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This study describes application of a catchment scale model, SWAT (Soil Water Assess-
ment Tool), to a small scale agricultural watershed in northern Maryland. It covers the 
steps involved in model application and associated model uncertainty as affected by 
variability in input parameters using Latin Hyper Cube Sampling (LHS) with Constrained 
Monte Carlo Simulation (MCS). SWAT model predictions of the impact of environmen-
tally friendly practices are discussed within the context of input variability. Results indicate 
that SWAT is a reasonable monthly predictor of hydrology, but does not provide strong 
association between measured and simulated nitrate loss at that time scale. SWAT was 
found to perform very well when used for annual nitrate loss predictions. Results also 
show that using average input parameter values without considering their variability due 
to media heterogeneity produces simulation outputs that can be misleading and should not 
be given 100% confidence. It was concluded that in developing TMDL (Total Maximum 
Daily Load) plans for a given watershed one has to assert associated uncertainty levels in 
model’s inputs and simulation results for proper resource management.

Introduction

To address the interaction between human life 
and the surrounding environment in the land-
scape, the “peep-hole” principle has mostly been 
used (Hagerstrand 1992a, 1992b). The result is 
that the landscape mantle is understood to a lim-
ited degree only, mainly as related to biological 
systems and to components of economic impor-
tance related to the use of natural resources. 
Recent heightened concern for sustainability 
has encouraged scientists to evaluate the multi-
cause problems of the environment in relation to 
human and animal life under diverse conditions 
(Shirmohammadi et al. 2005, Falkenmark and 

Mikulski 1994). Efforts to respond to the issue 
of sustainability have produced multicomponent 
water quality models describing hydrologic and 
water quality responses of the landscape under 
diverse climatic and managerial conditions. In 
most cases, these models have used the systems 
approach in describing a natural event rather 
than looking at each event as isolated phenom-
ena (e.g., continuous simulation models such as 
CREAMS (Knisel 1980), GLEAMS (Leonard 
1987), SWAT (Arnold et al. 1998)).

A model may have different interpretations 
based on its discipline of use. In hydrology, 
water quality, and engineering, models are used 
to explain natural phenomena and under some 
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conditions make deterministic and/or probabilis-
tic predictions. In other words, a modeler tries to 
use established laws or circumstantial evidences 
in order to represent the real life scenario math-
ematically, producing and end product called 
“model”. Although each modeler tries to rep-
resent the real system, the strengths and weak-
nesses of their models depend upon the modeler’s 
background, theoretical and empirical algorithms 
used in the model, the application conditions, 
and the scale of application. One should note 
that Aristotle and his ideas that “inaccessible is 
more challenging to explore than the accessible 
in everyday’s world” seem to have had a guiding 
influence on the development of water quality 
models. Additionally, the “particle theory” of 
Einstein that “universe has a grain structure and 
each grain is in a relative state with respect to the 
others”, has formed the basis for describing inter-
relationships between different components of 
water quality models. For instance, a natural sci-
entist is concerned about the inter-relationships 
governing the state of a given environment and 
tries to understand such relationship using experi-
mental procedures and biological principles. The 
products of such studies are generally a set of 
factual data and possibly some empirical models 
describing such relationships. Such empirical 
models are developed under specific conditions 
and their use for conditions other than the one 
under which they have been developed may gen-
erate significant errors in model predictions. A 
physicist and an engineer on the other hand, try 
to use physical laws and mechanistic approaches 
to describe inter-relationships governing the state 
of an event and produce deterministic and mecha-
nistic models. Such models are not complete until 
they have been calibrated, validated and tested 
against experimental data (Shirmohammadi et 
al. 2001). In addition, measuring or determining 
proper parameter values for such models is a 
challenge at best.

Watershed scale hydrologic and non-point 
source pollution models are useful tools in assess-
ing the environmental condition of a watershed 
and evaluating the potential effects of imple-
menting Best Management Practices (BMPs) to 
help reduce the damaging effects of storm runoff, 
baseflow, and groundwater on water bodies and 
the landscape. Although their complexities may 

differ, such models may also be useful tools in 
the development of TMDL (Total Maximum 
Daily Load) plans to meet various water quality 
standards, as required by the Clean Water Act. 
Numerous models have been developed and are 
in use either as research, management, or regula-
tory tools (Shirmohammadi et al. 2001).

