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Direction Finding Arrays of Directional Sensors for

Randomly Located Sources
Houcem Gazzah, Jean Pierre Delmas and Sérgio M. Jesus

Abstract—We adapt the array geometry to the available
statistical information about the source direction-of-arrival. We
focus on two-sensor arrays and form a Cramer-Rao-Bound based
cost function that depends on the probability distribution of the
coplanar source direction. Proper positioning and orientation of
the sensors enable the two-sensor array to have an accuracy
comparable to that of a 3 or 4 sensor uniform circular array.

Index Terms—Target localization, direction finding, direction-
of-arrival, directional sensors, Cramer-Rao lower bound (CRLB),
geometry optimization.

I. INTRODUCTION

Direction-of-arrival (DOA) estimation is a major topic of

antenna arrays signal processing, studied extensively over

decades [1]. Source parameters (range, polarization, and, most

notably, DOA) are extracted from the array manifold with an

accuracy that depends on the estimation algorithm, but also on

the array geometry. The potential of array geometry adaptation

has been recently demonstrated [2], [3], [4], [5] to reduce

the Cramer Rao Bound (CRB) on the DOA of determinis-

tic/random far/near sources. For instance, (near) optimum non-

trivial antenna array geometries were found that improve DOA

estimation accuracy by 36% to 85%, depending on the a priori

information available about the source, compared to the more

regularly used Uniform Circular Array (UCA) [4].

Similarly to previous work [2], [3], [4], [5], we continue

to consider narrow-band sources. However, in this paper,

sensors are not omni-directional, posing the problem of sensor

orientations, in addition to sensor positions. We continue to

refer to the CRB as our performance measure, both because

it is algorithm-independent and achievable by a number of

popular techniques [6], [7]. The CRB is different from a look

direction to the other, so we use the Expected CRB (ECRB)

to build a geometric cost function that also depends on the

Probability Density Function (PDF) of the source DOA [2],

[4], [8]. Optimization of the analytically intractable CRB-

based cost function is achieved by means of a systematic

search, preferably to heuristic techniques [2], [8], [9]. In

order to reduce the computation burden, a minimal number

of two sensors is considered. This is relevant to a number of

applications that can accommodate only short aperture arrays,

notably Autonomous Underwater Vehicles (AUV) used, e.g.,

in adaptive sampling networks [10], [11].
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We focus on DOA estimation accuracy and, for instance,

do not take array ambiguities into consideration. First, array

ambiguities are less frequent when using arrays of directional

sensors [12]. Second, they can be avoided by an appropriate

choice of the spacing between adjacent sensors [12], which is

allowed by the proposed algorithm. We, also, assume a source

in the array plane. This is meaningful to a number of terrestrial

applications [12], [13], [14] and amounts to prioritize the

azimuth angle. With the azimuth as our unique parameter-

of-interest, we develop a scalar-valued performance measure

and conduct an optimization in this perspective.

When the response of the directional sensors is not spec-

ified, the CRB has a non interpretable expression [12]. It

is only once we assume a specific type of sensors, as in

[12], [14], that performance analysis (and optimization) can

be conducted. In our tests, we consider cardioid-type sensors

for both the proposed geometry-optimized two-sensor array

and the reference larger-sized UCAs. In the pessimistic case

when there is no information about the source DOA, a scenario

studied in [12], we find that sensors should be pointing at

different directions, so that the CRB is finite at every possible

look direction and the subsequent ECRB is finite as well. If

the source DOA is known with (moderate) uncertainty, the

optimized two-sensor array has a better accuracy than the

three-sensor UCA. The fact that we can achieve with two

sensors an accuracy normally achievable by (a UCA of) three

sensors implies significant reduction of the size, weight, power

and cost of the system [12], since every single sensor requires

a separate receiver channel.

The paper is organized as follows. In Sec. II, we introduce

the observation model and develop expressions of the CRB.

In Sec. III, the CRB of the array of two directional sensors is

studied in detail and a subsequent array geometry procedure

is defined. In Sec. IV, tests are conducted using cardioid-type

sensors to compare the optimized array to larger-sized UCAs.

