κA + κB)2B̃0(0,M2
ψ)
g−1
A (0) . (3.48)

Next, the residue of ΠAG(q2) determines FGGG,

FGGG = − lim
q2→0

q2ΠAG(q2) =
(2N)

2

Mψ

(κA + κB)
= 2(2N)Mψ Ã0(M2

ψ) , (3.49)

that satisfies Eq. (2.24), by taking the expression for 〈Sψ0 〉 derived from Eq. (3.19). Combining Eqs. (3.48) and (3.49),
and using the gap equation, one consistently recovers the very same expression of FG in Eq. (3.39), as obtained from
the resummed axial transverse correlator. Note that, if one had computed GG in the limit of vanishing axial-vector
coupling, κD = 0, by taking the residue of ΠP in Eq. (3.20), one would have missed the (inverse) axial form factor
gA(0), see Eq. (3.48). Such a correction is important e.g. when analysing the possible saturation of the scalar spectral
sum rules, which will be discussed in section III G.

Obviously, a similar pseudoscalar-axial mixing mechanism also affects the singlet sector of the model, as soon as
the axial singlet coupling κC is non-vanishing. The resummed correlator matrix for the singlet sector, Πη′ , is defined
in complete analogy with Eq. (3.44), by taking the same one-loop correlator matrix Π, but replacing the couplings,
KG → Kη′ and KA → Ka (i.e. κD → κC), respectively for the pseudoscalar and axial-vector channels, according to
Table II. One main consequence of the mixing is that the pseudoscalar singlet mass Mη′ is modified with respect to
Eq. (3.26), which holds for the pseudoscalar sector “in isolation”. The η′ mass rather corresponds to the pole of the
determinant

Dη′ ≡ det(11− 2ΠKη′) = (1− 2Kη′Π̃P )g−1
a − 4Kη′Kaq

2Π̃2
AP = 8κBÃ0(M2

ψ)g−1
a + 2(κA − κB)q2B̃0(q2,M2

ψ) , (3.50)

where we defined an axial singlet form factor,

ga(q2) =

[
1 +

4κC
2N

Π̃L
A(q2)

]−1

, (3.51)

in complete analogy with Eq. (3.40) for the non-singlet sector. Therefore Eq. (3.26) gets modified (“renormalised”)
by the (inverse) axial singlet form factor,

M2
η′ = − κB

κ2
A − κ2

B

1

B̃0(M2
η′ ,M

2
ψ)

g−1
a (M2

η′) , (3.52)

which is the final expression that we will use in numerical illustrations of the mass spectrum in the next subsection.

F. The mass spectrum of the resonances

The resonance masses have to be proportional to the unique independent energy scale of the theory, which is
conveniently choosen as f ≡

√
2FG, defined in Eq. (3.39), as explained above. In order to fix the ideas, one can take
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f just above the lower bound imposed by electroweak precision tests, which is conservatively given by f = 1 TeV.
Since the resonance masses are N -independent and f ∼

√
N , in principle the resonances become lighter and lighter in

the large-N limit. However, if the model is augmented with coloured fermions to provide top partners, as we will do
in section IV, the Sp(2N) asymptotic freedom is lost (at one loop) for N ≥ 19 [8]. Moreover, these coloured fermions
are also charged under U(1)Y , resulting in Landau poles in the SM gauge couplings (α1 and α3) possibly too close
to the condensation scale of the strong sector. A naive one-loop estimation of the running of the SM gauge couplings
in presence of the hypercolour fermions leads to the appearance of Landau poles around 100 (500) TeV for N = 6
(5) while for N = 4, the Landau poles appear above 4 · 103 TeV. Then, a more reasonable interval for the number of
hypercolours is 2 ≤ N ≤ 6. For the numerical illustration, we take the conservative value N = 4.

The resonance masses are a function of the couplings κA,B,C,D of the four-fermion operators. For the numerical
illustration, we will assume Eq. (3.32) to hold, κC = κD = κA, and we will trade the two remaining, independent
couplings for the dimensionless parameters ξ ≡ (κA + κB)Λ2/(4π2) and κB/κA.

Let us describe the main feature of the mass spectrum. Since we work in the chiral limit approximation, the
resonances are complete multiplets of the unbroken Sp(4) symmetry, and the Goldstone bosons GÂ are massless.
In the spin-zero sector, there are three independent massive states: the singlet scalar σ and the five-plet scalar SÂ,
see Eq. (3.28), as well as the singlet pseudoscalar η′, see Eq. (3.26). The latter is the would-be Goldstone boson
of the anomalous U(1)ψ, therefore Mη′ vanishes when this symmetry is restored, that is when κB/κA → 0. In the
spin-one sector, there are two independent masses: the singlet axial vector aµ and the five-plet axial vector Aµ

Â
are

mass-degenerate as we assume κC = κD, with mass given by Eq. (3.36), while the ten-plet vector V µA has a different
mass, see Eq. (3.37). Even though we neglect the mass splitting among the different electroweak components, in view
of collider searches it is important to keep in mind the electroweak charges of the resonances, that are fixed by the
decomposition of the Sp(4) representations under the SU(2)w × U(1)Y gauged subgroup:

1Sp(4) = 10 , 5Sp(4) = (21/2 + h.c.) + 10 , 10Sp(4) = 30 + (21/2 + h.c.) + (11 + h.c.) + 10 . (3.53)

In Fig. 4 we display the five independent resonance masses, Mσ,η′,S,V,A, as a function of ξ, for two representative
values of κB/κA. While Mσ = 2Mψ grows over the entire range for ξ, the other four masses follow a different
pattern: they appear to be several times larger than f when ξ is very close to one (see the discussion in the next
paragraph), then they steeply decrease to reach a minimum value∼ (2−3)f for an intermediate value of ξ, and finally
they grow roughly linearly for ξ & 1.5. We recall the two approximate mass relations, MS ' (M2

σ + M2
η′)

1/2 and

MA ' (M2
V + 3M2

σ/2)1/2, that hold neglecting pole mass differences in the loop form factor. As a consequence, one
has always MA > MS > Mσ, with a similar asymptotic value at large ξ. On the contrary, MV decreases until it
becomes degenerate with Mσ, then it grows with a weaker slope. Finally, Mη′ may also become smaller than Mσ

at large values of ξ, but only for a sufficiently small value of κB/κA. For example, taking f = 1 TeV, N = 4 and
κB/κA = 0.1, the resonance masses for two representative values of ξ are

ξ = 1.3 : MA ' 6.6 TeV, MV ' 4.9 TeV, MS ' 4.6 TeV, Mσ ' 4.1 TeV, Mη′ ' 3.3 TeV ,

ξ = 2.0 : MA ' 9.5 TeV, MV ' 6.4 TeV, MS ' 8.3 TeV, Mσ ' 8.1 TeV, Mη′ ' 4.9 TeV . (3.54)
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FIG. 4. The masses of the electroweak resonances in units of the Goldstone decay constant f , for N = 4 (the masses scale with

1/
√
N), as a function of the coupling ξ, for κB/κA = 0.1 (left-hand panel) and κB/κA = 0.5 (right-hand panel). We displayed

the full physical range for ξ, according to Fig. 3. Each curve is shaded when the corresponding pole mass equation develops a
large, unphysical imaginary part, |Im[gφ(M2

φ)]/Re[gφ(M2
φ)]| > 1. The dotted line is the cutoff of the constituent fermion loops.
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In general, electroweak resonances lighter than ' 4f ' 4 TeV are possible in two cases: the scalar σ becomes light
when one approaches the critical coupling ξ = 1, where the mass gap vanishes; the pseudoscalar η′ becomes light as
κB/κA tends to zero, where the anomalous U(1)ψ symmetry is restored. These two singlet states, together with the

SM singlet Goldstone boson G3̂, may be observed as the lightest scalar resonances at the LHC, beside the 125 GeV
Higgs boson. In section V E we will discuss the mixing of σ and η′ with the analogous singlet states of the colour
sector, a feature that will induce corrections to their masses.

A comment is in order on the region close to the critical coupling. In the limit ξ → 1, one finds that Mσ/f ∼
[− log(ξ − 1)]−1/2 vanishes, while the other resonance masses diverge relatively to f , MV,A,S,η′/f ∼ (ξ − 1)−1/2. The
lightness of σ may be interpreted as the signal that scale invariance is recovered below ξ = 1, while all other resonances
decouple in this limit. However, we should remark that, for some of these heavy resonances, the NJL computation of
their masses cannot be trusted close to the critical coupling, because the pole of the resummed propagator develops
a large, unphysical imaginary part. Recall, from the general discussion at the beginning of section III B, that the
curves in Fig. 4 are the solution of Eq. (3.22),9 where the imaginary part of gφ(M2

φ) has been neglected. The curves

in Fig. 4 are shaded when |Im[gφ(M2
φ)]/Re[gφ(M2

φ)]| > 1, where we consider that the corresponding result cannot be

trusted anymore. This happens when ξ . (1.2− 1.3), for the vector and axial-vector resonances, with masses MV/A

close to the cutoff of the NJL model.
Let us also comment on the complementary limit where ξ is so large that Mψ/Λ becomes of order one, as illustrated

in Fig. 3. In this case Fig. 4 shows that the resonances become heavier than Λ (except for η′, if κB/κA is small
enough). This is not necessarily problematic: while the mass Mψ of constituent fermions in the loops need to be
smaller than the loop cutoff Λ, external mesons heavier than Λ do not harm the consistency of the NJL approximation.
Indeed, in QCD the NJL model predicts rather accurately resonance masses twice as large as the cutoff. Nonetheless,
we notice that, for Mφ ∼ Λ, the value of the two-point function B̃0(M2

φ,M
2
ψ) becomes sensitive to the regularisation

chosen, defined in appendix B, as the cutoff-dependent finite terms become sizeable. As a consequence, we observe
that the mass values in this region may vary up to a few 10% in different regularisation schemes. This is an intrinsic
theoretical uncertainty of the NJL approximation.

The resonance masses in units of f ≡
√

2FG may be compared with recent lattice studies of the same model [73, 74],
which provide scalar and vector masses in the same units.10 Actually, the lattice simulations performed to date for
this model are available only for an underlying SU(2) gauge theory, thus equivalent to the special case Sp(2) of our

more general Sp(2N) study. Let us recall that the meson masses scale as Mφ/f ∼ 1/
√
N , where the scaling originates

solely from f (this statement holds for a fixed value of the ratio κB/κA). Therefore, the mass values illustrated for
N = 4 in Fig. 4 get enhanced by a factor 2 for N = 1, and these rescaled values can be directly compared with the
lattice results.

The lattice prediction for the vector masses in the chiral limit is MV /f = 13.1± 2.2, MA/f = 14.5± 3.6 [73]. The
latter results, although affected with relatively large uncertainties, indicate a more moderate V − A mass splitting
than is generally expected from the NJL model, see Eq. (3.38), unless Mψ is rather small, which corresponds in
the NJL framework to rather small values of ξ. More precisely, typically the previous central lattice values can be
(approximately) matched for ξ ' 1.1, therefore not far above the critical NJL coupling value, where on the other
hand the NJL calculation becomes less reliable, as already explained above, since entering the ξ range where the V
and A width both become relatively large. But accounting for the lattice uncertainties, the above values are also
easily matched alternatively for rather large ξ values, where the NJL prediction is also more reliable: for example
for N = 1 and ξ = 1.6 [ξ = 1.9], MV /f |NJL ' 11 [' 12.5], MA/f |NJL ' 15.3 [' 18]. [NB recall that the V and
A masses are mildly dependent on κB , which enters only indirectly through the mass gap. One should also keep in
mind that the Fierz-induced relation (3.32) is assumed for the axial and vector coupling κD in Fig. 4, and since the
dominant contribution to the V,A masses scales as 1/κD, a somewhat smaller (larger) κD would induce somewhat
larger (smaller) V,A masses, for a fixed value of ξ]. At least one may tentatively conclude from this comparison that
intermediate ξ values, say 1.2 <∼ ξ <∼ 1.6 approximately, as well as very large ξ > 2, appear more disfavoured.

Concerning the lightest scalar masses, Ref. [74] provides the very recent lattice estimates Mσ/f = 19.2(10.8),
Mη′/f = 12.8(4.7), and MS/f = 16.7(4.9), in the chiral limit (where the scalar non-singlet S is called a0 in Ref.
[74]). Compared with Fig. 4 (rescaled for N = 1) and combined with the results for the V and A masses, ξ values
very close to 1 appear disfavoured by the σ mass, even when taking its lowest lattice value above, because in this
region the NJL prediction for Mσ is much smaller than MV , as it is clear from Mσ = 2Mψ (see also Fig. 4). The
NJL (approximate) relation M2

S ' M2
σ + M2

η′ (see Eq. (3.28)), can be fulfilled within the large lattice uncertainties,

9 The function Re B̃0(q2,M2
ψ) develops a cusp at q2 = 4M2

ψ . Through the definition of the masses Mφ adopted here, this cusp naturally

shows up in Fig. 4 (and in Fig. 7 below) as soon as the value of a resonance mass goes through 2Mψ . In practice, this only occurs for
MV and Mη′ , at the cross-over from a bound state to a genuine resonance.

10 Our normalisation of f , see footnote 8, appears consistent with what is called FPS in the notations of Ref. [73] thus we compare our NJL
predictions in units of f directly with their numbers, assuming that the same normalisation has been used in those lattice calculations.
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although the rather high lattice central value of Mσ is in tension with this relation. So putting all together it may
indicate that relatively large values of ξ ' 1.6− 2, well above the NJL critical coupling, are more favoured by lattice
results. The η′ pseudoscalar mass, in the NJL model, is very sensitive to the ratio κB/κA, see Eq. (3.27). Modulo the
large lattice uncertainties, the comparison with lattice results appears to indicate intermediate values for this ratio,
κB/κA ' 0.2− 0.4, such that Mη′ is comparable with MV .

In conclusion the comparison of NJL and lattice results appears roughly consistent, at least the lattice results may
be matched for some definite values of the NJL parameters ξ and κB/κA, with no strong tensions. But it appears still
an essentially qualitative comparison at the present stage, given both the intrinsic NJL uncertainties amply discussed
previously, as well as the still relatively large lattice systematic uncertainties, specially for the scalar resonances: so
unfortunately it cannot be taken yet as giving tight constraints on the effective NJL model parameters. Note also that
other recent lattice simulations of composite Higgs model resonances are available in the literature (see e.g. [75, 76]),
but are based on different gauge symmetries and/or global symmetry breaking pattern, thus not directly comparable
with our results.

G. Comparison with spectral sum rules

Several authors [68, 70, 77] have addressed the issue of spectral sum rules, discussed in general terms in Section
II D, in the context of the NJL approximation applied to QCD. In this Section, we will study them in the context of
the NJL approximation to the underlying Sp(2N) gauge dynamics of the present composite Higgs framework. The
aim will be to check whether these sum rules provide additional constraints on the parameters of the model, namely
ξ and κB/κA.

It seems only natural to identify the spectral densities appearing in the sum rules displayed in Eqs. (2.13) and
(2.14) with the discontinuities of the resummed NJL two-point correlators11 discussed in the preceding subsections,
i.e.

Im ΠV/A(t) = lim
ε→0+

ΠV/A(t+ iε)−ΠV/A(t− iε)
2i

, (3.55)

or, in the singlet scalar and pseudoscalar channels,

Im ΠS0/P 0(t) = lim
ε→0+

Πσ/η′(t+ iε)−Πσ/η′(t− iε)
2i

, (3.56)

and analogous relations between Im ΠS/P (t) and ΠS/P (t). Before discussing the sum rules of Section II D under these
identifications, let us recall that the sum rules themselves follow from the short-distance properties, which reflect
the properties of the underlying Sp(2N) gauge dynamics, of the two-point functions under consideration, and from
general properties of quantum field theories, here essentially invariance under the Poincaré group and the spectral
property. The latter allow to extend the definitions of the functions Πφ(t) to functions in the complex t-plane, with
all singularities (poles and branch points) confined to the positive real axis. The former then allow to write down
unsubtracted dispersion relations for the appropriate combinations of two-point correlators, from which the sum rules
follow. The necessity to introduce a regularisation (here the cut-off Λ), in order to render the one-loop correlators

Π̃φ(t) finite, and to perform the resummation shown in Fig. 2, leads to functions Πφ(t) that will in general not respect
all the required properties. For instance, with the choice of regularisation adopted in the present study, ghost poles
on the negative real q2-axis will appear, as discussed at the beginning of Section III B. This situation is well known in
the context of the NJL approximation applied to QCD, where it has been examined quite extensively by the authors
of Ref. [70], and we refer the reader to this article for additional details.

The spectral densities resulting from the identifications in Eqs. (3.55) and (3.56) are shown in Figs. 5 and 6 (in
order to make the figure more readable, we have kept ε in the definitions (3.55) and (3.56) very small, but finite). It is
most instructive to analyse them in conjunction with the spectrum of the mesonic resonances, as given in Fig. 4, and
with the general discussion at the beginning of Section III B. Figure 5 shows the vector and axial spectral functions for
two different values of the parameter ξ. In the axial case, one recognises the contribution from the pion pole at t = 0,
and no other narrow bound state. Only a rather broad resonance peak appears above the t = 4M2

ψ threshold, where

11 At the level of one-loop two-point correlators, the spectral sum rule (2.19) is trivially satisfied, provided one identifies m with Mψ , due

to the identity Π̃V (q2)− Π̃A(q2) = −Π̃LA(q2). The identities

Π̃S(q2)− Π̃P (q2) = Π̃S(q2)− Π̃η′ (q
2) = Π̃σ(q2)− Π̃G(q2) = 2(2N)M2

ψB̃0(q2,M2
ψ)

allow only for the difference of the two last sum rules in Eq. (2.14), involving Π̃S-η′ − Π̃σ-G, to be satisfied at one-loop. The sum rule
involving ΠS-P is not expected to hold, since this correlator does not constitute an order parameter for SU(4)/Sp(4), see footnote 3.
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FIG. 5. The figure on the left shows the spectral functions Im ΠV (t) (upper curves, in red) and −Im ΠA(t) (lower curves,
in blue), as a function of t/(2Mψ)2 . The plotted quantities are dimensionless and scale like N . The solid and dashed lines
correspond to ξ = 1.3 and ξ = 2, respectively. The value of the parameter κB/κA has been taken equal to 0.1 in all cases.
The narrow vector bound state below the continuum starting at t = (2Mψ)2 (materialised on the figures by the vertical line)
is present in Im ΠV (t) when ξ = 2, but disappears for smaller values of ξ. The pion pole appears clearly in Im ΠA(t), but the
axial-vector resonance has a mass that is always greater that 4M2

ψ, and therefore a narrow sub-threshold peak never occurs.

The figure on the right likewise shows the functions t Im ΠV (t) and t Im ΠA(t). The latter are in units of f2 and consequently
are N - independent.

the continuum starts. This is in agreement with Fig. 4, which shows that MA is always greater than Mσ = 2Mψ. In
the vector channel, a narrow bound state appears below the 2Mψ threshold for ξ = 2, but is absent (it has moved to
the real axis on the second Riemann sheet) for ξ = 1.3, and is replaced by a resonance peak. Again, this agrees with
Fig. 4, where one sees that MV becomes greater than 2Mψ when ξ takes values below ∼ 1.4.

For the non-singlet scalar spectral density, shown on the left panel of Fig. 6, there is no narrow bound state lying
below the threshold of the continuum, whatever the value of ξ. However, the larger the value of ξ, the more the
resonance peak moves closer to the threshold. The shape of Im ΠS(t) is also sensitive to κB/κA. In the pseudoscalar
non-singlet channel, only the massless pion pole shows up, and Im ΠP (t) is not sensitive to the value of κB/κA. The
singlet scalar spectral density, shown on the right panel of Fig. 6, presents a narrow peak at the threshold, for any
value of ξ and κB/κA. In the pseudoscalar singlet channel, the features of the spectral function become also sensitive
to this second parameter, as can already be inferred upon comparing the two panels of Fig. 4. In particular, a narrow
sub-threshold bound state is only present for smaller values of κB/κA.

An illustration of the two Weinberg-type sum rules of Eq. (2.13), as well as the sum rules of Eq. (2.14), is provided
by Fig. 7. The integrals compared there, as functions of the coupling ξ and for two values of κB/κA, run over the
whole positive t-axis, which means that, for the sake of illustration, the NJL description has been kept even beyond
its expected range of validity. Of course, it is certainly difficult to ascribe any physical meaning to the spectral
densities for values of, say, t/Λ2 >∼ 2 [note that, for ξ close to the critical coupling, one has 2Mψ � Λ, therefore

the NJL description holds up to a large value of t/(2Mψ)2]. Beyond this value of t, the NJL description ceases to
be appropriate, and we have to assume that the underlying Sp(2N) gauge dynamics takes over. However, from the
experience with QCD [78], it is expected that the matching between the two regimes is not very smooth. Keeping this
proviso in mind, we show, on the left-hand panel of Fig. 7, the ratio of the integrals

∫
dt Im ΠV (t) and

∫
dt Im ΠA(t),

as well as the ratio of the integrals
∫
dt t Im ΠV (t) and

∫
dt t Im ΠA(t). Similarly, the right-hand panel shows the

ratios of the integrals
∫
dt Im Πη′(t) and

∫
dt Im ΠS(t), and of the integrals

∫
dt Im ΠG(t) and

∫
dt Im Πσ(t). If the

sum rules were satisfied exactly for all values of ξ, all these curves would be a constant equal to one. This is obviously
not the case. The general trend is that the departure from the sum rules is more important for larger values of ξ.
This is in line with Fig. 4, from which we infer that the continuum, corresponding to

√
t > 2Mψ, starts close to

the cut-off Λ when ξ & 1.5, therefore the NJL description becomes questionable soon after the threshold. On the
right-hand panel of Fig. 7 we also show the ratio of the integrals

∫
dt Im ΠG and

∫
dt Im ΠS . Since ΠS-P is not an

order parameter of the SU(4) spontaneous breaking (see footnote 3), there is no corresponding sum rule, and indeed
this ratio deviates significantly from unity, already for lower values of ξ.

