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Abstract

Movie-viewing allows human perception and cognitibm be studied in
complex, real-life-like situations in a brain-imagilaboratory. Previous studies with
functional magnetic resonance imaging (fMRI) and thwimagneto- and
electroencephalography (MEG/EEG) have demonstrateshsistent temporal
dynamics of brain activity across movie viewerswdwger, little is known about the
similarities and differences of fMRI and MEG/EEGndynics during such naturalistic
situations.

We thus compared MEG and fMRI responses to the sEsrmin black-and-
white movie in the same eight subjects who watctiedmovie twice during both
MEG and fMRI recordings. We analyzed intra- andeistibject voxel-wise
correlations within each imaging modality as wedl the correlation of the MEG
envelopes and fMRI signals. The fMRI signals showedel-wise within- and
between-subjects correlations uprte 0.66 and = 0.37, respectively, whereas these
correlations were clearly weaker for the envelopielsand-pass filtered (7 frequency
bands below 100 Hz) MEG signals (within-subjectsaationr < 0.14 and between-
subjectsr < 0.05). Direct MEG—MRI voxel-wise correlationsere unreliable.
Notably, applying a spatial-filtering approach e tMEG data uncovered consistent
canonical variates that showed considerably stmorfgp tor = 0.25) between-
subjects correlations than the univariate voxekwmsnalysis. Furthermore, the
envelopes of the time courses of these variatesib#l Hz showed association with
fMRI signals in a general linear model. Similagtibetween envelopes of MEG
canonical variates and fMRI voxel time-courses w&en mostly in occipital, but

also in temporal and frontal brain regions, where¢has strongest intra- and



intersubject correlations for MEG and fMRI sepdsate@ere strongest only in the
occipital areas.

In contrast to the conventional univariate analytsie spatial-filtering approach
was able to uncover associations between the ME@lagres and fMRI time courses,
shedding light on the similarities of hemodynanmcl &lectromagnetic brain activity

during movie-viewing.
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1 Introduction

A practical and ecologically valid approach to prdbe neural underpinnings of
perception and social cognition is to use movies samuli in neuroimaging
experiments. Mimicking everyday situations arouisg movies can provoke a wide
spectrum of sensory, social, and emotional percyas may be difficult to elicit
using the highly controlled repetitive stimuli tgplly employed in such experiments.
Despite the apparent complexity and unrestraingdr@af movies, consistent and
synchronized brain activity patterns across movexwers have been demonstrated
with functional magnetic resonance imag(fiIRI; e.g. Hasson et al., 2004, Bartels
and Zeki,2004a; Bartels and Zeki, 20b; Hasson et al.2008; Jaaskelainen et al.,
2008; Lahnakoski et al.2012; Nummenmaa et al.2012; Pamilo et al.,2012;

Kauttonen et al., 2015), and more recently with meagencephalographMEG;



Betti et al.,2013; Lankinen et al.2014; Chang et al2015; Lankinen et al., 2016) and
electroencephalograph¥EG; Whittingstall et al.,2010; Dmochowski et al.2012;
Dmochowski et al.,2014; Bridwell et al.,2015; Chang et al.2015; Ki et al.,2016;
Cohen et al., 2016).

The fMRI and MEG signals often behave differentigflecting the different
physiological phenomena they measure (see for ebealgri 2007; Hari and Kujala,
2009). BOLD (blood oxygenation level-dependent)nalgin fMRI relates to
hemodynamics and is sensitive to long-lasting atims in the range of seconds
(Logothetis et al., 2001). MEG records directly #lectromagnetic fields associated
with synchronous activity of neuronal populatiomsmd it picks up transient and
sustained evoked activity as well as brain rhytlwits millisecond-range temporal
resolution (Hari & Puce, 2017). Moreover, both timeset and offset of a prolonged
stimulus can elicit prominent transient responseMEG, whereas BOLD builds up
and fades away more sluggishly. It has been recenifjgested that fMRI would
receive the main contribution from neuronal ensesifwonnected via slow and thin
fibores whereas MEG and EEG emphasize activity nedidy the fast-conducting
pathways (Hari and Parkkonen, 2015).

The majority of previous comparisons between hemadyc (fMRI) and
electromagnetic (MEG or EEG) signals have used Ifngbntrolled experimental
designs with simplified and repeated stimuli (foremiew, see e.g. Hall et al., 2014).
Evidently, such settings fail to approximate neatosctivity occurring during real-
world experiences. Instead, movies as continuogsesees of events unfolding over
time may engage brain regions that show little @aspity in conventional

experimental settings (e.g. Hasson et al., 2010).



