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Abstract		

	
Movie-viewing allows human perception and cognition to be studied in 

complex, real-life-like situations in a brain-imaging laboratory. Previous studies with 

functional magnetic resonance imaging (fMRI) and with magneto- and 

electroencephalography (MEG/EEG) have demonstrated consistent temporal 

dynamics of brain activity across movie viewers. However, little is known about the 

similarities and differences of fMRI and MEG/EEG dynamics during such naturalistic 

situations. 

We thus compared MEG and fMRI responses to the same 15-min black-and-

white movie in the same eight subjects who watched the movie twice during both 

MEG and fMRI recordings. We analyzed intra- and intersubject voxel-wise 

correlations within each imaging modality as well as the correlation of the MEG 

envelopes and fMRI signals. The fMRI signals showed voxel-wise within- and 

between-subjects correlations up to r = 0.66 and r = 0.37, respectively, whereas these 

correlations were clearly weaker for the envelopes of band-pass filtered (7 frequency 

bands below 100 Hz) MEG signals (within-subjects correlation r < 0.14 and between-

subjects r < 0.05). Direct MEG–fMRI voxel-wise correlations were unreliable. 

Notably, applying a spatial-filtering approach to the MEG data uncovered consistent 

canonical variates that showed considerably stronger (up to r = 0.25) between-

subjects correlations than the univariate voxel-wise analysis. Furthermore, the 

envelopes of the time courses of these variates below 11 Hz showed association with 

fMRI signals in a general linear model. Similarities between envelopes of MEG 

canonical variates and fMRI voxel time-courses were seen mostly in occipital, but 

also in temporal and frontal brain regions, whereas the strongest intra- and 
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intersubject correlations for MEG and fMRI separately were strongest only in the 

occipital areas. 

In contrast to the conventional univariate analysis, the spatial-filtering approach 

was able to uncover associations between the MEG envelopes and fMRI time courses, 

shedding light on the similarities of hemodynamic and electromagnetic brain activity 

during movie-viewing.  

	

Keywords	

magnetoencephalography, functional magnetic resonance imaging, naturalistic 

stimulation, movie, intersubject correlation, canonical correlation analysis 

 

 

1	Introduction		
 

A practical and ecologically valid approach to probe the neural underpinnings of 

perception and social cognition is to use movies as stimuli in neuroimaging 

experiments. Mimicking everyday situations around us, movies can provoke a wide 

spectrum of sensory, social, and emotional percepts that may be difficult to elicit 

using the highly controlled repetitive stimuli typically employed in such experiments. 

Despite the apparent complexity and unrestrained nature of movies, consistent and 

synchronized brain activity patterns across movie viewers have been demonstrated 

with functional magnetic resonance imaging (fMRI; e.g. Hasson et al., 2004, Bartels 

and Zeki, 2004a; Bartels and Zeki, 2004b; Hasson et al., 2008; Jääskeläinen et al., 

2008; Lahnakoski et al., 2012; Nummenmaa et al., 2012; Pamilo et al., 2012; 

Kauttonen et al., 2015), and more recently with magnetoencephalography (MEG; 
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Betti et al., 2013; Lankinen et al., 2014; Chang et al., 2015; Lankinen et al., 2016) and 

electroencephalography (EEG; Whittingstall et al., 2010; Dmochowski et al., 2012; 

Dmochowski et al.,  2014; Bridwell et al., 2015; Chang et al., 2015; Ki et al., 2016; 

Cohen et al., 2016).  

The fMRI and MEG signals often behave differently, reflecting the different 

physiological phenomena they measure (see for example Hari 2007; Hari and Kujala, 

2009). BOLD (blood oxygenation level-dependent) signal in fMRI relates to 

hemodynamics and is sensitive to long-lasting activations in the range of seconds 

(Logothetis et al., 2001). MEG records directly the electromagnetic fields associated 

with synchronous activity of neuronal populations, and it picks up transient and 

sustained evoked activity as well as brain rhythms with millisecond-range temporal 

resolution (Hari & Puce, 2017). Moreover, both the onset and offset of a prolonged 

stimulus can elicit prominent transient responses in MEG, whereas BOLD builds up 

and fades away more sluggishly. It has been recently suggested that fMRI would 

receive the main contribution from neuronal ensembles connected via slow and thin 

fibres whereas MEG and EEG emphasize activity mediated by the fast-conducting 

pathways (Hari and Parkkonen, 2015).  

