
HAL Id: hal-01779140
https://hal-upec-upem.archives-ouvertes.fr/hal-01779140

Submitted on 26 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deterministic scheduling in Networks-on-Chip using the
Trajectory approach

Ermis Papastefanakis, Xiaoting Li, Laurent George

To cite this version:
Ermis Papastefanakis, Xiaoting Li, Laurent George. Deterministic scheduling in Networks-on-Chip
using the Trajectory approach. ISORC’2015, Apr 2015, Auckland, New Zealand. �hal-01779140�

https://hal-upec-upem.archives-ouvertes.fr/hal-01779140
https://hal.archives-ouvertes.fr

Deterministic scheduling in Networks-on-Chip using
the Trajectory approach

Ermis Papastefanakis†‡, Xiaoting Li∗, Laurent George‡
∗ECE Paris, 75015 Paris, France

†Thales Communications and Security, 92622 Gennevilliers, France
‡Université Paris-Est, LIGM / ESIEE, Champs sur Marne, France

Email: ermis.papastefanakis@thalesgroup.com, xiaoting.li@ece.fr, laurent.george@univ-mlv.fr

Abstract—In this paper, we consider the problem of guaran-
teeing real-time end-to-end transmission time for flows sent on a
Network-on-Chip (NoC) with First-in First-out (FIFO) scheduling
on each node. We show how to adapt the Trajectory approach,
used in the context of Avionics Full DupleX switched Ethernet
(AFDX) networks to characterize end-to-end transmission delays,
to the context of NoC-based Systems-on-Chip (SoCs). We char-
acterize the benefit of the Trajectory approach on an example.

Keywords—Determinism, Network-on-chip, Trajectory ap-
proach, real-time.

I. INTRODUCTION

As the number of elements in a Multi-Processor System-
on-Chip (MPSoC) increases, so does raw processing power.
This introduces augmented complexity that makes certain
features such as determinism or Quality of Service (QoS) more
and more difficult to maintain. As a result, the gap between
performance and predictability (worst-case execution time
(WCET)) is quite large, suggesting underused resources. NoCs
are a new paradigm for on-chip interconnection that is being
adopted by the majority of new SoCs. The concept behind
NoCs is to adapt the principles of networks and implement
them inside the chip, achieving to transfer packets instead
of electric signals [1]. NoCs possess a modular architecture
that offers improved spatial and temporal separation. All this
creates a natural interest to evaluate the potential to exploit
resources in an efficient way, preserving at the same time the
system’s determinism [2].

Similar work on real-time scheduling has been realized on
[3] with the difference that fixed-priority and virtual channels
are considered in the NoC platform. While those characteristics
are often adapted, it is not always the case. We chose the Tra-
jectory approach because it has demonstrated low pessimism
and will allow to achieve interesting results on a more generic
NoC platform.

Our contribution: We show how to adapt the Trajectory
approach (successfully applied to off-chip networks such as
Switched Ethernet) to NoCs with FIFO scheduling. It is
important to note that the constraints in NoCs are very different
from those in AFDX Switched Ethernet networks which makes
the adaptation to NoC-based systems necessary. In this paper
we analyze the worst-case traversal time (WCTT) of sporadic
flows to be able to guarantee real-time response on a chip
level without requiring implementation of Virtual Channels
(VCs). We achieve that by calculating the WCTT between

two Intellectual Property (IP) elements using the Trajectory
approach.

This paper is organized as follows. In section II, we
introduce the NoC platform and the corresponding network
model. We then recall existing research on NoCs in section
III. The Trajectory approach adapted to the NoC ecosystem
is presented in section IV. In section V we examine a use
case to illustrate the method along with the results. Finally we
conclude our work in section VI.

II. PLATFORM AND NETWORK MODEL

A. Platform

Each router Rxy consists of five links, four located at the
edges North, East, West, South (NEWS), used to connect with
neighbor routers and the fifth is used to connect with the Local
(L) IPxy . An illustration of a router Rxy is given in Figure 1.
For example, Rxy W signifies the West link of router Rxy .
Here x and y are the coordinates of the router inside the 2D
mesh and they range from 0 to 3 for a 4x4 NoC.