In view of the difficulties to interpret the meaning of the sum rules, expressed in terms of the spectral densities
provided by the NJL description through Eqs. (3.55) and (3.56), one may consider an alternative approach, at least
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present only for the smallest value of κB/κA. A narrow σ pole appears in all cases right at the threshold t = 4M2

ψ. Note that

the spectral functions are all expressed in units of f2, such that they are dimensionless and have no N -dependence.
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∫
dt Im Πσ(t) (blue, middle curves) and∫

dt Im ΠG(t)/
∫
dt Im ΠS(t) (red, lower curve), as a function of the parameter ξ, for κB/κA = 0.1 (solid lines) and κB/κA = 0.5

(dashed lines, not shown in the G/S case). Note that the above ratios are independent from N .

when Im Π̃φ(M2
φ) vanishes or is sufficiently small so that it can be neglected. This happens, for instance, for the

Goldstone state, or for Π̃V (M2
V ) when there is a sub-threshold vector bound state. In that case each correlator

exhibits a single real pole, or narrow resonance [except for ΠA(q2), which exhibits both the Goldstone pole and the
axial-meson resonance pole, the latter being not very narrow, though], and one can saturate the sum rules with these
narrow states. Introducing, similarly to FG and to GG in Eqs. (2.22) and (2.23), respectively, decay constants defined
as

〈0|J Aµ (0)|V B(p;λ)〉 ≡ fVMV ε
(λ)
µ (p)δAB , 〈0|J Âµ (0)|AB̂(p;λ)〉 ≡ fAMA ε

(λ)
µ (p)δÂB̂ , (3.57)

where ε
(λ)
µ (p) is the polarisation vector associated to V or A, with

∑
λ ε

(λ)
µ (p)ε

(λ)∗
ν (p) = −(ηµν − pµpν/M2

V,A), as well
as

〈0|SÂ|SB̂(p)〉 = GSδ
ÂB̂ , 〈0|S0|σ(p)〉 = Gσ, 〈0|P0|η′(p)〉 = Gη′ , (3.58)
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the sum rules become, in this narrow-width, single-resonance approximation,

f2
VM

2
V − f2

AM
2
A − F 2

G = 0, f2
VM

4
V − f2

AM
4
A = 0, (3.59)

and

G2
σ −G2

G = 0, G2
S −G2

η′ = 0. (3.60)

Now, taking the various expressions of the meson masses, decay constants, as obtained from the NJL large-N
approximation above, one can check to which extent these Weinberg-type and scalar sum rules are actually saturated
by the first resonance from each of the available spectra. To proceed, one may first rewrite the resummed two-point
correlators of Eq. (3.33) in the pole-dominance form: from Eqs. (3.33) and (3.57), the residues of the vector and
axial-vector channels are defined by

f2
V/AM

2
V/A = lim

q2→M2
V,A

(q2 −M2
V/A) ΠV/A(q2) =

−1

(2KV/A)2

[
M2
V/A

dΠ̃V/A(q2)

dq2

∣∣∣∣
q2=M2

V/A

]−1

, (3.61)

where in the second equality, we have expanded the denominator of ΠV/A(q2) around the complex pole M2
V/A and used

Eq. (3.21). Similarly to the definition of the resonance masses in Eq. (3.22), one should however adopt a prescription to
deal with the unphysical imaginary parts, NJL artefacts of the lack of confinement properties. We adopt the following
prescription: (i) the residues are evaluated at the real pole masses M2

V,A = Re[gV,A(M2
V,A)] defined by Eq. (3.22),

and (ii) we similarly define f2
V,A by the real parts of their right-hand-side expressions in Eq. (3.61). Of course, in the

range of parameter space where the left-over imaginary contributions in Eqs. (3.61) become large, it puts a definite
limit on the reliability of the the NJL calculation, as will be specified below. According to this prescription, we obtain
explicitly for the vector decay constant,

f2
V = − 3(2N)

16κ2
DM

4
V

Re

[
1

B̃0(M2
V ,M

2
ψ) + (M2

V + 2M2
ψ)B̃′0(M2

V ,M
2
ψ)

]
. (3.62)

The axial decay constant f2
A is obtained in a similar way by making the following replacements MV → MA and

(M2
V + 2M2

ψ)→ (M2
A − 4M2

ψ) in the previous equation.
Similarly, for the spin zero channels, the residues are defined by

G2
φ ≡ − lim

q2→M2
φ

(q2 −M2
φ)Πφ(q2) =

1

(2Kφ)2

[
dΠ̃φ(q2)

dq2

∣∣∣∣
q2=M2

φ

]−1

. (3.63)

From Eqs. (3.20) and (3.58), the scalar decay constants are explicitly given by

G2
σ,S = − 1

2(2N)K2
σ,S

Re

[
1

B̃0(M2
σ,S ,M

2
ψ) + (M2

σ,S − 4M2
ψ)B̃′0(M2

σ,S ,M
2
ψ)

]
, (3.64)

while for the pseudoscalar decay constants we obtain

G2
G,η′ = − 1

2(2N)K2
G,η′

Re

[
g−1
A,a(M2

G,η′)

B̃0(M2
G,η′ ,M

2
ψ) +M2

G,η′B̃
′
0(M2

G,η′ ,M
2
ψ)

]
, (3.65)

where the axial-vector pseudoscalar mixing (see section III E) brings the factor g−1
A,a(M2

G,η′) for G and η′ respectively.
Generally, we cannot expect the sum rules in the narrow width approximation to be very well satisfied, both

because of the already discussed inherent approximations of the NJL framework, and also since the narrow width
approximation itself is not justified in a substantial part of the parameter range, as we will examine more precisely
below. To be more specific, we will use the standard definition of the width,

MφΓφ =
Im Π̃φ(M2

φ)

Re Π̃′φ(M2
φ)

, (3.66)

with Π̃′φ(q2) denoting the derivative of Π̃φ(q2) with respect to q2. By evaluating explicitly Eq. (3.66) for the relevant
resonances one may control the range of validity of the narrow width approximation.
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FIG. 8. Left panel: the two ratios (f2
VM

2
V )/(F 2

G + f2
AM

2
A) (WSR1, blue lines) and (f2

VM
4
V )/(f2

AM
4
A) (WSR2, red lines) as

functions of the coupling ξ, for κB/κA = 0.1 (solid lines) and κB/κA = 0.5 (dashed lines). Right panel: the analog for scalar
sum rules. Also indicated are the values of the most relevant resonance widths, calculated from Eq. (3.66) for κB/κA = 0.1.

Before a precise illustration of the deviations from the sum rules relations in Eqs. (3.59) and (3.60) in the parameter
space of the model, it is instructive to examine more closely the NJL expressions of the involved quantities, Eqs. (3.62),

(3.37) and (3.36). Namely, let us assume momentarily that we could crudely neglect the q2 dependence of B̃0, i.e.

taking B̃0(M2
V ,M

2
ψ) ' B̃0(M2

A,M
2
ψ) ≡ B̃0 (therefore taking also its derivative to vanish, B̃′0(q2) ' 0). Within this

approximation, the second sum rule in Eq. (3.59) is immediately satisfied, see Eq. (3.62), while for the first sum rule,
one can write, after some simple algebra,

f2
VM

2
V − f2

AM
2
A ' f2

V (6M2
ψ)

[
1 +O

(
M2
ψ

M2
V

)]
' −F 2

G

[
1 +O

(
M2
ψ

M2
V

)]
, (3.67)

where in the first equality we used the fact that the relation in Eq. (3.38) becomes exact in this approximation, and
in the last equality we used Eqs. (3.62) and (3.37) in the same approximation, and identified F 2

G from its expression
in Eq. (3.41). This simple exercise shows explicitly and rather intuitively where the bulk of deviations from the
Weinberg sum rules (WSR) comes from: one infers that the sum rules in Eq. (3.59) will, in general, not be satisfied,
since the quantities they involve are the pole masses, M2

V = Re[M2
V (M2

V )] and M2
A = Re[M2

A(M2
A)], the Goldstone

decay constant F 2
G = F 2

G(0), and the vector decay constants f2
V,A in Eq. (3.62), actually evaluated at the different V,A

pole masses and involving also the non-vanishing derivative B̃′0(M2
V/A). Accordingly since the relevant expressions

like Eq. (3.62) are to be evaluated at different values of q2, this implies not quite negligible differences in B̃0(q2), and
in its derivative. Only to the extent that they display a rather mild q2-dependence will the narrow-width version
(3.59) of the sum rules approximatively hold 12. Moreover, the crudely neglected terms O(M2

ψ/M
2
V ) in Eq. (3.67) are

actually not so negligible, the less when ξ increases, just as M2
A/M

2
V also increases with ξ. Thus, we generally expect

stronger deviations from Eq. (3.59) for larger ξ values.
In order to illustrate more precisely the deviations from the Weinberg-like sum rules of Eq. (3.59), taking now the

“exact” expressions of fV/A, MV/A according to our NJL calculations and prescriptions above, we consider the two
ratios

WSR1 ≡
f2
VM

2
V

F 2
G + f2

AM
2
A

, WSR2 ≡
f2
VM

4
V

f2
AM

4
A

, (3.68)

which would both equal unity if the sum rules were satisfied in their narrow-width versions. Similarly, for the scalar
sum rules we consider the two ratios G2

G/G
2
σ and G2

η′/G
2
S . The behaviour of these ratios with respect to ξ and κB/κA

are illustrated in the left and right panels of Fig. 8 for the Weinberg and scalar sum rules respectively. We also indicate
some specific values of the relevant resonance widths, calculated from Eq. (3.66) for the reference value κB/κA = 0.1.

12 We note that those finding and observations are qualitatively similar to the WSR results for the NJL model applied to low energy QCD
in ref. [78], although those authors used somewhat different approximations than ours.
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The corresponding shaded regions thus indicate approximately the range where the narrow width approximation can
be trusted or not. Note that the V and A widths are very weakly sensitive to the values of κB/κA, so that the
indicated ranges are also approximately valid for κB/κA = 0.5. In contrast the η′ and S widths grow rapidly with
κB , such that the indicated limit ΓS/MS = 1/5 (ΓS/MS = 1/10) is pushed, for κB/κA = 0.5, towards larger values
of ξ, ξ ' 1.7 (ξ ' 2, respectively).

The two sum rules of Eq. (3.59) are actually reasonably satisfied in some specific ranges of ξ, respectively either
for intermediate values 1.6 <∼ ξ <∼ 2, or for ξ very close to 1. Conversely the deviations appear maximal in the range
ξ ' 1.2−1.6 and again for very large ξ. Most of these features can be understood more intuitively with the help of the
above analysis. The intermediate range, where the deviations are the smallest, corresponds to a range where, at the
same time, the narrow width approximation is well justified, and the relevant pole-mass differences are still moderate
such that the relevant q2 arguments of B̃0(q2,M2

ψ) are not very different. Then for very large values of ξ, while the

A width is becoming smaller, one enters the regime of increasingly large differences in the relevant B̃0(M2
A/V ,M

2
ψ)

functions, thus increasing the deviations, although the first WSR remains relatively well satisfied. The second WSR
sum rule shows more rapidly increasing and important deviations for larger values of ξ, as intuitively expected since
the fourth power of the masses enhances the increasing MA/MV ratio. The WSR values are not very sensitive to the
ratio κB/κA, but depend mostly on ξ: a larger κB value essentially shifts the values of the sum rules in Fig. 8, as
it implies larger values of κA + κB . Conversely for decreasing values of ξ, the narrow width approximation becomes
totally unreliable, say for ξ <∼ 1.6 in the case of ΓA, where, correspondingly, the deviations are seen to be maximal.

Moreover, when approaching (from below) the threshold M2
V = 4M2

ψ, ΓV is vanishing, but Re[B̃′0(M2
V ,M

2
ψ)] tends

toward infinity, so that f2
V → 0, see Eq. (3.62). This happens around ξ ' 1.4 (1.5) for κB/κA = 0.1 (0.5). This

peculiar feature can be understood as follow. When moving towards the threshold from below, the residue of the
vector resonance, f2

VM
2
V , tends to zero, because its contribution to the spectral function is progressively transferred

from the sub-threshold to the continuum part of the spectral function. Since in the pole dominance approximation
one only considers the lightest resonances, just below the threshold, the continuum contribution is not included within
Eq. (3.62), therefore the crossing of the threshold appears problematic in our NJL approximation. Of course, this
pathological behaviour is not present in Fig. 7, where we consider the complete two-point functions, which include
also the continuum contributions. Finally, very close to the critical coupling ξ ' 1, although both ΓV,A are large,
the mass gap in this region is relatively very small, Mψ � Λ, such that MA −MV is minimal, and FG ' Mψ is also
relatively small. Thus taking the real contributions prescriptions according to Eq. (3.62), one is again very close to
the ideal approximation discussed above, leading to Eq. (3.67).

From these results, if considering that the best possible matching of the Weinberg-type sum rules, established on
more general dynamical grounds, may be more important than the possible limitations of the NJL model approxi-
mation (somewhat in the spirit of Ref. [78]), one could be tempted to infer some preferred range of ξ values, where
both deviations are minimal (although as clear from the figure it is not possible to satisfy the two WSR exactly for
the same value of ξ). However, given the limitations of the NJL dynamical approximation, partly responsible for the
non-perfectly matched Weinberg-type sum rules, we consider this only as an indicative trend rather than a genuine
dynamical constraint on the couplings.

Concerning next the scalar sum rules, note that the above relations in Eqs. (3.64) and (3.65) do not lead to
G2
G(q2) − G2

σ(q2) = 0 and G2
η′(q

2) − G2
S(q2) = 0, which would be valid only if all expressions were evaluated at

the same value of q2. This is due to the pseudoscalar axial mixing, i.e. a term proportional to gA,a(q2) does not
vanish in the difference. In addition, for G2

G(q2)−G2
S(q2), there is a term proportional to κB that indicates that this

difference does not satisfy a convergent sum rule, consequently the discrepancy increases with κB . Indeed, as can
be seen on Fig. 8, some of the scalar sum rules are approximately satisfied very close to ξ = 1, but are rapidly and
badly invalidated for larger values of ξ, even though the narrow width approximation is justified in this region. This
is mainly due to very large differences in the argument of the relevant functions B̃0(q2,M2

ψ), and also, as discussed
above, due to the non-vanishing of κB . Note that, similarly to what is discussed above for the WSRs, the scalar sum
rule associated to the η′ may exhibit a pathological behaviour, when the lightest resonances do not incorporate the
dominant contributions. Indeed, the η′ mass crosses the threshold for κB/κA = 0.1 and the associated ratio G2

η′/G
2
S

tends to zero in this regime, which lies around ξ = 1.1.

In summary, the mismatch between the NJL predictions and the spectral sum rules resides in the gap between the
contribution of the low-lying resonances and the full spectral functions. Given these limitations in the comparison of
our results with the spectral sum rules, and since our interest is mostly the phenomenology of the lightest composite
states, in the following we will keep studying the full range for the parameters ξ and κB/κA.
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H. Evaluation of the oblique parameter S13

In the absence of explicit symmetry breaking effects, like, for instance, the coupling to the external electroweak
gauge fields, the vacuum state |vac〉0 is left invariant by the Sp(4) subgroup of the SU(4) flavour symmetry defined
by the generators TA satisfying Eq. (2.2), where Σε stands for Σ0 as given in Eq. (3.6). After electroweak symmetry
breaking through misalignment, the vacuum state becomes |vac〉v. It is left invariant by a different Sp(4) subgroup,
whose generators TAv = UvT

AU†v now satisfy14

TAv Σv + Σv
(
TAv
)T

= 0, (3.69)

with Σv and the SU(4) transformation Uv given by

Σv = UvΣ0U
T
v , Uv = ei

√
2〈h〉T 1̂/f = cos

( 〈h〉
2f

)
+ 2
√

2 i sin

( 〈h〉
2f

)
T 1̂. (3.70)

The expression of the transformation Uv conveys the information that the Higgs field G1̂ takes a vev 〈h〉. The shift
in the oblique parameter S [79] induced by the composite electroweak sector is given by

∆S = 16π
dΠ

(v)
3Y (q2)

dq2

∣∣∣∣∣
q2=0

, (3.71)

where the two-point correlator Π
(v)
3Y (q2) has the following expression (cf. Appendix A 1)

Π
(v)
3Y (q2)

(
ηµν −

qµqν
q2

)
=
i

2

∫
d4x eiq·xv〈vac|T{

(
J4
µ(x)− J3

µ(x)
) (
J4
ν (0) + J3

ν (0)
)
}|vac〉v. (3.72)

Expressing the generators T 3 and T 4 in terms of TAv and T Âv , T 3 = cos(〈h〉/f)T 3
v − sin(〈h〉/f)T 2̂

v , T 4 = T 4
v , leads to15

∆S = 8π
v2

f2

d

dq2

(
q2ΠV -A(q2)

)∣∣∣∣
q2=0

,
v

f
= sin

( 〈h〉
f

)
. (3.73)

Notice that the Goldstone pole at q2 = 0 does not contribute to this expression. The corresponding shift in the
oblique parameter T vanishes, due to custodial symmetry.

In the NJL approximation the resummed correlator ΠV−A(q2) is defined according to Eq. (3.33), that implies

∆SNJL =
2N

9π

v2

f2

[
1

2
+ g2

A(0)− 3

2

(
1

1 + xψ
− ln

1 + xψ
xψ

)
(1− g2

A(0))

]
=

2N

6π

v2

f2
(1 +O(xψ)) , (3.74)

where xψ ≡M2
ψ/Λ

2, the axial form factor gA(q2) is defined in Eq. (3.40), and its value at q2 = 0 reads

1

gA(0)
= 1− κD/κA

1 + κB/κA
2xψ

(
1− xψ ln

1 + xψ
xψ

)−1(
1

1 + xψ
− ln

1 + xψ
xψ

)
. (3.75)

The left panel of Fig. 9 shows the variation of ∆SNJL as a function of ξ, that is in one-to-one correspondence with
xψ, according to Eq. (3.17). As expected, ∆SNJL decreases when the strong sector decouples, i.e. with the increase
of f . More precisely, for ξ → 1 we have xψ → 0 and ∆SNJL ' 2N/(6π)(v2/f2). As ξ increases, the factor (1− g2

A(0))
becomes non-zero, and ∆SNJL first grows moderately, and then decreases as xψ approaches one. In the range of
parameter space where the narrow-width approximation applies, one may saturate the above correlator with the first
light resonances, see Eq. (A8) with q2 = −Q2, and in this case one obtains [50, 79] ∆SNJL ' 8π(v2/f2)(f2

V − f2
A).

13 We thank Alex Pomarol for encouraging us to estimate the ultraviolet correction to S in the present model.
14 Similarly, the generators of the coset space SU(4)/Sp(4) corresponding to this new orientation of the Sp(4) subgroup are given by

T Âv = UvT ÂU
†
v , and satisfy T Âv Σv − Σv

(
T Âv
)T

= 0.
15 One can repeat the same exercice when in addition the singlet Goldstone boson G3̂ takes a vev 〈η〉. This will leave the expression for

∆S unchanged, the relation between v and the two vev’s being given by

v

f
=

〈h〉√
〈h〉2 + 〈η〉2

sin

(√
〈h〉2 + 〈η〉2

f

)
.
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FIG. 9. On the left, the contribution to the S parameter from the composite electroweak sector in the NJL approximation
[see Eq. (3.74)] as a function of the dimensionless coupling ξ, and for three representative values of f , f = (0.5, 0.75, 1) TeV.
The value of the parameter κB/κA has been taken equal to 0.1 (solid blue curves) and to 0.5 (dashed red curves), while the
number of hypercolours is fixed to N = 4 and the vector coupling is given by κD = κA. The best fit for S is indicated by
the horizontal line at 0.05 and the region above the 3σ limit, assuming T = 0, is shaded. On the right, the preceding UV
contribution, evaluated in the NJL approximation, as well as the IR contributions coming from the non-linear realisation of
the EWSB (i.e. ∆SNJL + ∆SIR and ∆TIR), as a function of f . The black dots correspond to f = 0.5, 0.75 and 1 TeV, and the
curves stand for two representative values, ξ = 1.3 and ξ = 2, with κB/κA = 0.1, N = 4 and κD = κA. The 68 % (red), 95 %
(orange) and 99 % (yellow) C.L. ellipses in the S − T plane are extracted from the fit of Ref. [80]. As stressed in the text, one
expects in general additional contributions, which could significantly impinge on the values of S and T .

The composite sector will also modify the couplings of the Higgs boson to the electroweak gauge bosons by a factor√
1− v2/f2. This modification will upset the cancellation of logarithmic divergences in the gauge-boson self-energies,

and induce model independent shifts in both S and T [81]. These contributions from low energies are given by [27, 28]

∆SIR =
1

6π

v2

f2
ln

(
µ

Mh

)
, ∆TIR = − 3

8π

1

cos2 θW

v2

f2
ln

(
µ

Mh

)
= −9

4

∆SIR

cos2 θW
, (3.76)

One finds ∆SIR = (0.045, 0.022, 0.014) and ∆TIR = (−0.17,−0.08,−0.05), for f = (0.5, 0.75, 1) TeV, if the cut-off

scale is taken equal to 4πFG = 2
√

2πf , leading to non-negligible contributions. Notice that Goldstone boson loops
contribute to the low-q2 end of the ΠV -A(q2) function, but only at sub-leading order in the 1/N expansion. The
NJL approximation only provides leading-order contributions, and thus cannot remove this sub-leading (in the 1/N
expansion) cut-off dependence in ∆SIR and ∆TIR.

The right panel of Fig. 9 shows the combined contributions from Eqs. (3.74) and (3.76) to the S and T parameters
as a function of f , for different values of ξ and of κB/κA. When linear couplings between the top quark and the
fermions of the strong sector are introduced, one expects in general additional contributions, which could significantly
affect the S and T parameters. These fermionic contributions, as well as other order 1/N corrections than ∆SIR and
∆TIR, are beyond the scope of this paper. The right panel of Fig. 9 thus displays only a specific kind of contributions,
and does by no means constitute a complete prediction of the model under discussion as far as S and T are concerned.

IV. ADDING THE COLOURED SECTOR

An appealing way to couple the SM fermions to the composite Higgs is to introduce a linear coupling between
each SM fermion and a composite fermion resonance with the same quantum numbers. Such an approach, known as
fermion partial compositeness [26, 82], is especially attractive in the case of the top quark: relatively light composite
top partners allow to induce the required, large top Yukawa coupling. In order for the composite sector to contain
partners for the top (and possibly the other SM quarks), one needs to introduce constituent fermions Xf that are
charged under the colour group SU(3)c. It is not possible to construct a ‘baryon’ (a hypercolour invariant spin-1/2
bound state) if Xf transforms under the fundamental, pseudo-real representation of Sp(2N). Following [8], we rather

assume that Xf transforms under the two-index, real representation of Sp(2N) that is antisymmetric, Xf
ij = −Xf

ji,

and traceless, Xf
ijΩji = 0. This irreducible representation has dimension (2N + 1)(N − 1). In order to embed a
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SU(3)c triplet-antitriplet pair, one has to introduce six such fermions, f = 1, . . . , 6. Then, the theory acquires a
flavour symmetry SU(6) ⊃ SU(3)c, with Xf ∼ 6SU(6) = (3 + 3̄)SU(3)c . The addition of such an X-sector modifies
several results that we have derived for the ψ-sector in isolation, because the underlying Sp(2N) gauge dynamics
connects the two sectors in a highly non-trivial way, as we now describe.

Once both types of fermions ψa and Xf are in presence, the flavour symmetry group becomes G = SU(4) ×
SU(6) × U(1), where U(1) is the non-anomalous linear combination of the two axial symmetries U(1)ψ and U(1)X ,
which separately are both anomalous with respect to Sp(2N). The current corresponding to the U(1)ψ transformations
and its divergence were already given in Eqs. (3.4) and (3.5), respectively. In the case of the U(1)X transformations,
the corresponding expressions read [a sum over the flavour indices is understood, gauge and spinor indices are omitted]

J 0
Xµ =

1

2

[(
XσµX

)
−
(
XσµX

)]
, (4.1)

∂µJ 0
Xµ = 4

√
3mXP0

X + 2(N − 1)
NX
f g

2
HC

32π2

N(2N+1)∑
I=1

εµνρσG
I,µν
HC G

I,ρσ
HC , (4.2)

where the factor NX
f = 3 accounts for the number of flavours in the X-sector. In the above, X, as defined in Table

III below, transforms under the Sp(2N) gauge group in the same way as X, and the gauge-invariant bilinear fermion
contractions between X and X are defined as

(XfXg) ≡ Xf
ijΩjkX

g
klΩli = tr(XfΩXgΩ) . (4.3)

Contractions like (XfXg) and (XfX
g) are defined in the same way. For later use we have also introduced a flavour

independent mass term for the X fermions,

LXm = −2
√

3mXS0
X , (4.4)

with

S0
X =

1

2

[
(XT 0

XΣc0X) + (XΣc0T
0
XX)

]
, P0

X =
1

2i

[
(XT 0

XΣc0X)− (XΣc0T
0
XX)

]
, (4.5)

in agreement with the general definitions given in Eq. (2.6) and the normalisation adopted there for the singlet

scalar and pseudoscalar densities, that is T 0
X = 11/(2

√
3). Note that the singlet contraction of two fermions in the

(anti-)fundamental of SU(6) is realised through the matrix

Σc0 =

(
0 113

113 0

)
, (4.6)

which determines the SU(6)/SO(6) vacuum direction. The two conditions in Eq. (2.2) are satisfied with Σε = Σc0
and the SU(6) generators TF and T F̂ defined in appendix A 2.