Finally, a conclusion is given in Sec. V.

II. SIGNAL MODEL AND GENERAL RESULTS

A narrow-band source is emitting a signal s(t) of wave-

length λ in the direction of an array of M co-planar sensors.

In the [O, x, y) plane, sensor m is placed at point Pm with

a distance OPm = ρmλ from the origin O and an angle φm
between the [O, x) axis and [O,Pm). The far-field source is

seen at the antenna array under the DOA angle θ, restricted

to be in [−π, π], w.r.t the [O, x) axis. All angles are measured

counter-clockwise. The array output at time index t

x(t) = a(θ)s(t) + n(t), t = t1, ..., tN ,
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is a scaled and noise-corrupted replica of the DOA-dependent

Array Response Vector (ARV) a(θ). The ARV is an extension

of the array steering vector that incorporates gains of the

sensors [15]. Its m-th component is given by

[a(θ)]m = gm(θ) exp [j2πρm cos (θ − φm)] , (1)

where we have assumed that sensor m, not necessarily omni-

directional, has a directional response described by the func-

tion gm(θ)1.

Snapshots (x(t))t=t1,...,tN are used to estimate the parame-

ter θ using a variety of techniques. The CRB [16] often serves

as a benchmark to compare estimation performance of the

different estimation algorithms. It represents the lowest mean

square error achievable by any unbiased estimator. The CRB

is also of practical importance [13] because (in the single

source case considered here) is achieved (asymptotically, as

the number of snapshots increases) by both the high-resolution

MUSIC algorithm [6] and the low-resolution beam-forming

techniques [7]. The following statistical properties are often

assumed about s(t) and n(t):
(i) s(t) and n(t) are independent,

(ii) (n(t))t=t1,...,tN are independent, zero-mean circular Gaus-

sian distributed with covariance E
[

n(t)nH(t)
]

= σ2
nI, I being

the M ×M identity matrix,

(iii) (s(t))t=t1,...,tN are assumed to be either deterministic

unknown parameters (the so-called conditional or determin-

istic model), or independent zero-mean circular Gaussian

distributed with variance σ2
s (the so-called unconditional or

stochastic model). The above conditions, while of common

use in performance analysis (see e.g., [16]), do not account for

some practical aspects (spatially/temporally correlated noise,

mutual coupling, . . . ) whose impact is to be evaluated em-

pirically, rather than analytically, which is beyond the scope

of this study. The CRBs associated with both models have

been proved in [5] to be proportional (one to the other)2. For

instance, the CRB associated with the first model is given by

CRB(θ) =
σ2
n

2Nσ2
s

F−1(θ), (2)

where, given a
′(θ)=̂da(θ)/dθ, the scalar-valued

F (θ) = ‖a′(θ)‖2 − |aH(θ)a′(θ)|2
‖a(θ)‖2 (3)

is a convenient design criterion because it is independent

from the noise/signal power and the number of snapshots.

Consequently, we will be referring to the above expressions

throughout the paper.

III. THEORETICAL DEVELOPMENT

A. Optimization Criterion

The array is made of two directional sensors [17]. One

is placed at the origin, while the position of the other one,

characterized by distance ρ=̂ρ2 and angle φ = φ2, is to be

1Similarly as in [12], the sensor response gm(θ) is a voltage or current
gain, different from the sensor power response g2

m
(θ).

2They are equal if ‖a(θ)‖2σ2
s
≫ σ2

n
.

determined, along with the orientation of each sensor. Given

the following expression of the ARV

a(θ) = [g1(θ), g2(θ) exp [j2πρ cos (θ − φ)]]T , (4)

we prove in Appendix A that

F (θ) = g21(θ)
[h′(θ)]2 + 4π2ρ2h2(θ) sin2 (θ − φ)

1 + h2(θ)
, (5)

where h(θ)=̂g2(θ)/g1(θ), assuming none of the sensors has

a strictly zero gain at any direction. Here, h′(θ) can be

interpreted as a measure of the mismatch between the two

sensors’ directivity patterns. Based on (5), we can make the

following two remarks:

(i) If the two sensors are identical and pointing in the

same direction, g(θ) = g1(θ) = g2(θ), then F (θ) =
2π2g2(θ)ρ2 sin2 (θ − φ) is zero when the source is at the array

endfire direction (i.e, θ = φ), regardless of how the sensors

are directed.