The majority of previous comparisons between hemodynamic (fMRI) and 

electromagnetic (MEG or EEG) signals have used highly-controlled experimental 

designs with simplified and repeated stimuli (for a review, see e.g. Hall et al., 2014). 

Evidently, such settings fail to approximate neuronal activity occurring during real-

world experiences. Instead, movies as continuous sequences of events unfolding over 

time may engage brain regions that show little responsivity in conventional 

experimental settings (e.g. Hasson et al., 2010).  
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In brain-imaging studies utilizing naturalistic stimuli, the analysis is often based 

on intersubject correlation (Hasson et al., 2004) that has been used for assessing the 

reliability and consistency of voxel-wise fMRI time courses during movie viewing 

(see e.g. Jääskeläinen et al., 2008; Golland et al., 2010; Kauppi et al., 2010; 

Nummenmaa et al., 2012; Lahnakoski et al., 2012; Kauppi et al., 2017). Compared 

with the strong across-viewers correlations in BOLD signals (up to 0.78 in Kauppi et 

al., 2010), the correspondingly calculated intersubject correlations of MEG or EEG 

signals are usually weaker (typically less than 0.1) both at sensor (Bridwell et al., 

2015) and source level (Suppanen, E., 2014; Chang et al., 2015). However, 

calculating intersubject correlations in short sliding time windows have resulted in 

stronger correlation also for MEG and EEG signals (up to 0.5 within 200-ms sliding 

windows in Chang et al. (2015) and 0.3 within 5-s sliding windows in Dmochowski et 

al. (2012)). Here we assess intra- and intersubject correlations of MEG signals for a 

dense source space for the entire duration of a movie, calculated in the same manner 

as for fMRI.  

An obvious challenge in the analysis of EEG or MEG data is the low signal-to-

noise ratio (SNR), especially for unaveraged, single-trial traces recorded during 

naturalistic experiments (Dmochowski et al., 2012; Suppanen, E., 2014; Bridwell et 

al., 2015; Chang et al., 2015). With conventional well-controlled stimuli, the brain 

signals’ SNR is typically improved by averaging the responses to repeated stimuli, 

which, however, is not practical in lengthy naturalistic experimental settings, such as 

movie-viewing.  

Here we examine the feasibility of voxel-wise intra- and intersubject correlation 

analysis in MEG, and we extend our scrutiny to correlations between multivariate 

datasets. Previously, we have demonstrated the effectiveness of data-driven learning 
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of spatial-filter coefficients by multi-set canonical correlation analysis (MCCA; 

Kettenring, 1970; Li et al., 2009) to uncover signals that maximize intersubject 

correlation in MEG data between subjects (Lankinen et al., 2014). Notably, 

maximizing intersubject correlation also improves SNR of the signals. Previously, 

CCA and its derivatives have been used to maximize intersubject correlation in 

response to shorter videos or shorter movie clips in EEG recordings (Dmochowski et 

al., 2012; Dmowchowski et al., 2014; Ki el al., 2016; Cohen et al., 2016) that provide 

coarser spatial resolution than does MEG. 

We conducted a systematic analysis between fMRI and MEG signals collected 

from the same subjects who were watching a 15-min movie. We used a silent black-

and-white movie ”At Land” by Maya Deren as a naturalistic stimulus to study brain 

activity related to visual perception of real-world scenes.  

Our analysis started from the assessment of (i) intra- and (ii) intersubject voxel-

wise correlations separately for fMRI and MEG, (iii) extending to MEG–fMRI 

comparisons. Then, (iv) we proceeded from univariate to multivariate analysis and 

applied spatial-filtering with MCCA. Finally, (v) the resulting MEG canonical variates 

were associated with the fMRI voxel time series by a general linear model (GLM).  