Lorentz Sp(2N) SU(6) SO(6)

Xf
ij (1/2, 0)

ij
6f 6

Xfij ≡ ΩikX
†
fklΩlj (0, 1/2)

ij
6f 6

Mfg
c ∼ (XfXg) (0, 0) 1 21fg 20′ + 1

Mcfg ∼ (XfXg) (0, 0) 1 21fg 20′ + 1

aµX ∼ (X
f
σµXf ) (1/2, 1/2) 1 1 1

(V µc , A
µ
c )gf ∼ (Xfσ

µXg) (1/2, 1/2) 1 35fg 15 + 20′

TABLE III. The transformation properties of the elementary fermions, the spin-0 and spin-1 fermion bilinears, in the colour
sector of the model. Spinor indexes are understood, and brackets stand for a hypercolour-invariant contraction of the Sp(2N)
indexes.
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Examining the respective U(1)ψ and U(1)X anomaly coefficients, it is easily seen that the combination of the two
axial singlet currents given by

J 0
µ = `( )J 0

Xµ −
3

2
`( )J 0

ψµ =
3

2
`( )

(
ψaσµψa

)
− `( )

(
XfσµXf

)
, (4.7)

is free from the gauge anomaly,

∂µJ 0
µ = 4

√
3mXP0

X , (4.8)

where the Dynkin index `(r) of the representation r of the gauge group Sp(2N) gives the normalisation of the Sp(2N)
generators T I(r) in this representation,

tr[T I(r)T J(r)] =
1

2
`(r)δIJ , `( ) = 1 , `( ) = 2(N − 1) . (4.9)

Consequently, the axial singlet transformation of both the ψ and X fermions, with charges satisfying

qψ = −3(N − 1)qX , (4.10)

is a true symmetry of the theory, even at the quantum level, in the limit where mX vanishes.
The introduction of fermions in the two-index antisymmetric representation of the Sp(2N) gauge group has another

consequence. The first coefficient of the β-function of the gauge coupling gHC now reads

b0 =
11

3
C2(adj)− 4

3

∑
i=ψ,X

N i
f `(ri) =

2

3
(11− 4NX

f )

[
N + 1− 2

4NX
f −Nψ

f

4NX
f − 11

]
. (4.11)

Therefore, as soon as NX
f ≥ 3, b0 stays positive and asymptotic freedom is preserved (at one loop) only if the number

of colours N is bounded from above,

N < 2
4NX

f −Nψ
f

4NX
f − 11

− 1 [NX
f ≥ 3], (4.12)

which, in the case at hand (Nψ
f = 2 and NX

f = 3), means N ≤ 18. This upper bound prevents us from considering the
limit N →∞ at the level of the fundamental hypercolour theory once the sector of X fermions has been introduced.
Notice, however, that independently from the existence of this upper bound on N , the anomalous contribution on
the left-hand side of Eq. (4.2) would not vanish in the ’t Hooft limit N →∞, with Ng2

HC staying constant. Despite
the absence of a well-defined large-N limit at the level of the fundamental theory, it remains useful to keep the naive
counting in powers of 1/N at the level of the NJL description of the dynamics, since it allows, for instance, to identify
contributions which will be numerically suppressed even for already moderate values of N . Therefore, when, in the
sequel, we mention or use the 1/N expansion, it will thus always be understood that it refers to the NJL context.

A. The pattern of flavour symmetry breaking

Concerning the pattern of spontaneous symmetry breaking, there are now two possible fermion bilinears that may
form a condensate. A non-zero 〈ψaψb〉 would break SU(4)×U(1) to Sp(4), with NGBs transforming as (5 + 1)Sp(4).

A non-zero 〈XfXg〉 would break SU(6)×U(1) to SO(6), with NGBs in the representation (20′ + 1)SO(6) = (8 + 6 +
6̄ + 1)SU(3)c . Light coloured scalars are phenomenologically problematic because of the strong bounds from collider
searches. An important contribution to their mass is induced by gluon loops, as discussed in section II E, in appendix
A 2 and in section V B. Another possibility to lift the coloured NGBs from the low energy spectrum is to introduce the
mass term (4.4), which explicitly breaks SU(6)×U(1) to SO(6). Alternatively, if SU(6) does not undergo spontaneous
breaking, coloured NGBs would be absent. However, we will show below that the matching of anomalies would then
require massless, coloured fermions, that again call for a large radiative mass or for mX 6= 0.

Since we have adopted the same fermion content as in Ref. [8], let us stress some differences with respect to the
discussion of flavour symmetries in that paper. First, the non-anomalous axial U(1) symmetry was not discussed: we
will show that it has several phenomenological consequences. Second, the colour triplet and antitriplet components of
Xf were treated separately, and the global symmetry was identified with SU(3)× SU(3)×U(1)V , broken by a mass
term to SU(3)c×U(1)V . However, these are just maximal subgroups of the complete global symmetry SU(6), and of
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the complete unbroken subgroup SO(6), respectively. The pattern is different from QCD, because there quarks and
antiquarks transform under different representations of the gauge group, while here the six copies of Xf transform
in the same way under Sp(2N). Note that U(1)V was introduced in Ref. [8] in order to provide top partners with
the appropriate SM hypercharge, but remarkably enough such a symmetry is automatically present, as one of the
unbroken generators within SO(6).

Once both the elementary fermions ψa and Xf are introduced, one can form several baryons. As a consequence,
the anomaly matching condition provides non-trivial constraints on the spontaneous symmetry breaking, as discussed
in section II B. If one denotes by V the conserved currents associated to the Hm generators, and by A the conserved
currents associated to the generators of the coset G/Hm (see section II A), one needs only consider the anomaly
matching constraints that arise from the 〈V V A〉 correlators. Then, to each fermion transforming in the representation
r of G is associated an anomaly coefficient A(r), which is defined by

2tr
[
T Â(r){TB(r), TC(r)}

]
= A(r)dÂBC , (4.13)

where TA(r) and T Â(r) are the generators of Hm and of G/Hm, respectively, in the representation r, and dÂBC is
an invariant tensor that depends on G. The generators of the fundamental representation r0 are normalised as in
Eq. (4.9), and its anomaly coefficient is fixed to A(r0) = 1. The anomaly matching condition can be written as∑

i

niA(ri) =
∑
i

n′iA(ri) , (4.14)

where the left-hand (right-hand) sum runs over the representations of the constituent (composite) fermions, and ni
(n′i) are their multiplicities. If this equality cannot be satisfied, then G necessarily undergoes spontaneous symmetry
breaking.

In the model under investigation, the possible trilinear baryons consist of

Ψabf = (ψaψbXf ) , Ψab
f = (ψaψbXf ) , Ψaf

b = (ψaψbX
f ) , Ψfgh = (XfXgXh) , Ψfg

h = (XfXgXh) , (4.15)

plus their conjugates, where the brackets stand for a spin-1/2, hypercolour-singlet contraction (multiple, independent
contractions of this kind may be possible). Each Ψ decomposes in several irreducible representations (r4, r6) of
SU(4)×SU(6), each corresponding to an independent baryon state: for example Ψabf ∼ [(6, 6)+(10, 6)]. In addition,
exotic baryons are also possible, formed by a larger, odd number of constituent fermions.

Let us begin with the SU(4)3 anomaly. As ψ lies in the fundamental representation of SU(4), its anomaly coefficient
is A4(4) = 1. The SU(4) representations contained in ψaψb or ψaψb have coefficients A4(1) = A4(6) = A4(15) = 0
and A4(10) = 8. Therefore, the anomaly matching between ψ and the trilinear baryons Ψ reads

2N ·A4(4) = 2N =
∑

(r4,r6)

n(r4,r6)A4(r4) · dim(r6) = n(10,6)6 · 8 , (4.16)

where the sum runs over the various massless baryon states, and n(r4,r6) are their multiplicities. One can generalise

the result to include exotic baryons: in full generality, hypercolour invariance requires the total number of ψ and ψ
fermions to be even; then, in order to obtain a fermion, one needs that the total number of X and X is odd. One
can check [83] that (i) the anomaly coefficient of any SU(4) representation, contained in 4× · · · × 4 an even number
of times, is a multiple of 8, and (ii) the dimension of any SU(6) representation, contained in 6 × · · · × 6 an odd
number of time, is a multiple of 2. As a consequence, the right-hand side of Eq. (4.16) generalises to a multiple of
2 · 8, and the matching is possible only for N = 8n, with n integer. An example with N = 8 is provided by one
exotic baryon (ψψXXX) ∼ (10, 20) plus three copies of (ψψX) ∼ (10, 6). In summary, for N 6= 8n SU(4) necessarily
spontaneously breaks to Sp(4) and the corresponding NGB decay constant FG is non-zero. Strictly speaking, the
other order parameters, such as the condensate 〈ψψ〉, may still vanish, for instance if a discrete symmetry subgroup
leaves the vacuum invariant but not the (ψψ) operator [84]. This is, however, a rather unlikely situation to happen
[85], and we will assume that the spontaneous symmetry breaking of the SU(4) flavour group (towards its Sp(4)
subgroup) is due to the formation of a non-vanishing 〈ψψ〉 condensate. This corresponds actually to the dynamical
situation described by the NJL framework, where SU(4) order parameters like the condensate are proportional to FG.

Next, let us consider the SU(6)3 anomaly. The crucial observation is that there are baryons, contained either in
(ψψX) or (XXX), that transform under the representation (1, 6). These states have evidently the same anomaly
coefficient A6(6) = 1 as the constituent fermion X, therefore the matching is trivially possible for any value of N :

(2N + 1)(N − 1) ·A6(6) =
∑

(r4,r6)

n(r4,r6) dim(r4) ·A6(r6) = n(1,6)1 ·A6(6) + . . . , (4.17)
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where the ellipsis stands for the contribution from larger representations, which are not relevant in the present
context. As a consequence, from the point of view of the anomaly condition, the spontaneous breaking of SU(6) is
not a necessity, and in particular it allows the possibility that 〈XX〉 = 0. However, the mass inequalities mentioned
in section II C require, in the case where massless baryons are present in the bound state spectrum, massless spin-zero
bound states, coupled to the currents associated with the generators of the SU(6)/SO(6) coset, which is tantamount
to the spontaneous breaking of SU(6) towards SO(6).

Note that the massless baryons required by anomaly matching carry colour and are phenomenologically excluded.
Once these baryons are made heavy by explicit symmetry breaking, there are no exact NGBs either, and again one
cannot tell whether the dynamics breaks spontaneously SU(6) or not. Indeed, in either case an explicit symmetry
breaking mass term mXXX is required for specular reasons: in the unbroken phase, one needs it to give a sufficiently
large mass to the coloured baryons; in the broken phase, the mass term is necessary to make the coloured NGBs
sufficiently heavy. Ref. [86] argues that the mass of the top partners can be controlled by the parameter mX , if one
assumes to be in the unbroken phase.

Finally, one should consider the anomalies involving the non-anomalous U(1). The anomaly for U(1)SU(6)2 is easily
matched for any N , by the same set of baryons that matches the SU(6)3 anomaly. We also proved that the other
anomalies involving U(1), that is U(1)SU(4)2 and U(1)3, can be matched for any N as well, but using a different set
of baryons in each case. It is highly non-trivial to match all U(1) anomalies at the same time, and thus preserve this
symmetry from spontaneous breaking. As we have already argued though, it is quite unlikely that the spontaneous
breaking of the SU(4) flavour symmetry happens without, at the same time, also triggering the spontaneous breaking
of the U(1) symmetry.

In the following sections, we will apply the NJL techniques to the complete model including the electroweak and
the colour sector. In particular, we will study the mass gap equations that determine 〈ψψ〉 and 〈XX〉 in terms of
the coefficients of the four-fermion operators. For N 6= 8n, only the phase 〈ψψ〉 6= 0 of the NJL model should be
considered as a good approximation of the full dynamics, while 〈XX〉 is not constrained by the matching of anomalies.
For N = 8n, both condensates may or may not vanish.

B. Sum rules and pseudoscalar decay constants in the flavour-singlet sector

As a last point to be discussed in this section, let us recall that in section II D we introduced the spectral sum rules
for a simple group G that undergoes spontaneous breaking. That discussion applies to the ψ-sector alone, with coset
SU(4)/Sp(4), as well as to the X-sector in isolation, with coset SU(6)/SO(6). In the complete model, one can also
construct correlation functions involving simultaneously the two sectors and that are order parameters for the whole
symmetry group SU(4) × SU(6) × U(1), i.e. involving also the non-anomalous axial singlet transformations. This
leads to additional sum rules that may constrain the resonance spectrum. At the level of two-point functions, the
relevant order parameters involving the two sectors are:

ΠψX
S0 (q2) = i

∫
d4x eiq·x〈vac|T{S0

ψ(x)S0
X(0)}|vac〉 ,

ΠψX
P 0 (q2) = i

∫
d4x eiq·x〈vac|T{P0

ψ(x)P0
X(0)}|vac〉 . (4.18)

From them we derive two additional spectral sum rules, valid in the limit where mX vanishes:∫ ∞
0

dt ImΠψX
S0

(t) = 0 ,

∫ ∞
0

dt ImΠψX
P0

(t) = 0 , (4.19)

which respectively constrain the spectrum of scalar and pseudoscalar singlets resonances.
One could examine the realization of these sum rules in the NJL framework, similarly to what we did for the

electroweak sector in section III G, for instance investigating whether the first low-lying resonances in each channel
saturate them. Here we rather describe some of the expected features in general terms, independently from the NJL
approximation. In the singlet pseudoscalar channel, we expect two states. The first one is the Goldstone boson η0

produced by the spontaneous breaking of the non-anomalous axial U(1) symmetry. The second one is a massive
pseudoscalar state η′, which corresponds to the second Goldstone boson that would be present in the absence of
the gauge anomaly in the divergences of the U(1)ψ and U(1)X currents. These states both couple to the (partially)
conserved U(1) current, defined in Eq. (4.7) above,

〈vac|J 0
µ (0)|η0(p)〉 = iFη0pµ , 〈vac|J 0

µ (0)|η′(p)〉 = iFη′pµ . (4.20)
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In the limit where mX vanishes, Fη0 remains nonzero and Fη′ ∼ O(mX), whereas for the masses M2
η0 ∼ O(mX) while

M2
η′ does not vanish. Of course, there are also couplings to the individual, non conserved, U(1)ψ and U(1)X currents,

defined in Eqs. (3.4) and (4.1), respectively

〈vac|J 0
ψµ(0)|η0(p)〉 = iFψη0pµ , 〈vac|J 0

ψµ(0)|η′(p)〉 = iFψη′pµ ,

〈vac|J 0
Xµ(0)|η0(p)〉 = iFXη0pµ , 〈vac|J 0

Xµ(0)|η′(p)〉 = iFXη′ pµ . (4.21)

According to the expressions given in Eqs. (3.4), (4.1), and (4.7), these four decay constants are related to the ones

in the preceding equation through Fη0,η′ = FXη0,η′ − 3(N − 1)Fψη0,η′ . Both η0 and η′ states also couple to the singlet
pseudoscalar densities,

〈vac|P0
ψ(0)|η0(p)〉 = Gψη0 , 〈vac|P0

ψ(0)|η′(p)〉 = Gψη′ ,

〈vac|P0
X(0)|η0(p)〉 = GXη0 , 〈vac|P0

X(0)|η′(p)〉 = GXη′ , (4.22)

and through Eq. (4.8) the two following relations hold:

Fη0M
2
η0 = 4

√
3mXG

X
η0 , Fη′M

2
η′ = 4

√
3mXG

X
η′ . (4.23)

Although they do not lead to sum rules, it is both interesting and useful to consider two-point correlators involving
the axial singlet current and the singlet pseudoscalar densities, defined in analogy to Eq. (2.15) for the non-singlet
case,

Πψ
A0P 0(q2)qµ =

∫
d4x eiq·x〈vac|T{J 0

µ (x)P0
ψ(0)}|vac〉 , ΠX

A0P 0(q2)qµ =

∫
d4x eiq·x〈vac|T{J 0

µ (x)P0
X(0)}|vac〉 .

(4.24)

Πψ
A0P 0(q2) and ΠX

A0P 0(q2) are order parameters of SU(4)× U(1) and of SU(6)× U(1), respectively, and in the limit

where the current J 0
µ (x) is conserved they are both saturated by the massless η0 pole, as in Eq. (2.16). In the

presence of the mass mX , this is no longer true, and the Ward identities give

q2Πψ
A0P 0(q2) = 4

√
3mXΠψX

P 0 (q2)− 6(N − 1)〈S0
ψ〉 , q2ΠX

A0P 0(q2) = 4
√

3mXΠX
P 0(q2) + 2〈S0

X〉 . (4.25)

These lead, in particular, to the constraints

4
√

3mXΠψX
P 0 (0) = 6(N − 1)〈S0

ψ〉 , 4
√

3mXΠX
P 0(0) = −2〈S0

X〉 , (4.26)

as well as

Fη0G
ψ
η0 = 6(N − 1)〈S0

ψ〉+O(mX) , Fη0G
X
η0 = −2〈S0

X〉+O(mX) , (4.27)

which provide useful cross-checks for the NJL calculation.

C. Effective couplings induced by the hypercolour gauge anomaly

In order to study, in the NJL framework, the anomalous divergence of Eq. (4.2), induced by the Sp(2N) hypercolour
gauge interaction, let us first discuss the X-sector in isolation. The sector of gauge configurations with unit winding
number now induces 2(N − 1) fermionic zero modes per flavour (in the present case, NX

f = 3) for the Dirac operator

corresponding to the X and X fermions (the uninteresting case N = 1 is, of course, discarded). Through the index
theorem, these zero modes induce a violation of the U(1)X charge by 12(N − 1) units, which, as already discussed in
Section III A for the electroweak sector, has to be reproduced by the effective ’t Hooft vertex. In the case of an Sp(4)
gauge group (N = 2), it is straightforward to construct an operator OX that induces this violation of the invariance
under U(1)X , while at the same time preserving the invariance under the SU(6) flavour group:

OX = − 1

6!
εf1···f6εg1···g6(Xf1Xg1) · · · (Xf6Xg6) = −det(XfXg) , (4.28)

where the determinant is taken in the six-dimensional flavour space. For N > 2 and only 6 Weyl fermions at our
disposal, one obvious extension of the above operator satisfying the required properties would consist in taking ON−1

X .
One should, however, be aware that, on the one hand, this simple procedure might not comply with the properties of
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the ’t Hooft vertex as arising from the Grassmann integration over the fermionic collective coordinates16, and, on the
other hand, that the ’t Hooft vertex could also involve derivatives of the fermion fields. An example where this second
feature is known to happen is provided by the case of an SU(2) ' Sp(2) gauge group with fermions in the adjoint
representation [90]. Delving more deeply into these issues would, however, lead us too far astray. Moreover, dealing
with a term involving derivatives of the fermion fields is beyond the NJL framework as it is usually understood. From
the point of view of the latter, the term ON−1

X , possessing all the required symmetry properties, is quite appropriate,
and henceforth we will assume that at the level of the NJL approach, it provides the required description of the
explicit breaking of the U(1)X symmetry by quantum effects.

The preceding discussion considered the SU(6) sector in isolation and, apart from some subtle aspects due to
the representation of the gauge group under which the X fermions transform, has essentially paralleled the related
discussion for the SU(4) sector in section III A. We will now bring the two sectors together and, as was already the
case for the discussion of the anomaly matching conditions in section IV A, we will find that when acting together
the two sectors unravel new features. Indeed, the structure of anomaly-driven effective terms is actually different, as
one should take into account that a combination of U(1)X and U(1)ψ transformations, as given in Eq. (4.10), remains
non-anomalous. This drastically changes the form of appropriate effective interactions generalising the ’t Hooft terms
usually being given by a (flavour) determinant, since ψ and X are not in the same representation. Combining this
information with the discussion above and in Section III A, the lowest dimensional operator that breaks both U(1)ψ
and U(1)X axial singlet symmetries, while preserving the U(1) symmetry generated by the combination (4.7), reads

LψX = AψX
Oψ

(2N)2

[ OX
[(2N + 1)(N − 1)]6

](N−1)

+ h.c. , (4.29)

with OX defined in Eq. (4.28) and Oψ the antisymmetric four-fermion operator in Eq. (3.1),

Oψ = −1

4
εabcd(ψ

aψb)(ψcψd) . (4.30)

The constant AψX can be taken real and positive by adjusting the phase of ψ. Its normalisation in Eq. (4.29) has been
conveniently chosen in order to compensate the different powers of N contained in the condensates, see Eqs. (3.19)
and (5.4). This normalisation, with an N -independent coefficient AψX , would reproduce the correct behaviour of
the U(1)ψ,X anomaly in the large-N limit, would the latter exist, see the discussion around Eqs. (4.11) and (4.12).
Indeed, Eq. (4.2) shows that the effect of the anomaly would not vanish in this limit, as (N−1)g2

HC ∼ (N−1)/N ∼ 1.
As we will see in Section V E, a trace of this feature appears in the mass of the η′, which is proportional to AψX ,
M2
η′ ∼ AψX [1 +O(1/N)].

After formation of the two condensates 〈ψψ〉 and 〈XX〉, the interaction (4.29) will generate effective four-fermion
interactions for ψ and X, as well as a mixed ψψXX term, upon replacing appropriate number of fermion bilinears
by their respective condensate (i.e. closing the loops). To identify these four-fermion interactions, relevant for the
computation of the meson spectrum, let us first consider for simplicity the SU(6) → SO(6) sector. The fermion
bilinear can be decomposed as

(XfXg) ≡ 2(T 0
XΣc0)gf

(
XΣc0T

0
XX

)
+ 2(T F̂Σc0)gf

(
XΣc0T

F̂X
)
, (4.31)

in terms of the SO(6) singlet and the two-index symmetric traceless components. Then, taking into account combi-
natorial factors, the operator of Eq. (4.28) can be decomposed as 17

OX =
1

27

[
(XΣc0T

0
XX)6 − 3(XΣc0T

0
XX)4 (XΣc0T

F̂X) (XΣc0T
F̂X) + · · ·

]
, (4.32)

where a sum over the SU(6) generators T F̂ belonging to the SU(6)/SO(6) coset is understood. For the SU(4)→ Sp(4)
sector, the similar appropriate decomposition into Sp(4)-invariant bilinears reads

Oψ =
(
ψΣ0T

0
ψψ
) (
ψΣ0T

0
ψψ
)
−
(
ψΣ0T

Âψ
)(

ψΣ0T
Âψ
)
. (4.33)

16 Useful introductions to instantons are provided by Refs. [87–89]
17 The coefficient of

(
XΣc0T

0
XX

)6
in det(XfXg) is 26 det(Σc0T

0
X) = −1/27, and the coefficient of

(
XΣc0T

0
XX

)4 (
XΣc0T

F̂X
)(

XΣc0T
ĜX

)
is 26 det(Σc0T

0
X)(2

√
3)2 1

2

[
tr(T F̂ )tr(T Ĝ)− tr(T F̂T Ĝ)

]
= 1

9
δF̂ Ĝ.
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Next we insert the results (4.32) and (4.33) into the full effective Lagrangian Eq. (4.29), and obtain

LψX =
AψX

(27)N−1

{(
ψΣ0T

0
ψψ

2N

)2 [
XΣc0T

0
XX

(2N + 1)(N − 1)

]6(N−1)

−
(
ψΣ0T

Âψ

2N

)2 [
XΣc0T

0
XX

(2N + 1)(N − 1)

]6(N−1)

−3(N − 1)

(
ψΣ0T

0
ψψ

2N

)2 [
XΣc0T

0
XX

(2N + 1)(N − 1)

]6(N−1)−2
[

XΣc0T
F̂X

(2N + 1)(N − 1)

]2}
+ · · · , (4.34)

where the ellipsis denotes other interaction terms, of no relevance for our purposes. The overall constant AψX
remains arbitrary, but the ratio of the coefficients of the three effective XXXX, ψψψψ, and ψψXX terms are fixed.
All effective couplings in the singlet and non-singlet sectors are thus related to the unique coupling AψX in Eq. (4.29),
times appropriate powers of the two condensates and combinatorial factors (see section V A below).

V. SPECTRUM OF MESON RESONANCES IN PRESENCE OF THE COLOURED SECTOR

In this section we will compute the condensates and the masses of mesons, once the coloured sector is added to the
electroweak sector, including their mixing through Eq. (4.34). The two sectors share the same Sp(2N) hypercolour
gauge interaction, therefore one can, in principle, relate the sizes of the effective four-fermion operators in the two
sectors. One may assume, in particular, that the effective interactions between hypercolour-singlet fermion bilinears
originate from Sp(2N) current-current operators (see appendix D). In this approximation one can link, to some extent,
the couplings of the coloured operators to the electroweak ones. In this way the mass gap and the spectrum in the
SU(6) sector are connected to the ones in the SU(4) sector.