(ii) In contrast, if the two sensors have different directivity

patterns, F (θ) can be made arbitrarily high provided h′(θ)
is large enough, including for θ = φ. In other words, sources

that are in the array endfire direction can be precisely identified

only if we use different and/or differently oriented sensors.
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Fig. 1. Positions and orientations of the two directional sensors for
an arbitrarily-shaped sensor response g(θ). The lines show individual
responses for each sensor.

In practice, we are likely to use identical sensors pointing

at different directions, i.e.

gm(θ)=̂g(θ − ψm),m = 1, 2.

As illustrated in Fig. 1, the array configuration is, now,

parameterized by geometrical parameters ρ, φ, ψ1 and ψ2, in

function of which F (θ) is expressed, as follows

F (θ) =

[

g′(θ−ψ1)
g(θ−ψ1)

− g′(θ−ψ2)
g(θ−ψ2)

]2

+ 4π2ρ2 sin2 (θ − φ)

1
g2(θ−ψ1)

+ 1
g2(θ−ψ2)

. (6)

This function is to be interpreted as the ability of the antenna

array to accurately localize a source with the specific DOA θ.

Since the source DOA cannot be (exactly) known in advance,
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the overall array performance is more suitably measured in

terms of the so-called expected CRB [2], [4], [8] defined as

ECRB=̂E [CRB(θ)]. By adopting the ECRB as a perfor-

mance criterion, we, implicitly, allow the CRB to be high at

directions where the source is less likely to show up. The a

priori information about the source DOA is available in the

form of a PDF f(θ), leading to

ECRB =
σ2
n

2Nσ2
s

∫ π

−π

f(θ)

F (θ)
dθ.

Minimizing the ECRB for fixed powers σ2
n and σ2

s and

number N of snapshots is tantamount to minimizing

2Nσ2
s

σ2
n

ECRB =

∫ π

−π

f(θ)

F (θ)
dθ. (7)

B. Optimization Procedure

Inter-sensor spacing ρ is assumed to be fixed based on

considerations other than estimation accuracy (e.g. coupling

and ambiguity considerations), independently from ψ1, ψ2 and

φ, which remain to be determined by minimization of the

above ECRB criterion. This is to be achieved by means of a

3D systematic search. It will be possible to reduce the search

area thanks to some properties of the cost function. In fact,

(6) is unchanged if i) φ is replaced by φ + π; or ii) (ψ1, ψ2)
is replaced by (ψ2, ψ1). Consequently, the systematic search

can be restricted to φ in [−π/2, π/2], ψ1 in [−π, π], ψ2 in

[−π, π] and ψ1 ≤ ψ2. Notice that, for the sake of numerical

stability, configurations where ψ1 = ψ2 are not tested because,

then, the function 1/F (θ) is divergent (at θ = φ), and so is

the ECRB.

Further simplification is possible if both the sensor response

and the DOA PDF are even, i.e. respectively g(−θ) = g(θ)
and f(−θ) = f(θ). Under these assumptions, we have

2Nσ2
s

σ2
n

ECRB

=

∫ π

0











1
g2(θ−ψ1)

+ 1
g2(θ−ψ2)

[

g′(θ−ψ1)
g(θ−ψ1)

− g′(θ−ψ2)
g(θ−ψ2)

]2

+ 4π2ρ2 sin2 (θ − φ)

+

1
g2(θ+ψ1)

+ 1
g2(θ+ψ2)

[

g′(θ+ψ1)
g(θ+ψ1)

− g′(θ+ψ2)
g(θ+ψ2)

]2

+ 4π2ρ2 sin2 (θ + φ)











f(θ)dθ,

so that the ECRB is unchanged if ψ1, ψ2 and φ are replaced

by −ψ1, −ψ2 and −φ, respectively. It follows that, for such

a case, we can further restrict φ to be in [0, π/2].