We demonstrate the usefulness of the proposed multivariate approach in relating 

MEG and fMRI signals in naturalistic experimental settings, in comparison to the 

more commonly used voxel-wise approach. Our findings show similarities in 

hemodynamic and electromagnetic brain activity in occipital, temporal and frontal 

brain regions during movie-viewing.  
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2	Materials	and	methods				
			

2.1	Subjects				

Eight healthy adults (4 females, 4 males; mean age 29 years, range 23–51 years) 

participated in the study. All subjects had normal or corrected-to-normal vision. Both 

the MEG and fMRI recordings had a prior approval by the ethics committee of 

Helsinki and Uusimaa Hospital district. All participants gave written informed 

consent prior to the study.   

 

2.2	Stimulation						

The subjects watched a 15-min silent black-and-white film “At Land” by Maya 

Deren (1944) twice during fMRI recordings and twice during MEG recordings. For 

each subject, the fMRI recording was performed first, and the MEG recording about 

one and a half year later. The film contained rich visual information of human bodily 

activities, especially the bodily behavior of the main character in her natural 

environment. Importantly, the film was originally directed as a silent film. 

Furthermore, since the film is not overloaded with dramatic narrative content, it suited 

well for our study interests as our focus was in brain activity related to visual 

perception and not on narrative comprehension.  

In fMRI recordings, the movie was shown using Presentation software (version 

0.81, http://www.neurobehavioralsystems.com) and projector Vista X3 REV Q 

(Christie Digital Systems, Canada, Inc.). The movie was projected to a semi-

transparent back-projection screen that the subjects viewed via a mirror (visual angle 

36° horizontal, 29° vertical). In MEG recordings, the screen was located 130 cm in 
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front of the subject (visual angle 22° horizontal, 17° vertical) and Experiment Builder 

software (SR Research, http://www.sr-research.com/eb. html) was used for playing 

the movie. The frame rate of the movie was 24 frames/s. For accurate temporal 

alignment between the movie playback and MEG recording, the stimulus presentation 

software was programmed to provide trigger signals to the MEG acquisition system at 

the beginning and end of the movie. The temporal jitter across subjects was within 

two sample periods (2 ms).    

 

2.3	MRI	and	fMRI	recordings			

T1-weighted anatomical MRIs and the fMRI data were acquired using a 3.0 T 

General Electric Signa Scanner (General Electric, Milwaukee, WI, USA) at the 

Advanced Magnetic Imaging Centre of Aalto University.  Structural images were 

scanned with 3-D T1 spoiled-gradient imaging, matrix 256 × 256, TR 10 ms, TE 3 s, 

flip angle 15°, preparation time 300 ms, FOV 25.6 cm, slice thickness 1 mm, voxel 

size 1 × 1 × 1 mm3, and number of excitations 1. The functional images were acquired 

using a gradient echo-planar-imaging with following parameters: TR 2.015 s, TE 32 

ms, flip angle 75°, 34 oblique axial slices, slice thickness 4 mm, matrix 64 × 64, voxel 

size 3.4 × 3.4 × 4 mm3, field of view (FOV) 22 cm. 

Four dummy scans were removed from the beginning of the recordings. 

Standard preprocessing steps—realignment, slice-time correction, coregistration of 

functional images to anatomical MRI, normalization and smoothing with an 8-mm 

full-width-at-half-maximum Gaussian kernel—were applied to the functional images 

with SPM8 toolbox (http://www.fil.ion.ucl.ac.uk).   
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2.4	MEG	recordings				

MEG was recorded with a 306-channel neuromagnetometer (Elekta Neuromag, 

Elekta Oy, Helsinki, Finland); the device houses 102 sensor units, each with two 

orthogonal planar gradiometers and one magnetometer. The acquisition passband was 

0.03–330 Hz and the sampling rate 1000 Hz. Vertical and horizontal electro-

oculograms (EOGs) were recorded at the same time. An additional 2-min recording 

with no subject present was performed on the same day for noise-covariance 

estimation.  

 

2.4.1	MEG	preprocessing			

MEG data were preprocessed to suppress external magnetic interference by 

signal-space separation (SSS) method (Taulu and Kajola, 2005) implemented in 

Maxfilter software version 2.2 (Elekta Oy, Helsinki, Finland). Default parameter 

settings of the software were used and the data were converted into the standard head 

position.    