A. The mass gap in a theory with two sectors

Let us begin with the coloured scalar operators, which are relevant for the mass gap and for the spin-zero mesons.
Besides the anomalous operator (4.34), there is one more independent four-fermion operator that describes the dy-
namics in analogy with the electroweak sector Lagrangian in Eq. (3.1),

LXscal =
κA6

(2N + 1)(N − 1)
(XfXg)(XfXg)−

1

2
mX

[
(XΣc0X) + (XΣc0X)

]
, (5.1)

where the coupling constant κA6 is real and its normalisation by an inverse factor (2N+1)(N−1) has been conveniently
chosen to compensate for the factors of N induced by the trace over hypercolour in the X-fermion one-loop two-point
functions (see appendix C). In contrast with the electroweak sector, we also include in Eq. (5.1) an explicit symmetry-
breaking mass mX , already introduced in Eq. (4.4), which can be chosen real and positive by tuning the phase of X.
Note that also AψX in Eq. (4.34) can be chosen real and positive, by tuning the phase of ψ. Such a mass term may
be phenomenologically necessary to raise the masses of the coloured pNGBs, in order to comply with direct collider
detection limits [91]. More generally, a non-zero mX leads to several qualitative effects that are worth to be explored.
As the contraction over Sp(2N) indices in Eq. (4.3) is symmetric in hypercolour space, the scalar bilinear (XfXg)
must be symmetric in flavour space, that is, it transforms as the 21s representation of SU(6), to be compared with
(ψaψb), which transforms as the 6a of SU(4). Since 21SU(6) = (1 + 20′)SO(6), one can rewrite the Lagrangian (5.1) in
the physical basis, as

LXscal =
2κA6

(2N + 1)(N − 1)

[
(XΣc0T

0
XX)(XT 0

XΣc0X) + (XΣc0T
F̂X)(XT F̂Σc0X)

]
− 1

2
mX

[
(XΣc0X) + (XΣc0X)

]
, (5.2)

where T F̂ are the 20 broken generators spanning the SU(6)/SO(6) coset.
Combining the effect of the operators in Eqs. (3.14), (4.34) and (5.2), one can derive a system of two coupled gap

equations for the SU(4) and SU(6) sectors, 1− 4(κA + κB)Ã0(M2
ψ) = 0 ,

1− 4(κA6 + κB6)Ã0(M2
X)− mX

MX
= 0,

(5.3)

which determine the dynamical masses Mψ and MX as functions of the four couplings κA,B,A6,B6 and of the mass
mX . More precisely, when mX 6= 0 the scale MX is not entirely generated by the dynamics, see Fig. 12. Just as in
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the electroweak sector, Mψ can be traded for 〈ΨΨ〉, see Eq. (3.19), the NJL dynamical mass MX is also related to
the condensate 〈XX〉 in the coloured sector,

〈XX〉 ≡ 1√
NX
f

〈SX0 〉 = −2(2N + 1)(N − 1)MXÃ0(M2
X), (5.4)

where the factor (2N + 1)(N − 1) comes from the trace over hypercolour. The two mass gap equations are coupled
because the first operator in Eq. (4.34) induces both the κB and κB6 terms in Eq. (5.3). These contributions are
obtained by closing all but one fermion bilinears into a tadpole loop, as illustrated in Fig. 10 for the case of the
ψ-sector. This amounts to replacing each bilinear by the associated condensate, and to add a combinatorial factor 2
in κB , as one ψ-bilinear out of 2 is not closed, and 6(N − 1) in κB6, as one X-bilinear out of 6(N − 1) is not closed.
Therefore, the anomalous terms in the gap equations are related to the original anomaly coefficient AψX by

κB ≡
AψX

2 · 27N−1

[
4NX

f 〈XX〉2
(2N + 1)2(N − 1)2

]3(N−1)
2

2N
= [4MXÃ0(M2

X)]6(N−1) AψX
2N

, (5.5)

κB6 ≡
AψX

2 · 27N−1

[
4Nψ

f 〈ψψ〉2
(2N)2

][
4NX

f 〈XX〉2
(2N + 1)2(N − 1)2

]3(N−1)−1
6(N − 1)

(2N + 1)(N − 1)
=

4N

2N + 1

M2
ψ

M2
X

Ã2
0(M2

ψ)

Ã2
0(M2

X)
κB . (5.6)

The combinatorial factors will be essential, among other things, in order to recover the singlet Goldstone boson, see
section V E. The effective couplings κB,B6 are normalised such as to contribute to the gap equations (5.3) as for a
single sector in isolation. However, since they are functions of both dynamical masses, κB,B6 = κB,B6(M2

ψ,M
2
X), the

two gap equations are actually coupled in a non trivial way.

Let us analyse in some detail the system (5.3) of two coupled gap equations, because it is qualitatively different
from the canonical NJL gap equation of QCD, and, to the best of our knowledge, it was not studied in the existing
literature. It is convenient to take the effective coupling κB as the free parameter characterising the effect of the
hypercolour anomaly, that is, to express κB6 as a function of κB according to Eq. (5.6). This choice makes it easier to
compare with the electroweak sector in isolation, and it also simplifies the algebraic form of the solutions of Eq. (5.3).
As we have seen in section III A, the SU(4) sector forms a condensate and a non-zero dynamical mass Mψ is generated
when ξ ≡ (κA + κB)Λ2/(4π2) is above the critical value ξ = 1. Similarly, in the chiral limit mX = 0, a non-zero
dynamical mass MX is generated when ξc ≡ (κA6 + κB6)Λ2/(4π2) > 1. Beyond that, the general resolution of the
set of equations (5.3) coupled through Eq. (5.6) is very involved, especially for mX 6= 0, and it can only be solved
numerically. Still, it is instructive to consider a few special cases.

= +
κA

· · ·
ψ ψ ψ ψ ψ ψ

ψ ψ

X X

AψX

FIG. 10. Graphical illustration of the mass-gap equation in the ψ sector. The convention for the propagator lines are the
same as in Fig. 1. The first term, proportional to κA, remains the same as in the electroweak sector in isolation. The second
term, proportional to AψX , is obtained by closing one loop of ψ-fermions and 6(N − 1) loops of X-fermions in Eq. (4.34).
The mass-gap equation in the X-sector is obtained in an analogous way, with an additional term proportional to the explicit
fermion mass mX .
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1. Case mX = 0, κB = 0

When κB = 0, i.e. AψX = 0, the two gap equations decouple. It is convenient to introduce dimensionless variables
and functions in order to rewrite them in the form{

1− ξAĀ(xψ) = 0 ,

1− ξA6Ā(xX) = 0 ,
(5.7)

where xψ,X ≡ M2
ψ,X/Λ

2, ξA,A6 ≡ (Λ2/4π2)κA,A6, and Ā(x) ≡ 1 − x ln(1 + 1/x). The solutions of the two equations

in (5.7) are simply related as

xψ(ξA) = xX (ξA6) . (5.8)

The result is to restrict the range of the allowed values of ξ|κB=0 = ξA, as compared to the case of one sector in
isolation. Indeed, imposing that both conditions 0 ≤ xψ(ξA) ≤ 1 and 0 ≤ xX(ξA6) ≤ 1 be satisfied simultaneously
requires

max

(
1,
κA
κA6

)
≤ ξ ≤ min

(
1,
κA
κA6

)
1

1− ln 2
(κB = 0) . (5.9)

Hence, for κA/κA6 > 1 the minimal value of ξ is larger than unity, whereas for κA/κA6 < 1, the highest value allowed
for ξ is reduced, see Fig. 12. These considerations do not depend explicitly on the value of N , although the actual
values of κA and of κA6, being determined by the hypercolour dynamics, will depend on N .

Thus, although the two gap equations are decoupled, the presence of the second one impinges on the possible values
allowed for the coupling of the second one, and vice-versa. This simply illustrates the fact that while the two gap
equations may be decoupled, they nevertheless share the same effective-theory cutoff Λ.

2. Case mX = 0, κB 6= 0

By treating κB as an extra free parameter, the first equation in the system (5.3) is formally identical to the gap
equation for the electroweak sector in isolation, Eq. (3.17), with solution xψ = xψ(ξ). Then, rewriting κB6 as a
function of κB according to Eq. (5.6), the second gap equation becomes a self-consistent relation for xX , that depends
on N , ξ, ξA6, and ξB ≡ (Λ2/4π2)κB : 1− ξĀ(xψ) = 0 ,

G(xX , ξA6) ≡ xXĀ(xX)
[
1− ξA6Ā(xX)

]
=

4N

2N + 1
ξB
xψ(ξ)

ξ2
.

(5.10)

Note that the second equality assumes a consistent solution of the first equation, xψ(ξ), which requires 1 < ξ <
1/(1 − ln 2). In practice we solve numerically the first equation for xψ(ξ), then we use it as an input to solve
numerically the second one for xX(ξ).

In Fig. 11 we plot G(x, ξA6) as a function of x, for a few representative values of ξA6, as well as the right-hand side of
the second equation in (5.10), for two values of N and ξB , assuming for simplicity two equal mass gaps, xψ = xX = x.
The intersection between the dashed and solid curves determines the solution xX = xX(N, ξ, ξA6, ξB). The function
G(x, ξA6) vanishes at x = 0 and, for any fixed value 0 < x < 1, it decreases with ξA6. For ξA6 ≤ 1, G(x, ξA6) increases
in the whole interval 0 ≤ x ≤ 1, while for ξA6 > 1 it decreases to negative values for small x, then increases as x
moves towards unity, becoming positive before x = 1, as long as ξA6 < 1/(1− ln 2). On the other hand, the function
xψ(ξ)/ξ2 satisfies 0 ≤ xψ(ξ)/ξ2 . 1/10 for 0 ≤ x ≤ 1. Since ξB ≥ 0, there is therefore no solution to the second
equation in (5.10) in the interval 0 ≤ xX ≤ 1 when ξA6 ≥ 1/(1− ln 2). In contrast, for values 1 < ξA6 < 1/(1− ln 2)
there is always a non-trivial solution with xX < 1, as long as the right-hand side of the second equation in (5.10) is
sufficiently small. Finally, for 0 < ξA6 < 1 the occurrence of a solution happens only for a sufficiently large ξB , also
depending on N . The latter properties actually reflect the critical value ξA6 + ξB6 > 1, necessary in order to obtain a
non-trivial mass-gap, here somewhat disguised by the change of variables. Note that for fixed values of N , ξ and ξB ,
the value of xX increases with ξA6.

One can make one more step in the analytical study of the two coupled gap equations. Moving the term proportional
to ξB in the first equation of (5.10) to its right-hand side, one may now eliminate ξB between the two equations, and
obtain

G(xψ, ξA) =

(
1

2
+

1

4N

)
G(xX , ξA6) . (5.11)
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FIG. 11. Dotted curves: the function G(x, ξA6) for three representative values of ξA6 as indicated. Thick curves: right-hand
side of the second equation in (5.10) for two values of N and ξB as indicated, and taking xψ = x.

A few simple remarks follow from this relation. First, if one of the masses, say MX , has been determined as a function
of ξA, ξA6 and ξB , then the relation of Mψ to MX involves only ξA, ξA6 and N , and not ξB . Second, this relation
becomes rapidly independent of N as N increases. Third, the relatively simple Eq. (5.11) precisely gives the exact
dependence of the ratio of the two mass gaps, MX/Mψ, as functions of the basic input parameters (although it is
an implicit relation, due to the non-linearity in the masses MX ,Mψ), as illustrated for a few representative case in
Fig. 12. More precisely, Eq. (5.11) may be trivially expressed as

M2
ψ

M2
X

=

(
1

2
+

1

4N

)
Ā2(xX)[1− ξA6Ā(xX)]

Ā2(xψ)[1− ξAĀ(xψ)]
. (5.12)

This indeed shows that, as long as M2
ψ,M

2
X � Λ2 [which implies Ā(xX) ' Ā(xψ) since Ā(x) ≡ 1 − x ln(1 + 1/x) '

1 +M2/Λ2 ln(Λ2/M2)], one obtains Mψ < MX , at least for ξA ' ξA6. Indeed, the peculiar case of equal mass gaps,
xψ = xX , that is the one illustrated in Fig. 11, can only be obtained for significantly different values of ξA and ξA6

(for instance when N = 4, ξA6 = 1/2 and ξB = 1/2, one has xψ = xX ' 0.13, that corresponds to ξA ' 0.9).
In the above considerations we have kept κA and κA6 (equivalently, ξA and ξA6) arbitrary. Let us now examine

more precisely a few typical situations concerning those parameters. When κA6 is larger than κA, the SU(6) sector
first forms a condensate for ξ < 1 (see Fig. 12), and then MX > Mψ. In the opposite case where κA6 is smaller
than κA, the SU(6) sector forms a condensate for a value ξ > 1, and MX < Mψ. If ξA6 � ξA, the mass gap grows
rather fast, so that one eventually obtains a very large MX ∼ Λ, and conversely a very large Mψ if ξA6 � ξA.
Thus to obtain predictive calculations in both sectors from the NJL model, it requires that ξA ∼ ξA6 are roughly of
the same magnitude. In this way, there is a non-zero interval for the values of ξ where the NJL predictions can be
trusted (ξ, ξc > 1 and Mψ,X < Λ) in both sectors. Note that apart from these NJL consistency considerations, in
principle no value of the ratio ξA/ξA6 is theoretically excluded, but the case Mψ = 0 and MX 6= 0 evidently does not
describe a composite Higgs model since then the spectrum of resonances does not contain a pNGB Higgs doublet.
For ξA = ξA6, i.e. κA = κA6, and still for mX = 0, the ratio MX/Mψ thus depends only of the value of κB and N ,
as given precisely by the relation in Eq. (5.12). When ξB is close to zero, one gets Mψ ' MX , since the two gap
equations are almost decoupled. Next, when ξB increases, there is a complicated balance between the N , Mψ and MX

dependence in Eq. (5.6), to determine κB6/κB , but the ratio MX/Mψ is consistently determined from the relatively
simple relation in Eq. (5.12). This implies κB6 > κB and MX slightly above Mψ, with a MX/Mψ ratio that increases
rather slowly with ξB , and is also a slowly increasing function of N . For instance for N = 2, MX/Mψ ' 1.14− 1.21
for κB/κA = 0.01− 0.5.

Finally, let us briefly discuss the most general case mX 6= 0. The above considerations give of course only approxi-
mate relations, which however remains relatively good as long as mX remains moderate, mX � MX . For mX 6= 0
there is no critical coupling ξc in the SU(6) sector, as the minimal value of MX is obviously non-zero, being equal to
mX . A non-zero mX evidently leads to MX > Mψ for equivalent coupling values in the two sectors, see Fig. 12.

A couple of remarks are in order. In section V E we will see that the scalar singlet sector is consistent only for a
very small value of κB/κA, see Eqs. (5.31) and (5.40). This is due to the requirement of vacuum stability, which is not
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FIG. 12. Comparison between the mass gap Mψ of the electroweak sector (black dotted line) and the mass gap MX of the
coloured sector for few representatives cases. When κA6 = κA, mX = 0 and κB/κA = 0, the two dynamical masses are equal,
Mψ = MX . To illustrate the behaviour of MX with respect to the free parameters of the theory (ξ, κB/κA, κA6/κA, mX and
N) we illustrate small departures from this particular case. The solid (dashed) red line corresponds to κA6 = 2(1/2)κA with
κB/κA = 0, mX = 0 and N = 4. In these cases, the critical coupling of the coloured sector is respectively smaller or larger than
the one in the electroweak sector (ξ = 1). Next, the solid blue (green) line corresponds to κA6 = κA, N = 4 with κB/κA = 0
(κB/κA = 0.1) and mX = Λ/10 (mX = 0). In the case where there is an explicit symmetry-breaking mass mX , there is no
critical coupling in the coloured sector as the lowest value of MX is simply mX . Finally note that MX is almost independent
of the number of hypercolour N .

apparent in the mass-gap equations (5.3). For example, this upper bound implies that a value ξB = 1/2, as illustrated
in Fig. 11, is actually not possible. This in turns sets a lower bound on ξA6, in order to stay above the critical value,
ξA6 + ξB6 > 1, and to obtain a non-zero value of MX . Let us now comment on the dynamical relation between κB
and the original anomalous parameter AψX , given in Eq. (5.5), and which involves MX and N . In the whole allowed
range 1 < ξ < (1− ln 2)−1 ' 3.25, even when MX ' Λ for large ξ, the factor in square brackets in Eq. (5.5) is small

in Λ3 units, essentially because of the loop-suppression, 4MXÃ0(M2
X) ' (4− 8) · 10−3Λ3 (with moderate dependence

on κB/κA and N). This implies a strong suppression of the effective coupling ξB due to the large power 6(N − 1) in
Eq. (5.5), even for the minimal value N = 2. Unfortunately, the original Lagrangian parameter AψX originates from
non-perturbative dynamics that is not under control at the present stage, so that its size is essentially arbitrary, see
also the discussion in subsection IV C after Eq. (4.28). Therefore, we can just remark that, whatever the actual size
of AψX , the corresponding value of κB is strongly suppressed by the dynamics. This may help to comply with the
upper bound from vacuum stability on κB/κA, which behaves as 1/N for sufficiently large N , as we shall discuss in
section V E, because the effective coupling κB in Eq. (5.5) contains a power-N suppression factor.

B. Masses of coloured scalar resonances

The scalar and pseudoscalar resonances associated to X-fermion bilinears transform under the flavour symmetry
as 21SU(6) = (1 + 20′)SO(6). In analogy with the ψ-fermion sector, we can define a matrix M c in flavour space,

M c =
1

2
MXΣc0 + (σX + iηX) Σc0T

0
X +

(
SF̂c + iGF̂c

)
Σc0T

F̂ , (5.13)

where the components σX (ηX) and SF̂c (GF̂c ) are respectively the SO(6)-singlet and twenty-plet (pseudo)scalars.
The relevant operators for the computation of the spin-zero meson masses are those given in Eq. (5.2), plus the
effective four-fermions operators ψ4, X4 and ψ2X2, which are induced by the anomalous Lagrangian of Eq. (4.34),
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after spontaneous symmetry breaking,

LeffψX =
κB
2N

[(
ψΣ0T

0
ψψ
) (
ψΣ0T

0
ψψ
)
−
(
ψΣ0T

Âψ
)(

ψΣ0T
Âψ
)

+ h.c.
]

+
κB6

(2N + 1)(N − 1)

[
(6N − 7)

(
XΣc0T

0
XX

) (
XΣc0T

0
XX

)
−
(
XΣc0T

F̂X
)(

XΣc0T
F̂X
)

+ h.c.
]

+
κψX
2N

[(
ψΣ0T

0
ψψ
)

(XΣc0T
0
XX) + h.c.

]
, (5.14)

where κB and κB6, defined in Eq. (5.5) and (5.6) respectively, are the same couplings that appear in the gap equations.
Note the factor (6N − 7) that multiples κB6, because here two X-fermion bilinears out of 6(N − 1) are not closed into
a loop, which implies a combinatorial factor 6(N − 1)[6(N − 1)− 1]/2. The additional coupling κψX is defined by

κψX ≡
AψX

27N−1

[
4Nψ

f 〈ψψ〉2
(2N)2

] 1
2
[

4NX
f 〈XX〉2

(2N + 1)2(N − 1)2

]3(N−1)− 1
2

2 · 6(N − 1)

(2N + 1)(N − 1)
=

8
√

6N

2N + 1

Mψ

MX

Ã0(M2
ψ)

Ã0(M2
X)

κB , (5.15)

and it controls the mixing between the Sp(4) and SO(6) (pseudo)scalar singlets σψ (ηψ) and σX (ηX), which will be
treated separately in section V E. Note that all three effective couplings vanish if 〈XX〉 = 0. When 〈XX〉 6= 0 both
κB6 and κψX are fully determined as a function of Mψ, MX and κB . From Eqs. (5.2) and (5.14) one can derive the
four-fermion couplings for each physical channel,

KσX(ηX) = 2
[κA6 ± (6N − 7)κB6]

(2N + 1)(N − 1)
, KSc(Gc) = 2

[κA6 ∓ κB6]

(2N + 1)(N − 1)
, (5.16)

For convenience, all the relevant four-fermion couplings for the X-sector spin-zero and spin-one mesons are collected
in Table IV, together with the associated one-loop two-point functions.

We now calculate the masses of the scalar and pseudoscalar non-singlet resonances SF̂c and GF̂c . As already
mentioned above, for the scalar and pseudoscalar singlet σX and ηX , there is a mixing with the corresponding
resonances σψ and ηψ of the electroweak sector, so that the whole singlet sector will be treated separately in section
V E.

Concerning the non-singlet pNGB Gc, we should also consider more generally a non-trivial pseudoscalar-axial vector
mixing for non-vanishing vectorial four-fermion couplings, as we anticipate will be introduced below in Section V C,
in analogy with the electroweak sector discussed in Section III E. With the additional explicit breaking mass term mX

of Eq. (5.1), the pseudoscalar axial-vector mixing formalism of Section III E can easily be generalised with explicitly
mX -dependent resummed matrix correlator ΠGc(mX), the analogue of Eqs. (3.44) and (3.47) for the coloured sector.

Note that all of the one-loop two-point functions Π̃(q2,M2
X) ≡ Π̃X

φ (q2) of the SU(6) sector can be obtained from those

in table II with the following replacements: Mψ → MX and (2N) → (2N + 1)(N − 1) (see appendix C for details).
Accordingly the pNGB obviously gets a nonzero mass, whose expression is obtained from the zero of the determinant,
analogous to (3.46) for the SU(4) sector, as

DGc =
mX

MX
g−1
Ac

+ 2(κA6 + κB6)B̃0(p2,M2
X) p2 ≡ 2(κA6 + κB6)B̃0(p2,M2

X)(p2 −M2
Gc). (5.17)

The calculation of the scalar SF̂c mass is simpler and follows the same derivation as for the scalar mass of the SU(4)
sector. Thus we obtain

M2
Gc = −(

mX

MX
)

g−1
Ac

(M2
Gc

)

2(κA6 + κB6)B̃0

(
M2
Gc
,M2

X

) , M2
Sc = 4M2

X −
8κB6Ã0(M2

X) + mX
MX

2(κA6 − κB6)B̃0

(
M2
Sc
,M2

X

) . (5.18)

where as before the pole masses are defined as M2
Gc

= M2
Gc

(p2 = M2
Gc

). Accordingly, similarly to M2
η in Eq. (3.52),

when a non-vanishing coloured sector vector coupling κD6 is considered (see Section V C), the pseudoscalar Goldstone

mass M2
Gc

is renormalised by the (inverse) axial form factor g−1
Ac

(p2 ≡ M2
Gc

) ≡ 1 − 2KAcΠ̃
LX
A (M2

Gc
) where KAc is

defined in Table IV.
Note that there is another source of explicit symmetry breaking which may a priori lead to sizable contributions to

the masses. Indeed, when we switch on the SM gauge interactions, new contributions to the masses of the coloured
states arise. In the following, we will only consider the gauge corrections to the masses of the pNGB states, since
the latter are the lightest resonances of the coloured sector. Therefore those corrections are more relevant than e.g.
for the other scalar states. The gauge contributions to the pNGB masses are given in general terms in section II E

and in appendix A 2 for the particular case of the SU(6) sector. The pNGB GF̂c decompose as an octet Oc ∼ 80
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and two sextet (Sc + Sc) ∼ (64/3 + 6−4/3) under SU(3)c × U(1)D [U(1)D is the hypercharge component in the X
sector, and is also defined in appendix A 2]. Consequently, there are two sources of gauge contributions which lead to
a mass splitting between the octet and sextet components: one from the gauging of QCD and one from the gauging
of the hypercharge. However, from Eq. (A14) one can see that the QCD corrections are almost the same for the
two components as ∆M2

Oc
/∆M2

Sc
|QCD = 9/10. For simplicity we will neglect this small difference. In addition, the

contribution coming from the gauging of U(1)Y is sub-dominant compared to the one from QCD, and we will safely
neglect it. This is due to the small value of the ratio g′/gs at the energy scale of a few TeVs we are interested in.
Then the gauge contributions mainly originate from QCD and to evaluate the latter, we need to compute the integral
in Eq. (A14) within the NJL framework. To do that, we simply cut the integral at Q2 = Λ2, where Λ stands for the
cutoff of the NJL model, and FGc is given by the expression

F 2
Gc = −2(2N + 1)(N − 1)M2

XB̃0(M2
Gc ,M

2
X)gAc(M

2
Gc) , (5.19)

which can easily be inferred adapting Eqs. (3.41) and (3.39) to the SU(6) sector. Note that, for simplicity, the mass
MGc in the right-hand side is taken without gauge corrections. The resulting radiative pNGB masses, obtained from
Eq. (A14), are illustrated in the left panel of Fig. 13, where by definition M2

Gc
= ∆M2

Oc
, as mX = 0. These numerical

results will be discussed in more details in section V D. Let us just mention that this gauge-induced mass could be
sufficient by itself to comply with the lower collider bounds [91].