IV. OPTIMIZATION RESULTS

The proposed array (to which we refer as CAM3) is

compared to larger-sized UCA arrays. In all examples, half-a-

wavelength inter-sensor spacing is assumed, in order to avoid

(first-order) array ambiguities [18], [19]. The optimization

problem depends on (i) the type of sensors (assumed in Sec.

IV-B to be of cardioid-type) and (ii) the distribution of the

3So-named in reference to the chameleon whose eyes can rotate and move
independently from each other.

source azimuth angle (assumed in Sec. IV-C and Sec. IV-D

to be uniform and normal to describe worst case and realis-

tic scenarios, respectively). The resolution of the systematic

search grid is set to 2 [DEG]. We, first, start by presenting

some results about the reference UCA.

A. The reference UCA

We test our geometry-optimized two-sensor array simultane-

ously with the commonly used UCA, made of M = 3, 4, 5, · · ·
directional sensors. For the UCA, sensors are placed uniformly

along the circle, i.e. at angles φm = 2π(m − 1)/M,m =
1, · · · ,M . The circle radius is Rλ where R = ρ/ [2 sin(π/M)]
ensures an inter-sensor spacing equal to ρ. As pointed out in

[12], one can avoid array ambiguities in a UCA by appro-

priately choosing the inter-sensor spacing ρ. The directional

sensors are pointed in the same direction as the sensors, i.e.

gm(θ) = g(θ − φm), a fixed-geometry design previously

proposed in [12], [14], [20]. The UCA geometry is special

in that it verifies, for all k not multiple of M ,

M
∑

m=1

exp(kφm) = 0, (8)

which will be useful to obtain the compact CRB expressions

(10) and (13)-(16).

Isotropy is a desired feature of antenna arrays that is fulfilled

by UCAs when they are composed of omni-directional sensors

[3]. Interestingly enough, we prove that the UCA isotropy

may be preserved even when the constituent sensors are not

isotropic. We focus our attention on sensors with arbitrary but

symmetrical (even) pattern g(θ), which are widely encountered

in practice. For such sensors, we can write

g(θ) = g0

[

1 +

K
∑

k=1

βk cos(kθ)

]

, (9)

where (βk)k=1,..,K satisfy 1 +
∑K

k=1 βk cos(kθ) ≥ 0 for

all θ and, also, β1 ≥ 0, ..., βK−1 ≥ 0, βK > 0, hence

ensuring a maximum gain in the (zero degrees) look direction.

Coefficients βk, k = 1, · · · ,K , can be easily computed by

means of a (truncated) Fourier cosine expansion of g(θ)
whether g(θ) is available in analytical or numerical form.

We prove in Appendix B the following result: If the direc-

tional sensor has a symmetric response g(θ) as in (9), then the

UCA made of M such sensors is isotropic if M > 2(K +1),
and, then, it verifies

F (θ) =
Mg20
2

[

K
∑

k=1

k2β2
k + π2R2

(

4 + β2
1 − 4β2δK>1

+ 2

(

K
∑

k=2

β2
k

)

δK>1 − 2

(

K−2
∑

k=1

βkβk+2

)

δK>2

)]

, (10)

where δA = 1 if condition A is satisfied and 0, otherwise.

Before we interpret this result, we first mention that there

is no direct relationship between directivities of the sen-

sors (defined as D=̂
[

maxθ g
2(θ)

]

/
[

1
2π

∫ π

−π g
2(θ)dθ

]

) and

isotropy of the UCA, except for specific families of patterns.

For example, let’s consider sensors from [12] with response
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g(θ) = g0[1 + cos(θ)]K , whose directivity, proved in Sec. C

to be equal to

D = 24K/

K
∑

ℓ=0

(2K)!22(K−ℓ)

(ℓ!)2(2(K − ℓ))!
, (11)

increases with K (D = 1, 2.66, 3.66, 4.43 and 5.68 for

K = 0, 1, 2, 3 and 4, respectively). By application of (10), a

minimum of 1+2(K+1) such sensors is needed to make the

so-composed UCA an isotropic one. Result (10) contrasts with

the UCA of omni-directional sensors that is isotropic if M > 2
[21]. It proves that a UCA with directional sensors (regardless

of how much directional they are) can still be isotropic if the

number of sensors is sufficiently large.

