
Differential evolution in shortest path problems
Pedro Guerreiro

University of Algarve
Faro (Portugal)

pmguerre@ualg.pt

Mário Jesus
University of Algarve

Faro (Portugal)
mjesus@ualg.pt

Alberto Márquez
University of Seville

Sevilla (Spain)
almar@us.es

Abstract

This paper proves that the Differential Evolution (DE) algorithm is valid to solve the Shortest
Path (SP) problem in random, median sized networks. From the trials, we have obtained an
9% accuracy, in the worst case scenario.

1 Introduction

Differential Evolution (DE) is an Evolutionary Algorithm (EA) introduced by Storn and Price
[9, 10] and, although the authors primary applications were to solve real continuous space
problems, soon there were several versions of DE for integer, discrete and combinatorial problems
[5, 8, 7]. DE is an algorithm that is emerging very rapidly amongst other EA because it is very
powerful and very simple to implement, when compared to other EA.

In this paper we will demonstrate the usability of DE in a permutation-based combinatorial
optimization problem, namely, determining the Shortest Path (SP) between two nodes in a
network. The shortest path is a combinatorial problem that has several deterministic algorithms
for solving it, for example, the Dijkstra, the Bellman-Ford or the A* algorithms [3, 2, 4], just to
name a few.

We will focus to determining and estimate the shortest path between two nodes in a network,
composed of D nodes and E edges. As each edge has a certain weight, we pretend to minimize
the total sum of the weights of the edges from the source node to the destination node. Note
that in the SP problem, as opposed for instance, to the Travelling Salesman Problem (TSP), the
number of nodes in the path can be variable. This, as far as we know, has never been addressed
in any DE variant.

The rest of this papers is arranged as follows: Section 2 presents the classic DE algorithm,
as introduced in [9] and Section 3 presents our version of DE to Combinatorial Optimization.
Section 4 provides the discussion of some results and Section 5 have the conclusions and future
work.

2 Classic Differential Evolution

DE is a relatively new member of the EA family, introduced in 1995 by Storn and Price [9, 10],
and since then, it widespread very quickly, mainly due to its simple implementation and to be
very powerful. It has also very few control parameters, just two (F and CR), which makes it
simple to tune: F is a real constant factor parameter, usually ∈ [0, 2], and CR is the crossover
rate ∈ [0, 1].

DE was first introduced to work on real continuous spaces, and has a few variants, introduced
in [10], using the notation DE/x/y/z, where x specifies the vector to be mutated, normally
“rand” for a random vector selected from the current population or “best” for the best vector
from the current population, y is the number of difference vectors, and z defines the crossover
scheme, usually “bin” for a binomial crossover, or “exp” for exponential crossover. We will use
the variant known as DE/rand/1/bin to explain the basic algorithm of DE.

J. Cáceres, C. Grima, A. Márquez, M.L. Puertas (eds.); Avances en Matemática Discreta en Andalućıa
(vol.2), Carmona (Sevilla), Noviembre 2011, pp. 1–6

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sapientia

https://core.ac.uk/display/157588766?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
pmguerre@ualg.pt
mjesus@ualg.pt
almar@us.es


Differential evolution in shortest path problems Guerreiro, Jesus, Márquez

The main objective of any EA is optimize a target function, usually defined in the form

min (f(X)) : Rn → R (1)

where X is a vector defined as

X = (x1, x2, ..., xn) , (2)

being n is the number of elements of the vector. Each element is usually limited by a lower (xL)
and upper (xU ) bound, forming this way the search space, in the form

xLj ≤ xj ≤ xUj , j = 1, ..., n. (3)

As most EA, DE uses a population of vectors (or individuals, in the EA jargon), evolving
its values in each iteration (or generation) until a goal is achieved.

In DE, the initial population is created using an uniform random generated population,
according to

X = {x ∈ R : xLj ≤ xj ≤ xUj , j = 1, ..., D} (4)

where xLj and xUj refers to the lower limit and upper limit for each element, and D is the number
of elements (or chromosomes) of each individual.

Then, in each generation g, for each individual xg,i of the population, a mutant individual
will be generated according to

vg+1,i = xg,r1 + F · (xg,r2 − xg,r3), i = 1, ..., NP (5)

where r1, r2, r3 ∈ {1, ..., NP} are mutually different random individuals and different from the
current index i, F is a real constant factor parameter ∈ [0, 2] that controls the scale of the
differential variation (xg,r2 − xg,r3) and NP is number of individuals in the population. A lower
value for F limits the focus of the search space to a short neighbourhood, and could trap the
algorithm in a local optimum, but an high value could disperse the values.