φ Kφ Π̃X
φ (q2)

GF̂c
2(κA6 + κB6)

(2N + 1)(N − 1)
Π̃X
P (q2) = (2N + 1)(N − 1)

[
Ã0(M2

X)− q2

2
B̃0(q2,M2

X)
]

ηX
2[κA6 − (6N − 7)κB6]

(2N + 1)(N − 1)

ηψ − ηX
−κψX
(2N)

SF̂c
2(κA6 − κB6)

(2N + 1)(N − 1)
Π̃X
S (q2) = (2N + 1)(N − 1)

[
Ã0(M2

X)− 1
2
(q2 − 4M2

X)B̃0(q2,M2
X)
]

σX
2[κA6 + (6N − 7)κB6]

(2N + 1)(N − 1)

σψ − σX
κψX
(2N)

V µFc
−2κD6

(2N + 1)(N − 1)
Π̃X
V (q2) = 1

3
(2N + 1)(N − 1)

[
− 2M2

XB̃0(0,M2
X) + (q2 + 2M2

X)B̃0(q2,M2
X)
]

AµF̂c
−2κD6

(2N + 1)(N − 1)
Π̃X
A (q2) = 1

3
(2N + 1)(N − 1)

[
− 2M2

XB̃0(0,M2
X) + (q2 − 4M2

X)B̃0(q2,M2
X)
]

aµX
−2κC6

(2N + 1)(N − 1)
Π̃XL
A (q2) = −2(2N + 1)(N − 1)M2

XB̃0(q2,M2
X)

AµF̂c −GF̂c
Π̃X
AP (q2) = −(2N + 1)(N − 1)MXB̃0(q2,M2

X)

aµX − ηX

TABLE IV. The four-fermion couplings Kφ in the X-sector, and the associated one-loop two-point functions Π̃X
φ (q2). The latter

are related to the two-point functions of the ψ-sector as follows: Π̃ψ
φ (q2) = Π̃φ(q2,M2

ψ, 2N) and Π̃X
φ (q2) = Π̃φ[q2,M2

X , (2N +

1)(N − 1)], where Π̃φ(q2,M2
ψ, 2N) are defined in Table II. We also give the expression of the mixed (one-loop) pseudoscalar-

longitudinal axial correlator, as well as those of the couplings mixing the singlet scalars of the two sectors, σψ and σX , and the

singlet pseudoscalars ηψ and ηX . The explicit calculation of the correlators Π̃X
φ (q2) is detailed in appendix C.
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C. Masses of coloured vector resonances

In order to calculate the masses of the vector and axial-vector resonances present in the coloured sector, we start
from the following vector-vector four-fermion operators

LXvect =
κC6

(2N + 1)(N − 1)

(
X T 0

X σ
µX
)2

+
κD6

(2N + 1)(N − 1)

[(
X TF σµX

)2
+
(
X T F̂ σµX

)2
]
, (5.20)

where as in the electroweak sector, due to the global SU(6) symmetry, the four-fermions coupling κD6 of the vector
channel is the same as the axial non-singlet channel. From the above operators we obtain the vector and axial-vector

four-fermions couplings KVc ,KAc and KaX (see table IV) and we derive the masses of the vector V Fc and axial AF̂c , aX
resonances

M2
Vc = − 3

4κD6B̃0(M2
Vc
,M2

X)
+ 2M2

X

B̃0(0,M2
X)

B̃0(M2
Vc
,M2

X)
− 2M2

X , (5.21)

M2
Ac = − 3

4κD6B̃0(M2
Ac
,M2

X)
+ 2M2

X

B̃0(0,M2
X)

B̃0(M2
Ac
,M2

X)
+ 4M2

X . (5.22)

Just like in the electroweak sector, if one neglects the p2 dependence of the B̃0 function, one obtains the usual NJL
relation between the axial and vector masses, that is M2

Ac
'M2

Vc
+ 6M2

X . The mass of the axial singlet aµc is obtained

by making the replacements Aµc → aµX and κD6 → κC6 in Eq. (5.22). Note that we have not considered the following
operator

LψXvect =
κVψX
(2N)

(
ψ T 0

ψ σ
µψ
) (
X T 0

X σµX
)
, (5.23)

which induces a mixing between the axial singlets of the two sectors, aµψ and aµX . This mixing term respects all
symmetries of the theory and should be present in general. However, we neglected it as it is not generated by
applying a Fierz transformation to the Sp(2N) current-current operators in Eq. (D8).

Note also that, in principle, the spin one masses receive SM gauge contributions as V µc ∼ 15SO(6) = (1 + 8 + 3 +

3)SU(3)c and Aµc ∼ 20′SO(6) = (8 + 6 + 6)SU(3)c . However, following the discussion of section V B for the scalar masses,

we will not consider such contributions here.

D. The mass spectrum of the coloured resonances

In general the couplings of the four-fermion operators are free parameters. However κA6 and κC6,D6 may be related
if we assume that the dynamics is induced by Sp(2N) current-current operators. In this case, as in the ψ-sector, we
find that the scalar and vector four-fermion couplings are equal, see appendix D 4. However, we also find that the size
of these couplings relatively to the ones in the electroweak sector is not fixed by the current-current approximation.
The reason is that, contrary to the case of the ψ-sector, the X-sector current-current operator cannot be recast in terms
of Sp(2N) singlet-singlet operators only, see appendix D 4. Nonetheless in this section, for the sake of illustration, we
will take equal couplings in the two sectors

κA6 = κC6 = κD6 = κA . (5.24)

With this choice, as shown in Fig. 12, the range of validity of the NJL approximation is approximatively the same in
the two sectors.

The resonance masses of the coloured sector are illustrated in Fig. 13. To ease the comparison with the electroweak
sector, the masses are in units of f =

√
2FG & 1 TeV, and are plotted as functions of the coupling ξ defined by

Eq. (3.17). Note that in section III F, for the SU(4) sector in isolation, the only constraint from vacuum stability
was κB/κA < 1: here we anticipate a similar but stronger bound, see Eqs. (5.31) and (5.40) below. Consequently the
value of κB/κA is fixed to 0.01 for illustration, which is safely below this upper bound in the case N = 4. Then, if one
assumes that Eq. (5.24) holds, there is just one additional free parameter compared to the SU(4) sector in isolation,
namely the explicit symmetry-breaking mass term mX . We illustrate two representative cases: one with no explicit
breaking, mX = 0, and another one with explicit symmetry breaking, for which we take as a representative value
mX = 0.1f .



46

1.0 1.5 2.0 2.5 3.0
0

2

4

6

8

10

12

Ξ

M
�
f

m =0XL

MG

MV

MA c

c

MSc

c

1.0 1.5 2.0 2.5 3.0
0

2

4

6

8

10

12

Ξ

M
�
f

m =f� 10XL

MG

MV

MA

c

c
MS

c

c

FIG. 13. The masses of the coloured resonances in units of the Goldstone decay constant f ≡
√

2fG, for N = 4 (the masses scale

as 1/
√
N), as a function of the coupling ξ, for κB/κA = 0.01, κA6 = κA, mX = 0 (left-hand panel) and mX = f/10 (right-hand

panel). We displayed the full physical range for ξ, according to Fig. 3. Each curve is shaded when the corresponding pole mass
develops a large, unphysical imaginary part, |Imgφ(M2

φ)/Regφ(M2
φ)| > 1, as defined from Eq. (3.23). The dotted line is the

cutoff of the constituent fermion loops. The Goldstone mass MGc include the radiative corrections as discussed in section V B.

In the case with no explicit breaking (left panel of Fig. 13), the behaviour of the masses is qualitatively similar to
the SU(4) sector, except for the pNGBs Gc. This is due to the relations between the couplings of the four-fermion
interactions: κA = κA6 and κB ∼ κB6 � κA. The pNGB of the coloured sector receive a significant contribution to
their masses from the gauging of the colour group, as discussed in section V B. As it can be seen from Fig. 13, this
contribution satisfies ∆MGc & 1.3f , which is enough to comply with the present collider bounds, as long as f & 1
TeV. Thus, we conclude that it is actually possible to introduce top quark partners without the need of an explicit
mass term mX for the coloured fermions. On the other hand, if we want to raise the mass of coloured pNGBs, while
keeping a low mass scale of the theory, f = 1 TeV, one needs to introduce a non-zero mX , as illustrated in the right
panel of Fig. 13 for mX = 0.1f . As all the coloured masses receive a contribution from mX , for sufficiently large
values of mX one could even decouple the coloured sector from the electroweak sector.

Finally, we display here the masses of the colour resonances for the same parameters as in Eq. (3.54), N = 4, ξ = 1.3
and ξ = 2, fixing κB/κA = 0.01 and for the two representative values of mX :

ξ = 1.3, mX = 0 : MAc ' 6.6 TeV, MVc ' 5.1 TeV, MSc ' 4.3 TeV, MGc ' 1.3TeV ,

ξ = 1.3, mX = 0.1 TeV : MAc ' 7.0 TeV, MVc ' 5.2 TeV, MSc ' 4.9 TeV, MGc ' 2.0 TeV . (5.25)

ξ = 2.0, mX = 0 : MAc ' 9.7 TeV, MVc ' 6.3 TeV, MSc ' 8.4 TeV, MGc ' 1.4TeV ,

ξ = 2.0, mX = 0.1 TeV : MAc ' 9.9 TeV, MVc ' 6.4 TeV, MSc ' 8.5 TeV, MGc ' 1.8 TeV . (5.26)

E. Flavour-singlet sector

The ψ − X mixing in the (scalar and pseudoscalar) singlet sector, induced by the Lagrangian (4.34), is most
conveniently treated in matrix formalism. Furthermore, since our model includes non-vanishing singlet axial-vector
couplings both in the SU(4) and SU(6) sectors, we should take into account the additional pseudoscalar-axial mixing,
similarly to the case of the SU(4) sector in isolation treated in section III E. Accordingly, we shall consider 2× 2 and
4× 4 matrix equations for the correlators in the scalar and pseudoscalar sectors, respectively.

1. Scalar-singlet mixing

Let us start with the scalar sector and consider the diagonal one-loop scalar-correlator matrix ΠσψσX and the
matrix of scalar couplings KσψσX ,

ΠσψσX =

(
Π̃ψ
S 0

0 Π̃X
S

)
, KσψσX =

(
Kσψ KψX

KψX KσX

)
, (5.27)
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where Kσψ , KσX and KψX ≡ κψX/(2N) are collected in Tables II and IV. Note that when KψX = 0 (equivalently
AψX = 0) there is no mixing between the singlets σψ and σX . For simplicity, we have introduced the shorthand

notations Π̃ψ
i ≡ Π̃i(p

2,M2
ψ) and Π̃X

i ≡ Π̃i(p
2,M2

X) for the one-loop correlators. From the above matrices, one can

now define the resummed matrix correlator ΠσψσX

ΠσψσX = ΠσψσX + ΠσψσX (2KσψσX ) ΠσψσX + · · · = (11− 2ΠσψσX KσψσX )−1 ΠσψσX , (5.28)

and the resonance mass eigenvalues are obtained as the roots of the equation det(11− 2ΠσψσX KσψσX ) = 0, where

det(11− 2ΠσψσXKσψσX ) = 1− 2Kσψ Π̃ψ
S − 2KσX Π̃X

S + 4
(
KσψKσX −K2

ψX

)
Π̃ψ
S Π̃X

S

= cS0 (p2) + cS1 (p2)p2 + cS2 (p2)(p2)2 . (5.29)

The coefficients cSi (p2) are functions of the couplings Ki, and of the loop functions Ã0(M2
ψ), Ã0(M2

X), B̃0(p2,M2
ψ), and

B̃0(p2,M2
X). It is convenient to write the determinant as if it were a quadratic form in p2, because the p2-dependence

of the coefficients cSi (p2), through the loop functions B̃0(p2,M2
ψ,X), does not induce additional pole structure. Then,

the scalar-singlet pole masses are obtained as the roots of this quadratic equation, evaluated at a self-consistent value
of p2,

M2
σ0,σ′ = Re[gσ0,σ′(M

2
σ0,σ′)] , gσ0,σ′(p

2) ≡ −c
S
1 (p2)±

√
[cS1 (p2)]2 − 4cS2 (p2)cS0 (p2)

2cS2 (p2)
. (5.30)

The explicit expressions of the two scalar singlet masses M2
σ0
,M2

σ′ are straightforwardly derived from the above
equations, but are not very simple or telling, even in the chiral limit mX = 0, so that we refrain from giving them
here. In the numerical illustrations below we use these exact expressions.

As we will examine quantitatively below, the lightest scalar mass Mσ0
is a decreasing function of r ≡ κB/κA, at

least as long as Mψ,X � Λ, and it can even vanish at a critical value rc, becoming formally tachyonic beyond. This
critical value should therefore be considered as an intrinsic upper bound, since for r ≥ rc the minimum of the effective
scalar potential is destabilised, that is, the solution of the NJL mass-gap equations becomes unreliable. It is clear that
Mσ0

can only vanish if cS0 (0) = 0 in Eq. (5.29) (irrespectively of the additional p2-dependence from the B̃0 functions).
The latter condition determines rc as a function of the parameters N , MX and Mψ, once one eliminates the coupling
κA6 using Eq. (5.3), as well as κB6 and κψX using Eqs. (5.6) and (5.15). Then, in the chiral limit mX = 0, the
condition cS0 (0) = 0 takes the form

1+2

[
1 +

f6

B6(0)

A4

M2
X

M2
ψ

M2
X

2N(3N − 4)

2N + 1

]
r+

[
1− 2f6

B6(0)

A4

M2
X

M2
ψ

M2
X

2N(3N − 2)

2N + 1
− 6f6

B6(0)B4(0)

A2
4

M4
X

2N(N − 1)

2N + 1

]
r2 = 0 ,

(5.31)

where f6 ≡ 1+2B6(0)M2
X/A6, and we are using the shorthand notations A4 ≡ Ã0(M2

ψ), A6 ≡ Ã0(M2
X), and similarly

for the functions B4,6(p2). The mass of σ0 vanishes as long as Eq. (5.31), that is quadratic in r, has a real and
positive root rc, whose value depends on the dynamical masses Mψ,X and on N . For example, if one fixes κA6 = κA,
one finds that ξ <∼ 1.4 − 1.5 implies κB/κA ≤ rc � 1 already for N = 2, and the upper bound becomes more
stringent proportionally to ∼ 1/N . For mX = 0 and ξ = 1.3, one finds rc ' 0.103 for N = 2, and rc ' 0.024 for
N = 4. However, for larger values of ξ >∼ 1.7 − 1.8, Eq. (5.31) has no longer a real positive root, instead Mσ0

(ξ, r)
has a positive minimum, at increasingly large values of r as ξ increases. As we will see in the next subsection,
there is another upper bound on κB/κA, Eq. (5.40), originating from the pseudoscalar-singlet mixing, also related to
vacuum stability. Assuming again κA6 = κA, one finds that for ξ <∼ 1.4 the bound from Eq. (5.40) has a numerical
value very close to the solution rc of Eq. (5.31), although its analytic form is different. For larger values of ξ, the
bound from Eq. (5.40) is much more stringent and therefore supersedes the condition r < rc. As we will examine
in concrete illustrations below, these bounds put stringent restrictions on the singlet mass spectrum. As further
explained below for the pseudoscalar case, these constraints should be viewed as an appropriate generalisation of the
constraint κB/κA < 1, that applies to the SU(4) sector in isolation.

Concerning the scalar decay constants, defined as in Eq. (3.58) with the obvious replacement S → Sψ0 , S
X
0 , they can

be derived by generalising the procedure explained in section III G. They are defined by the residues of the diagonal
elements of ΠσψσX at the respective pole masses,

(Gψσ0
)2 ≡ − lim

p2→M2
σ0

(p2 −M2
σ0

)Π
11

σψσX
(p2) , (GXσ0

)2 ≡ − lim
p2→M2

σ0

(p2 −M2
σ0

)Π
22

σψσX
(p2) , (5.32)
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and analogously for σ0 → σ′. These decay constants enter in the scalar sum rules in combination with the other
(pseudo)scalar decay constants. We refrain here to give their explicit expressions, which are not simple. The results
obtained from Eq. (5.32) can be crosschecked with the off-diagonal elements of ΠσψσX , as Gψσ0

GXσ0
= − limp2→M2

σ0
(p2−

M2
σ0

)Π
12

σψσX
(p2), and similarly for σ′.

2. Pseudoscalar singlet mixing

Considering now the more involved pseudoscalar sector, we start from the complete 4 × 4 matrix coupling and
correlator to account both for singlet mixing and pseudoscalar-axial singlet vectors aµψ, a

µ
X mixing. The latter mixing

is treated similarly to the pseudoscalar axial-vector mixing for the Goldstone boson sector as considered in section
III E. Accordingly we have

KηψηX =


Kηψ −KψX 0 0

−KψX KηX 0 0

0 0 Ka 0

0 0 0 Kac

 , ΠηψηX =


Π̃ψ
P 0

√
p2Π̃ψ

AP 0

0 Π̃X
P 0

√
p2Π̃X

AP√
p2Π̃ψ

AP 0 Π̃Lψ
A 0

0
√
p2Π̃X

AP 0 Π̃LX
A

 , (5.33)

where all the relevant pseudoscalar and axial-vector correlators and couplings for the SU(4) and SU(6) sectors are
given respectively in Tables II and IV (and we have used in Eq. (5.33) the same short-hand notation as in section
V E 1). From the above matrices, we obtain the resummed two-point correlator defined as

ΠηψηX = (11− 2ΠηψηX KηψηX )−1 ΠηψηX . (5.34)

According to the previous equation, the pseudoscalar mass eigenvalues are given by the zeros of the determinant
of 11 − 2KηψηXΠηψηX , which we give explicitly only in the chiral limit mX = 0 for simplicity. Note that the latter

determinant keeps the form of a quadratic equation, apart from further p2-dependence from the B̃0 function appearing
in the coefficients. After using the relevant relations, Eqs. (5.5), (5.6) and (5.15), and the mass gap equations (5.3)
in order to express all the effective four-fermion couplings κi in terms of κB alone, we obtain

det[11− 2KηψηXΠηψηX(p2)] = p2
[
cP1 (p2) + p2cP2 (p2)

]
, (5.35)

where in notations similar to the scalar case, we define the relevant coefficients of the quadratic equation as

cP1 (p2) = 4
κBA4

(2N + 1)A6M2
X

[
12N(N − 1)B4(p2)M2

ψg
−1
ac (p2) + (2N + 1)B6(p2)M2

Xg
−1
a (p2)

]
, (5.36)

cP2 (p2) = − B4(p2)B6(p2)

(2N + 1)A2
6M

2
X

[
24N(N − 1)κBA4M

2
ψ − (2N + 1)(κA − κB)A6M

2
X

]
. (5.37)

The appearance of the axial singlet form factors ga, gac is a result of the mixing between the singlet pseudoscalar
axial-vector

g−1
a (p2) = 1 +

4κC
2N

Π̃Lψ
A (p2) , g−1

ac (p2) = 1 +
4κC6

(2N + 1)(N − 1)
Π̃LX
A (p2) . (5.38)

The pseudoscalar analogue of the term cS0 (p2) in the determinant of 11 − 2KηψηXΠηψηX vanishes in the chiral limit
mX = 0, as is explicit from Eq. (5.35), after non-trivial cancellations using the gap equations (5.3), and Eqs.(5.5)
and (5.6), thereby exhibiting the remaining singlet Goldstone boson associated with the non-anomalous combination
of U(1)ψ and U(1)X transformations. Obviously, the other pseudoscalar singlet has a non-vanishing mass even for
mX = 0, with a relatively compact expression,

M2
η′ = Re[gη′(M

2
η′)] +O(mX) , gη′(p

2) ≡ −c
P
1 (p2)

cP2 (p2)
. (5.39)

Note that for sufficiently large N (but keeping in mind N ≤ 18), M2
η′ is of order O(N0), using that κB ' 1/N , while

the not-shown O(mX) term is of order 1/N . This is naively compatible with the behaviour of the anomaly, which
also goes like a constant for sufficiently large values of N , see Eq. (4.2) (considering that g2

HC ' 1/N).
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An important, interesting feature of the whole model emerges from the examination of Eq. (5.39): for any p2, the
function gη′(p

2) has a pole at a particular value of κB/κA, as follows from Eq. (5.37),

κB/κA
1− κB/κA

=
1

24

2N + 1

N(N − 1)

A6M
2
X

A4M2
ψ

. (5.40)

In other words, the η′ mass grows rapidly and decouples when approaching from below the critical value of κB/κA
defined by Eq. (5.40). This is not unexpected, as it is simply a generalisation of a property already observed in the
SU(4) sector in isolation. In the latter case, recall that the mass-gap equation (3.16) has solutions only for κ2

B < κ2
A,

as discussed after Eq. (3.17): as also explained in Ref. [8], and apparent in Eqs. (3.12) and (3.13), for κB > κA the
effective potential is destabilised around the origin, already at tree level and, although one could expect a spontaneous
symmetry breaking of some of the symmetries, one cannot perform a proper minimisation to determine the vacuum,
within the NJL framework. This feature is reflected also directly in the resonance mass spectrum, where the η′ mass
(for the SU(4) sector in isolation) of Eq. (3.26) clearly has a pole for κB = κA and becomes tachyonic for large κB .
Now the critical value in the full model, determined by Eq. (5.40), should be considered accordingly as an absolute
upper bound on κB/κA. It takes a more involved dynamical form (depending also on the values of the mass gaps Mψ

and MX) precisely because the mixing, as induced by the effective operators in Eq. (4.34), couples the two sectors,
mass gaps and couplings, in a non-trivial way and involves N -dependent combinatorial factors. Note that, upon using
the relation (5.6), the critical coupling in (5.40) translates into a simpler upper limit on κB6, approximately:

κB6

κA
<

1

6(N − 1)

A4

A6
, (5.41)

(upon neglecting higher order terms in κ2
B6), in which the combinatoric factor 6(N − 1) can be understood upon

comparing with Eq. (5.14), so that Eq. (5.41) is a more transparent analogue of the limit κB < κA in the SU(4)
sector in isolation (let aside the presence of the loop functions A4/A6, that reflects the non-trivial dynamical connection
between the two sectors). The bottom line is that Eq. (5.40) gives a tight upper bound on κB/κA, due in particular
to the small coefficient 1/24. To get an idea, consider the chiral limit mX = 0 and fix κA6 = κA: as discussed
in section V A, then MX lies slightly above Mψ, with e.g. MX/Mψ ' 1.15 for N = 2 and small κB/κA. Thus,

neglecting for simplicity the relatively small differences in the Ã0 loop functions, Eq. (5.40) gives typically κB/κA <
5/48(M2

X/M
2
ψ) ' 0.12 for N = 2, and the latter ratio decreases quite rapidly for larger N due to the ∼ 1/N behaviour

of Eq. (5.40), for instance κB/κA < 1/32(M2
X/M

2
ψ) ' 0.04 for N = 4.

More precisely, the physical upper bound on κB/κA is even more stringent. As the “running” mass gη′(p
2) grows

rapidly when approaching from below the limiting value of κB/κA defined by Eq. (5.40), the corresponding pole-
mass self-consistent equation for M2

η′ , given in Eq. (5.39), ceases to have a solution for a slightly smaller value of

κB/κA. Moreover a large width develops much below this bound, which turns out to rapidly exceed the pole mass.
Accordingly, the NJL description of the η′ mass looses its validity for even smaller values of κB/κA. For a not too
small mX 6= 0, as discussed above, MX can be substantially larger than Mψ, therefore the bound in Eq. (5.40) is
delayed to larger κB/κA. Still, it remains quite constraining as long as mX remains moderate with respect to Λ.
A hierarchy among the mass gaps, MX � Mψ, can be also realised by taking κA6 > κA, again relaxing the upper
bound on κB/κA. In summary, the detailed structure of the mixing sets the maximal allowed value of κB/κA, with
important consequences for the resonance mass spectrum, as we will illustrate below.