The data were then further filtered and downsampled. Filtering was performed 

with a zero-phase FIR filter into 7 frequency bands:  < 1, 1–4, 4–8, 8–11, 13–23, 25–

45, and 55–100 Hz (with transition bands of 0.1 Hz for bands below 1 Hz, 0.5 Hz 

below 23 Hz, and 5 Hz below 100 Hz). After downsampling, the sampling frequencies 

were 50 Hz for the band below 1 Hz, 100 Hz for the band 1–11 Hz, 200 Hz for the 

band 13–45 Hz and 250 Hz for the band 55–100 Hz.  

Eye-movement and eye-blink artifacts were suppressed by multiple linear 

regression applied to the MEG data by using the EOG signals as regressors in 

consecutive non-overlapping 60-s time windows.   For validation, correlation between 
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the EOG signals and the MEG channels after EOG suppression was calculated in 

consequent non-overlapping 20-s windows separately for both EOG channels, and t-

test was applied to find out if the mean of the correlations deviated from zero. For 

Bonferroni correction, the significance level was p < 0.05/���������. 
 

2.4.2	MEG	source	analysis	

We extracted the time series of cortical MEG sources using the minimum-norm 

estimation (MNE) method (Hämäläinen and Ilmoniemi, 1994) implemented in the 

MNE software package (Gramfort et al., 2014). For each subject, the T1-weighted 

magnetic resonance image of the brain was segmented and the cortical surface was 

reconstructed using FreeSurfer software (Dale et al., 1999; Fischl et al., 1999a, 1999b, 

Segonne et al., 2004) with the parameters described in default settings in the 

recommended reconstruction workflow in FreeSurferWiki 

http://surfer.nmr.mgh.harvard.edu/fswiki/RecommendedReconstruction.  

A single-compartment boundary element model (BEM) was applied and the 

MNEs were calculated using dipoles oriented normal to the cortical surface at discrete 

locations separated approximately by 6 mm (using icosahedron subdivision with 

parameter ‘4’) on the cortical surface, resulting in 5124 source signals in total. All 306 

MEG channels were used in computing the MNEs.  

Subject-specific source spaces were morphed to a common template ('fsaverage' 

in the FreeSurfer software package) for intersubject analysis. The resulting time 

courses of the MEG sources were further Hilbert-transformed to obtain the envelopes 

for each frequency band, low-pass filtered at 4 Hz and downsampled to 10 Hz to 

minimize computational load. For the MEG–fMRI comparison, the MEG envelopes 

were further convolved with the canonical hemodynamic response function (HRF; 
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SPM8 package; Wellcome Trust Centre for Neuroimaging; 

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). To avoid spurious boundary effects 

in filtering, 30 s of data were removed from both ends of the signals before 

calculating the correlations between the source-point time series. For simplicity, we 

will hereafter use the term “voxel-wise” also to refer to MEG time series at the source 

points.  

 

2.4.3	MEG	spatial-filtering	with	MCCA	

Recently, we have proposed a spatial-filtering approach based on multi-set 

canonical correlation analysis (MCCA; Kettenring, 1971; Li et al., 2009) to uncover 

consistent brain signals across subjects (Lankinen et al., 2014).  

Spatial-filtering refers to projection 	
 = �


 , where the output 	
  is a 

weighted sum of the multidimensional signal 

  (� × �  matrix, where D is the 

dimension of the signals, and t the number of time points). Here, the supercript m 

refers to the dataset of one subject (m = 1 … M, the number of subjects). The resulting 

projections in rows of 	
  (� × � matrix), i.e. the canonical variates, are mutually 

uncorrelated but maximally correlated between the subjects. Here, spatial filter 

weights �
  in MCCA were calculated by using MAXVAR cost function. In our 

analysis, the number of resulting projections is D = 68, corresponding to the 

remaining degrees of freedom (rank) of the data matrix after the SSS interference 

suppression method. We used PCA to reduce the dimensionality of the sensor-level 

data to this number. We utilized both runs in the MCCA training, by averaging the 

data matrices 

 across the first and second run in calculating the correlation matrix 

in the MCCA optimization process, as in our previous study (Lankinen et al., 2014). 

More specifically, the blocks in the correlation matrix � in MCCA algorithm were 
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computed as  
1−

=
t

T
ji

ij N

XX
R , where tN is the number of samples in one trial, and iX , 

jX  are the average over the subject-wise whitened trials for subject i and j, ( ji ≠ ), 

respectively.    