Watershed scale nonpoint source pollution 
models use the principles used in the field scale 
models and extend them to mixed land use sce-
narios. For example, AGNPS by Young et al. 
(1989), SWRRB by Arnold et al. (1990), and 
SWAT by Arnold et al. (1998) are all built upon 
the strength of the USDA’s CREAMS model 
(Knisel 1980). They are all continuous simula-
tion models with daily time steps. Some water-
shed models such as ANSWERS-2000 (Bouraoui 
and Dillaha 1996) are event based, thus requiring 
more detailed climatic data. Watershed scale 
models such as SWAT and ANSWERS-2000 are 
distributed parameter models, thus enabling the 
user to consider the diversities in land use, soils, 
topography, and management alternatives within 
the watershed. These models generally contain 
routing algorithms that consider the attenuation 
of sediment and chemicals through upland areas 
as well as within the stream system. Such distrib-
uted parameter models are also adaptable to the 
GIS environment. However, variability in input 
parameter values due to heterogeneity in natural 
system (e.g., climate, soils, land use, etc.) results 
in output uncertainty in these models (Haan et 
al. 1995, Sohrabi et al. 2003, Shirmohammadi et 
al. 2006). This study intends to illustrate advan-
tages and disadvantages of a watershed scale 
model such as SWAT in its application to a small 
agricultural watershed. The goal is to provide a 
guideline for using such models and calling on 
the users to be cautious about their output uncer-
tainty.

Materials and methods

Study site and available data

The study site is a small agricultural watershed 
(346 ha), Warner Creek, in the piedmont physi-
ographic region of Maryland (Fig. 1). The entire 
Warner Creek watershed was divided into 40 
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subwatersheds based on topography and simi-
lar land use and soils for the SWAT simulation 
using Digital Elevation Models (DEMs) on the 
GIS platform. The SWAT model is linked with 
ArcView GIS, and performs subwatershed divi-
sions for the user based on DEMs. Then, the user 
can identify smaller virtual hydrologic response 
units (HRUs) based on soils and land use in each 
subwatershed. The model routes output from 
each HRU to the outlet of the corresponding 
subwatershed. Finally, all discharges from the 
outlet of subwatersheds are routed to the outlet 
of the whole watershed, which is station 2A in 
our site. An automated flowmeter and sampler 
were used to acquire flow integrated samples at 
station 2A. Sediment and nutrient concentration 
were determined by analyzing the water samples 
in the laboratory using automated ion analyzer 
based on the colorimetric method for nutrients. 
Finally, sediment and nutrient loads were com-
puted using flow volume and concentration of 
constituents. The measured streamflow at station 
2A was separated into storm flow (surface runoff) 
and base flow using the streamflow partitioning 
method proposed by Linsley et al. (1982). The 
simplest method of Linsley, which connects the 
beginning of the rising limb of a hydrograph to 
the inflection point on the recession limb of the 
hydrograph, was used for flow separation. The 
data collection period lasted from 1994 to 2002.

Modeling

This study uses SWAT model (Arnold et al. 
1998) for a case study to show advantages and 
disadvantages of using watershed scale models. 
SWAT is a complex, physically based model 
with spatially explicit parameterization capabil-
ity. A complete description of SWAT’s compo-
nents is found in Arnold et al. (1998). In brief, 
SWAT is a continuous simulation model and 
operates on a daily time step to perform simula-
tions up to one hundred years using measured 
and/or stochastically generated weather data. A 
GIS-based user interface, AVSWAT (ArcView 
SWAT), developed by Diluzio et al. (2004), was 
used in this study to help reduce spatial data col-
lection and manipulation time, and also allows 
the user to modify and analyze various alterna-
tive management practices efficiently.

The major components of SWAT model 
include hydrology, weather, sedimentation, 
soil temperature, crop growth, nutrients, pesti-
cides, agricultural management, channel rout-
ing, and reservoir routing (Arnold et al. 1998). 
The hydrology component consists of weather 
data extracted from input files of measured data 
or from the weather component of model (pre-
cipitation, maximum/minimum air temperature, 
solar radiation, wind speed, and relative humid-
ity), surface runoff, percolation, lateral subsur-

Fig. 1. Location and moni-
toring setup for Warner 
Creek watershed, Freder-
ick County, Maryland.