Of special interest are cardioid sensors of frequent use in

acoustic systems [22]. They are characterized by a directional

response of the form [23]

g(θ) = g0[1 + β cos(θ)], (12)

parameterized by constants g0 and β. Application of (10)

implies that the UCA is isotropic if populated with 5 or more

such sensors. Then, it verifies

F (θ) =
Mg20
2

[

β2 + π2R2(4 + β2)
]

,

consistently with [21] for omni-directional sensors (β = 0).

For completeness, in order to also address non-isotropic UCA

of cardioid sensors, we prove in Appendix D the following

expressions for arbitrarily sized UCA of cardioid sensors

2F (θ)

g20
= 4 sin2 (θ)

{

β2 + cos2 (θ)
[

π2ρ2
(

4 + β2
)

−β2 β2 + 4π2ρ2

1 + β2 cos2(θ)

]}

, M = 2 (13)

= π2ρ2
[

4 + β2 − 4β cos (3θ)− β4 sin2 (3θ)

2 + β2

]

+3β2, M = 3 (14)

= 4β2 + 4π2ρ2
[

2 + β2 sin2 (2θ)
]

, M = 4 (15)

= M

[

β2 + π2ρ2
1 + β2

4

sin2
(

π
M

)

]

, M > 4. (16)

B. Sensors

In our tests, we consider cardioid-type sensors as defined

in (12), parameterized by constants g0 and, more importantly,

β that controls the sensor directivity D found to be equal to

(1 + β)
2
/
[

1 + β2/2
]

, which increases from 0 to 2.66 when

β increases from 0 to 1 . Substituting (12) into (6) leads to

the following update of F (θ)

F (θ)

g20
=

β2
[

sin(θ−ψ1)
1+β cos(θ−ψ1)

− sin(θ−ψ2)
1+β cos(θ−ψ2)

]2

+4π2ρ2 sin2(θ−φ)
1

[1+β cos(θ−ψ1)]
2 + 1

[1+β cos(θ−ψ2)]
2

, (17)

where the right-hand side, advantageously, depends on β only,

as long as the sensor is concerned. Hence, we adapt the initial

criterion (7) to minimize, instead,
2g2

0
Nσ2

s

σ2
n

ECRB given by the

β-dependent

C=̂

∫ π

−π
(

1
[1+β cos(θ−ψ1)]

2 + 1
[1+β cos(θ−ψ2)]

2

)

f(θ)

β2
[

sin(θ−ψ1)
1+β cos(θ−ψ1)

− sin(θ−ψ2)
1+β cos(θ−ψ2)

]2

+4π2ρ2 sin2 (θ−φ)
dθ.
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Fig. 3. Sensor orientations of CAMU and UCA2 arrays in the (x, y)
plane. Sensors positions, shown as circular dots, are the same for both
arrays. The lines show individual responses for each sensor when
β = 0.8.

We consider the case of a source DOA uniformly distributed

over [−π, π]. There is, actually, an infinity of equivalent

solutions. In fact, because 1/F (θ) is being integrated over one

period, it can be shown that C is unchanged by a translation

of φ. Hence, we assume φ = 0 within this section. A sample
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(for β = 0.8) cost function C is presented in Fig. 2, showing

optimality is met at ψ1 = −ψ2 = π/2, which is verified for

all possible values of β. In general, optimality is met with the

two sensors pointing in opposite directions, orthogonally to

the axis linking the two sensors. This axis, however, can be

randomly oriented. We denote as CAMU the two-sensor array

depicted in Fig. 3 and characterized by φ = 0, ψ1 = π/2
and ψ2 = −π/2. It is optimal for a source with a uniformly

distributed DOA.
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Fig. 4. g20/F (θ) (which is proportional to the CRB), for all possible
source DOAs, for both the CAMU array, in (a) and (b), and the
reference UCAs in (b). In (b), sensors are such that β = 1/2.

Contrarily to the two-sensors UCA, the CAMU array does

not have an infinite CRB at any direction, as is clear from Fig.