In order to traverse a router, there are two levels that a
flit has to pass, each taking one clock cycle. In the first one,
buffering and routing take place while the second deals with
arbitration and output. From a time standpoint, during the first
cycle a header flit enters a router and is stored in a small
size buffer that can hold up to four flits. At the same cycle
it passes through a routing mechanism to determine which
output link it wants to reserve. During the second cycle the
arbiter (one in each output) will decide which of the potentially
competing inputs will take over the output link. At the same
time the output register (no output buffers) holds the flit that
will traverse the link. These two levels are pipelined and
initially two cycles are needed to forward the header flit but
each of the payload flits will only require one cycle to follow
through the path. In this work, we study the FIFO arbitration
scheme in which the output controller reserves the path for the
packet whose header flit arrives first. When the path is freed,
the arbiter reserves the path for the packet whose header flit
arrives secondly and so on.

This platform is implemented in Verilog and is able to
synthesize on a Field Programmable Gate Array (FPGA)
(Xilinx Virtex-7). Measurements can be taken through a cycle
accurate simulator or through traces of the FPGA output
stream.

Fig. 1. Architecture of a NoC router Rxy

B. Network model

We consider n sporadic flows transmitted in the NoC. A
sporadic flow τi sends packets respecting two parameters: 1)
the period Ti which is the minimum temporal interval between
the arrival of two consecutive packets, and 2) the maximum
transmission time Ci which is the maximum time to transmit
all the flits of a packet on a router. We denote Di a bound on
the WCTT of any packet of flow τi.

The transmission of one flit on a link takes one clock cycle
Tc, and the period Ti as well as the transmission time Ci, are
multiples of clock cycle Tc. In this work, we consider for each
packet of a message a constant transmission cycle Ci = 4×Tc
including the header flit and three payload flits. For a packet fi
of flow τi, we denote the header flit fih and the payload flits
fi,1, fi,2 and fi,3. Due to the dimension-order X-Y routing,
each packet of flow τi follows a static path denoted Pi which is
composed of the source and destination IPs as well as the input
ports of routers along this path. The first buffer of the source
IP is denoted firsti, while the last buffer of the destination
IP is denoted lasti. Then the path of flow τi is represented by
Pi = {firsti, ..., lasti}.

We consider one diffusion path in the network which
means that when packets of different flows join one path,
they do not leave this path until they are transmitted to the
same destination. A real use case that illustrates this concept
can be found in memory hierarchies where the last level,
a common bottleneck in MPSoCs, is the Random Access
Memmory (RAM). In such a case a number of IPs will try
to access the RAM memory and combined with XY routing,
the generated traffic will join a single path leading to the
memory controller. An illustrative example of one diffusion
path of NoC is shown in Figure 2. Flow τ1 follows path
P1 = {IP32, R32 L, R22 S , R12 S , IP12}. Three flows τ2, τ3
and τ4 join this path till IP12.

τ1
τ1

τ1

τ1
τ2

τ2

τ2

τ2

τ3

τ3

τ3

τ4

τ4

τ4

IP32 IP12

R
3
2

R
2
2

R
1
2

N NN

WWW

E EE

SSS

LL

Fig. 2. An example of one diffusion path of NoC

III. CURRENT WORK ON NOCS

With the advance of performance requirements in System-
on-Chip (SoC), with an increase in the number of IPs to be
connected, the interconnect becomes a bottleneck and suffers
from scalability issues. Network on Chip (NoC) are seen as a
solution to this scalability issue [4] by providing configurable
network paradigms at small size (computation and storage
functions are impleted at silicon level). Providing real-time
communications bounds in NoCs is therefore a challenge
that needs to be addressed with specific approaches that take
into account stringent requirements imposed by the hardware
(small buffer size, flit level granularity).