In brain-imaging studies utilizing naturalisticratili, the analysis is often based
on intersubject correlation (Hasson et al., 2004} has been used for assessing the
reliability and consistency of voxel-wise fMRI tinmurses during movie viewing
(see e.g. Jaaskeldinen et a@008; Golland et al.,2010; Kauppi et al.,2010;
Nummenmaa et al2012; Lahnakoski et al.2012; Kauppi et al., 2017). Compared
with the strong across-viewers correlations in BQdignals (up to 0.78 in Kauppi et
al., 2010), the correspondingly calculated inteysctbcorrelations of MEG or EEG
signals are usually weaker (typically less than) ®@dth at sensor (Bridwell et al.,
2015) and source level (Suppanen, BE0l14; Chang et al., 2015). However,
calculating intersubject correlations in short isigdtime windows have resulted in
stronger correlation also for MEG and EEG signafs o 0.5 within 200-ms sliding
windows in Chang et al. (2015) and 0.3 within Sidirsg windows in Dmochowski et
al. (2012)). Here we assess intra- and intersulgi@eelations of MEG signals for a
dense source space for the entire duration of aanoalculated in the same manner
as for fMRI.

An obvious challenge in the analysis of EEG or M#&#a is the low signal-to-
noise ratio (SNR), especially for unaveraged, sifighl traces recorded during
naturalistic experiments (Dmochowski et a012; Suppanen, E2014; Bridwell et
al., 2015; Chang et al., 2015). With conventional well-colé® stimuli, the brain
signals’ SNR is typically improved by averaging tlesponses to repeated stimuli,
which, however, is not practical in lengthy natigtid experimental settings, such as
movie-viewing.

Here we examine the feasibility of voxel-wise intaad intersubject correlation
analysis in MEG, and we extend our scrutiny to @atrons between multivariate

datasets. Previously, we have demonstrated thetiefaess of data-driven learning



of spatial-filter coefficients by multi-set canoaiccorrelation analysiSMCCA;
Kettenring, 1970; Li et al., 2009) to uncover signals that maximingersubject
correlation in MEG data between subjects (Lankiren al., 2014). Notably,
maximizing intersubject correlation also improveNRSof the signals. Previously,
CCA and its derivatives have been used to maxinmizersubject correlation in
response to shorter videos or shorter movie chpgSEG recordings (Dmochowski et
al.,2012; Dmowchowski et al.2014; Ki el al.,2016; Cohen et al., 2016) that provide
coarser spatial resolution than does MEG.

We conducted a systematic analysis between fMRIMEG signals collected
from the same subjects who were watching a 15-nokien We used a silent black-
and-white movie "At Land” by Maya Deren as a nalistee stimulus to study brain
activity related to visual perception of real-wosicenes.

Our analysis started from the assessment) aftfa- and ij) intersubject voxel-
wise correlations separately for fMRI and MEGij)(extending to MEG—MRI
comparisons. Thenjy we proceeded from univariate to multivariate gsial and
applied spatial-filtering with MCCA. Finallyy] the resulting MEG canonical variates
were associated with the fMRI voxel time seriesalgeneral linear model (GLM).

We demonstrate the usefulness of the proposedvaudtie approach in relating
MEG and fMRI signals in naturalistic experimentaktsngs, in comparison to the
more commonly used voxel-wise approach. Our finglirghow similarities in
hemodynamic and electromagnetic brain activity atipital, temporal and frontal

brain regions during movie-viewing.



2 Materials and methods

2.1 Subjects

Eight healthy adults (4 femalesphles; mean age 29 years, range 23-51 years)
participated in the study. All subjects had norimatorrected-to-normal vision. Both
the MEG and fMRI recordings had a prior approval thg ethics committee of
Helsinki and Uusimaa Hospital district. All parpeints gave written informed

consent prior to the study.

2.2 Stimulation

The subjects watched a 15-min silent black-andevhiin “At Land” by Maya
Deren (1944) twice during fMRI recordings and twohering MEG recordings. For
each subject, the fMRI recording was performed,fied the MEG recording about
one and a half year later. The film contained sidual information of human bodily
activities, especially the bodily behavior of theaim character in her natural
environment. Importantly, the film was originallyirected as a silent film.
Furthermore, since the film is not overloaded wdtamatic narrative content, it suited
well for our study interests as our focus was iairbractivity related to visual
perception and not on narrative comprehension.

In fMRI recordings, the movie was shown using Pnésgon software (version
0.81, http://'www.neurobehavioralsystems.com) andjegtor Vista X3 REV Q
(Christie Digital Systems, Canada, Inc.). The mowas projected to a semi-
transparent back-projection screen that the subjgetved via a mirror (visual angle

36° horizontal, 29° vertical). In MEG recordingbetscreen was located 130 cm in



front of the subject (visual angle 22° horizonfiad;? vertical) and Experiment Builder
software (SR Research, http://www.sr-research.doniteml) was used for playing
the movie. The frame rate of the movie was 24 fmeFor accurate temporal
alignment between the movie playback and MEG rengrdhe stimulus presentation
software was programmed to provide trigger sigtmthe MEG acquisition system at
the beginning and end of the movie. The tempottdrjiacross subjects was within

two sample periods (2 ms).