Now the trial population is created, applying a crossover to each mutant individual, according
to the formula

ug+1,i,j =

{
vg+1,i,j if (rand(j) ≤ CR) or j = randi(k)
xg,i,j otherwise

, j = 1, ..., D; i = 1, ..., NP (6)

where rand(j) is the jth evaluation of an uniform random generator ∈ [0, 1[, CR is the crossover
rate constant parameter ∈ [0, 1] and randi(k) is a random index ∈ [1, ..., D], generated for each
i index, ensuring that in each trial individual, at least one chromosome is from the mutant
individual, guaranteeing this way a variation in the population. A lower value for CR means
that the individual will be very similar to the one from the current population, and a high value
means that it will be similar to the mutant one.

The only step left is to select which individuals will “survive” to the next generation, and
which will “die”. DE does this in a simple manner: each individual of the trial population ug+1,i

is compared with the corresponding individual of the current population xg,i, and the best one
proceeds to the next generation. Mathematically

xg+1,i =

{
ug+1,i if f(ug+1,i) ≤ f(xg,i)
xg,i otherwise

(7)

2 Avances en Matemática Discreta (vol.2)



Differential evolution in shortest path problems Guerreiro, Jesus, Márquez

3 Differential Evolution in Combinatorial Optimization

Our approach to use DE in combinatorial optimization has evolved through different ideas and
concepts, but has found a strong point in the concept of using an adaptation of the classic DE,
and then penalize the invalid paths, that will certainly appear.

In EA, there are two classic ways of dealing with the constrains of a problem: whether correct
them, or penalize their value in the objective function [6]. After some trial and error, we choose
the second one, through a pre-process that consists in determining the shortest path between
any two nodes in the network using the Dijkstra algorithm, and saving this values to posterior
use. This values are not used anywhere in DE, except in the evaluation function, as a penalty
factor for the invalid paths, and are calculated previously to speed up the algorithm. We also
use the values to have the optimum value to compare to the one obtained in DE.

Also, we give each node a number ∈ [1, ..., D], D being the number of nodes the the network,
and this number will be used as the value of the node to optimize.

Our algorithm starts by generating a uniform random population, in the following manner:
we first create a pool of values ∈ [1, ..., D], representing all nodes of the network, and this pool
is used to generate the initial path. The first element of the path is always the source node, and
this element is then removed from the pool. Next we randomly remove another node from the
pool and add it to the path, repeating this process until the destination node is reached. In the
worst case, the destination node will be the last one, and our individual will have D elements,
otherwise the length will be less then D. This means that the length of each individual of the
population can be different.

To implement the mutation we use a variant of (5), cutting each value to its integer part (as
each value corresponds to a node)

vg+1,i = int (xg,r1 + F · (xg,r2 − xg,r3)) , i = 1, ..., NP (8)

but due to the fact that not all individuals are the same size, we need to make sure that they
are, before applying (8). This is done very simply by adding null values to the end of the two
shortest length paths (from xg,r2 , xg,r2 and xg,r3), until all sizes are equal.

However, after the mutation, each element of the path can be out the boundaries [1, ..., D]
or can exist duplicated elements. This creates an incorrect path, and we must fix this elements
before proceeding. To do this we replace each element that is either /∈ [1, ..., D] or duplicated,
by a random value selected from a pool of all elements ∈ [1, ..., D] that are not yet in the path.

It should be said, however, that the mutation is applied only to the inner elements in the
path, leaving the initial (source) and final (destination) nodes out, guaranteeing this way that
they are always the first and last node in the path.

The crossover is implemented in a very similar way to the generic DE, but remember that in
our implementation, each individual can have a different size. So we implement (6), replacing
D with Dmin = min (length(vg+1,i), length(xg,i)).

ug+1,i,j =

{
vg+1,i,j if (rand(j) ≤ CR) or j = randi(k)
xg,i,j otherwise

, j = 1, ..., Dmin (9)

But we must make sure that the last element in the trial path is our destination node,
whether it comes from the mutant individual or from the current population. If it is not, then
we must append the rest of the elements ∈ [Dmin, Dmin+1, ..., Dmax] from the longest path, to
the trial individual. Either way, we have assured that the path still starts in the source and
ends in the destination, as is required.

VII EAMD, Carmona (Sevilla), Noviembre 2011 3



Differential evolution in shortest path problems Guerreiro, Jesus, Márquez

Finally, the selection is the greedy DE selection, as indicated in (7). But to evaluate each
individual, we will use the pre-process values calculated previously, in the following manner

f(x) =

D−1∑
j=1

{
wxj , xj+1 if xj+1 ∈ N (xj)
SPxj , xj+1 ∗ 10 otherwise

(10)

where x = xg,i, just to simplify the expression, wxj , xj+1 is the weight of the edge between node
xj and node xj+1, N (xj) is a function that gives the neighbours of node xj , and SPxj , xj+1 is
the value of the sum of the edges that are the shortest path between node xj and xj+1. 10 is an
arbitrary factor to penalize the value of the invalid segment of the path.

4 Results

In this section we will present the results of our algorithm in a couple of problems, to see the
efficiency and results. We will use a couple of networks available via the OR-Library [1] to
test our algorithm, namely rcsp2 and rcsp10, with D = 100 nodes and with D = 200 nodes,
respectively.