Wormhole routing is a popular solution to take into ac-
cound small buffer size constraints in router [5], [4]. Wormhole
routing can lead to contention problems in communication
where a packet can delay all packets trying to access the output
of the same router. The delay on one router can result in a
domino effect eventually delaying directly all packets on the
same path as well as indirectly packets on other routers. This
contention problem must be taken into account in a worst-case
end-to-end delay analysis [6], [7], [3]. In [3], authors prove
that the general problem of exact schedulability of real-time
traffic-flows sent in NoCs is NP-hard. We must therefore focus
on sufficient schedulability analysis. One approach consists
of computing bounds on the worst-case end-to-end response
times for any flow. In [6], [7], [3], the authors have considered
this approach with a priority based transmission preemption
method. For their analysis, they assume a virtual channel
(VC) technique [8]. With VCs, each physical link has specific
buffers along its path. Hence a transmitting packet can bypass
a blocked one with this method. In the case of periodic
constrained deadline flows, this helps adapting classical worst
case response time analysis initially proposed in the context
of uniprocessor systems to wormhole routing [3]. The holistic
approach is then used to compute the worst case end-to-end
response time of a flow by taking into account the worst case
interference jitter of competing flows along its path. This work
has been recently extended [9] to support flows having two
criticality modes.

In the following section, we show that the trajectory
approach, used in the context of switched Ethernet networks
can be adaptated to the context of NoCs.

IV. TRAJECTORY APPROACH ADAPTED FOR NOCS

The Trajectory approach was introduced for FIFO schedul-
ing in [10] and then applied to real-time full-duplex switched
Ethernet networks [11], [12]. This approach considers the
worst-case scenario that a packet can face along its path to
compute a bound on its WCTT.

More precisely, it maximizes each busy period1 at
each buffer along the path where competition occurs. The
NoC architecture we study in this work shares common
characteristics with real-time full-duplex switched Ethernet
networks, like full-duplex links and static routing. We present

1A busy period of packet fi with FIFO scheduling is defined by a temporal
interval [t1, t2) during which all the packets that arrive before or at the same
time with fi are transmitted and there is no idle time in (t1, t2).

in the following paragraphs how to adapt the Trajectory
approach to the context of NoCs with FIFO policy. We
explain its main differences with Switched Ethernet networks
on a detailed example.

Let us consider packet fi of a flow τi generated at clock
cycle tc. It is transmitted over the NoC following a path Pi =
{firsti, ..., lasti} along which it crosses |Pi|−2 routers where
|Pi| represents the number of input buffers in the path (the first
and last nodes are IPs).

Then according to the Trajectory approach, the WCTT of
flow τi is bounded by:

Di = max
0≤tc≤

⌈Bi
Tc

⌉{W lasti
i,tc

+ Ci − tc · Tc} (1)

where Bi represents the maximum possible length of the busy
period resulting from all flows following the same path as τi
and W lasti

i,tc
is the latest starting time at the last visited buffer

lasti of flow τi computed by the following equation [10] (with
(x)+ = max(0, x)) :

W lasti
i,tc

=
∑

j∈{1,...,n}
Pi∩Pj 6=∅

(
1 +

⌊
tc · Tc +Ai,j

Tj

⌋)+

· Cj (2)

+(|Pi| − 1) · Tc (3)
+(|Pi| − 2) · Tc (4)
−Ci (5)

• Term 2 is the delay of packet fi due to competition
with other packets in all the output ports along its
path, as well as the transmission delay generated by
packet fi itself. Term tc · Tc + Ai,j represents the
maximized interval during which packets of flow τj
can arrive before or at the same clock cycle as fi at
the first node where flow τj joins the path of flow
τi. This node is denoted firsti,j . Consequently, Term
(1 + b tc·Tc+Ai,j

Tj
c)+ indicates the maximum number

of packets generated by a flow τj that can delay the
studied packet fi.

• Term 3 is the sum of transmission delay from one
node to the next along the path. Since wormhole
switching is adopted and the transmission unit is a
flit, the transmission delay from one node to the next
is one clock cycle Tc per link. Term 3 represents this
transmission delay along the path Pi.

• Term 4 is the time for routing and arbitration along
the path Pi. Each router in the NoC takes one clock
cycle Tc for routing and arbitration for each header
flit. Since a packet fi encounters |Pi|−2 routers along
its path, the induced delay along the path Pi is upper
bounded by Term 4.