2.3 MRI and fMRI recordings

T1-weighted anatomical MRIs and the fMRI data wacgquired using a 3.0 T
General Electric Signa Scanner (General Electridwduikee, WI, USA) at the
Advanced Magnetic Imaging Centre of Aalto UniversitStructural images were
scanned with 3-D T1 spoiled-gradient imaging, ma2%6 x 256, TR 10 ms, TE 3 s,
flip angle 15°, preparation time 300 ms, FOV 25, slice thickness 1 mm, voxel
size 1 x 1 x 1 mf and number of excitations 1. The functional insagere acquired
using a gradient echo-planar-imaging with followipgrameters: TR 2.015 s, TE 32
ms, flip angle 75°, 34 oblique axial slices, slibiekness 4 mm, matrix 64 x 64, voxel
size 3.4 x 3.4 x 4 minfield of view (FOV) 22 cm.

Four dummy scans were removed from the beginninghef recordings.
Standard preprocessing steps—realignment, slice-torrection, coregistration of
functional images to anatomical MRI, normalizatiand smoothing with an 8-mm
full-width-at-half-maximum Gaussian kernel—were bgb to the functional images

with SPM8 toolbox (http://www.fil.ion.ucl.ac.uk).



2.4 MEG recordings

MEG was recorded with a 306-channel neuromagnetm(Etekta Neuromag,
Elekta Oy, Helsinki,Finland); the device houses 102 sensor units, each with two
orthogonal planar gradiometers and one magnetonigteracquisition passband was
0.03-330 Hz and the sampling rate 1000 Hz. Vertimatl horizontal electro-
oculograms (EOGSs) were recorded at the same timeadalitional 2-min recording
with no subject present was performed on the same fdr noise-covariance

estimation.

2.4.1 MEG preprocessing

MEG data were preprocessed to suppress externahanagnterference by
signal-space separation (SSS) method (Taulu andl&ap005) implemented in
Maxfilter software version 2.2 (Elekta Oy, Helsininland). Default parameter
settings of the software were used and the data waverted into the standard head
position.

The data were then further filtered and downsamgfdtering was performed
with a zero-phase FIR filter into 7 frequency bane&sl, 1-4, 4-8, 8-11, 13-23, 25—
45, and 55-100 Hz (with transition bands of 0.1fblzbands below 1 Hz, 0.5 Hz
below 23 Hz, and 5 Hz below 100 Hz). After downsantp the sampling frequencies
were 50 Hz for the band below 1 Hz, 100 Hz for laed 1-11 Hz, 200 Hz for the
band 13-45 Hz and 250 Hz for the band 55-100 Hz.

Eye-movement and eye-blink artifacts were supptedsg multiple linear
regression applied to the MEG data by using the E€Ighals as regressors in

consecutive non-overlapping 60-s time windows.r \Fadidation, correlation between



the EOG signals and the MEG channels after EOG regpn was calculated in
consequent non-overlapping 20-s windows separ&telipoth EOG channels, arté
test was applied to find out if the mean of therelations deviated from zero. For

Bonferroni correction, the significance level was 0.05N ., annels-

2.4.2 MEG source analysis

We extracted the time series of cortical MEG sositeging the minimum-norm
estimation (MNE) method (Hamaéaldainen and limonied®94) implemented in the
MNE software package (Gramfort et al., 2Q1Bdr each subject, the T1-weighted
magnetic resonance image of the brain was segmamigdhe cortical surface was
reconstructed using FreeSurfer software (Dale.et#9; Fischl et al., 1999a, 1999Db,
Segonne et al., 2004) with the parameters describedefault settings in the
recommended reconstruction workflow in FreeSurféi\Wi

http: //surfer.nmr.mgh.har vard.edu/fswi ki/RecommendedReconstr uction.

A single-compartment boundary element model (BEMjsvapplied and the
MNESs were calculated using dipoles oriented nortmahe cortical surface at discrete
locations separated approximately by 6 mm (usirggdbedron subdivision with
parameter ‘4") on the cortical surface, resulting124 source signals in total. All 306
MEG channels were used in computing the MNES.

Subject-specific source spaces were morphed tonenom template (‘fsaverage’
in the FreeSurfer software package) for intersubglysis. The resulting time
courses of the MEG sources were further Hilbemdfarmed to obtain the envelopes
for each frequency band, low-pass filtered at 4aid downsampled to 10 Hz to
minimize computational load. For the MEG—fMRI compan, the MEG envelopes

were further convolved with the canonical hemodywgaresponse functioiHRF;



SPM8 package; Wellcome Trust Centre for Neuroimaging;
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/)o &void spurious boundary effects
in filtering, 30 s of data were removed from bothde of the signals before
calculating the correlations between the sourcetpmine series. For simplicity, we
will hereafter use the term “voxel-wise” also téereto MEG time series at the source

points.

2.4.3 MEG spatial-filtering with MCCA

Recently, we have proposed a spatial-filtering applh based on multi-set
canonical correlation analysiMCCA; Kettenring,1971; Li et al., 2009) to uncover
consistent brain signals across subjects (Lankateh, 2014).