For mX 6= 0, the exact expressions of the two pseudoscalar singlet masses Mη0 ,Mη′ (used in our numerical analysis)
become rather involved: Eq. (5.35) is modified to a “quadratic” polynomial equation in p2 (i.e. upon formally
neglecting the additional p2-dependence coming from the loop functions, entering the polynomial coefficients). This is
then more similar to the eigenvalue equation of the scalar case above, see Eqs. (5.29) and (5.30), now with coefficients
cPi (p2) which depends on mX , where the coefficient of (p2)0 takes the form

cP0 = 8A4κB
mX

MX
g−1
a g−1

ac . (5.42)

Indeed, the pNGB η0 mass is given to a very good approximation by the first order expansion in cP0 , namely

M2
η0 = −c

P
0 (M2

η0)

cP1 (M2
η0)

, (5.43)

which essentially captures its correct behaviour as long as κB/κA is moderate and mX � Λ. For large values of N ,
M2
η0 is of order 1/N .
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Once having determined the η0 and η′ masses, one can proceed to extract all relevant pseudoscalar decay constants

from the pole mass residues of the matrix elements Π
ij

ηψηX
(q2) (i, j = 1, · · · , 4), where the resummed two-point

correlator ΠηψηX (q2) is defined in Eq. (5.34). The procedure is similar to the one explained in section III E for the

simpler non-singlet case. More precisely, from the definitions of the decay constants F
ψ(X)
η0 , G

ψ(X)
η0 in Eqs. (4.21) and

(4.22), one obtains in general for mX 6= 0

lim
q2→M2

η0

(q2 −M2
η0)Π

11(22)

ηψηX
(q2) ≡ −(G

ψ(X)
η0 )2 , lim

q2→M2
η0

(q2 −M2
η0)Π

12,21

ηψηX
(q2) ≡ −Gψη0Gψη0 , (5.44)

lim
q2→M2

η0

(q2 −M2
η0)√

p2
Π

13,31

ηψηX
(q2) ≡ −G

ψ
η0F

ψ
η0

2
√

2
, lim

q2→M2
η0

(q2 −M2
η0)√

p2
Π

14,41

ηψηX
(q2) ≡ −G

ψ
η0F

X
η0

2
√

3
,

lim
q2→M2

η0

(q2 −M2
η0)√

p2
Π

23,32

ηψηX
(q2) ≡ −G

X
η0F

ψ
η0

2
√

2
, lim

q2→M2
η0

(q2 −M2
η0)√

p2
Π

24

ηψηX
(q2) ≡ −G

X
η0F

X
η0

2
√

3
, (5.45)

as well as

lim
q2→M2

η0

(q2 −M2
η0)

q2
Π

33

ηψηX
(q2) ≡ − (Fψη0)2

8
, lim

q2→M2
η0

(q2 −M2
η0)

q2
Π

44

ηψηX
(q2) ≡ − (FXη0 )2

12
,

lim
q2→M2

η0

(q2 −M2
η0)

q2
Π

34,43

ηψηX
(q2) ≡ −F

ψ
η0F

X
η0

4
√

6
, (5.46)

where the factors 2
√

2 and 2
√

3 take into account the normalisation of the U(1)ψ and U(1)X currents, respectively.
Similar expressions hold for the η′ with the obvious replacement η0 → η′. Notice that the information on both

diagonal and non-diagonal terms allow to extract unambiguously the signs of G
ψ(X)
η0(η′) and F

ψ(X)
η0(η′). In the chiral limit,

the pole of the η0 migrates from the longitudinal to the transverse axial correlator. Consequently, in that case one

can not extract the decay constants F
ψ(X)
η0 from Eq. (5.46), but only from Eq. (5.45).

In the following, for reasons of simplicity, we present analytical results only for the chiral limit mX = 0. Let us

consider the resummed axial longitudinal correlators, given by q2Π
L

aψ(X)
(q2) = 8(12)Π

33(44)

ηψηX
(q2) and q2Π

L

aψaX
(q2) =

4
√

6 Π
34,43

ηψηX
(q2), see Eq. (5.46). One can check that the linear combination corresponding to the conserved U(1)

current, vanishes for any q2

Π
L

0 (q2) = 9(N − 1)2Π
L

aψ
(q2)− 6(N − 1)Π

L

aψaX
(q2) + Π

L

aX (q2) = 0 , Π
L

aψaX
=

√
Π
L

aψ
Π
L

aX . (5.47)

This is an important check, since the U(1) current is conserved, despite the non-zero mass gap spoiling the Ward
identity at the naive one-loop level. Then, once fully resummed, there is no longitudinal part in the corresponding
axial two-points function, generalising, for the more involved singlet sector, the results obtained in section III E for
the simpler SU(4) sector in isolation with (Goldstone) pseudoscalar-axial mixing. Coming now to the decay constants
defined from Eqs. (5.44) and (5.45), using the gap equations (5.3) and the constraints among the effective couplings
in Eqs. (5.5), (5.6) and (5.15), and after some algebra, one obtains (in the chiral limit)

(Gψη0)2 =
−12(2N)2(N − 1)A2

4M
2
ψg
−1
a (0)g−1

ac (0)

12N(N − 1)B4(0)M2
ψg
−1
ac (0) + (2N + 1)B6(0)M2

Xg
−1
a (0)

, (GXη0)2 =
(2N + 1)2A2

6M
2
X

6(2N)2A2
4M

2
ψ

(Gψη0)2 , (5.48)

(Fψη0)2 =
−96(2N)2(N − 1)B2

4(0)M4
ψga(0)g−1

ac (0)

12N(N − 1)B4(0)M2
ψg
−1
ac (0) + (2N + 1)B6(0)M2

Xg
−1
a (0)

= Π̃Lψ
A (0)ga(0)

[
1− 4κB

A4B6(0)g−1
a (0)

A6 cP1 (0)

]
,

(5.49)

(FXη0 )2 =
−24(N − 1)(2N + 1)2B2

6(0)M4
Xga(0)−1gac(0)

12N(N − 1)B4(0)M2
ψg
−1
ac (0) + (2N + 1)B6(0)M2

Xg
−1
a (0)

= Π̃LX
A (0)gac(0)

[
1− 24κB

(2N)(N − 1)B4(0)A4M
2
ψg
−1
ac (0)

(2N + 1)A6M2
X c

P
1 (0)

]
. (5.50)
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Notice from the second expressions of Eqs. (5.49) and (5.50) that the naive expressions of these decay constants, namely
when the two sectors are in isolation, are respectively recovered for MX → 0 (Mψ → 0) as intuitively expected. One
can compute in a similar way the decay constants associated with the η′. We do not explicitly give them because the
η′ is not a pNGB and these expressions are rather involved. The conserved U(1) current J µ0 of Eq. (4.7) implies

Fη0,η′ = FXη0,η′ − 3(N − 1)Fψη0,η′ . (5.51)

From Eqs. (5.49) and (5.50), we obtain the decay constant of the η0 in the chiral limit

F 2
η0 = −24(N − 1)

[
12N(N − 1)B4M

2
ψga(0) + (2N + 1)B6M

2
Xgac(0)

]
+O(mX) , F 2

η′ = O(mX) . (5.52)

As expected on general grounds (see section IV B), Fη0 is non-zero in the chiral limit, while Fη′ vanishes. Furthermore,
one can also check, after some algebra, that the generally expected relations in Eq. (4.23) are indeed well satisfied
(at least up to terms of higher orders in mX) by our expressions above, which is a very non-trivial crosscheck of the
NJL calculations. Likewise the general relations given in Eq. (4.27) are also well satisfied, providing an additional
non-trivial crosscheck.

Actually, in the chiral limit the decay constants Fη0 for the true Goldstone can be more directly calculated from the

resummed transverse axial correlator Πaψ (q2) and ΠaX (q2) evaluated at q2 = 0, in direct analogy with the non-singlet
calculation of FG. From Eq. (3.39), one obtains

F 2
η0 ≡ lim

q2→0
[−q2Π0(q2)] = − lim

q2→0
q2[9(N − 1)2Πaψ (q2) + ΠaX (q2)] , (5.53)

where the second equality comes from Eq. (4.7), taking into account that there is no mixing for the transverse
contributions, i.e. ΠaψaX (q2) = 0. The transverse resummed correlators are simply given by expressions similar to

the one in Eq. (3.39): −q2Πaψ (q2) = 8Π̃ψ
A(q2)gA(q2) and −q2ΠAX (q2) = 12Π̃X

A (q2)gAc(q
2). Thus using the expression

of the one-loop functions Π̃
ψ(X)
A (0) from Table II and Table IV directly gives

F 2
η0 = 9(N − 1)2

[
−16(2N)M2

ψB̃0(0,M2
ψ)ga(0)

]
+
[
−24(2N + 1)(N − 1)M2

XB̃0(0,M2
X)gac(0)

]
, (5.54)

which is consistent with Eq. (5.52).

3. The mass spectrum of the singlet resonances

We now study the mass spectrum of the scalar and pseudoscalar singlet resonances. Before turning to the more
involved case including the mixing between the resonances from the electroweak and the coloured sectors, let us
consider the instructive no-mixing case, where AψX = 0 and consequently κB = κB6 = κψX = 0. From Eq. (5.29) we
obtain for the scalar singlet masses

AψX = 0 : M2
σ0

= 4M2
ψ = M2

σψ
, M2

σ′ = 4M2
X −

mX

MX

1

2κA6B6(M2
σ′)

= M2
σX , (5.55)

which of course reproduce the masses in isolation. As discussed above, in our benchmark case where κA6 = κA we
have Mψ 6 MX , so that in the no-mixing case we have M2

σ0
6 M2

σ′ where the equality is valid for mX = 0. In the
same way, from Eq. (5.35) we obtain for the pseudoscalar masses

AψX = 0 : M2
η0 = 0 = M2

ηψ
, M2

η′ = −mX

MX

g−1
ac

2κA6B6
= M2

ηX . (5.56)

Again, the latter expressions reproduce those in isolation, and M2
η0 6M2

η′ , where the equality is valid for mX = 0.
Once we switch on the mixing, important new features arise, as discussed above: in particular, the upper bound on

κB/κA from Eq. (5.40), and the corresponding rapid growth of Mη′ when approaching from below the critical value
of κB/κA. This is illustrated in Fig. 14 for N = 2 and N = 4, as usual assuming κA6 = κA. Consequently, the η′

mass may be of order f for κB/κA � 0.01, but once κB/κA grows to larger values, already well below the bound of
Eq. (5.40), η′ decouples rapidly.

Another interesting feature is implicit in the η0 mass expression Eq.(5.43): namely, Mη0 rapidly reaches an asymp-
totic limit for moderate κB/κA values, for fixed N , and this (approximate) maximum decreases as 1/N for large N ,
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FIG. 14. Singlet scalar and pseudoscalar meson masses in units of f , for a fixed value of the couplings ξ = 1.3 and κA = κA6, as
a function of r ≡ κB/κA, for N = 2 (top) and N = 4 (bottom), and for mX = 0 (left) and mX = f/10 (right). The Goldstone
boson η0 is massless in the chiral limit.

as also illustrated in Fig. 14. More precisely, in the approximation of neglecting the differences in momenta of the
loop functions, one obtains for large N values

M2
η0 ' −

A6

B6

1

3N

mX

MX

M2
X

M2
ψ

+O(1/N2) . (5.57)

Of course η0 being a pNGB, M2
η0 vanishes linearly in mX . This shows in addition that Mη0 is approximately κB/κA-

independent, once this ratio takes moderately large values, as shown in Fig. 14. Its mass can be well below f , for
sufficiently large N and/or small mX .

The two scalar singlet masses are defined implicitly by Eq. (5.30). The heaviest state σ′ always lies in the multi-TeV
range, as illustrated in Figs. 14 and 15. More interestingly, as explained in section V E 1, for ξ <∼ 1.7− 1.8 the lightest
scalar mass Mσ0

is a decreasing function of κB/κA and vanishes at a critical value given by the (positive) root of
Eq. (5.31). This critical value is different from the one defined by Eq. (5.40), but for ξ <∼ 1.4 it is numerically very
close to the latter, more precisely it lies (slightly) below, for any N ≥ 2. This is illustrated in Fig. 14 for N = 2 and
N = 4. Beyond the critical value of κB/κA, σ0 becomes tachyonic and the effective scalar potential is destabilised,
therefore Mσ0

can be very small just before reaching the critical value of κB/κA. Recall, however, that for ξ >∼ 1.7,
the solution Mσ0

= 0 at positive κB/κA disappears, being replaced by a minimum positive pass, that is reached for
an increasing value of κB/κA as ξ increases. But, in this range for ξ, the bound from Eq. (5.40) is more stringent,
restricting κB/κA to be much smaller and therefore rendering non-physical the behaviour of Mσ0

(κB/κA) for larger
values of κB/κA.

Finally we also illustrate in Fig. 15 the ξ-dependence of the scalar and pseudoscalar singlet masses, for representative
values of N , and for κB/κA fixed safely below the upper bound in Eq. (5.40). Notice that Mσ0

vanishes for a sufficiently
low value of ξ, where one saturates the condition of Eq. (5.31), because the positive root of this equation decreases
with ξ. As a consequence, the whole meson mass spectrum should not be trusted for ξ smaller than this critical value,
as the vacuum becomes unstable.
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mX = 0 (left panel) and mX = f/10 (right panel). The Goldstone boson η0 is massless in the chiral limit.

To conclude this section, let us briefly discuss the η0 couplings to the SM gauge bosons. The collider phenomenology
of this singlet has already been discussed in general in Ref. [92]. As mentioned at the end of section II E, in the chiral
limit the anomalous coupling of a pseudo-Goldstone boson to a pair of gauge bosons is fully determined by the Wess-
Zumino-Witten effective action. While the SU(4)/Sp(4) [SU(6)/SO(6)] pseudo-Goldstone bosons may couple only
to the electroweak (colour) gauge bosons, the η0 is specially interesting as it couples to both, because it couples to
both the ψ and X-fermion number currents J 0

ψµ and J 0
Xµ. The two currents have a U(1)Y anomaly, and J 0

ψµ [J 0
Xµ]

has a SU(2)L [SU(3)c] anomaly as well. Then, specialising Eq. (2.37) to our model, the η0 couplings to the SM gauge
bosons take the form

LWZW
eff,η0

= − 1

16π2
(2N) [−3(N − 1)]

η0

Fη0

(
g2WiµνW̃

µν
i + g′2BµνB̃

µν
)

− 1

16π2
(2N + 1)(N − 1)

η0

Fη0

(
2g2
sGaµνG̃

µν
a +

16

3
g′2BµνB̃

µν

)
= η0

[
k0
γγe

2AµνÃ
µν + k0

ggg
2
sGaµνG̃

µν
a + . . .

]
,

(5.58)

where the first (second) line is the contribution of the ψ (X) fermion loops, and the dots stand for couplings involving

the Z or W field strengths. Here F̃µν ≡ εµνρσF ρσ/2 and the coefficients k0
γγ,gg are straightforwardly computed using

Bµν ⊃ cwAµν , W3µν ⊃ swAµν , and e = gsw = g′cw, and similarly for couplings involving the Z or W field strengths.
The decay widths into massless gauge bosons are

Γ(η0 → γγ) = 4πα2
emM

3
η0(k0

γγ)2 , Γ(η0 → gg) = 32πα2
sM

3
η0(k0

gg)
2 . (5.59)

Note that these rates are determined only by group theory factors, up to the decay constant Fη0 . The latter can
be computed in the NJL approximation, and the result is given in Eq. (5.52). Thus, the golden channel for the
discovery of η0 at the LHC is production via gluon-gluon fusion and decay into two gauge bosons: di-jet, di-photon,
γZ, ZZ and WW final states. We recall that the mass of η0 is induced by the explicit breaking of the anomaly-
free U(1) symmetry: this is due either to an explicit mass term for the constituent fermions, mX 6= 0, or to the
proto-Yukawa couplings of the SM fermions to the composite sector, that we do not specify in this paper. Our NJL
result for Mη0 is given in Eqs. (5.43), (5.57). The corrections to Eq. (5.58), that strictly holds in the chiral limit, are
expected to be subleading, as long as η0 is significantly lighter than the non-Goldstone resonances. Note that the
ratio Γ(η0 → gg)/Γ(η0 → γγ) = 18(2N + 1)2/(N − 4)2 ·α2

s/α
2
em is independent from Fη0 and Mη0 , and is larger than

2 · 104 for any N . Thus a discovery appears more likely in the di-jet channel. Indeed, the alleged di-photon resonance
at 750 GeV could not be fitted by η0, because the gluons-to-photons ratio is too large [93].

F. Comments on spectral sum rules

In this section, we comment on the spectral sum rules when both the electroweak and the coloured sectors are
included. We will not enter in the details here but rather focus on the main differences as compared to the electroweak
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FIG. 16. Left panel: The spectral function ImΠψX
S0

(t) as a function of t/(2Mψ)2 for three values ξ = 1.15 (solid green
line), ξ = 1.3 (dashed blue line) and ξ = 2 (solid red line). The other parameters are fixed to N = 4, κA6/κA = 1,
κB/κA = 0.01 and mX = 0. One clearly sees the two poles, associated with the σ0 and σ′ scalar singlets, which become closer
and closer as ξ increases. In the opposite limit where ξ decreases, the σ0 becomes lighter and lighter up to be massless for
ξ ' 1.15 while the σ′ always stays close to the threshold 4M2

ψ ' 4M2
X . The residues of the poles have an opposite sign in

agreement with the expectation from the associated sum rule. Right panel: The absolute value of the ratio of the integral∫ t0
0
dt ImΠψX

S0
(t)/

∫∞
t0
dt ImΠψX

S0
(t) (lower blue lines) as a function of ξ for two values of the number of hypercolours N = 4

(solid line) and N = 2 (dashed line). As explained in the text, t0 is the value above which the spectral density becomes negative.

Also shown is the absolute value of the ratio (Gψσ0G
X
σ0)/(Gψσ′G

X
σ′) (upper red solid and dashed lines). The other parameters are

fixed to κA6/κA = 1, κB/κA = 0.01 and mX = 0.

sector in isolation. The latter has been extensively discussed in section III G. A few modifications are worth noticing.

While in the electroweak sector the sum rule involving Πψ
S−P (q2) is not expected to hold (see footnote 3), in the

coloured sector ΠX
S−P (q2) is an order parameter, therefore the first sum rule in Eq. (2.14) is operative as well. On the

other hand, the presence of an explicit symmery-breaking mass term mX 6= 0 spoils the convergence of the integrals
in Eqs. (2.13) and (2.14), so that one can only write the convergent sum rule of Eq. (2.19). Therefore, the saturation
of the coloured-sector sum rules is expected to worsen as mX increases. Recall that the NJL approximation already
implies large departures from the sum rules as shown, for the electroweak sector, in Figs. 7 and 8.

Another qualitative difference is induced by the interplay between the two sectors. Indeed, the mixings, defined
by Eqs. (5.28) and (5.34), between the (pseudo)scalar singlets of the two sectors modify the two-point (pseudo)scalar
singlet correlators as compared to their expressions when considered in isolation. As a consequence, the singlet two-
point correlators develop two poles, corresponding to the σ0 and σ′ (η0 and η′) in the (pseudo)scalar case. Let us

assume that mX = 0 and take the example of the order parameters Π
ψ(X)
S0−P 0(q2), which involves only the singlets

densities S0
ψ,X and P 0

ψ,X . The corresponding sum rules are then given by∫
dt ImΠ

ψ(X)

S0−P0
(t) ≡

∫
dt
[
ImΠ

11(22)

σψσX
(t)− ImΠ

11(22)

ηψηX
(t)
]

= 0

= (Gψ(X)
σ0

)2 + (G
ψ(X)
σ′ )2 − (Gψ(X)

η0 )2 − (G
ψ(X)
η′ )2 = 0 , (5.60)

where the second line has been obtained by assuming the saturation, in the narrow-width approximation, of the

correlators by the first light resonances. The expressions of the scalar decay constants G
ψ(X)
i can be obtained from

sections V E 1 and V E 2.
When the two sectors are present, an additional U(1) symmetry is also preserved, and leads to two additional sum

rules (see section IV B). For simplicity, in the sequel we focus only on the scalar sum rule, in order to avoid the
complications coming from the pseudoscalar-axial mixing. The corresponding sum rule takes the following form∫

dt ImΠ
ψX

S0
≡
∫
dt ImΠ

12

σψσX
(t) = Gψσ0

GXσ0
−Gψσ′GXσ′ = 0 , (5.61)

where in the last equality the saturation of the correlator by the first light resonances has been assumed. Let us
focus on this sum rule, as all the new features induced by the interplay between the two sectors are contained in the

correlator Π
ψX

S0
(q2). First, one clearly sees the two poles associated to σ0 and σ′ in the spectral density, which is

displayed in Fig. 16 for different values of ξ and N = 4. Increasing the value of ξ, the two poles become closer and closer



55

in agreement with Fig. 15. In principle there are two distinct thresholds above which the loops involving the fermions
ψ or X develop an imaginary part. However, as the mixing parameter κB/κA is small, these two thresholds are very
close (see Fig. 12) and one can consider in a good approximation only one threshold located around 4M2

ψ ' 4M2
X .

While in the spectral density the second pole associated to the σ′ remains always close to this threshold, one sees
that the σ0 pole moves continuously from p2 ' 4M2

ψ (for large values of ξ) down to p2 = 0 (for ξ ' 1.15) when the

σ0 becomes massless (see Fig. 15). From Eq. (5.61), one also sees that the residues of the two poles in the spectral
density should have an opposite sign in order to respect the sum rule. This is in agreement with the left panel of
Fig. 16. As the scalar singlets are narrow and the continuum part of the spectral density is small, one expects the
sum rule of Eq. (5.61) to be well respected by the NJL approximation and the saturation by the first light resonances
to be a good approximation.18

The saturation of the sum rule (5.61) is illustrated in the right panel of Fig. 16. We plot the absolute value of the

ratio of integrals
∫ t0

0
dt ImΠψX

S0
(t)/

∫∞
t0
dt ImΠψX

S0
(t), as a function of ξ and for two different values of the number of

hypercolours, N = 4 and N = 2. In the true theory, this ratio is predicted to be one regardless of the value of the
parameter t0. In our NJL approximation of the strong dynamics, the result of the integration may depend on the value
of t0, that we conventionally choose as the value of t where the spectral density vanishes. In this way, one compares
the positive and negative parts of the spectral densities, in the same spirit as for the saturation of the sum rule with

the two lightest resonances. To illustrate the latter, we plot the absolute value of the ratio (Gψσ0
GXσ0

)/(Gψσ′G
X
σ′), that

is obtained in the same way as in section III G, but the explicit expression is more involved due to the mixing and
we refrain from giving it here. Below the critical value ξ ' 1.15 (ξ ' 1.04) for N = 4 (N = 2), this ratios becomes
meaningless, as the σ0 pole disappears from the spectral density, such that a large departure from one is observed. In
summary, the right panel of Fig. 16 shows that the ratio of integrals (of decay constants) is smaller (larger) than one,
but this departure from the sum-rule prediction is reasonably small as long as ξ is well above the instability region
(see section III G for a detailed discussion of the limitations of the NJL approximation with regard to the sum rules).

VI. CONCLUSION

The general idea of a composite, Nambu-Goldstone Higgs particle provides a very attractive framework for the
EWSB. We considered an asymptotically-free gauge theory confining at the multi-TeV scale and that has the potential
to provide a self-consistent, ultraviolet-complete framework to study the composite Higgs phenomenology.

The minimal model features four flavours of constituent fermions ψa, which condense as the hypercolour interaction
becomes strong. The first, remarkable result is that, unavoidably, the corresponding SU(4) flavour symmetry breaks
spontaneously to Sp(4), as required in order to generate a NGB Higgs. This follows from general results on vector-
like gauge theories, reviewed in sections II A-II B. Furthermore, such a dynamical symmetry breaking is successfully
described by a four-fermion operator, à la NJL: when the four-fermion coupling exceeds a critical value, a non-zero
mass gap develops, as shown in section III A. The meson resonances are described by two-point correlators of fermion
bilinears. The meson spins (zero or one) and their representations under the flavour group are determined by the
quantum numbers of the associated hypercolour-singlet fermion bilinears. Following the standard NJL approach,
we computed all the relevant two-point correlators, resummed at leading order in the number of hypercolours N :
the meson mass is determined by the correlator pole, while the residue at the pole fixes the meson decay constant.
In section III E we have shown that the NGB decay constant f is almost ten times smaller than the cutoff of the
constituent fermion loops, therefore our effective theory is well under control up to meson masses of order ∼ 10f .
Recall that electroweak precision measurements require f & 1 TeV and that fine-tuning in the composite Higgs
potential is proportional to the ratio v2/f2. In order to correlate the various meson masses, we made the hypothesis
that the hypercolour dynamics is dominated by current-current interactions, see appendix D 1, and we used Fierz
transformations to relate the different four-fermion operators. In particular, in section D 4 we derived some Sp(2N)
Fierz identities which, to the best of our knowledge, are not available elsewhere in the literature.

In section III F we illustrated our results for the mass spectrum of electroweak mesons: for a reasonably small
number of hypercolours, say 2N . 10, the spin-one mesons are always heavier than 5f , while the spin-zero mesons
can be as light as f , and therefore accessible at the LHC, in the following special cases. The singlet scalar mass Mσ

vanishes when the four-fermion coupling approaches its critical value, that is, when the condensate vanishes. The
singlet pseudoscalar mass Mη′ is induced by the axial anomaly: the anomalous contribution is expected to scale as
M2
η′ ∼ 1/N , but we did not attempt to quantify its absolute size. Therefore, we cannot exclude a very light value for

Mη′ . Note that these results for σ and η′ hold for the electroweak sector in isolation: the effects of the mixing with

18 Note that in the electroweak sector in isolation, the continuum of the scalar singlet density is also small and the pole is narrow. However,
there is no sum rule involving only scalar singlets, so that the above argument does not apply.
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the singlets of the colour sector are summarised below. The non-singlet scalar S can also be light if both σ and η′

are, as M2
S ' M2

σ + M2
η′ . In addition, one should keep in mind that the set of NGB is formed by the Higgs doublet

plus a SM singlet η; their masses arise only from SM loops, which we did not study here, and are expected to lie at
or below the scale f . In section III G we performed an important test of the accuracy of our methods, by comparing
our results with spectral sum rules, that have to be satisfied by the exact two-point correlators. We thus identified
the values of the four-fermion coupling that best reproduce the sum rules. Conversely, our results in the effective NJL
approximation depart significantly from the sum rules, when the continuum part of the spectral function becomes
sizable. We also compared our results with available lattice simulations for N = 1, finding a fair agreement within the
large error bars, with a preference for certain values of the four-fermion couplings; however our methods are expected
to be more accurate when N is large. In section III H we estimated the contribution of the composite sector to the
oblique parameter S, demonstrating that it is under control.