• Term 5 is subtracted because W lasti
i,tc

is the latest
starting time of transmission of packet fi at lasti.
Since the transmission time Ci of fi has been counted
in Term 3, it should be subtracted from W lasti

i,tc
.

More details on the classical Trajectory approach can be
found in [10].

In order to better understand the adapted Trajectory ap-
proach, we illustrate it on the example of Figure 2. Each flow’s
temporal parameters are given in Table I. In this example, we
consider the clock cycle Tc = 1 µs.

τi τ1 τ2 τ3 τ4
Ci (multiple of Tc) 4 4 4 4
Ti (multiple of Tc) 100 8 14 14

TABLE I. FLOW PARAMETERS

Consider flow τ1 following the path P1 =
{IP32, R32 L, R22 S , R12 S , IP12}. A packet f1 of flow τ1 is
released by IP32 at clock cycle tc = 0. The corresponding
scenario is illustrated in Figure 3 where f1 is marked by bold
solid squares. Packet f1 contains one header flit f1h and three
payload flits f11, f12 and f13 which arrive at IP32 at clock
cycles 0, 1, 2 and 3, respectively. The header flit f1h advances
along the path P1 and arrives at the input buffer of R32 L at
clock cycle 1. The payload flits advance in a pipeline way. A
packet f2 including four flits f2h, f21, f22 and f23 competes
with packet f1 for the North output port of router R32. The
header flit f2h arrives at the same clock cycle 1 as the header
flit f1h and then it gets the access to the output first. After
one clock cycle (clock cycle 2 marked by a cross in Figure 3
and Figure 4) dedicated for arbitration and transmission, f2h
arrives at the input port R22 S of router R22 and reserves the
input buffer for its following payload flits. Meanwhile, the
flits of packet f1 wait in the input buffer of R32 L.

In this case, the clock cycle where packet f2 can delay
packet f1 is clock cycle 1, and then tc · Tc + A1,2 = 1 µs.
According to Term 2, the delay of packet f1 introduced by
packets of flow τ2 is computed by:(

1 +

⌊
tc · Tc +A1,2

T2

⌋)+

· C2 =

(
1 +

⌊
1

8

⌋)+

· 4 = 4 µs

The header flit f2h continues to advance after clock cycle 4
(again dedicated for routing purposes) and arrives at the input
buffer of R12 S at clock cycle 5. The payload flits follow the
header flit and at the same time free the input buffer of R22 S

which allows the flits of packet f1 to advance. However, at
clock cycle 7 where the header flit f1h arrives at the input
buffer of R22 S , there are two more header flits f3h and f4h
arriving at the same clock cycle and competing for the same
output port in order to reach R12 S . Consider the scenario
when packets f3 and f4 are transmitted before packet f1
since this is the worst-case scenario for packet f1 with FIFO
scheduling. In FIFO scheduling, the worst-case scenario in a
buffer happens when all the frames arriving at the same time
as the studied frame are transmitted before the studied frame.
In that case, packet f1 is blocked in router R22 till clock cycle
17 as illustrated in Figure 3.

The clock cycles where packet f3 can delay packet f1 are
from clock cycle 3 to clock cycle 7, and then tc ·Tc +A1,3 =
5 µs. Similarly, we have tc · Tc +A1,4 = 5 µs. Therefore, the
delay of packet f1 introduced by packets of flows τ3 and τ4
is computed by: ∑

j∈{3,4}

(
1 +

⌊
tc · Tc +A1,j

Tj

⌋)+

· Cj

=

(
1 +

⌊
5

14

⌋)+

· 4 +

(
1 +

⌊
5

14

⌋)+

· 4

= 4 + 4 = 8 µs

f1h

f1h

f1h

f1h

f1h

f11

f11

f11

f11

f11

f12

f12

f12

f12

f12

f13

f13

f13

f13

f13

f2h

f2h

f2h

f2h

f21

f21

f21

f21

f22

f22

f22

f22

f23

f23

f23

f23

f3h

f3h

f3h

f31

f31

f31

f32

f32

f32

f33

f33

f33

f4h

f4h

f4h

f41

f41

f41

f42

f42

f42

f43

f43

f43

IP32

R32 L

R32 E

R22 S

R22 W

R22 E

R12 S

IP12

CYCLE 0 5 10 15 2043

Fig. 3. Illustration on the scenario of tc = 0

In addition to the delay introduced by other compet-
ing packets, there are also transmission delays and rout-
ing/arbitration delays calculated by Term 3 and Term 4:

(|P1| − 1) · Tc + (|P1| − 2) · Tc = 4 + 3 = 7 µs

Finally, the header flit f1h arrives at IP12 at clock cycle
19, i.e. W IP12

1,tc
= 19 µs. According to Equation 1, the delay of

packet f1, generated at clock cycle tc = 0, is 23 µs.

We have illustrated how the Trajectory approach calculates
the delay of a packet f1 in the example of Figure 2 in the
particular case where tc = 0. For the Trajectory approach, each
value of the release time tc corresponds to a separate scenario.
Contrary to the delay analysis in the context of uni-processors
which only considers the synchronous scenario as the worst-
case, the Trajectory approach verifies all possible scenarios in
order to obtain bounds on the WCTT. This verification of all
the possible scenarios is done by Equation 1. Indeed, in the
example the worst-case scenario is not the one where tc = 0.
In the following paragraph, we present another scenario which
leads to a worse WCTT for packet f1.

Consider that packet f1 is released at clock cycle tc = 8.
The header flit f1h arrives at the input buffer of R32 L at
clock cycle 9 where the header flit f2h arrives at the input
buffer of R32 E and therefore delays packet f1. It then leads
to the maximized interval tc ·Tc +A1,2 = 9 µs for packets of
flow τ2. Note that there is another packet f

′

2 of flow τ2 which
arrives at the input buffer of R32 E at clock cycle 1 due to its
short period T2 = 8 µs. This scenario is illustrated in Figure 4.
Packet f

′

2 does not delay packet f1 for the output port of router
R32. However, packet f

′

2 has an indirect influence on packet
f1 which can be observed at router R22. The delay introduced
by packets of flow τ2 is then calculated by:(

1 +

⌊
tc · Tc +A1,2

T2

⌋)+

· C2 =

(
1 +

⌊
9

8

⌋)+

· 4 = 8 µs

Packet f
′

2 advances along the path and arrives at the input
buffer of R22 S at clock cycle 3 after a clock cycle dedicated to
routing. Meanwhile, a packet f

′

3 of flow τ3 arrives at the input
buffer R22 W and a packet f

′

4 of flow τ4 arrives at the input
buffer R22 E at the same clock cycle. Suppose that packet f

′

2

advances first before packets f
′

3 and f
′

4 and therefore delays
packets f

′

3 and f
′

4 which eventually delay the transmission of
packet f2. Contrary to the scenario of tc = 0 in Figure 3
where packet f2 advances from router R22 to router R12

without being delayed and releases the input buffer of R22 S

immediately, packet f2 is delayed for 2 clock cycles in the
senario of tc = 8 in Figure 4 and then releases the input
buffer of R22 S 2 clock cycles later. It imposes that packet f1
stays at the input buffer of R32 L for 2 more clock cycles due
to a limited input buffer size of 4 flits. Packet f1 waits till the
clock cycle 17 where the header flit f21 advances and releases
input buffer of R22 S . This is the indirect influence introduced
by packets f

′

2, f
′

3 and f
′

4 and the corresponding scenario of
tc = 8 is given at the part of R12 S in Figure 4.

The header flit f1h arrives at the input buffer of R22 S
resulting in the maximized interval tc · Tc + A1,3 = tc · Tc +
A1,4 = 15 µs for frames of flow τ3 and τ4. Therefore, there
can be another two header flits f3h and f4h arrive at the same
clock cycle 17 due to their short periods T3 = T4 = 14 µs
and packets f3 and f4 are transmitted before packet f1.
Accordingly, the delay introduced by packets of flows τ3 and
τ4 is computed by:

∑
j∈{3,4}

(
1 +

⌊
tc · Tc +A1,j

Tj

⌋)+

· Cj

=

(
1 +

⌊
15

14

⌋)+

· 4 +

(
1 +

⌊
15

14

⌋)+

· 4

= 8 + 8 = 16 µs

The summation of transmission delays and
routing/arbitration delays is 7 µs, the same as calculated
for scenario tc = 0. Consequently, the latest starting time
of packet f1 is computed by W IP12

1,8 = 31 µs. According
to Equation 1, the WCTT of packet f1 is obtained by:
D1 = W IP12

1,8 + 4− 8 = 27 µs

Obviously, the delay 27 µs obtained when tc = 8 is worse
than the delay 23 µs obtained when tc = 0. The reason of
the extra introduced delay is that some packets may not delay
the packet under analysis at the beginning of the path, but can
eventually delay it when they advance along the path, as for
packets f

′

2, f
′

3 and f
′

4. The Trajectory approach verifies all the
possible scenarios in order to compute a bound on the WCTT
of flow τ1. In this example, the obtained bound of flow τ1 is
equal to 27 µs when tc = 8.

For the sake of simplicity, we consider an upper bound of
the sum of the transmission delay and of the routing/arbitration
delay. In order to do so, we combine Term 3 and Term 4 in

f1h

f1h

f1h

f1h

f1h

f11

f11

f11

f11

f11

f12

f12

f12

f12

f12

f13

f13

f13

f13

f13f2h

f2h

f2h

f2h

f21

f21

f21

f21

f22

f22

f22

f22

f23

f23

f23

f23

f3h

f3h

f3h

f31

f31

f31

f32

f32

f32

f33

f33

f33

f4h

f4h

f4h

f41

f41

f41

f42

f42

f42

f43

f43

f43

IP32

R32 L

R32 E

R22 S

R22 W

R22 E

R12 S

IP12

CYCLE 0 5 10 15 20 25 30

f
′

2h

f
′

2h

f
′

2h

f
′

2h

f
′

21

f
′

21

f
′

21

f
′

21

f
′

22

f
′

22

f
′

22

f
′

22

f
′

23

f
′

23

f
′

23

f
′

23

f
′

3h

f
′

3h

f
′

3h

f
′

31

f
′

31

f
′

31

f
′

32

f
′

32

f
′

32

f
′

33

f
′

33

f
′

33

f
′

4h

f
′

4h

f
′

4h

f
′

41

f
′

41

f
′

41

f
′

42

f
′

42

f
′

42

f
′

43

f
′

43

f
′

43

Fig. 4. Illustration on the scenario of tc = 8

the following simplified computation formula of W lasti
i,tc

:

W lasti
i,tc

=
∑

j∈{1,...,n}
Pi∩Pj 6=∅

(
1 +

⌊
tc · Tc +Ai,j

Tj

⌋)+

· Cj

+(|Pi| · 2− 3) · Tc − Ci (6)

Discussion and Improvement: The computed delay D1 is
the exact WCTT of flow τ1 as illustrated in Figure 4. However,
it is not always the case for some flows. Let us take flow τ3
in Figure 2 as an example.

Flow τ3 under analysis follows a path P3 =
{IP23, R23 L, R22 W , R12 S , IP12}. The delay computation of
flow τ3 considers the delay introduced by packets f1, f2 and
f4 of flows τ1, τ2 and τ4 at router R22.

W IP12
3,tc=0 =

∑
j∈{1,2,3,4}

(
1 +

⌊
tc · Tc +A3,j

Tj

⌋)+

· Cj

+(|P3| · 2− 3) · Tc − C3

= 16 + 5× 2− 3− 4 = 19 µs

After the verification of all the possible scenarios, it is
the one of tc = 0 leading to the worst-case delay of flow τ3
bounded by:

D3 = W IP12
3,tc=0 + C3 − tc · Tc = 23 µs

Indeed, packets f1 and f2 are both transmitted by the link
R32 → R22. As they are serialized which means that one
packet is transmitted after another, their header flits cannot
arrive at router R22 at the same clock cycle. Therefore, only
one packet (f1 or f2) can actually cause a delay to packet f3
of flow τ3. This scenario is illustrated in Figure 5.