Spatial-filtering refers to projectio” = W™Z™, where the outpl¥™ is a
weighted sum of the multidimensional sigiZ&t (D x t matrix, whereD is the
dimension of the signals, ariche number of time points). Here, the supercnipt
refers to the dataset of one subjesty(1 ... M, the number of subjects). The resulting
projections in rows o¥™ (D X t matrix), i.e. the canonical variates, are mutually
uncorrelated but maximally correlated between thbjects. Here, spatial filter
weightsW™ in MCCA were calculated by using MAXVAR cost furmt. In our
analysis, the number of resulting projectionsOs= 68, corresponding to the
remaining degrees of freedom (rank) of the datarimafter the SSS interference
suppression method. We used PCA to reduce the diomlity of the sensor-level
data to this number. We utilized both runs in thEGA training, by averaging the
data matriceZ™ across the first and second run in calculatingctbreelation matrix
in the MCCA optimization process, as in our pregiciudy (Lankinen et al., 2014).

More specifically, the blocks in the correlation tmaR in MCCA algorithm were



XiXj

computed asR; = , Where N, is the number of samples in one trial, axd,

t
X are the average over the subject-wise whitenatstfor subject andj, (i # j ),
respectively.

MCCA was calculated for raw sensor level data, seply for each frequency
band studied. We used 10-fold cross-validationnfimdel training and testing. More
specifically, the 15-min data were divided to 10tpaand the model was trained 10
times so that a different non-overlapping segmead used as a test data and the rest
as training data. The estimated MCCA coefficienesenapplied to each test set, and
only the concatenated test data were used in fuathaysis.

For visualization, the weigh®™ (D x D) were transformed back to the 204
dimensions,W'™ (204 x 204), corresponding to the original MEG gradiometer
channels. To enable physiological interpretationtied spatial-filter weights, the
spatially filtered sensor-level maps need to béhrconverted to activation patterns
(forward models) (Haufe et al. 2014). This procedtefers to finding the activation

patternA = £,W'™ZJ', whereZ,andX, are the covariance matrices of the dita

and projection¥™.
2.5 Correlation analysis

We calculated Pearson's correlation coefficientsvéen the fMRI and MEG
signal envelopes at each cortical voxel, separdtelgach MEG frequency band (see
Section 2.4.1). We transformed the cortical fMRke&bseries to the same ‘fsaverage'
coordinate system as MEG, and picked those vowed geries that corresponded the

locations of MEG sources (altogether 5124 locajions



Intrasubject correlation with subject-wise MEG envelopes or fiMiata was
computed as a correlation between the time courséseen the first and second
viewings of the 15-min-long movie at each sourceaxel location.

Intersubject correlation was calculated separately for MEG @pes and fMRI
signals, separately for the first and second rufe. first calculated Pearson’s
correlation coefficient for each subject pair [) between the 8 subjects (28
combinations). For the second run, one subjecttbalde excluded from both the
MEG and fMRI analyses, resulting in 21 combinatioNsxt, we applied Fishers
transformation

Zjj Zn(l—rij) atanh(r;;)

for each correlation coefficient before computihg mean

wherek is the number of subjects. Statistically signifitzvalues were transformed
back to correlation coefficients by Fisher's inegr$ransformationr = tanh(2).
MEG—fMRI correlation was computed between MEG eopek and fMRI
time-courses at corresponding cortical locatiorepasately for the first and the
second run. Before calculating the correlation, MG envelope time-courses were
convolved with a standard double-gamma hemodynaesigonse functionsm hrf
in SPM8), and fMRI voxel time series were upsampledl0 Hz to match the
sampling rate of the MEG envelopes.
For all the voxel-wise analyses, we used nonpangretcular bootstrapping to
find statistically significant correlation coeffemts (Chen et al., 2016). To

approximate the null distribution, we circularlyifséd with random lags the time



series 10 000 times at each voxel and calculaeddirelation coefficients for these
shifted time series. Theg-values for the correlation coefficients were esti@d from

the null distribution. Intrasubject and MEG—fMRircelation coefficients were tested
separately for each subject. For all voxel-wisewations, the significance threshold

wasp < 0.05, with FDR correction for multiple companso

2.6 Linear modeling between MEG and fMRI

As an alternative approach to assess MEG—MRI anitigs, we first applied
spatial-filtering based on MCCA to find consist®EG time courses across subjects,
and then used the envelopes of the resulting MC&wWuical variates as regressors in
a general linear model (GLM) to identify similar Rlltime courses.

For each frequency band, we chose the first MCCAogal variate,
corresponding to the strongest intersubject cdrogla Next, we averaged these
canonical variates across subjects and computedrtimitude envelope (providing
information about slow fluctuations of the highesguency rhythms) for this
averaged time course by Hilbert transform. Theltegusignal was further low-pass
filtered at 4 Hz, convolved with the canonical helyilwamic response function and
resampled to match the sampling rate of fMRI (TR318).