DE must be calibrated to each problem, in order to have a suitable performance and accuracy.
This is done using its parameters: the scale factor F and the crossover rate CR. After some
tests, we came to the conclusion that F = 0.8 and CR = 0.4 where good values, and those are
the ones we will use in all instances of our problems. We also limit the number of generations
to 20000 in the first problem (rcsp2 ).

In the EA community, it is usual the evaluate the results of an algorithm as the average of
several executions, so we have executed our algorithm 10 times for each problem, and in Figure
1 we can see the evolution of the best solution for problem rcsp2 in all 10 executions. As we
can see, the best solution is reached by almost all executions between generations 5000− 6000,
but we can have a very approximated value around generation 300 − 400. This proves that if
we want more speed for a less accurate value, we can limit the number of generations, and still
get a very acceptable value. This is the reason that in the second problem (rcsp10 ) we lowered
the maximum number of generations to 10000. It is still a high number, but this way we assure
better results.

The results for both problems for all executions are resumed in Table 1. First of, we can
see even for a very lower population (value of NP ), we reach good results. Usually in EA, NP
is always greater that D, in particular in DE, Storn says that good values for NP are between
5 ∗ D and 10 ∗ D [10]. As can be seen, we tried as low as NP = D, and still get acceptable
results. Remember that the lower the population, the quickest the algorithm will execute. The
average results from the 10 executions of all problems have also a very decent accuracy, up to
9% in the worst case.

Problem D NP Best Average St.Dev. Optimum Accuracy

rcsp2
100

100 79 86.0 11.0
79

9%
rcsp2 200 79 82.5 3.2 4%

rcsp10
200

200 175 185.5 17.4
175

6%
rcsp10 400 175 181.3 11.9 4%

Table 1: Results of our algorithm in two different problems, with different values for NP

4 Avances en Matemática Discreta (vol.2)



Differential evolution in shortest path problems Guerreiro, Jesus, Márquez

10

10

2

3

10 10 10 10 10
0 1 2 3 4

Generat ions

f(
x

)

Figure 1: Evolution of the best solution in rcsp2, (NP = 200), in 10 executions.

5 Conclusion

Our propose is to confirm that DE is a valid algorithm for the SP, a combinatorial optimization
problem. This problem has in interesting issue in that the length of each individual can vary
in each generation, which is addressed here for the first time, as far as we know. We have
functionally solved this issue, and proved that the DE is a valid algorithm for solving the
proposed problem, reaching optimum or near optimum results, albeit in quite more time than
Dijkstra, for instance.

For future work, we intent to refine the algorithm, making it more efficient and also to make
it multi-objective, for solving Multi-Objective Shortest Path problems (MOSP), that is really
the long term objective of this approach.

References

[1] J. E. Beasley. Or-library (http://people.brunel.ac.uk/˜ mastjjb/jeb/info.html), 2010.

[2] Richard Bellman. On a routing problem. Quart. Appl. Math., 16:87–90, 1958.

[3] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1:269–
271, 1959. 10.1007/BF01386390.

[4] P.E. Hart, N.J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of minimum
cost paths. Systems Science and Cybernetics, IEEE Transactions on, 4(2):100 –107, July 1968.

[5] Jouni A. Lampinen and Ivan Zelinka. Mixed integer-discrete-continuous optimization, by differential
evolution, part 1: the optimization method. In Pavel Oaamera, editor, Proceedings of MENDEL’99,
5th International Mendel Conference on Soft Computing, pages 71–76, Brno, Czech Republic, June
1999. University of Technology, Faculty of Mechanical Engineering, Institute of Automation and
Computer Science.

[6] Zbigniew Michalewicz and David B. Fogel. How to Solve It: Modern Heuristics. Springer, enlarged
2nd edition, December 2004.

VII EAMD, Carmona (Sevilla), Noviembre 2011 5



Differential evolution in shortest path problems Guerreiro, Jesus, Márquez

[7] Godfrey C. Onwubolu and Donald Davendra. Differential Evolution: A Handbook for Global
Permutation-Based Combinatorial Optimization, volume 175 of Studies in Computational Intelli-
gence. CRC Press, Fev 2009.

[8] Kenneth Price, Rainer Storn, and Jouni A. Lampinen. Differential Evolution: A Practical Approach
to Global Optimization, volume 1 of Natural Computing Series. Springer, March 2005.

[9] Rainer Storn and Kenneth Price. Differential evolution - a simple and efficient adaptive scheme for
global optimization over continuous spaces. Technical Report TR-95-012, ICSI, March 1995.

[10] Rainer Storn and Kenneth Price. Differential evolution - a simple and efficient heuristic for global
optimization over continuous spaces. Journal of Global Optimization, 11(4):341–359, 1997.

6 Avances en Matemática Discreta (vol.2)


	Introduction
	Classic Differential Evolution
	Differential Evolution in Combinatorial Optimization
	Results
	Conclusion