The exact WCTT of flow τ3 is then 19 µs, meaning that
the computed delay D3 = 23 µs is pessimistic but safe. The
physical constraint is called packet serialization which has
been integrated in the Trajectory approach in the context of
switched Ethernet network [11] and has been revisited and
corrected in [12] for an optimism problem. In order to improve
the delay evaluation, it is important to integrate it in the
formula in the context of NoCs.

The part of workload which cannot actually delay the
packet under analysis at the router Rxy due to packet serializa-
tion is denoted by ∆

Rxy

i,tc
. This serialization term is subtracted

from Equation 6 and has been minimized in [11], [12] in order
to guarantee the delay upper bound. As illustrated in the exam-
ple of packet f3, generated at clock cycle tc = 0, of Figure 5,

packet f1 does not delay packet f3 at router R22 which leads
to ∆R22

3,tc=0 = C1 = 4 µs. At the other nodes (routers or
IPs) along the path P3, there is no packet serialization, i.e.
∆IP23

3,tc=0 = ∆R23
3,tc=0 = ∆R12

3,tc=0 = ∆IP12
3,tc=0 = 0. Therefore, the

total effect of packet serialization is:∑
h∈P3

∆h
3,tc=0 = 4 µs

According to the correction proposed in [12], a part of
packet serialization is overlapped with the time interval from
time origin 0 to the release time of packet fi. The duration
fo this time interval is tc · Tc. Then the corrected serialization
term is:

max(
∑
h∈P3

∆h
3,tc=0, tc · Tc) = max(4, 0) = 4 µs

Therefore, the improved calculation of the latest starting
time of packet f3 at its destination IP IP12 is given by:

W IP12
3,tc=0 =

∑
j∈{1,2,3,4}

(
1 +

⌊
tc · Tc +A3,j

Tj

⌋)+

· Cj

+(|P3| · 2− 3) · Tc − C3

−max(
∑
h∈P3

∆h
3,tc=0, tc · Tc)

= 19− 4 = 15 µs

which results in the WCTT of flow τ3 bounded by:

D3 = W IP12
3,tc=0 + C3 − tc · Tc = 19 µs

With the integration of serialization term, the computation
formula of W lasti

i,tc
for flow τi is improved by:

W lasti
i,tc

=
∑

j∈{1,...,n}
Pi∩Pj 6=∅

(
1 +

⌊
tc · Tc +Ai,j

Tj

⌋)+

· Cj

+(|Pi| · 2− 3) · Tc

−max(
∑
h∈Pi

∆h
i,tc , tc · Tc)− Ci (7)

V. CASE STUDY

In Figure 6, we consider a 4x4 NoC with 10 flows τ1. . . τ10
reaching three destinations and where each IP is indexed with
the coordinates of its router. We focus on flow τ1 following

f3h

f3h

f3h

f3h

f3h

f31

f31

f31

f31

f31

f32

f32

f32

f32

f32

f33

f33

f33

f33

f33

f2h

f2h

f2h

f21

f21

f21

f22

f22

f22

f23

f23

f23

f1h

f1h

f1h

f11

f11

f11

f12

f12

f12

f13

f13

f13

f4h

f4h

f4h

f41

f41

f41

f42

f42

f42

f43

f43

f43

IP23

R23 L

R22 S

R22 W

R22 E

R12 S

IP12

CYCLE 0 5 10 15 2043

Fig. 5. Illustration on the scenario of packet f3

the path P1 = {IP32, R32 L, R22 S , R12 S , IP12}. The paths of
the other flows are:

P2 = {IP33, R33 L, R32 E , R22 S , R12 S , IP12}
P3 = {IP23, R23 L, R22 E , R12 S , IP12}
P4 = {IP20, R20 L, R21 W , R22 W , R12 S , IP12}
P5 = {IP10, R10 L, R11 W , R01 S , IP01}
P6 = {IP11, R11 L, R01 S , IP01}
P7 = {IP13, R13 L, R12 E , R11 E , R01 S , IP01}
P8 = {IP21, R21 L, R31 N , IP31}
P9 = {IP22, R22 L, R21 E , R31 N , IP31}
P10 = {IP00, R00 L, R01 W , R11 N , R21 N , R31 N , IP31}

Fig. 6. NoC example of case study

All the 10 flows are with the same constant transmission
time Ci = 4 × Tc = 4 µs. In Table II, we precise for each
flow τi, its period Ti, its destination IP coordinates (xy) and the
end-to-end delay Di computed by formula 1. Note that flows
τ1, τ2, τ3 and τ4 in the example in Figure 2 are integrated in
this case study.