The GLM analysis was performed using SPM8 packayell¢ome Trust

Centre forNeuroimaging; http://www.fil.ion.ucl.ac.u) with the default pameters. Six

head-movement signals from the fMRI measurement® wecluded in the design
matrix of the GLM-model. The threshold for statsli significance wap < 0.05,

with FDR-correction.



3 Results

3.1 Intrasubject correlations

Fig. 1 shows the spatial distribution of statidticasignificant voxel-wise
intrasubject correlations between the two runsofoe representative subject (subject
6), computed from both the fMRI signals (Fig. 1p t@w; for the corresponding
results of all subjects, see Supplementary Figdjea8d from MEG signal envelopes
divided in 7 frequency bands between 0.03 and 10(HF#). 1, 7 bottomows; for the
corresponding results of all subjects, see Suppitang Figures S2—-S8).

For fMRI, the maximum intrasubject correlation daxénts ranged across
subjects from 0.49 to 0.66 (mediar 0.59), with the most prominent spatial clusters
of high correlation coefficients in occipital areasd smaller clusters in posterior
parietal and frontal areas.

MEG intrasubject correlations were also strongestdcipital areas, especially
in occipital pole, but they were much weaker (media 0.05-0.14 across frequency
bands) and their variation across subjects larpan tfor fMRI. Generally, the
correlation coefficients were lower at higher fregaies, and significant intrasubject

correlations were found in most subjects only indsal-4 and 4-8 Hz.

3.2 Intersubject correlations

Fig. 2 (top) shows statistically significant avezagoxel-wise intersubject
correlations of fMRI signals between the first rifase Supplementary Fig. S9 top for
the results of the second runs). The highest aedrdagrsubject correlation coefficient

for fMRI wasr = 0.37 for the first, and = 0.33 for the second run. The highest



correlation coefficients were found widely in oat# regions, together with weaker
correlations in restricted frontal and posteriorgtal regions.

Fig. 2 (bottom) shows the statistically significaatverage intersubject
correlations of MEG signal envelopes in each fregyeband for the first run (see
Supplementary Fig. S9, bottom, for the resultstfigr second run), computed at the
same locations in the cortex as for fMRI. The ageratersubject correlations were
lower for MEG (correlation coefficient < 0.05) than for fMRI signals (correlation
coefficientr < 0.37). In general, the correlation coefficientsr@vemaller the higher
the frequency band. The strongest correlations roeduin occipital regions,
approximately in the same areas as the strongesiiations in fMRI.

[Figs. 1 and 2 approximately here.]

3.3 MEG-fMRI correlations

Direct voxel-wise MEG—fMRI comparison at the samertical locations
revealed only a few statistically significant céateon coefficients in single subjects
for each frequency band, and they were scattenes®@the cortex. Thus, no reliable
correlations were found between fMRI and MEG sig@ralelopes at the group level.

Supplementary Figure S10 shows an example of ab&#b and fMRI time-
courses at voxel where the intersubject correlatmm MEG envelopes was the

strongest.

3.4 MCCA intersubject correlations

The maximum intersubject correlation between thmeetiseries of the first

MCCA canonical variates was 0.25 in the < 1-Hz béod all bands, as well as for



the train and test data results, see Fig. 3). Bomparison, the voxel-wise intersubject
correlation of MEG envelopes was only 0.03 in thme band (see Fig. 2).

Fig. 4B shows an example of raw source level MEghas (in arbitrary units)
in the 1-4-Hz band at the location of the highegtrsubject correlation coefficient
(0.005 for raw source level signal, and 0.02 foredopes (see Fig.2) (FigA4 blue
arrow in the left panel). Fig. 4D illustrates thgrals in the same band after MCCA
application. The figure demonstrates that the ¢ggage more consistent across the
subjects and more structured after MCCA applicatiig. 4C shows the activation
map of the spatial-filter of the first MCCA canoalcvariates in 1-4 Hz band. In
practice, large values in the activation map indidaain areas that contribute most to
a certain MCCA canonical variate. The activationpméor all the frequency bands
are shown in Supplementary Fig. S11.

[Figs. 3 and 4 approximately here.]

3.5 GLM analysis between MEG and fMRI

Finally, the GLM analysis revealed the corticaldtbons where envelopes of
MEG MCCA canonical variates were associated withfMRI data (Fig. 5). The best
fit between the fMRI voxel time series and the MB&i#ved regressor occurred in
each frequency band (except 13—-23 Hz) in occipédglons, excluding the occipital
pole. Associations between MEG and fMRI were atsanfl in frontal and temporal
regions at frequencies below 8 Hz and at 55-100 Hz.

[Fig. 5 approximately here.]

Fig. 6 (top) shows the spatial distribution of thighest beta-values from the

GLM analysis for frequency band 1-4 Hz, demonstgathat the location of the best

GLM fit between MEG envelopes and fMRI (in occipitagions except the occipital



pole) differs from the location of the strongest GlEntersubject correlations (in
occipital pole; see Fig. 2 bottom) of the same frequency band.&{@ottom) shows
the fMRI and MEG regressor time courses for the esdrequency band at this
location.