188	 Shirmohammadi et al.  •  Boreal Env. Res. V ol. 13

face flow, groundwater flow, evapotranspiration, 
snow melt, transmission losses, and channel flood 
routing. The SWAT model estimates soil erosion 
and sediment yield from the landscape and in-
stream depositional and degrading processes. 
Sediment yield from the landscape is calculated 
by the Modified Universal Soil Loss Equation 
(MUSLE). MUSLE follows the structure of the 
Universal Soil Loss Equation (USLE) with the 
exception that the rainfall factor is replaced by 
the runoff factor (Blaszczynski 2003). Nitrogen 
and phosphorus processes in SWAT are handled 
in a similar manner as in the Erosion Produc-
tivity Impact Calculator (EPIC) model (Wil-
liams 1995). SWAT also adopted a modified ver-
sion of QUAL2E model (Brown and Barnwell 
1987, Ramanarayanan et al. 1996) to simulate 
in-stream nutrient transformations. QUAL2E is 
intended for use as a water quality planning 
tool, which can be operated as a steady state or 
as a dynamic model. The sub-components of 
QUAL2E include models of the biochemical 
dynamics of algae as chlorophyll a, dissolved 
oxygen, carbonaceous oxygen demand, organic 
nitrogen, ammonium nitrogen, nitrite nitrogen, 
nitrate nitrogen, organic phosphorus and soluble 
phosphorus.

It is convenient to think of the SWAT model 
as having k input variables: X1, X2, …, Xk, and 
producing from them a set of j output variables: 
Y1, Y2, …, Yj,. The input and output variables 
can be parameters, time series or spatial series. 
Model operation is denoted by f so that the rela-
tionship between input and output becomes:

	 (Y1, Y2, …, Yj) = f(X1, X2, …, Xk)	 (1)

In deterministic applications of the model, 
the uncertainty in X1, X2, …, Xk is not considered 
leading to deterministic outputs Y1, Y2, …, Yj,. 
In stochastic applications, the input variables, 
X1, X2, …, Xk, are considered to be random with 
specific statistics and distributions representing 
their uncertainty and the model produces output 
variables that are also random variables. This 
study applied SWAT deterministically for cali-
bration and validation and then stochastically to 
illustrate the effects of uncertainty as described 
in the next section.

Data analysis and model uncertainty

The calibration and validation of SWAT were 
performed by comparing predicted surface 
runoff, the sum of lateral subsurface flow and 
groundwater flow, and nitrate concentrations to 
measured surface runoff, measured base flow 
and measured nitrate concentrations, respec-
tively. Monthly measured data, from April 1994 
through December 1995, were used for model 
calibration. The data for the remaining period 
(1996 through 2002) were used for model vali-
dation.

Graphical methods (time series plot and scat-
tergram), and statistical measures were used to 
evaluate the model performance based on the 
measured data. Four statistical criteria were used 
to evaluate the hydrologic goodness-of-fit: cor-
relation coefficient (r, a measure of the intensity 
of association between observations and model 
predictions), coefficient of determination (r2, the 
square of r as used in regression, it is the propor-
tion of the variance of observed values that is 
explained by the model after the predicted mean 
has been adjusted to equal the observed mean), 
Nash-Sutcliffe coefficient (R2, the same as r2 but 
without adjusting the predicted mean to equal 
the observed mean, i.e. R2 = 1 – RMS2/Variance 
of observations) (Nash and Sutcliffe 1970), and 
root mean square error (RMS). Detailed proce-
dure, results, and discussions of both calibration 
and validation periods are presented in Chu and 
Shirmohammadi (2004) and Chu et al. (2004).

To illustrate the impact of uncertainty in 
model output, this study used LHS (Latin 
Hypercube Sampling) with constrained Monte 
Carlo Simulation (MCS). The LHS procedure 
described by McKay et al. (1979) and Iman et al. 
(1981) was used. A detailed uncertainty analysis 
on SWAT may be found in Sohrabi et al. (2003), 
however, sample data are presented to compare 
model output obtained based on the average 
input parameter values within the output prob-
ability distribution range for the Warner Creek 
Watershed. The technique is essentially an opti-
mized Monte Carlo approach with solid track 
record in decision theory. 