τi τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10
Ti (µs) 100 8 14 14 100 100 80 60 60 80

IPdest : xy 12 12 12 12 01 01 01 31 31 31
Di (µs) 27 25 23 25 19 17 21 17 19 23

TABLE II. FLOW PERIODS AND COMPUTED DELAYS

VI. CONCLUSION

In this paper, we show how to characterize a bound on the
WCTT in a NoCs with the Trajectory approach. We consider a
NoC platform implementing FIFO scheduling and wormhole
routing. We revisit the Trajectory approach, adapt it to the
context of a NoC and show with an example the benefit it can
provide. As a further work, we will characterize the pessimism
brought by the Trajectory approach w.r.t. the exact WCTT
obtained on a representative NoC platform.

REFERENCES

[1] W. J. Dally and B. Towles, “Route packets, not wires: On-chip
interconnection networks,” in Design Automation Conference, 2001.
Proceedings. IEEE, 2001, pp. 684–689.

[2] J. Flich, S. Rodrigo, J. Duato, T. Sodring, A. Solheim, T. Skeie, and
O. Lysne, “On the potential of noc virtualization for multicore chips,”
in Complex, Intelligent and Software Intensive Systems, 2008. CISIS
2008. International Conference on. IEEE, 2008, pp. 801–807.

[3] Z. Shi and A. Burns, “Real-time communication analysis for on-chip
networks with wormhole switching,” in Proceedings of the Second
ACM/IEEE International Symposium on Networks-on-Chip. IEEE
Computer Society, 2008, pp. 161–170.

[4] N. K. Kavaldjiev and G. J. M. Smit, “A survey of efficient on-chip
communications for soc,” in 4th PROGRESS Symposium on Embedded
Systems, Nieuwegein, The Netherlands. Utrecht, The Netherlands:
Technology Foundation STW, October 2003, pp. 129–140.

[5] L. Ni and P. McKinley, “A survey of wormhole routing techniques in
direct networks,” Computer, vol. 26, no. 2, pp. 62–76, Feb 1993.

[6] S. Hary and F. Ozguner, “Feasibility test for real-time communication
using wormhole routing,” Computers and Digital Techniques, IEE
Proceedings -, vol. 144, no. 5, pp. 273–278, Sep 1997.

[7] B. Kim, J. Kim, S. Hong, and S. Lee, “A real-time communication
method for wormhole switching networks,” in Parallel Processing,
1998. Proceedings. 1998 International Conference on, Aug 1998, pp.
527–534.

[8] W. Dally, “Virtual-channel flow control,” Parallel and Distributed
Systems, IEEE Transactions on, vol. 3, no. 2, pp. 194–205, Mar 1992.

[9] A. Burns, J. Harbin, and L. Indrusiak, “A wormhole noc protocol for
mixed criticality systems,” in Real-Time Systems Symposium (RTSS),
2014 IEEE, Dec 2014, pp. 184–195.

[10] S. Martin and P. Minet, “Schedulability analysis of flows scheduled
with FIFO: application to the expedited forwarding class,” in Proc. of
Int. Parallel and Distributed Processing Symposium (IPDPS). Rhodes
Island, Greece: IEEE, Apr. 2006, pp. 8–pp.

[11] H. Bauer, J.-L. Scharbarg, and C. Fraboul, “Improving the worst-case
delay analysis of an AFDX network using an optimized Trajectory
approach,” IEEE Trans. Ind. Informat., vol. 6, no. 4, pp. 521–533, 2010.

[12] X. Li, O. Cros, and L. George, “The trajectory approach for afdx fifo
networks revisited and corrected,” in Embedded and Real-Time Comput-
ing Systems and Applications (RTCSA), 2014 IEEE 20th International
Conference on, Aug 2014, pp. 1–10.