[Fig. 6 approximately here.]

4 Discussion

We conducted a systematic intra- and intersubjeaefation analysis of fMRI
and MEG signals collected from participants who everewing the same 15-min
movie altogether 4 times: first 2 times during fM$&tlanning and then 2 times during
MEG recording. The conventional way of correlatibgin signals at each voxel
uncovered statistically significant intra- and mstebject correlations between the
brain-signal time series when fMRI and MEG data evemalyzed separately.
However, this voxel-wise correlation approach did reveal associations between the
two imaging methods. Both intra- and intersubjemtel-wise correlation coefficients
were considerably lower for MEG than fMRI. Howevtre intra- and intersubject
correlations of the MCCA-derived canonical varigdmsMEG were much stronger in
bands below 8 Hz. Using these variates as reggessomodel the fMRI signals
revealed also similarities between MEG and fMRIetigourses mostly in occipital

regions, with smaller clusters in temporal and fabbrain areas.

4.1 Univariate correlations

Both the relatively strong fMRintrasubject correlations and the clearly weaker
fMRI intersubject correlations are in line with previous fMBiudies on movie

viewing (Hasson et al2004; Golland et al.2007; Jaaskeléinen et ak008; Kauppi et



al., 2010; Nummenmaa et al2012; Andric et al., 2016). The statistically significan
intrasubject and intersubject correlations werentbmainly in occipital brain regions.
However, the lack of statistically significant oglations in temporal areas can be
explained by the absence of any soundtrack in dar. fThe slightly weaker
intersubject correlations during the second tham filst viewing can be due to
stimulus repetition as has been observed previqiEds: Dmochowski et al2012;
fMRI: Lahnakoski et al., 2014), but opposite efféets also been reported (EEG:
Chang et al., 2015). It is also noteworthy to réathat the subjects had already seen
the movie twice (during fMRI recording) before thest MEG run, which may have
further decreased the MEG intersubject correlatittmvever, given the long time
between fMRI and MEG measurements, as well as éng somplex nature of the
stimulus and the lack of dramatic narrative contentis unlikely that stimulus
repetition effects would have significantly affette analysis results.

But why were the univariate inter- and intrasubmtrelations of MEG signals
so modest? Technical reasons include spatial inacies that cannot be avoided in
the conversion of the MEG sensor-space signalsNd& Mource estimates. Moreover,
correlations are sensitive to subtle temporal ckfiees in the time courses. The
decreasing intra- and intersubject correlation faciehts with increasing frequency in
MEG were most likely due to generally smaller sigamplitudes and larger phase
differences at higher frequencies. Thus, one lileggtributing factor to the weaker
intra- and intersubject correlations in MEG thanRiMsignals is the more complex
nature of the MEG signal that comprises a multitofl@ifferent frequencies, each
with their own reactivity patters. In addition, la@&se of the high temporal precision
of MEG, the brain activity between subjects woulded to be very accurately

synchronized to yield correlations up to those sedNRI, where the brain responses



are temporally smoothed. Furthermore, the frequencyents of MEG brain rhythms
likely vary considerably across individuals whialrther decreases the intersubject
correlation values. Of course, alternative MEG pssing streams, e.g. a different
source estimation technique, could yield highervamate intra- or intersubject
correlation values. However, the minimum-norm eation is widely used, and it

needs minimal prior information of the sources.

4.2 Multivariate modeling

4.2.1 Advantages of MICCA

Our MCCA-based spatial-filtering approach was alite improve the
consistency in MEG signals with respect to voxedevilSC analysis. A major
advantage of the MCCA approach is that it attemptsnaximize correlations of
sensor-space signals in a data-driven manner, withssumptions about anatomical
correspondence. Therefore, differences in head, zentation, or functional
anatomy are not critical. Moreover, MCCA providesanvenient way for sensor-

level analysis.

4.2.2 GLM modeling

The envelopes of MEG canonical variates associaidd fluctuations in the
fMRI voxel time series in the occipital (excludiragcipital pole), temporal and
frontal brain regions. These regions do not entiozerlap with the areas showing the
strongest intersubject correlations in the voxedevianalysis, especially in MEG

where the strongest correlations were found inpiadi pole. This finding suggests



that the regions of the most consistent MEG agtimtght differ from the regions of

most correlated fMRI activity across the subjects.

4.3 Neurophysiological differences between MEG and fMRI

Although we found statistically significant intrand intersubject correlations
approximately at the same brain areas separatelyMBI and MEG, only a few
scattered voxel-wise MEG-fMRI correlations were rfduin single subjects.
Discrepancies in the locations and temporal dynarbetween the MEG and fMRI
signals were expected because of the differenctdeeiphysiological origins of these
signals as well as the inter-regional variatiomefirovascular coupling.