4. As a consequence, its accuracy (in terms of the ECRB) is

finite, of the same order as that of the three-sensor UCA. Also,

Fig. 4(a) shows that, as β of the constituent sensors increases,

the CRB is reduced in the endfire direction and is increased

at broadside. A good compromise seems to be attained for β
around 0.5, where the CRB fluctuates the least and the CAMU

is closest to be isotropic. This would be the best design for

those applications requiring (more or less) the same accuracy

at all possible look directions.
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Fig. 5. Compared performance of CAMU and UCA in terms of
the cost function C (proportional to the ECRB) as function of β
(expressing the directivity of the cardioid sensor), for a uniformly
distributed source DOA.

As can be concluded from Fig. 5, the use of directional

sensors is more beneficial to CAMU than to UCA. With this

particular configuration of the CAMU array, substituting φ =
0, ψ1 = π/2 and ψ2 = −π/2 into (17) results into

F (θ)

2g20
=

β2 cos2 (θ)

1 + β2 sin2(θ)
+ π2ρ2 sin2 (θ)

[

1− β2 sin2(θ)
]2

1 + β2 sin2(θ)
,

(18)

which is not zero in any direction, as long as β is not zero.

Again, from Fig. 5, best performance is obtained using sensors

with β slightly larger than 1/2. To be concluded from Fig.

5, the optimally-configured two-sensor array is outperformed

by the larger three-sensor UCA. However, this is true only

because, disadvantageously, this PDF expresses no a priori

about the source DOA. As shown in the next section, the

situation is more profitable to our design if (more) information

is available about the source DOA.

D. Normal a priori

In some realistic scenarios, the source DOA is expected

to appear in a given direction Ω assumed, without loss of

generality, to be 0. The DOA is modeled as a centered

normal random variable and the optimal two-sensor array is

studied as function of the standard deviation σ. Geometry and

performance of the optimal CAM array are shown in Fig. 6

for σ not exceeding 40 [DEG] in order to ensure that the PDF

f(θ) = 1√
2πσ

exp
[

−θ2/(2σ2)
]

is almost zero for any θ not in

[−π, π]. Results shown in Fig. 6(a) suggest that there is a range

of σ where the optimized two-sensor array performs closely

to (better and worse than) the three-sensor UCA. In this case,



6

the two sensors of the optimized array are placed orthogonally

(φ = π/2) to the expected source DOA and are pointing into

symmetric (w.r.t. DOA) directions (ψ1 = −ψ2). The larger

the uncertainty σ about Ω, the larger the offset |ψ1| = |ψ2|, as

shown in Fig. 6(b). However, for an excessively large σ (i.e.

limited a priori information), geometry optimization is less

beneficial and performance is not much better than that of the

CAMU array.
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Fig. 6. Performance (a) and shape (b) of the optimized CAM
array, comparatively to non-adaptive fixed-geometry CAMU and
UCA arrays, for a zero-mean normally distributed source DOA with
a standard deviation as shown along the horizontal axis.

E. Arbitrary a priori

A more general PDF model is that of a mixture of Gaussian

distributions with different means (that express the different

look directions) and variances (that express the uncertainty

about the look directions). Strictly speaking, we let P be

the number of look directions. We let κp, Ωp and σp be the

weight, the mean and the standard deviation relative to the

p-th distribution, so that

f(θ) =

P
∑

p=1

κp

σp
√
2π

exp

[

− (θ − Ωp)
2

2σ2
p

]

,

for any θ in [−π, π], where
∑P

p=1 κp = 1. We assume

−π < Ωp − 3σp and Ωp + 3σp < π for all p in order to

have
∑P

p=1
κp

σp

√
2π

exp
[

− (θ − Ωp)
2
/(2σ2

p)
]

≃ 0 for any θ

not in [−π, π]. In the simulations, we have assumed equally

likely look directions, i.e. κ1 = · · · = κP = 1/P and the

same uncertainty σ1 = · · · = σP = 10 [DEG].