MCCA was calculated for raw sensor level data, separately for each frequency 

band studied. We used 10-fold cross-validation for model training and testing. More 

specifically, the 15-min data were divided to 10 parts, and the model was trained 10 

times so that a different non-overlapping segment was used as a test data and the rest 

as training data. The estimated MCCA coefficients were applied to each test set, and 

only the concatenated test data were used in further analysis.  

For visualization, the weights �
 (� × �) were transformed back to the 204 

dimensions, ��
	(204	 × 204), corresponding to the original MEG gradiometer 

channels. To enable physiological interpretation of the spatial-filter weights, the 

spatially filtered sensor-level maps need to be further converted to activation patterns 

(forward models) (Haufe et al. 2014). This procedure refers to finding the activation 

pattern � = �������� , where �!and �� are the covariance matrices of the data 

 

and projections 	
. 

2.5	Correlation	analysis	

We calculated Pearson's correlation coefficients between the fMRI and MEG 

signal envelopes at each cortical voxel, separately for each MEG frequency band (see 

Section 2.4.1). We transformed the cortical fMRI voxel series to the same 'fsaverage' 

coordinate system as MEG, and picked those voxel time series that corresponded the 

locations of MEG sources (altogether 5124 locations). 
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Intrasubject correlation with subject-wise MEG envelopes or fMRI data was 

computed as a correlation between the time courses between the first and second 

viewings of the 15-min-long movie at each source or voxel location.  

Intersubject correlation was calculated separately for MEG envelopes and fMRI 

signals, separately for the first and second runs. We first calculated Pearson’s 

correlation coefficient for each subject pair (i, j) between the 8 subjects (28 

combinations). For the second run, one subject had to be excluded from both the 

MEG and fMRI analyses, resulting in 21 combinations. Next, we applied Fisher's z-

transformation   

"#$ =
1
2 &'

(1 + )#$)
(1 − )#$) = atanh	()#$) 

for each correlation coefficient before computing the mean  

"̅ = 1
01 − 0
2

2 2 "#$
3

$41,$5 

3

#4 
 

where k is the number of subjects. Statistically significant "̅-values were transformed 

back to correlation coefficients by Fisher's inverse z-transformation, ) = tanh	("̅). 
MEG–fMRI correlation was computed between MEG envelopes and fMRI 

time-courses at corresponding cortical locations, separately for the first and the 

second run. Before calculating the correlation, the MEG envelope time-courses were 

convolved with a standard double-gamma hemodynamic response function (spm_hrf 

in SPM8), and fMRI voxel time series were upsampled to 10 Hz to match the 

sampling rate of the MEG envelopes. 

For all the voxel-wise analyses, we used nonparametric circular bootstrapping to 

find statistically significant correlation coefficients (Chen et al., 2016). To 

approximate the null distribution, we circularly shifted with random lags the time 
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series 10 000 times at each voxel and calculated the correlation coefficients for these 

shifted time series. The p-values for the correlation coefficients were estimated from 

the null distribution.  Intrasubject and MEG–fMRI correlation coefficients were tested 

separately for each subject. For all voxel-wise calculations, the significance threshold 

was p < 0.05, with FDR correction for multiple comparisons. 

  

2.6	Linear	modeling	between	MEG	and	fMRI					

As an alternative approach to assess MEG–fMRI similarities, we first applied 

spatial-filtering based on MCCA to find consistent MEG time courses across subjects, 

and then used the envelopes of the resulting MCCA canonical variates as regressors in 

a general linear model (GLM) to identify similar fMRI time courses.  

For each frequency band, we chose the first MCCA canonical variate, 

corresponding to the strongest intersubject correlation. Next, we averaged these 

canonical variates across subjects and computed the amplitude envelope (providing 

information about slow fluctuations of the higher-frequency rhythms) for this 

averaged time course by Hilbert transform. The resulting signal was further low-pass 

filtered at 4 Hz, convolved with the canonical hemodynamic response function and 

resampled to match the sampling rate of fMRI (TR= 2.015).  