The application of LHS started by identify-
ing the most sensitive hydrologic, soil, chemis-
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try, and management parameters and identified 
appropriate probability distribution functions 
(pdf, eg. normal, logarithmic, beta, gamma, uni-
form) for each one. Groups of parameter values 
were generated for each sensitive parameter by 
a targeted randomization strategy that preserves 
distribution moments. SWAT was then used to 
predict flow and transport for each group of ran-
domized input variables, producing an ensemble 
of model outputs. For example, following the 
formalism of Eq. 1, the model predictions result-
ing from the ith group of input variables would 
be written as:

	 (Y1, Y2, …, Yj)i = f(X1, X2, …, Xk)i	 (2)

and the targeted LHS input sampling strategy 
would produce a number n of such predictions. 
In this study, n was of the order of 500. The 
output vectors were then processed for speci-
fied variables, such as streamflow, sediment, 
and nutrients, to produce cumulative probability 
distribution curves.

This stochastic model application procedure 
was applied to the analysis of the effects of sev-
eral best management practices for the Warner 
Creek watershed. For the purpose of this study 
only one of the practices, BMP4 (contour strip 
cropping with no-till), was selected for illustra-
tion. Deterministic simulation results using aver-
age input values were overlaid on the cumula-

tive distribution curves obtained by LHS-MCS 
to illustrate the differences between the two 
approaches. It is also notable that several sum-
mary statistics such as: (1) the range of Y, (2) the 
mean and variance of Y, and (3) the lower and 
upper quartiles for Y can be readily evaluated 
from the output of LHS although this will not be 
performed here (Iman and Helton 1985).

Results and discussion

The statistical results of the model performance 
for the hydrologic parameters during both cali-
bration and validation periods are summarized 
in Table 1. Previous study (Chu and Shirmo-
hammadi 2004) pointed out the presence of 
subsurface flow contributions from outside the 
watershed boundary. Measured base flow was 
therefore corrected for the extra subsurface flow 
contribution from outside the watershed using 
the water balance approach. Increased values of 
r, r2, and R2 all indicate reasonable performance 
of the SWAT model during the validation period. 
As compared with results reported earlier (Chu 
and Shirmohammadi 2004), flow adjustments 
for contributions from outside the watershed 
improved model performance significantly. All 
nutrient loadings leaving the watershed were 
also adjusted to subtract the chemical transport 
via subsurface flow contribution from outside 

Table 1. Statistical results comparing monthly measured and simulated flow data at station 2A after adjustment to 
the subsurface flow contribution from outside the watershed.

Hydrological	N o. of	 r	 r 2	 R 2	RMS
components	 samples	 		  (Nash-Sutcliffe)	 (mm)

Calibration reriod (April 1994–1995)
 S tream flow	 21	 0.83	 0.69	 0.68	 16.2
 S urface runoff	 21	 0.66	 0.43	 0.35	 11.2
 S ubsurface flow	 21	 0.75	 0.57	 0.53	 12.2
Validation period (1997–1999)
 S tream flow	 36	 0.89	 0.78	 0.78	 19.9
 S urface runoff	 36	 0.91	 0.83	 0.74	 10.7
 S ubsurface flow	 36	 0.81	 0.66	 0.62	 16.8
Validation period (1997–2002)
 S tream flow	 72	 0.85	 0.72	 0.71	 18.1
 S urface runoff	 72	 0.84	 0.71	 0.68	 9.4
 S ubsurface flow	 72	 0.79	 0.62	 0.53	 14.7
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the watershed. This process permits a fair evalu-
ation of the SWAT model, especially for small 
watersheds like the one used in this study.

The statistical results of the model perfor-
mance in monthly and yearly nitrate prediction 
during calibration and validation periods are 
summarized in Table 2 (monthly calibration and 
validation in rows 1 and 2 and combined yearly 
results in row 3). Low values of r, r2, and R2 
indicate that despite improvements in model per-
formance during validation, results of monthly 
simulations of NO3-N are poor. However, despite 

poor performance in predicting monthly nitrate 
loadings, the yearly simulations showed a strong 
agreement (Fig. 2 and 3). Statistical results in 
Table 2 with high values of r, r2, and R2 (0.82, 
0.68, and 0.63, respectively) are for the period of 
9 years (1994–2002).

Evaluation of Uncertainty in the simula-
tion results of TMDL models such as SWAT is 
essential (Shirmohammadi et al. 2006). Figure 4 
shows the cumulative probability distribution of 
stream flow obtained by the SWAT model using 
LHS-MCS strategy. The 9-year average stream 

Table 2. Statistical results comparing measured and simulated NO3-N at station 2A.