In order to provide composite partners for the top quark, one needs to introduce additional constituent fermions
Xf , in a different hypercolour representation, such that fermion-trilinear baryons can be formed, with the quantum
numbers of the top quark. A gauge theory with fermions in two different representations presents qualitatively new
features, such as one non-anomalous U(1) flavour symmetry, with an associated Nambu-Goldstone meson η0. In
section IV B we showed that this implies two additional sum rules, as well as a mixing between the singlet scalars
and pseudoscalars of the two sectors. In addition, the axial anomaly should only generate operators that respect the
non-anomalous U(1) symmetry. As a consequence, we demonstrated in section IV C that the effect of the anomaly
is described by an operator of very large dimension, involving 4 + 12(N − 1) fermions. Our analysis of this operator
correctly takes into account all the symmetries of the model, and thus provides fully coherent results, and its large
dimension may indicate that the effects of the anomaly are suppressed in such a scenario. On the other hand, we
cannot exclude that such suppression is an artefact of our approximation of the true dynamics, in terms of fermionic
operators only.

The dynamics of spontaneous flavour symmetry breaking also complicates in the presence of two sectors. Our
analysis of anomaly matching in section IV A shows that the condensate 〈ψψ〉 necessarily forms, with the possible
exception of the case when N is a multiple of 8. However the condensate 〈XX〉 may not form in the presence of
light, coloured baryons. Indeed, in section V A we showed that the system of two coupled mass-gap equations is
very sensitive to the relative size of four-fermion couplings in the two sectors. As the NJL techniques can provide
information on the spectrum of coloured mesons only in the case of a non-vanishing mass gap, we focused on the
region of parameters where a non-zero 〈XX〉 develops as well. Let us remark that the solution of the gap equations
corresponds to a stable minimum of the effective potential only for some range of the four-fermion couplings, and of
course meson masses are under control only within this range. In the present case, it turns out that the potential is
stable (no tachyons) as long as the operators induced by the axial anomaly are suppressed with respect to the others,
by a factor of ten to one hundred, as described in section V E. Therefore, we concentrated on the mass spectrum in
this region of parameters.

We computed the masses of coloured mesons with the same techniques described for the electroweak sector. The
results are illustrated in section V D. Once again, spin-one mesons are extremely heavy, above ∼ 5f . The situation is
much more interesting for the coloured NGBs Gc, organised a real QCD octet and a complex sextet, which are massless
in the chiral limit. We computed the contribution to their masses from gluon loops, and we found MGc & 1.5f , as long
as 2N . 10. This may be sufficiently large to comply with present collider searches. Therefore, contrary to common
lore, it is not strictly necessary to introduce an explicit mass term mXXX. Nonetheless, we studied also the case
mX 6= 0, as some qualitative features of the mass gap and of the meson spectrum are very sensitive to this parameter.
In particular, the singlet pseudoscalar η0 is an exact NGB in the chiral limit, therefore its mass is controlled by
the size of mX (and by the size of the couplings to external SM fermions), as discussed in section V E. A prominent
opportunity for the discovery of composite NGBs at the LHC is offered by their anomalous couplings to two SM gauge
bosons, determined by the Wess-Zumino-Witten term. We provided the general formula for these couplings, and we
specifically discussed the phenomenological consequences for the η0 state. The mass of the other singlet pseudoscalar
η′ is extremely sensitive to the effective anomaly coefficient: one may have Mη′ . f for κB/κA � 0.01, but as soon
as κB/κA ∼ 0.1 this state decouples, Mη′ & 10f . Finally, the heaviest singlet scalar σ′ always lies in the multi-TeV
range, while the lightest singlet scalar σ0 may be as light as f . Indeed, we already remarked that the vacuum provided
by the mass-gap equations is stable only within specific ranges of the effective four-fermion couplings. Whenever the
latter are close to the boundary of the stability region, Mσ0

vanishes. In section V F we commented on the spectral
sum rules in the presence of two sectors, illustrating in particular the interplay among the singlet spectral functions.

We presented the first thorough analysis of the spectrum of meson resonances, in a confining gauge theory with
fermions in two different representations of the gauge group. The main limitation of this study is the absence of
interactions with external fermion fields. The interest of such interactions is twofold: to generate Yukawa couplings
between the composite Higgs and the SM fermions, and to induce radiatively a Higgs potential that realizes EWSB.
As a matter of fact, the coloured sector of the model is engineered to contain fermion-trilinear bound states, which
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may mix linearly with the SM fermions. The mass spectrum of these baryons and their couplings to the mesons can
be computed by generalising the techniques used in this paper. Indeed, in the QCD literature, several analytical
predictions for the masses and couplings of baryons are consistent with experiments and with lattice simulations.
Thus, one may predict the properties of composite top quark partners that reside in definite representations of the
flavour group, and then compute the Higgs effective potential induced by the top sector loops. Such a theory has
a lesser number of free parameters than a generic composite Higgs model with no specific ultraviolet completion,
therefore the challenge will be to reproduce the Higgs mass with a minimal amount of fine tuning of the parameters.
We aim to study the fermion bound states of the theory in a separate publication [94].
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Appendix A: Generators of the flavour group and embedding of the SM group

In this appendix, we give explicit representations for the generators of the flavour groups SU(4) and SU(6) and
describe how the SM gauge fields are coupled to the elementary fermion fields. There are general procedures to
construct a basis of the Gell-Mann type for any SU(n) group, starting from the well-known representations of the
generators for the cases n = 2 and n = 3, see for instance [95]. The relations in Eq. (2.2) allow to distinguish the

generators TA for the unbroken subgroups, Sp(4) and SO(6), from the generators T Â in the corresponding coset
spaces. For n = 2Nf flavours, choosing the 2Nf × 2Nf matrix Σε in the form

Σε =

(
0 11

ε11 0

)
, (A1)

the general solution of Eq. (2.2) can be expressed as [31]

TA =

(
AA BA
BA† −(AA)T

)
, T Â =

(
CÂ DÂ
DÂ† +(CÂ)T

)
, (A2)

where the Nf ×Nf submatrices AA and CÂ are hermitian, with CÂ traceless, whereas (BA)T = −εBA and (DÂ)T =

+εDÂ.

1. The SU(4) sector

According to the preceding discussion, the 15 SU(4) generators can be chosen as follows. The 10 generators of the
subgroup Sp(4) read

T 1,2,3,4 =
1

2
√

2

(
σ1,2,3,0 0

0 −σT1,2,3,0

)
, T 5,6,7 =

1

2
√

2

(
0 σ1,3,0

σ1,3,0 0

)
, T 8,9,10 =

1

2
√

2

(
0 iσ1,3,0

−iσ1,3,0 0

)
, (A3)

where σi, i = 1, 2, 3 denote the Pauli matrices while σ0 stands for the 2 × 2 unit matrix. The corresponding coset
SU(4)/Sp(4) is then generated by the 5 matrices

T 1̂,2̂,3̂ =
1

2
√

2

(
σ1,2,3 0

0 σT1,2,3

)
, T 4̂ =

1

2
√

2

(
0 σ2

σ2 0

)
, T 5̂ =

1

2
√

2

(
0 iσ2

−iσ2 0

)
. (A4)

The set of generators

T 1,2,3
L,R =

T 7 ∓ T 6

√
2

, −T
10 ∓ T 9

√
2

,
T 4 ∓ T 3

√
2

(A5)
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constitute a SU(2)L × SU(2)R subalgebra of Sp(4), and provide the generators for the electroweak interaction and
the custodial symmetry. With this convention, a multiplet ψa in the fundamental of SU(4) and of Sp(4) decomposes

as (ψ1 ψ3)T ∼ (1L, 2R) and (ψ2 ψ4)T ∼ (2L, 1R). The generator T 3̂ is associated with a NGB singlet under SU(2)L×
SU(2)R, whereas the remaining four generators of the SU(4)/Sp(4) coset correspond to the Higgs bidoublet H,

transforming as (2L, 2R). Under the diagonal SU(2)V subgroup, generated by T aL + T aR, the generators T 2̂, T 4̂, T 5̂

transform as a triplet, and T 1̂ as a singlet.
The external electroweak gauge fields W 1,2,3

µ and Bµ will then couple to the ψ fermions through the combination

− iVµ ≡ −ig
(
W 1
µT

1
L +W 2

µT
2
L +W 3

µT
3
L

)
− ig′BµT 3

R . (A6)

According to Eq. (2.28), the masses of the NGBs that are radiatively induced by the gauging are given by

∆M2
H = ∆M2

1̂,2̂,4̂,5̂
= − 3

4π
× 1

F 2
G

∫ ∞
0

dQ2Q2 Πψ
V -A(−Q2)× 1

16π
(3g2 + g′2) , ∆M2

3̂
= 0 . (A7)

Of course, this positive contribution to the Higgs doublet mass should be overcome by a negative one from the top
quark couplings, in order to trigger EWSB.

One can estimate quantitatively ∆M2
H from the explicit form of the correlator Πψ

V−A(−Q2) as computed in the
NJL approximation. If one assumes further that the lightest resonances saturate in good approximation the correlator
(see section III G), the integrand takes the simplified form

−Q2Π
ψ

V−A(−Q2) ' F 2
G + f2

AM
2
A

Q2

Q2 +M2
A

− f2
VM

2
V

Q2

Q2 +M2
V

, (A8)

where the expressions of the resonance masses and decay constants are explicitly given sections III D, III E and III G.
Integrating Eq. (A8) over Q2 up to the NJL cutoff Λ2, one obtains

−
∫ Λ2

0

dQ2Q2Π
ψ

V−A(−Q2) '
(
F 2
G + f2

AM
2
A − f2

VM
2
V

)
Λ2 + f2

VM
4
V ln

Λ2 +M2
V

M2
V

− f2
AM

4
A ln

Λ2 +M2
A

M2
A

. (A9)

Assuming that the Weinberg sum rules (3.59) hold, the first term proportional to Λ2 vanishes while the remaining
terms simplify and lead to

∆M2
H '

3

64π2

1

F 2
G

(3g2 + g′2) f2
VM

4
V ln

M2
A

M2
V

. (A10)

This estimation of ∆M2
H is of course relevant only if the V −A correlator is well saturated by the lightest resonances

and the Weinberg sum rules hold.

2. The SU(6) sector

We decompose the 35 SU(6) generators according to the SO(6) subgroup and the coset SU(6)/SO(6). We denote

by λa, a = 1, 2, . . . 8, the SU(3) Gell-Mann matrices, and we also define λ0 =
√

2/3 diag(1, 1, 1). A convenient basis
for the 15 unbroken generators is given by

T 1,··· ,8,9 =
1

2
√

2

(
λ1,··· ,8,0 0

0 −λT1,··· ,8,0

)
, T 10,11,12 =

1

2
√

2

(
0 λ2,5,7

λ2,5,7 0

)
, T 13,14,15 =

1

2
√

2

(
0 iλ2,5,7

−iλ2,5,7 0

)
.

(A11)
The eight generators T 1,··· ,8 together with T 9 form a SU(3)C × U(1)D maximal subalgebra, that can accommodate
the strong interaction gauge group, as well as a part of the hypercharge gauge group U(1)Y , with Y = T 3

R +D, where

T 3
R is defined in Eq. (A5) and D = (4/

√
3) · T9. The 20 broken generators read

T 1̂,··· ,8̂ =
1

2
√

2

(
λ1,··· ,8 0

0 λT1,··· ,8

)
,

T 9̂,··· ,1̂4 =
1

2
√

2

(
0 λ1,3,4,6,8,0

λ1,3,4,6,8,0 0

)
, T 1̂5,··· ,2̂0 =

1

2
√

2

(
0 iλ1,3,4,6,8,0

−iλ1,3,4,6,8,0 0

)
.

(A12)
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The generators T 1̂,··· ,8̂ are associated to the NGBs multiplet Oc ∼ 80 under SU(3)C×U(1)D, while T 9̂,··· ,2̂0 correspond
to the NGBs (Sc + Sc) ∼ (64/3 + 6−4/3).

The constituent fermions X transform as (32/3 + 3−2/3) under SU(3)C × U(1)D, where the normalization of the
D-charge is chosen to reproduce the correct hypercharge of top quark partners. Therefore, the external colour gauge
fields G1,··· ,8

µ and Bµ couple to the X fermions through the combination

− igc
√

2GaµT
a − ig′ 4√

3
BµT

9 . (A13)

According to Eq. (2.28), the masses of the NGBs that are radiatively induced by the gauging are given by

∆M2
Oc

= ∆M2
1̂,··· ,8̂ = − 3

4π
× 1

F 2
Gc

∫ ∞
0

dQ2Q2 ΠX
V -A(−Q2)× 3

4π
g2
s ,

∆M2
Sc

= ∆M2
9̂,··· ,2̂0

= − 3

4π
× 1

F 2
Gc

∫ ∞
0

dQ2Q2 ΠX
V -A(−Q2)× 1

4π

(
10

3
g2
s +

16

9
g′2
)
.

(A14)

The quantitative estimate of the integral of the V −A two-point function is discussed in section V B.

Appendix B: Loop functions

The one-loop integrals relevant for our purposes are the one- and two-point functions,

Ã0(m2) ≡ i
∫

d4k

(2π)4

1

k2 −m2 + iε
, B̃0(p2,m2) ≡ i

∫
d4k

(2π)4

1

(k2 −m2)
[
(p+ k)

2 −m2
] . (B1)

[We adopted the notation Ã0 and B̃0 in order to avoid confusion with the standard one-loop functions A0 and B0 [96],
which are defined in Euclidean metric and dimensional regularisation, and differ also from the above by an overall
factor i(16π2) in D = 4 dimensions.]

In the context of the NJL model, the one-point function is regularised by introducing a cut-off Λ on the Euclidean
four-momentum,

Ã0(m2) =
Λ2

16π2

[
1− m2

Λ2
ln

Λ2 +m2

m2

]
. (B2)

The zero-momentum two-point function is given by

B̃0(0,m2) =
dÃ0(m2)

dm2
=

1

16π2

[
Λ2

Λ2 +m2
− ln

Λ2 +m2

m2

]
=

1

16π2

[
1− ln

Λ2

m2
+O

(
m2

Λ2

)]
. (B3)

For the finite, p2-dependent part of the two-point function, we adopt the simple regularisation

B̃0(p2,m2) = B̃0(0,m2) +
1

32π2
f

(
p2

4m2

)
, (B4)

where

f(r) =



4

(
1− r
r

)1/2

arctan

(
r

1− r

)1/2

− 4 (for 0 < r < 1)

4

(
r − 1

r

)1/2 [
ln(
√
r +
√
r − 1)− i π

2

]
− 4 (for 1 < r)

4

(
r − 1

r

)1/2 [
ln(
√−r +

√
1− r)

]
− 4 (for r < 0) .

(B5)

We remark that the finite terms are regularisation-dependent, therefore our expression may differ from analogous ones
in the NJL literature at order p2/Λ2.
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Appendix C: Two-point correlators of fermion bilinears at one loop

In this appendix we present the detailed computation of the five one-loop two-point functions Π̃φ(q2,M2
f ) = Π̃f

φ(q2)

where φ = {S, P, V,A,AP} and Mf is the dynamical mass of the hypercolour fermions f = ψ,X. These two-point
functions are crucial quantities in the NJL model as they are involved in the estimation of the masses and decay
constants of the electroweak and coloured composite resonances (see sections III and V). For the two-component Weyl
spinors, we follow the conventions of Ref. [97] (ψ and ψ† propagate in the loops). The Feynman rules appearing in
the vertices can be extracted from the currents and densities given respectively in Eqs. (2.1) and (2.6).

Let us first focus on the electroweak sector. In the scalar and pseudoscalar non-singlet channels we get

iΠ̃ψ
S(P )(q

2)δÂB̂ = (−1)

∫ Λ d4k

(2π)4
Tr

[
iΣ0T

ÂΩΓS(P )
iσ · k

k2 −M2
ψ

iT B̂Σ0ΩΓ†S(P )

iσ · (k + q)

(k + q)2 −M2
ψ

]

+ (−1)

∫ Λ d4k

(2π)4
Tr

[
iΣ0T

ÂΩΓS(P )
iMψΣ0Ω

k2 −M2
ψ

iΣ0T
B̂ΩΓS(P )

iMψΣ0Ω

(k + q)2 −M2
ψ

]
, (C1)

where the first (second) integral corresponds to the loop involving the kinetic (massive) part of the propagators. The
factors ΓS(P ) = 1 (i), which distinguish the scalar and pseudoscalar channels, are a consequence of Eq. (2.6). These
factors are the equivalent of the γ5 matrix in Dirac notation and they give a relative sign between the two channels
in the second term of Eq. (C1), exactly like in QCD. Similarly for the vector and axial-vector two points functions
one obtains

iΠ̃
µν,AB(ÂB̂)
V (A) (q2,M2

ψ) = (−1)

∫ Λ d4k

(2π)4
Tr

[
iTA(Â)σµ

iσ · k
k2 −M2

ψ

iTB(B̂)σν
iσ · (k + q)

(k + q)2 −M2
ψ

]

+ (−1)

∫ Λ d4k

(2π)4
Tr

[
iTA(Â)σµ

iMψΣ0Ω

k2 −M2
ψ

(−iTB(B̂))Tσν
iMψΣ0Ω

(k + q)2 −M2
ψ

]
, (C2)

where the functions Π̃
µν,AB(ÂB̂)
V (A) (q2) are defined in Eq. (3.34). The vector and axial-vector channels only differ by

the flavour trace [see Eqs. (2.2) and (2.3)] which again gives a relative sign between the two channels in the second
integral. Finally, for the axial pseudoscalar two-point function one has

iΠ̃µ,ÂB̂
AP (q2,M2

ψ) ≡ iΠ̃ψ
AP (q2)pµδÂB̂ = (−1)

∫ Λ d4k

(2π)4
Tr

[
iT Âσµ

iσ · k
k2 −M2

ψ

iT B̂Σ0ΩΓP
iMψΣ0Ω

(k + q)2 −M2
ψ

]

+ (−1)

∫ Λ d4k

(2π)4
Tr

[
iT Â · σµ iMψΣ0Ω

k2 −M2
ψ

iΣ0T
B̂ΩΓ†P

iσ · (k + q)

(k + q)2 −M2
ψ

]
, (C3)

where this time the integrals contain both the kinetic and the massive parts of the propagators. Evaluating the
Lorentz, flavour and hypercolour traces, one can check that the above equations are quite consistent with the ones

given in table II. Note that the correlators in the singlet channels are obtained by replacing the generators T Â by the
normalised identity matrix T 0

ψ which only changes the flavour tensor structure of the loops, leading to the same result

for the two-point functions Π̃f
φ(q2).

Let us now turn to the correlators of the coloured SU(6) sector. The latter can be derived in complete analogy with
the ones in the electroweak sector. Besides the obvious replacements Mψ →MX , Σ0 → Σc0 and T 0

ψ → T 0
X , the major

modification originates from the hypercolour traces. Indeed, the fermions X are in the two-index antisymmetric and
traceless representation of Sp(2N). Consequently, the hypercolour traces give a factor (2N+1)(N−1) [instead of (2N)
19] which of course corresponds to the dimension of the hypercolour X−representation. Note that this difference with

respect to the electroweak sector can easily be inferred by considering the vector form X Î [Î = 1, · · · , (2N+1)(N−1)]

defined in Eq. (D6). Then, the one-loop two-point functions Π̃X
φ (q2), summarised in table IV, are related to the ones

in the electroweak sector as follow

Π̃ψ
φ (q2) = Π̃φ(q2,M2

ψ, 2N) , Π̃X
φ (q2) = Π̃φ[q2,M2

X , (2N + 1)(N − 1)] . (C4)

19 More precisely, due to the antisymmetry of the hypercolour singlet contractions, the corresponding traces of the electroweak sector
contribute to the one-loop functions with a factor ±(2N) where the sign corresponds to a particular (massive or kinetic) loop in a
given channel. The minus sign is always compensate by the flavour trace which contains in that case Σ2

0 = −11. On the contrary, the
hypercolour and flavour contractions in the coloured sectors are symmetric and always positive.
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= + · · ·gφψψ gφψψ Kφ+ Kφ + Kφ KφKφ

φ
Kφ

FIG. 17. Resummation of leading 1/N graphs for a mesonic T-matrix element, Tφ, corresponding to a composite meson
exchange.

As explained in section III B, the resummation of the above one-loop two-point functions, at leading order in 1/N ,
gives the NJL resummed correlators, Πφ, from which the masses and decay constants of the composite resonances

are extracted. Usually, in the NJL literature, one considers the T -matrix element Tφ(q2), rather than Πφ(q2). As

illustrated in Fig. 17, the geometrical series that defines Tφ starts with the four-fermion interaction Kφ, instead of

the one-loop two-point function Π̃f
φ(q2), see Fig. 2. Consequently the T -matrix element is given by

Tφ(q2) =
Kφ

1− 2Kφ Π̃f
φ(q2)

. (C5)

The poles of Tφ(q2) and of Πφ(q2) are of course identical and are given by 1 = 2Kφ Π̃f
φ(M2

φ). The only difference

comparing Eqs. (3.20) and (C5) comes from the numerators of the series, which lead different to residues. The residues

of Π
f

φ have been extensively studied in sections III and V while the residues of the T -matrix are the couplings gφff
of the physical resonance φ to the fundamental fermions f . In analogy with Eq. (3.63), these couplings are given by

g2
φff = − lim

q2→M2
φ

(q2 −M2
φ)Tφ(q2) =

2
dΠ̃f

φ(q2)

dq2

∣∣∣∣∣
q2=M2

φ

−1

. (C6)

They behave like ' 1/
√
N , as expected from general large-N considerations.

Appendix D: Relating four-fermion operators by Fierz identities

The couplings of the various four-fermions operators may be related under some assumption on the underlying
dynamics (see Refs. [66, 98] for the case of QCD). In this way one can predict the relative strength of the various
physical channels (spin-zero versus spin-one, electroweak sector versus colour sector, etc.). We will start from Sp(2N)
current-current operators, that encode the ultraviolet dynamics in the ‘ladder’ approximation, that holds when N is
(moderately) large, and we will use Fierz transformations to generate the various Sp(2N) singlet-singlet operators.
We will also take this opportunity to summarise general results on Fierz transformations associated to the SU(N)
and Sp(2N) groups.