In a first set of simulations, and in order to explore the

potential of the proposed optimized array for arbitrary PDFs,

we assume two possible look directions Ω1 and Ω2. Without

loss of generality (and in order to obtain an even PDF), we

choose Ω1 = −Ω2 ranging from 10 to 90 [DEG]. As illustrated

in Fig. 7, we compare the performance of the optimized two-

sensor array (CAM) to those of the non-optimized arrays (the

two-sensor CAMU and UCAs of 3, 4 and 5 sensors). We

realize that, overall, the optimized two-sensors array performs

closely to the 3-sensor UCA. The CAMU array, who has a

minimum size and a non-adaptive geometry, is distinctively

the one with the lowest performance.

To illustrate a more irregular PDF, we consider the example

where Ω1 = 20, Ω2 = 50 and Ω3 = 80 [DEG]. If sensors

with β = 0.8 are to be used, then it is found that the so-

distributed source is best localized using the optimized two-

sensor array characterized by φ = −40, ψ1 = 48 and ψ2 =
50 [DEG]. Such array achieves a performance, in terms of

C, equal to 0.092. Naturally, it performs much better than

the CAMU array for which C equals 1.2245. Interestingly,

performance is in-between those of the 3-sensor UCA (for

which C equals 0.1536) and the 4-sensor UCA (for which C
equals 0.0792).

V. CONCLUSION

We form an array of two directional sensors and use it to

estimate the DOA of a distant coplanar source. Sensors are

positioned and oriented in order to take benefit from the a

priori information about the DOA angle and, subsequently,

reduce the estimation error. If no a priori is available, a

by-default (CAMU) geometry has the advantage of having a

finite precision in every direction. If some (normal) a priori

is available, the optimal array geometry (calculated off-line)

delivers an accuracy comparable to that of a 3 or 4 sensor

UCA.

APPENDIX

A. Proof of (5)

Derivation of the ARV, as expressed in (4), leads

to a
′(θ) = [g′1(θ), g

′
2(θ) exp [2jπρ cos (θ − φ)] −

g2(θ)2jπρ sin (θ − φ) exp [2jπρ cos (θ − φ)]]T , so that

we obtain ‖a(θ)‖2 = g21(θ) + g22(θ) and

‖a′(θ)‖2 = [g′1(θ)]
2
+ [g′2(θ)]

2
+ g22(θ)4π

2ρ2 sin2 (θ − φ).
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Fig. 7. Performance of the optimal array, comparatively to the non-
adaptive CAMU and UCA arrays for a source PDF characterized by
two look directions ±Ω, with Ω = 10, 20, . . . , 90 [DEG]. Sensors
are such that β = 0.4 in (a) and β = 0.8 in (b).

Also, a
′H(θ)a(θ) = g1(θ)g

′
1(θ) + g2(θ)g

′
2(θ) +

2jπρg22(θ) sin (θ − φ) results into

∣

∣

∣
a
′H(θ)a(θ)

∣

∣

∣

2

=

g21(θ) [g
′
1(θ)]

2
+ g22(θ) [g

′
2(θ)]

2
+ 2g1(θ)g

′
1(θ)g2(θ)g

′
2(θ) +

4π2ρ2g42(θ) sin
2 (θ − φ). After substitution into (3), we

update ‖a(θ)‖2F (θ) as follows

[

g21(θ) + g22(θ)
]

F (θ)

= g21(θ) [g
′
1(θ)]

2
+ g21(θ) [g

′
2(θ)]

2

+g21(θ)g
2
2(θ)4π

2ρ2 sin2 (θ − φ)

+g22(θ) [g
′
1(θ)]

2
+ g22(θ) [g

′
2(θ)]

2

+g42(θ)4π
2ρ2 sin2 (θ − φ)

−g21(θ) [g′1(θ)]
2 − g22(θ) [g

′
2(θ)]

2

−2g1(θ)g
′
1(θ)g2(θ)g

′
2(θ)− 4π2ρ2g42(θ) sin

2 (θ − φ)

= [g1(θ)g
′
2(θ) − g2(θ)g

′
1(θ)]

2

+4π2ρ2g21(θ)g
2
2(θ) sin

2 (θ − φ) ,

which is equivalent to

g21(θ) + g22(θ)

g41(θ)
F (θ) =

{

[

g2(θ)

g1(θ)

]′
}2

+4π2ρ2
g22(θ)

g21(θ)
sin2 (θ − φ)

and so to (5).