Nutrient	N o. of	 r	 r 2	 R 2	RMS
parameters	 samples			   (Nash-Sutcliffe)	  (kg ha–1)

Monthly
Calibration period (April 1994–1995)
 NO 3-N (adjusted)	 21	 0.52	 0.27	 0.16	 1.27
Validation period (1996–2002)
 NO 3-N (adjusted)	 83	 0.53	 0.28	 0.18	 1.49
Yearly
(1994–2002)
 NO 3-N (adjusted)	 9	 0.82	 0.68	 0.63	 4.36
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flow (1994–2002) under BMP4 simulated in 
this study (411 mm) corresponds to cumulative 
probability of 0.67 as depicted by an arrow in 
Fig. 4, which means that there is 67% confidence 
that stream flow is equal or smaller than 411 mm. 
In other words, probability of stream flow being 
greater than 411 mm is 33%. It is also apparent 
that annual streamflow of 1004 mm for a wet 
hydrologic year (1996) was way outside the prob-
ability distribution developed for Warner Creek 
watershed. This indicates the unusual effects of 
extreme climatic condition on our models that 
are generally calibrated and validated for aver-
age conditions. Similar probability distributions 
like in Fig. 4 can provide the reliability of certain 
quantitative value and associated risk for each 
model output, which could be used in TMDL 
assessment and economic analysis of BMPs.

The annual sediment loading in 1996 under 
BMP4 was 13 000 kg ha–1 with about 84% cer-
tainty (Fig. 5). The year 1996 was an extremely 
wet hydrologic year with precipitation exceed-

ing 1800 mm (almost two times that of the 
normal amount in Maryland). One should be 
cautious that such an extreme condition often 
yields more pollutant loadings and creates addi-
tional environmental concerns. The cumulative 
probabilities of annual NO3-N loadings in 1996 
under BMP4 were about 39% and 43% with 
winter crop and without winter crop, respectively 
(Fig. 6). Such results indicate that using average 
input parameter values without considering their 
variability produces simulation outputs that are 
less than 100% certain to be averages themselves 
but can be below the true mean (50% point on 
the cumulative probability function). Therefore, 
in simulating BMP effects and development of 
TMDL plans for a watershed, one has to consider 
output uncertainty due to input variability. If 
the effectiveness of each BMP is associated 
with certain reliability, such information can 
be great aid to prescribe an economically and 
environmentally feasible BMP or a set of BMPs 
to resolve the pollution problem.
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Fig. 4. Model output dis-
tribution of stream flow 
at the watershed outlet 
(Sohrabi et al. 2003) and 
streamflow under BMP4 
based on average input 
parameter values for 1996 
(wet year).

Fig. 5. Model output dis-
tribution of sediment load-
ing at the watershed outlet 
(Sohrabi et al. 2003) and 
annual sediment under 
BMP4 based on average 
input parameter values for 
1996 (wet year) and for 
entire simulation period 
(1994-2002).
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Conclusions

Overall, this study concluded that SWAT is a 
reasonable annual predictor of the watershed 
responses for assessing the impacts of differ-
ent management systems on water supplies and 
nonpoint source pollution. However, it fails to 
do reasonable predictions on short time steps 
such as daily or monthly basis. Our previous 
studies and BMP evaluations conducted in this 
study indicate that simulations results of SWAT 
model are highly affected by the variability 
in input parameter values. Inherent spatially 
heterogeneity in soils, land use, and manage-
ment scenarios produce variability in physical, 
hydraulic, and chemical parameter used in the 
SWAT model, thus they should be represented 
by appropriate probability distribution functions 
(pdfs). Our previous study defined appropriate 
pdfs for these parameters, then, used LHS with 
constrained MCS techniques to generate a select 
number of model simulations. The results were 
then plotted as cumulative probability distribu-
tion for each constituent of interest. The SWAT 
model was also used with average input param-
eter values without considering their variability. 
Results indicated that deterministic model output 
for BMP4 (contour strip cropping with no-till) 
falls within the range of the cumulative prob-
ability distribution for the watershed for each 
constituent of interest but is not necessarily the 
mean output. This study concluded that one 
should consider the stochastic nature of the input 
parameter values in simulating hydrologic and 
water quality response of any watershed. Results 
such as those reported here may provide guide-
lines and warnings regarding the use of these 

models such as SWAT model in TDML assess-
ment and planning.
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