The GLM analysis was performed using SPM8 package (Wellcome Trust 

Centre for Neuroimaging; http://www.fil.ion.ucl.ac.u) with the default parameters. Six 

head-movement signals from the fMRI measurements were included in the design 

matrix of the GLM-model. The threshold for statistical significance was p < 0.05, 

with FDR-correction.  
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3	Results			

	

3.1	Intrasubject	correlations	

Fig. 1 shows the spatial distribution of statistically significant voxel-wise 

intrasubject correlations between the two runs for one representative subject (subject 

6), computed from both the fMRI signals (Fig. 1, top row; for the corresponding 

results of all subjects, see Supplementary Figure S1) and from MEG signal envelopes 

divided in 7 frequency bands between 0.03 and 100 Hz (Fig. 1, 7 bottom rows; for the 

corresponding results of all subjects, see Supplementary Figures S2–S8).   

For fMRI, the maximum intrasubject correlation coefficients ranged across 

subjects from 0.49 to 0.66 (median r = 0.59), with the most prominent spatial clusters 

of high correlation coefficients in occipital areas and smaller clusters in posterior 

parietal and frontal areas.  

MEG intrasubject correlations were also strongest in occipital areas, especially 

in occipital pole, but they were much weaker (median r ~ 0.05–0.14 across frequency 

bands) and their variation across subjects larger than for fMRI. Generally, the 

correlation coefficients were lower at higher frequencies, and significant intrasubject 

correlations were found in most subjects only in bands 1–4 and 4–8 Hz.  

 

3.2	Intersubject	correlations	

Fig. 2 (top) shows statistically significant average voxel-wise intersubject 

correlations of fMRI signals between the first runs (see Supplementary Fig. S9 top for 

the results of the second runs). The highest average intersubject correlation coefficient 

for fMRI was r = 0.37 for the first, and r = 0.33 for the second run. The highest 
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correlation coefficients were found widely in occipital regions, together with weaker 

correlations in restricted frontal and posterior parietal regions.   

Fig. 2 (bottom) shows the statistically significant average intersubject 

correlations of MEG signal envelopes in each frequency band for the first run (see 

Supplementary Fig. S9, bottom, for the results for the second run), computed at the 

same locations in the cortex as for fMRI. The average intersubject correlations were 

lower for MEG (correlation coefficient r < 0.05) than for fMRI signals (correlation 

coefficient r ≤ 0.37). In general, the correlation coefficients were smaller the higher 

the frequency band. The strongest correlations occurred in occipital regions, 

approximately in the same areas as the strongest correlations in fMRI.   

[Figs. 1 and 2 approximately here.]  

 

3.3	MEG–fMRI	correlations	

Direct voxel-wise MEG–fMRI comparison at the same cortical locations 

revealed only a few statistically significant correlation coefficients in single subjects 

for each frequency band, and they were scattered across the cortex. Thus, no reliable 

correlations were found between fMRI and MEG signal envelopes at the group level.  

Supplementary Figure S10 shows an example of actual MEG and fMRI time-

courses at voxel where the intersubject correlation for MEG envelopes was the 

strongest.  

 

3.4	MCCA	intersubject	correlations	

The maximum intersubject correlation between the time series of the first 

MCCA canonical variates was 0.25 in the < 1-Hz band (for all bands, as well as for 
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the train and test data results, see Fig. 3). For comparison, the voxel-wise intersubject 

correlation of MEG envelopes was only 0.03 in the same band (see Fig. 2).  

Fig. 4B shows an example of raw source level MEG signals (in arbitrary units) 

in the 1–4-Hz band at the location of the highest intersubject correlation coefficient 

(0.005 for raw source level signal, and 0.02 for envelopes (see Fig.2) (Fig. 4A; blue 

arrow in the left panel). Fig. 4D illustrates the signals in the same band after MCCA 

application. The figure demonstrates that the signals are more consistent across the 

subjects and more structured after MCCA application. Fig. 4C shows the activation 

map of the spatial-filter of the first MCCA canonical variates in 1–4 Hz band. In 

practice, large values in the activation map indicate brain areas that contribute most to 

a certain MCCA canonical variate. The activation maps for all the frequency bands 

are shown in Supplementary Fig. S11.  

[Figs. 3 and 4 approximately here.] 