B. Proof of (10)

For the considered UCA, the ARV (1) given by [a(θ)]m =
g(θ−φm) exp [j2πRλ cos (θ − φm)] =̂gm exp(jτm) results in

(3) being transformed into

F (θ) =

M
∑

m=1

g′2m +

M
∑

m=1

g2mτ
′2
m

− (
∑M

m=1 gmg
′
m)

2 + (
∑M

m=1 g
2
mτ

′
m)2

∑M

m=1 g
2
m

.

Using property (8), we prove the following identities:
∑M

m=1 sin[k(θ − φm)] = 0 for M > k ≥ 1,
∑M
m=1 sin[k(θ−φm)] cos[l(θ−φm)] = 0 for M > k+ l ≥ 2,

and
∑M

m=1 sin(θ − φm) cos[k(θ − φm)] cos[l(θ − φm)] =
0 for M > 1 + k + l ≥ 3. In turn, this allows us to prove,

after simple algebraic manipulations, that

(

M
∑

m=1

gmg
′
m

)2

+

(

M
∑

m=1

g2mτ
′
m

)2

= 0 for M > 2K + 1.

Now, using the following equalities

M
∑

m=1

sin[k(θ − φm)] sin[l(θ − φm)]

=

M
∑

m=1

cos[k(θ − φm)] cos[l(θ − φm)]

=

{

M/2 for M > k + l ≥ 2 and k = l
0 for M > k + l ≥ 2 and k 6= l

M
∑

m=1

cos[2(θ − φm)] cos[k(θ − φm)]

=

{

M/2 for M > k + 2 ≥ 3 and k = 2
0 for M > k + 2 ≥ 3 and k 6= 2

M
∑

m=1

cos[2(θ − φm)] cos[k(θ − φm)] cos[l(θ − φm)] =















M/4 for M > k + l + 2 ≥ 4 and k = l = 1
M/4 for M > k + l + 2 ≥ 4 and |k − l| = 2
0 for M > k + l + 2 ≥ 4, |k − l| 6= 2,

l 6= 1 and k 6= 1

we can reach the final result in (10).
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C. Proofs of (11)

First, maxθ g
2
0(1 + cos(θ))2K = 22Kg20 . By applying the

binomial equality twice to (1 + cos(θ))2K = 1
22K [2 + (ejθ +

e−jθ)]2K , we obtain:

(1+cos(θ))2K =
1

22K

[

2K
∑

k=0

k
∑

ℓ=0

22K−k

(

2K

k

)(

k

ℓ

)

ej(2l−k)θ

]

.

Using the Euler relationship (8),

1

2π

∫ 2π

0

(1 + cos(θ))2Kdθ =
1

22K

K
∑

n=0

22(K−n)

(

2K

2n

)(

2n

n

)

with
(

a
b

)

=̂ a!
b!(a−b)! concludes the proof.

D. Proofs of (13)-(16)

By extensive use of (8), we can prove, after tedious manip-

ulations, that

‖a(θ)‖2
Mg20

= 1 + β2 1 + δM,2 cos(2θ)

2
,

−a
H(θ)a′(θ)

g20
= 0,M > 3

= j
3

2
πRβ2 sin (3θ) ,M = 3

= β (β + 4jπR) sin (2θ) ,M = 2

‖a′(θ)‖2
Mg20

=
β2

2
+ π2R2(2 +

β2

2
),M ≥ 5

=
β2

2
+ π2R2

[

2 + β2 sin2 (2θ)
]

,M = 4

=
β2

2
+ π2R2

[

2 +
β2

2
− 2β cos (3θ)

]

,M = 3

= β2 sin2 (θ) + π2R2
(

4 + β2
)

sin2 (2θ) ,M = 2

where δij = 1 if i = j, 0 otherwise. The above can be used

to calculate the exact CRB of the UCA, as expressed by (2)

and (3), leading to expressions (13)-(16).
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