Although neural processes with both kinds of terapaiynamics are usually
triggered by a single stimulus event, these prasessay take place in different
cortical locations, which could explain the spatdferences when correlating MEG
and fMRI results. Notably, the voxel-wise MEG—fM&talysis was based strongly on
the assumption of anatomical correspondence betweerorigins of the signals,
which leads to weak correlations if the MEG and fiMiR)nals originate from even
slightly different locations. Our analysis is relatto functional alignment, used e.g. in
Haxby et al. (2011) and Yamada et al. (2015).

Even with accurate spatial alignment, combining itifermation from MEG
and fMRI recordings is not straightforward. MEG r&gj is rich in information
content, with different frequency bands reflectdifferent brain processes or reacting
to different types of stimuli (for a review, seg.e-dari and Puce, 2017). Single stimuli
can elicit in MEG evoked (or event-related) resgsngn addition to oscillatory
activity. In addition, short-lasting activation deted by MEG may go undetected in

fMRI (e.g. Furey et al., 2006). Furthermore, thenbdynamic response can vary



between individuals and between brain areas (Harkdhwet al., 2004), and thus the
canonical HRF used here in fMRI analysis might ln@toptimal to describe the brain
response to a single stimulus.

Previous studies using invasive recordings haveodstrated that the BOLD
signal correlates positively with the signal powar high-frequency local field
potentials (LFPs) measured from both auditory co(dukamel et al.2005; Nir et
al., 2007) and visual cortex (Privman et al., 208ding movie viewing. In addition,
the signal power of low-frequency LFPs correlategyatively with BOLD signal
(Mukamel et al., 2005). These studies have dematestr that very local
electrophysiological activity may couple to hemoalync activity.

In contrast to our current approach, the relatigndbetween BOLD and
MEG/EEG signals has previously been studied ineraivell controlled experimental
settings, except in resting-state studies in matstaimans (e.g. Bruyrtdaylett et al.,
2013; Tewarie et al., 2014). Correlations have been datnated between BOLD
signals and task-induced changes in the oscillapmyer of different frequency
bands of the MEG signal, as well as between BOL&poases and MEG evoked
responses (for a review, see e.g. Hall et al., R0«¢erall, MEG and fMRI signals
display a relatively good spatial agreement in lewel sensory projection areas (e.g.
Moradi et al.2003; Brookes et al.2005; Nangini et al.2009; Stevenson et al., 2011)
whereas the MEG and fMRI spatial patterns oftefedifiuring cognitive tasks (e.g.
more than 15 mm in various regions as shown bedtitpm et al.2009; more than 10
mm outside occipitakortex; Vartiainen et al.,, 2011). Moreover, the assocmatio
between BOLD and MEG signals can be region- angufacy-dependent (Kujala et

al., 2014) as well as task-related (Furey et @620



Earlier comparisons between MEG/EEG and fMRI dunmgyie viewing have
demonstrated an association between source-levél Eivity (0.5-45 Hz) and
BOLD signal with a ~5-s delay that was calculatetyon the primary visual cortex
(V1) by using a 2-min movie clip presented 25 tinj@hittingstall et al., 2010). In a
study using of 30-s video clips of Superbowl adgerhents as stimuli, the level of
intersubject correlation of EEG signals covariethvthe amount of BOLD activity in
temporal regions, precuneus and medial prefromtdéx (Dmochowski et al., 2014).
Furthermore, 5-min movie clips were used to compehnanges of functional
connectivity as reflected in MEG and fMRI signalsridg movie viewing versus
resting state(Betti et al., 2013). The current study extendsséh findings by

providing a systematic comparison of unaveragethktbMEG and fMRI signals.

4.4 Relationship between brain activity and movie content

Viewing of the same film can be assumed to elighly similar sensory and
relatively similar cognitive responses across driahd participants, as the events in
the film unfold in a similar manner at each viewin@gne may thus expect the
similarity of the responses be high in the extanand less similar in the intrinsic
brain networks (Golland et al., 2007, 2008). Acoogty, in our analysis, the occipital
brain regions showing replicable intersubject MEGd &MRI correlations were
consistent with the extrinsic brain network refiegtstimulus-driven brain activity.
Although we did not study the relationship betwdka movie content and brain
signals, finding—as the first step—consistent feggun the complex brain data using

MCCA provides a good starting point for further byses.



5 Conclusions

Our results show that the similarities between M&t fMRI responses to a
continuous naturalistic stimulus cannot be charesstéd robustly with the commonly
used univariate voxel-wise correlation approach,enehtemporally correlated
activations are assumed to occur at the same atatolmcations. However, using a
multivariate MCCA-based spatial-filtering approagipnificantly increased the MEG
intersubject correlations. Furthermore, combinirtge tenvelopes of the MEG
canonical variates with fMRI signals in GLM indiedtsimilarities in time courses in

occipital, temporal and frontal brain regions.
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8 Figure legends



Figure 1. Intrasubject correlations between two runs.Top: fMRI results for
one representative subject. Bottom: Intrasubjectetations of MEG envelopes for
the same subject in all frequency bands. Only stieailly significant correlation
coefficients are shown. The maximum values of datien coefficients for each

frequency band are shown on the right side of ithed.