 

3.5	GLM	analysis	between	MEG	and	fMRI	

Finally, the GLM analysis revealed the cortical locations where envelopes of 

MEG MCCA canonical variates were associated with the fMRI data (Fig. 5). The best 

fit between the fMRI voxel time series and the MEG-derived regressor occurred in 

each frequency band (except 13–23 Hz) in occipital regions, excluding the occipital 

pole. Associations between MEG and fMRI were also found in frontal and temporal 

regions at frequencies below 8 Hz and at 55–100 Hz.   

[Fig. 5 approximately here.] 

Fig. 6 (top) shows the spatial distribution of the highest beta-values from the 

GLM analysis for frequency band 1–4 Hz, demonstrating that the location of the best 

GLM fit between MEG envelopes and fMRI (in occipital regions except the occipital 
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pole) differs from the location of the strongest MEG intersubject correlations (in 

occipital pole; see Fig. 2 bottom) of the same frequency band. Fig. 6 (bottom) shows 

the fMRI and MEG regressor time courses for the same frequency band at this 

location.   

 [Fig. 6 approximately here.] 

4	Discussion			
 

We conducted a systematic intra- and intersubject correlation analysis of fMRI 

and MEG signals collected from participants who were viewing the same 15-min 

movie altogether 4 times: first 2 times during fMRI scanning and then 2 times during 

MEG recording. The conventional way of correlating brain signals at each voxel 

uncovered statistically significant intra- and intersubject correlations between the 

brain-signal time series when fMRI and MEG data were analyzed separately. 

However, this voxel-wise correlation approach did not reveal associations between the 

two imaging methods. Both intra- and intersubject voxel-wise correlation coefficients 

were considerably lower for MEG than fMRI. However, the intra- and intersubject 

correlations of the MCCA-derived canonical variates for MEG were much stronger in 

bands below 8 Hz.  Using these variates as regressors to model the fMRI signals 

revealed also similarities between MEG and fMRI time courses mostly in occipital 

regions, with smaller clusters in temporal and frontal brain areas.   

4.1	Univariate	correlations	

Both the relatively strong fMRI intrasubject correlations and the clearly weaker 

fMRI intersubject correlations are in line with previous fMRI studies on movie 

viewing (Hasson et al., 2004; Golland et al., 2007; Jääskeläinen et al., 2008; Kauppi et 
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al., 2010; Nummenmaa et al., 2012; Andric et al., 2016). The statistically significant 

intrasubject and intersubject correlations were found mainly in occipital brain regions. 

However, the lack of statistically significant correlations in temporal areas can be 

explained by the absence of any soundtrack in our film. The slightly weaker 

intersubject correlations during the second than the first viewing can be due to 

stimulus repetition as has been observed previously (EEG: Dmochowski et al., 2012; 

fMRI: Lahnakoski et al., 2014), but opposite effect has also been reported (EEG: 

Chang et al., 2015). It is also noteworthy to remark that the subjects had already seen 

the movie twice (during fMRI recording) before the first MEG run, which may have 

further decreased the MEG intersubject correlations. However, given the long time 

between fMRI and MEG measurements, as well as the very complex nature of the 

stimulus and the lack of dramatic narrative content, it is unlikely that stimulus 

repetition effects would have significantly affected the analysis results. 

But why were the univariate inter- and intrasubject correlations of MEG signals 

so modest? Technical reasons include spatial inaccuracies that cannot be avoided in 

the conversion of the MEG sensor-space signals to MNE source estimates. Moreover, 

correlations are sensitive to subtle temporal differences in the time courses. The 

decreasing intra- and intersubject correlation coefficients with increasing frequency in 

MEG were most likely due to generally smaller signal amplitudes and larger phase 

differences at higher frequencies. Thus, one likely contributing factor to the weaker 

intra- and intersubject correlations in MEG than fMRI signals is the more complex 

nature of the MEG signal that comprises a multitude of different frequencies, each 

with their own reactivity patters. In addition, because of the high temporal precision 

of MEG, the brain activity between subjects would need to be very accurately 

synchronized to yield correlations up to those seen in fMRI, where the brain responses 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

 

are temporally smoothed. Furthermore, the frequency contents of MEG brain rhythms 

likely vary considerably across individuals which further decreases the intersubject 

correlation values. Of course, alternative MEG processing streams, e.g. a different 

source estimation technique, could yield higher univariate intra- or intersubject 

correlation values. However, the minimum-norm estimation is widely used, and it 

needs minimal prior information of the sources. 