1. Hypercolour current-current operators

Let us derive the Sp(2N) current-current operators from the covariant derivatives of the fermions ψ and X. They
belong to the fundamental representation, ψ ∼ , and to the two-index, traceless (XijΩji = 0) and antisymmetric
(Xij = −Xji) representation, X ∼ . The covariant derivatives read

(Dµψ)i =
[
∂µδij − igHC(T I)ijGµI

]
ψj , (D1)

(DµX)ij = ∂µXij − igHC
[
(T I)ikXkj + (T I)jkXik

]
GµI =

[
∂µδikδjl − igHC(T IX)ijklGµI

]
Xkl , (D2)

where GµI are the hypergluon fields, and gHC is the hypercolour gauge coupling. The hypercolour generators acting
on ψj , (T I)ij , and on Xkl, (T IX)ijkl ≡ (T I)ikδjl − δil(T I)jk, are normalised as

Tr(T IT J) ≡ 1

2
` ( ) δIJ =

1

2
δIJ , Tr(T IXT

J
X) ≡ (T IX)ijkl(T

J
X)klij ≡

1

2
`
( )

δIJ = (N − 1)δIJ . (D3)
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The non-derivative terms in Eqs. (D1) and (D2) determine the coupling of the technigluons to the Sp(2N)-currents

J µIψ and J µIX , which transform under the adjoint representation ,

LUV = gHC

(
J µIψ + J µIX

)
GµI , (D4)

where

J µIψ = ψ
(
ΩT I

)
σµψ , J µIX = 2 Tr

[
X
(
ΩT I

)
σµXΩ

]
. (D5)

Here Ωij is the Sp(2N) invariant tensor, the trace is taken over Sp(2N) indexes, and the expression of J µIX has been

simplified using Tr
[
XΩσµX

(
ΩT I

)]
= −Tr

[
X
(
ΩT I

)
σµXΩ

]
. It is understood that each fermion flavour ψa (Xf )

behaves equally with respect to the Sp(2N) dynamics, that is, the Sp(2N) currents are flavour singlets. It will be

useful to rearrange the fermion components Xij as a vector X Î , with one index Î of the representation ,

Xij =
√

2(T ÎΩ)ijX
Î , X Î = −

√
2(ΩT Î)ijXji , (D6)

so that the second current in Eq. (D5) can be written in terms of the generators in the representation , that are
given by SU(2N) structure constants,

J µIX = X Î(T I )ÎĴσµX
Ĵ
, (T I )ÎĴ ≡ if ÎIĴ = 2Tr

(
[T Î , T I ]T Ĵ

)
. (D7)

We assume that the confining strong dynamics can be described, in first approximation, by the exchange of one
hypergluon which acquired a dynamical mass, which is the usual NJL assumption in QCD [24]. Then, the strong
dynamics is supposed to generate, in the ’ladder’ approximation, Sp(2N) current-current operators only,

Leff =
κUV
2N

[
J µIψ J Iψµ + J µIX J IXµ + 2J µIψ J IXµ

]
, (D8)

where κUV /(2N) ∼ g2
HC/Λ

2 stands for the exchange of one ‘massive’ hypergluon. The large-N scaling of the gauge

coupling is gHC ∼ 1/
√

2N , while κUV and Λ are N -independent. The operators in Eq. (D8) are the product of
fermion bilinears in the adjoint representation of Sp(2N). In order to study physical resonances, which correspond to
Sp(2N)-singlet fermion bilinears, we need to rewrite these operators by using Fierz transformations in the Lorentz,
flavour and hypercolour spaces. Note that the last operator in Eq. (D8) does not contribute to any meson resonance,
because by a Fierz transformation one obtains only ‘diquark-diquark’ operators, such as (ψX)(ψX), which are not
hypercolour singlets, and therefore are not relevant for our analysis.

The Fierz transformations of Weyl indices are determined by the well-known identities

(σµ)αα̇ (σµ)ββ̇ = − (σµ)αβ̇ (σµ)βα̇ = 2 εαβεα̇β̇ . (D9)

The SU(N) and Sp(2N) Fierz transformations, relevant for flavour and hypercolour indexes respectively, are presented
in sections D 3 and D 4 below.

2. General properties of Fierz transformations

In this section we derive general properties of the coefficients in Fierz transformations. For a given irreducible
representation R of the symmetry group under consideration, let us construct the tensor products R⊗R =

∑
A
RA

and R ⊗ R =
∑̃
ARA, where the index A runs over the irreducible representations contained in the product. One

can choose [99] a set of matrices {ΓAa } ({Γ̃Aa }), with a = 1, · · · ,dimRA, which form a basis of the vector space R⊗R
(R ⊗R). In the following, we will add a tilde wherever there is no conjugate in the tensor product. Such matrices
have size dimR× dimR and satisfy the orthogonality relations

Tr(ΓAa ΓBb ) = α δABgAab , Tr(Γ̃Aa Γ̃B†b ) = α δABgAab , (D10)

where α is a normalisation constant and gAab is a generic metric (in particular, gAabg
Abc = δca and ΓaA ≡ gAabΓAb ). Any

dimR× dimR matrix M can be decomposed on the basis {ΓAa } as

M =
∑
A

∑
a

caAΓAa =

∼∑
A

∑
a

daAΓ̃Aa , caA =
1

α
Tr(ΓaAM) , daA =

1

α
Tr(Γ̃aA†M) . (D11)
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Replacing the explicit form of caA and daA in M we obtain the completeness relations∑
A

∑
a

(ΓaA)ij(Γ
A
a )kl =

∼∑
A

∑
a

(Γ̃aA)ij(Γ̃
A†
a )kl = α δilδkj . (D12)

which are relevant to derive the Fierz coefficients.
Let us consider an interaction among four objects transforming as (R⊗R)A(R⊗R)A, where the subscripts indicate

that each pair is contracted in the component RA. Then, the Fierz transformations can be written as∑
a

(ΓaA)ij(Γ
A
a )kl =

∑
B
CAB

∑
b

(ΓbB)il(Γ
B
b )kj =

∼∑
B
DAB

∑
b

(Γ̃bB)ik(Γ̃B†b )jl , (D13)

where CAB and DAB are the Fierz coefficients for the channels j ↔ l and j ↔ k, respectively. In terms of ‘quarks’
∼ R and ‘antiquarks’ ∼ R, one can dub them the ‘quark-antiquark’ and the ‘quark-quark’ channels, respectively.
Analogously, for the interaction (R⊗R)A(R⊗R)A, the Fierz transformations read∑

a

(Γ̃aA)ij(Γ̃
A†
a )kl =

∑
B
C̃AB

∑
b

(ΓbB)il(Γ
BT
b )kj =

∑
B
D̃AB

∑
b

(ΓbB)ik(ΓBb )jl , (D14)

One can derive several, general constraints on the Fierz-coefficient matrices C,D, C̃, D̃. Applying twice a Fierz
transformation on the same indexes the original contraction is recovered, therefore one obtains∑

B
CABCBC = δAC ,

∼∑
B
DABD̃BC = δAC ,

∑
B
C̃ABDBC = sAδAC ,

∑
B
D̃ABDBC = δAC , (D15)

where sA = +1 (−1) when the representation RA belongs to the (anti-)symmetric part of the tensor product R⊗R,

and correspondingly the matrices Γ̃Aa are (anti-)symmetric. Therefore, one has C = C−1, while both C̃ and D̃ can
be fully determined in terms of the matrix D. The contraction associated to the singlet representation, R• ⊂ R⊗R,
can be chosen as Γ•ij = δij

√
α/dimR. Therefore, Eq. (D12) determines the first row of C and D,

C•A =
1

dimR , ∀ RA ⊂ R⊗R , D•A =
sA

dimR , ∀ RA ⊂ R⊗R . (D16)

Indeed, from Eq. (D13) one can obtain explicit expressions of the Fierz coefficients,

CAB =
1

α2

∑
a

Tr[ΓaAΓBb ΓAa ΓbB] , DAB =
1

α2

∑
a

Tr[ΓaA(Γ̃Bb )T (ΓAa )T Γ̃bB†] , (D17)

which are valid for every b. The direct computation of such expressions, however, may be very complicated in practice.
By summing over b the two identities in Eq. (D17), one obtains quantities invariant under the exchanges A ↔ B and
C ↔ C−1 (D ↔ D−1), therefore one concludes that

CAB dimRB = CBA dimRA , DAB dimRB = (D−1)BA dimRA . (D18)

In particular, Eq. (D16) implies CA• = C•A dimRA = dimRA/dimR.

In the special case of a (pseudo-)real representationR, taking ψ ∼ R and ψ† ∼ R, one has ψi ≡ ψ†j (Ωε)ji ∼ R, where

Ωε is the invariant tensor establishing the equivalence of R and R, which is symmetric (ε = +1) or antisymmetric
(ε = −1) in the case of real or pseudo-real representations, respectively. Therefore, the set of matrices {ΓAa } and

{Γ̃Aa } can be identified, according to Γ̃Aa = ΓAa Ωε. In addition, the equality ΩεΓ̃
A†
a = εΓ̃Aa Ωε holds, which implies

in particular (ψΓ̃Aa ψ)† = εψΓ̃Aa ψ. Then, it is convenient to rewrite the Fierz transformations in Eq. (D13) [or,
equivalently, Eq. (D14)] in terms of the interaction (R⊗R)A(R⊗R)A,∑

a

(Γ̃aA)ij(Γ̃
A
a )kl =

∼∑
B
CAB

∑
b

(Γ̃bB)il(Γ̃
B
b )kj = ε

∼∑
B
DAB

∑
b

(Γ̃bB)ik(Γ̃Bb )jl . (D19)

It follows immediately that the two sets of Fierz coefficients are related as

εDAB = sACABsB , (D20)

where sA,B = ±1 denotes, once again, the (anti-)symmetry of RA,B within R ⊗ R. In this (pseudo-)real case the

singlet contraction corresponds to Γ̃•ij = (Ωε)ij
√
α/dimR, therefore s• = ε, and one recovers Eq. (D16).
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3. SU(N) Fierz transformations

Let us derive the Fierz transformations associated to the fundamental representation of SU(N) (see e.g. [100]).
In our model they are relevant for the flavour indexes, as the fermions ψa and Xf transform in the fundamental of
SU(4) and SU(6), respectively.

In the ‘quark-antiquark’ channel, (NaN
b)(N cN

d)→ (NaN
d)(N cN

b), one can employ the completeness relation of
Eq. (D12) for N ⊗N ,

N2−1∑
I=1

(T I)ab(T
I)cd + (T 0)ab(T0)cd =

1

2
δadδ

c
b , (D21)

where T I are the (N2 − 1) generators of SU(N), T 0 ≡ 11/
√

2N , and α = `(N)/2 = `(N)/2 = 1/2 as we adopted the
normalisation Tr(T IT J) = δIJ/2. The first row of the Fierz-coefficient matrix CAB is simply obtained by reshuffling
the indexes in Eq. (D21),

(T 0)ab(T
0)cd =

1

N
(T 0)ad(T

0)cb +
1

N

∑
I

(T I)ad (T I)cb , (D22)

The second row can be determined by imposing C2 ≡ 11, as follows from Eq. (D15). Thus, one concludes that (T 0)ab(T
0)cd∑

I

(T I)ab (T I)cd

 = C

 (T 0)ad(T
0)cb∑

I

(T I)ad (T I)cb

 =

(
1
N

1
N

N2−1
N − 1

N

) (T 0)ad(T
0)cb∑

I

(T I)ad (T I)cb

 . (D23)

In the ‘quark-quark’ channel, (NaN
b)(N cN

d) → (NaN c)(N
bNd), one needs also the completeness relation for

N ⊗N , that involves N(N + 1)/2 symmetric matrices ΓIS , and N(N − 1)/2 antisymmetric matrices ΓIA,

N(N+1)/2∑
I=1

(ΓI†S )ab(ΓIS)cd +

N(N−1)/2∑
I=1

(ΓI†A )ab(ΓIA)cd =
1

2
δadδ

b
c . (D24)

A convenient basis of (anti-)symmetric matrices is provided by Γ0 ≡ ΣεT
0, ΓI ≡ ΣεT

I , and ΓÎ ≡ ΣεT
Î , where (Σε)ab

is the invariant tensor of a maximal SU(N) subgroup, which is SO(N) in the case ε = +1, and Sp(N) in the case

ε = −1 (present only for N even). Here the index I runs over the subgroup generators only, and the index Î spans

the coset. When ε = +1(−1), Σε is a symmetric (antisymmetric) matrix and, according to Eq. (2.2), Γ0 and ΓÎ are
symmetric (antisymmetric), while ΓI are antisymmetric (symmetric). Using this basis for the matrices ΓIS,A, one can
construct explicitly the Fierz-coefficient matrix DAB, (T 0)ab(T

0)cd∑
I

(T I)ab (T I)cd

 = D


∑
I

(ΓI†S )ac(ΓIS)bd∑
I

(ΓI†A )ac(ΓIA)bd

 =

(
1
N − 1

N

N−1
N

N+1
N

)
∑
I

(ΓI†S )ac(ΓIS)bd∑
I

(ΓI†A )ac(ΓIA)bd

 . (D25)

For example, the first row of DAB can be obtained from Eq. (D22) by contracting with (Σε)
dd′(Σε)c′c, and inverting

appropriate pairs of (anti-)symmetrised indexes: the result agrees with Eq. (D16). The second row is determined e.g.
by Eq. (D18), up to an overall sign, that can be fixed once again by (anti-)symmetrising over appropriate indexes.

4. Sp(2N) Fierz transformations

Let us derive the Fierz transformations associated to the hypercolour representations of the fermions ψi and Xij ,

that is, and respectively. The group Sp(2N) is a subgroup of SU(2N), corresponding to the vacuum direction
Σ− ≡ Ω, defined in Eq. (3.3). Taking advantage of Eq. (2.2), one can decompose the U(2N) completeness relation
(D21) into two parts, corresponding to the Sp(2N) subalgebra and its coset,

N(2N+1)∑
I=1

(T I)ij (T I)kl =
1

4
(δilδkj − ΩikΩjl) : Sp(2N) , (D26)

(2N+1)(N−1)∑
Î=1

(T Î)ij (T Î)kl + (T 0)ij (T 0)kl =
1

4
(δilδkj + ΩikΩjl) : U(2N)/Sp(2N) . (D27)
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The product of two fundamental representations of Sp(2N) reads

× = •a + s +
a
, (D28)

where the bullet stands for the singlet and the subscripts indicate whether the contraction is symmetric or antisym-
metric under the exchange of the two factors. These representations have dimensions

d ( ) = 2N , d (•) = 1 , d ( ) = N(2N + 1) , d
( )

= N(2N − 1)− 1 = (2N + 1)(N − 1) . (D29)

Note that, for N = 1, the two-index antisymmetric representation is absent. The two indexes in i j are contracted

by an appropriate set of (anti-)symmetric matrices Γ̃aA, that can be conveniently chosen as

Γ̃• ≡ ΩT 0 =
Ω√
4N

, Γ̃I ≡ ΩT I , Γ̃Î ≡ ΩT Î , (D30)

in one-to-one correspondence with the generators of U(2N). Multiplying (D26) and (D27) by ΩmiΩnk one obtains
useful equalities to determine the Fierz transformations of ( i j)( k l). Thus, the matrix of Fierz coefficients for the
channel (il)(kj), CAB, can be fully determined in agreement with the general results of section D 2:

(ΩT 0)ij(ΩT
0)kl∑

I

(ΩT I)ij(ΩT
I)kl∑̂

I

(ΩT Î)ij(ΩT
Î)kl

 =


1

2N
1

2N
1

2N

2N+1
2 − 1

2
1
2

(2N+1)(N−1)
2N

N−1
2N −N+1

2N




(ΩT 0)il(ΩT
0)kj∑

I

(ΩT I)il(ΩT
I)kj∑̂

I

(ΩT Î)il(ΩT
Î)kj

 , (D31)

According to Eq. (D20), the Fierz coefficients in the channel (ik)(jl) are given by DAB = −CAB when both A and B
are (anti-)symmetric contractions, and DAB = CAB otherwise.

We can now determine the coefficients κA,C,D of the four-fermion operators in the ψ-sector, which are defined by
Eqs. (3.14) and (3.30), assuming that the dynamics is well approximated by the ψ-sector current-current operator
of Eq. (D8), with coefficient κUV . Note that the ’t Hooft operator with coefficient κB , defined by the second line of
Eq. (3.14), is not generated by the current-current interaction, as the latter preserves the anomalous U(1)ψ symmetry,
therefore the size of κB is unrelated to κUV . On the contrary, the sizes of κA,B,C can be related to κUV by performing
the pertinent set of Fierz transformations over Lorentz, SU(4) flavour, and Sp(2N) hypercolour indexes. Naively, with
this procedure the current-current operator is recast into a sum over several operators: those with two hypercolour-
singlet fermion bilinears, which correspond to physical meson states, plus those with two hypercolour-non-singlet
fermion bilinears. The former operators receive a coefficient

κA = κC = κD =
2N + 1

4N
κUV . (D32)

However, the latter operators could also contribute to these couplings, by further Fierz transformations. Therefore,
the above equalities cannot be firmly established on this basis. Fortunately, there exists a unique way to express the
current-current operator in terms of hypercolour-singlet fermion bilinears only, by using the identity∑

I

(
ΩT I

)
ij

(
ΩT I

)
kl

=
1

4
(ΩilΩkj − ΩikΩjl) , (D33)

which is obtained e.g. by considering the first row of Eq. (D31) and symmetrising over the indexes (il), or equivalently
by multiplying the Sp(2N) completeness relation (D26) by Ωi′iΩk′k. Employing this relation we obtain

κA = κC = κD =
1

2
κUV . (D34)

Therefore, in the current-current approximation, the scalar coupling κA and the vector couplings κC,D are equal and
N -independent when N becomes large, as κUV is. Notice that the naive relations in Eq. (D32) were correct al leading
order in 1/N . The equality between vector and scalar couplings also holds in the standard NJL model for QCD [8].

Let us now analyse the product of two Sp(2N) two-index traceless antisymmetric representations , that exist only
for N > 1, and are relevant for the colour sector of our model. The tensor product,

× = • s + a +
s

+
s

+

s

+

a

, (D35)
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contains three four-index representations, of dimensions

d
( )

=
N

3

(
4N3 − 7N + 3

)
, d

( )
=
N

6

(
4N3 − 12N2 −N + 3

)
, d
( )

=
1

2

(
4N4 − 4N3 − 9N2 +N + 2

)
.

(D36)
These numbers can be derived taking into account the symmetry properties of each representation in Eq. (D35), and
subtracting the dimensions of the smaller representations, obtained by taking traces, as given in Eq. (D29). Note that,
for N = 2, the third, fifth and sixth representation on the right-hand side of Eq. (D35) are absent: 5×5 = 1s+10a+14s.
For N = 3, the fifth representation only is absent: 14 × 14 = 1s + 21a + 14s + 90s + 70a. Finally, for N > 3 all the
components of the tensor product exist.

The indexes in ij kl are contracted into the representation R by a set of tensors (Γ̃aR)ijkl, with a = 1, . . . ,dimR.

Equivalently, one can use a single index running over the (2N + 1)(N − 1) components of ,

Xli(Γ̃
a
R)ijklXjk = XÎ(Γ̃

a
R)ÎĴXĴ . (D37)

where Xij and XÎ are related by Eq. (D6). In this notation, the completeness relation reads∑
R

∑
a

(Γ̃aR)ÎĴ(Γ̃aR)K̂L̂ =
1

2
`( )δÎL̂δK̂Ĵ = (N − 1)δÎL̂δK̂Ĵ , R = •, , , , , . (D38)

In fact, the set of matrices {Γ̃aR} corresponds to the generators of the group U [(2N + 1)(N − 1)], normalised as

Tr[Γ̃aRΓ̃bR′ ] = 1
2`( )δRR′δ

ab. Let us provide the explicit form of these matrices for the smallest representations. The
singlet contraction is given by

(Γ̃•)ijkl =
1√

2N + 1
ΩijΩkl , (Γ̃•)ÎĴ =

1√
2N + 1

δÎĴ . (D39)

The adjoint contraction, already employed in section D 1, is given by

(Γ̃K )ijkl = (ΩT I)ijΩkl − Ωij(ΩT
I)kl , (Γ̃K )ÎĴ = −if ÎĴK = −2Tr([T Î , T Ĵ ]TK) . (D40)

The two-index antisymmetric contraction has a similar structure, with the unbroken generators T I replaced by the

broken ones T Î ,

(Γ̃K̂)ijkl = (ΩT K̂)ijΩkl + Ωij(ΩT
K̂)kl , (Γ̃K̂)ÎĴ = dÎĴK̂ = 2Tr({T Î , T Ĵ}T K̂) . (D41)

One can easily check that the symmetry properties of the contractions in Eqs. (D39), (D40) and (D41) agree with
those indicated in Eq. (D35).

The singlet Fierz coefficients in the channel (ÎL̂)(K̂Ĵ), C•R, are easily determined from the completeness relation
(D38), in agreement with Eq. (D16). The coefficients CR• are determined in turn by Eq. (D18). Thus, we can write



(Γ̃•)ÎĴ(Γ̃•)K̂L̂∑
a

(Γ̃a )ÎĴ(Γ̃a )K̂L̂∑
a

(Γ̃a )ÎĴ(Γ̃a )K̂L̂∑
a

(Γ̃a )ÎĴ(Γ̃a )K̂L̂∑
a

(Γ̃a )ÎĴ(Γ̃a )K̂L̂

∑
a

(Γ̃a )ÎĴ(Γ̃a )K̂L̂



=



1

d
( ) 1

d
( ) 1

d
( ) 1

d
( ) 1

d
( ) 1

d
( )

d( )

d
( ) · · · · · · · · · · · · · · ·

1 · · · · · · · · · · · · · · ·
d
( )
d
( ) · · · · · · · · · · · · · · ·

d

( )
d
( ) · · · · · · · · · · · · · · ·
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. (D42)

One needs further algebraic manipulations to determine the non-singlet Fierz coefficients CRR′ , which anyhow will
not be needed for our purposes. For concreteness, let us display the explicit result in the case N = 2, where there



67

are only three representations in the tensor product × . Using repeatedly the completeness relation and the
(anti-)symmetrisation over appropriate pairs of indexes, we conclude that the matrix C in the case N = 2 takes the
form 

(Γ̃•)ÎĴ(Γ̃•)K̂L̂∑
a

(Γ̃a )ÎĴ(Γ̃a )K̂L̂∑
a

(Γ̃a )ÎĴ(Γ̃a )K̂L̂

 =


1
5

1
5

1
5

2 1
2 − 1

2

14
5 − 7

10
3
10




(Γ̃•)ÎL̂(Γ̃•)K̂Ĵ∑
a

(Γ̃a )ÎL̂(Γ̃a )K̂Ĵ∑
a

(Γ̃a )ÎL̂(Γ̃a )K̂Ĵ

 . (D43)

The Fierz coefficients DRR′ in the channel (ÎK̂)(Ĵ L̂) are determined by Eq. (D20), with ε = +1 as is a real
representation. Since we aim to rewrite the X-sector current-current operator of Eq. (D8) in terms of hypercolur-
singlet fermion bilinears, the relevant Fierz coefficients are

C • = −D • =
N

N − 1
. (D44)

In analogy with the above procedure in the ψ-sector, one can try to determine the coefficients κA6,C6,D6 of the
four-fermion operators in the X-sector, which are defined by Eqs. (5.1) and (5.20). If one applies a pertinent Fierz
transformation, over Lorentz, SU(6) and Sp(2N) indexes, to the X-sector current-current operator in Eq. (D8), one
obtains

κA6 = κC6 = κD6 = κUV . (D45)

This indicates that the scalar and vector operators of the coloured sector receive the same coefficient, that is twice as
large as for the corresponding operators of the electroweak sector, see Eq. (D34). However, at the same time κUV also
contributes to other operators, that involve hypercolour-non-singlet fermion bilinears, therefore the above relations
are ambiguous, as they rely on a specific recasting of the current-current operator, that is not unique. Another
possible recasting is obtained by anti-symmetrising Eq. (D38), with respect to the pair of indexes (K̂L̂), to remove
the symmetric components of Eq. (D35),∑

a

(Γ̃a )ÎĴ(Γ̃a )K̂L̂ +
∑
a

(Γ̃a )ÎĴ(Γ̃a )K̂L̂ =
(2N + 1)(N − 1)

2

[
(Γ̃•)ÎL̂(Γ̃•)K̂Ĵ − (Γ̃•)ÎK̂(Γ̃•)ĴL̂

]
. (D46)

This relation is the analog of Eq. (D33), associated to the tensor product × . In general, this procedure does
not allow to express the current-current contraction in terms of singlet-singlet contractions only, because the product

× contains another antisymmetric representation, besides the adjoint. The exception is the case N = 2, where
the second term on the left-hand side of Eq. (D46) is absent. If one neglects this second term even for N > 2, the
relation between the current-current operator and the singlet-singlet operators becomes

κA6 = κC6 = κD6 =
(2N + 1)(N − 1)2

2N
κUV . (D47)

Note that these couplings can be much larger than those in Eq.(D45), when N is large. The problem is that the
current-current operator contains terms leading in 1/N , that cannot be written as singlet-singlet contractions only,
except for N = 2. In the latter case, Eq. (D47) is exact and its right-hand side reads 5κUV /4, to be compared with
Eq. (D34) in the electroweak sector.

We conclude that, for N > 2, the strength of the coloured-sector couplings cannot be fixed in terms of κUV , and we
treat it as a free parameter. In particular, κA6 is independent from the strength of the electroweak-sector coupling
κA: in our phenomenological analysis we take κA6 ∼ κA, such that the domain of validity of the NJL calculations
is similar in the two sectors, and the NJL predictions can be compared. On the other hand, the equality between
the scalar and vector couplings in each sector is a solid prediction of the current-current approximation, that holds
independently from their absolute sizes. Finally, we remind that all predictions discussed in this appendix depend
on the validity of the effective Lagrangian of Eq. (D8), that relies on the ‘ladder’ approximation for the hypercolour
dynamics. Therefore significant departures from these predictions cannot be excluded.
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