Figure 2. Intersubject correlations for fMRI and MEG for the first run.
Top: fMRI intersubject correlations. Bottom: Intebgect correlations of MEG
envelopes for all frequency bands. Only statidicasignificant correlation
coefficients are shown. The maximum values of datien coefficients for each

frequency band are shown on the right side of ithed.

Figure 3. MCCA train and test data. Pair-wise calculated intersubject
correlations of MCCA canonical variates in frequetands tested. Distributions of
correlation coefficients are layed over a box conged SD, and white stripes shows

the mean of the data. Gray boxes show train dathbkck boxed test data.

Figure 4. Comparison of MEG voxel-wise time serieand MCCA canonical
variates. (A) Location of highest intersubject correlatioretficient in the band 1-4
Hz (blue arrow). (B) Example of MEG signals (blaokean with red, arbitrary units)
from all 8 subjects in the same band (first rurfpbee MCCA at the location of highest
intersubject correlation coefficient. (C) Activationap (arbitrary units) from spatial
filtering with MCCA in the band 1-4 Hz. (D) Signafeom all the subjects after

applying MCCA (black, mean with magenta, arbitramyts) in the same band.



Figure 5. GLM fit between MEG and fMRI. Results from GLM fit between
the envelopes of MEG MCCA canonical variates andRfMdata in different

frequency bands (beta values, arbitrary units).

Figure 6. Time courses of the most similar MEG andMRI signals. Top:
Location of largest beta-value from SPM GLM anay@ilue arrow). Bottom: MEG
regressor in the band 1-4 Hz (envelopes of firstMACcanonical variate, red,
arbitrary units) and fMRI signal (black, arbitrannits) time courses at the same

location.

Supplementary Figure S1. fMRI intrasubject correlatons. Intrasubject
correlation for fMRI between the first and the setoun for all the subjects. Only

statistically significant correlation coefficierdse shown.

Supplementary Figure S2. MEG intrasubject correlatons in band 0.03-1
Hz. Intrasubject correlations for MEG envelopes betwienfirst and the second run
for all the subjects in frequency band 0.03-1 HalyOstatistically significant

correlation coefficients are shown.

Supplementary Figure S3. MEG intrasubject correlatons in band 1-4 Hz.
Intrasubject correlations for MEG envelopes betwienfirst and the second run for
all the subjects in frequency band 1-4 Hz. Onlyidteally significant correlation

coefficients are shown.



Supplementary Figure S4. MEG intrasubject correlatons in band 4-8 Hz.
Intrasubject correlations for MEG envelopes betwienfirst and the second run for
all the subjects in frequency band 4-8 Hz. Onlyidteally significant correlation

coefficients are shown.

Supplementary Figure S5. MEG intrasubject correlatons in band 8-11 Hz.
Intrasubject correlations for MEG envelopes betwtenfirst and the second run for
all the subjects in frequency band 8-11 Hz. Ongyisically significant correlation

coefficients are shown.

Supplementary Figure S6. MEG intrasubject correlatons in band 13-23
Hz. Intrasubject correlations for MEG envelopes betwibenfirst and the second run
for all the subjects in frequency band 13-23 Hz.lyOstatistically significant

correlation coefficients are shown.

Supplementary Figure S7. MEG intrasubject correlatons in band 25-45
Hz. Intrasubject correlations for MEG envelopes betwibenfirst and the second run
for all the subjects in frequency band 25-45 Hz.lyOstatistically significant

correlation coefficients are shown.

Supplementary Figure S8. MEG intrasubject correlatons in band 55-100
Hz. Intrasubject correlations for MEG envelopes betwibenfirst and the second run
for all the subjects in frequency band 55-100 HalyGstatistically significant

correlation coefficients are shown.



Supplementary Figure S9. Intersubject correlationsfor fMRI and MEG
for the second run.Top: fMRI intersubject correlations. Bottom: MEGensubject
correlations for all frequency bands. Only stataty significant correlation
coefficients are shown. The maximum values of dati@n coefficients for each

frequency band are shown on the right side ofitheé.

Supplementary Figure S10. Comparison of MEG and fMRvoxel-wise time
series. Top: MEG signal envelopes convolved with HRF (blaokean with red,
arbitrary units) from all 8 subjects in the bandt Hz (first run) in the voxel (right)
that showed the highest MEG intersubject corratatoefficient (0.02). Middle:
fMRI signal (black, mean with red, arbitrary unifs)m all 8 subjects (first run) at the
same location. Intersubject correlation of the algns 0.14. Bottom: Averages of the
MEG (black) and fMRI (red) signals in top and mielgilots at the same locations.
Correlation between the signals is 0.11. The sgyaed scaled to the same units (zero

mean, variance 1).

Supplementary Figure S11. Activation maps from spaal filtering. The
activation maps from the MCCA spatial filters foach frequency band (arbitrary

units and signs).
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