 

 

4.2	Multivariate	modeling		

4.2.1 Advantages of MCCA 

Our MCCA-based spatial-filtering approach was able to improve the 

consistency in MEG signals with respect to voxel-wise ISC analysis. A major 

advantage of the MCCA approach is that it attempts to maximize correlations of 

sensor-space signals in a data-driven manner, without assumptions about anatomical 

correspondence. Therefore, differences in head size, orientation, or functional 

anatomy are not critical. Moreover, MCCA provides a convenient way for sensor-

level analysis.  

 

4.2.2 GLM modeling 

The envelopes of MEG canonical variates associated with fluctuations in the 

fMRI voxel time series in the occipital (excluding occipital pole), temporal and 

frontal brain regions. These regions do not entirely overlap with the areas showing the 

strongest intersubject correlations in the voxel-wise analysis, especially in MEG 

where the strongest correlations were found in occipital pole. This finding suggests 
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that the regions of the most consistent MEG activity might differ from the regions of 

most correlated fMRI activity across the subjects.  

 

4.3	Neurophysiological	differences	between	MEG	and	fMRI	

Although we found statistically significant intra- and intersubject correlations 

approximately at the same brain areas separately for fMRI and MEG, only a few 

scattered voxel-wise MEG–fMRI correlations were found in single subjects. 

Discrepancies in the locations and temporal dynamics between the MEG and fMRI 

signals were expected because of the differences in the physiological origins of these 

signals as well as the inter-regional variation of neurovascular coupling.  

Although neural processes with both kinds of temporal dynamics are usually 

triggered by a single stimulus event, these processes may take place in different 

cortical locations, which could explain the spatial differences when correlating MEG 

and fMRI results. Notably, the voxel-wise MEG–fMRI analysis was based strongly on 

the assumption of anatomical correspondence between the origins of the signals, 

which leads to weak correlations if the MEG and fMRI signals originate from even 

slightly different locations. Our analysis is related to functional alignment, used e.g. in 

Haxby et al. (2011) and Yamada et al. (2015).  

Even with accurate spatial alignment, combining the information from MEG 

and fMRI recordings is not straightforward. MEG signal is rich in information 

content, with different frequency bands reflecting different brain processes or reacting 

to different types of stimuli (for a review, see e.g. Hari and Puce, 2017). Single stimuli 

can elicit in MEG evoked (or event-related) responses in addition to oscillatory 

activity. In addition, short-lasting activation detected by MEG may go undetected in 

fMRI (e.g. Furey et al., 2006). Furthermore, the hemodynamic response can vary 
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between individuals and between brain areas (Handwerker et al., 2004), and thus the 

canonical HRF used here in fMRI analysis might not be optimal to describe the brain 

response to a single stimulus.  

Previous studies using invasive recordings have demonstrated that the BOLD 

signal correlates positively with the signal power of high-frequency local field 

potentials (LFPs) measured from both auditory cortex (Mukamel et al., 2005; Nir et 

al., 2007) and visual cortex (Privman et al., 2007) during movie viewing. In addition, 

the signal power of low-frequency LFPs correlated negatively with BOLD signal 

(Mukamel et al., 2005). These studies have demonstrated that very local 

electrophysiological activity may couple to hemodynamic activity.  

In contrast to our current approach, the relationship between BOLD and 

MEG/EEG signals has previously been studied in rather well controlled experimental 

settings, except in resting-state studies in rats and humans (e.g. Bruyns-Haylett et al., 

2013; Tewarie et al., 2014). Correlations have been demonstrated between BOLD 

signals and task-induced changes in the oscillatory power of different frequency 

bands of the MEG signal, as well as between BOLD responses and MEG evoked 

responses (for a review, see e.g. Hall et al., 2014). Overall, MEG and fMRI signals 

display a relatively good spatial agreement in low-level sensory projection areas (e.g. 

Moradi et al., 2003; Brookes et al., 2005; Nangini et al., 2009; Stevenson et al., 2011) 

whereas the MEG and fMRI spatial patterns often differ during cognitive tasks (e.g. 

more than 15 mm in various regions as shown by Liljeström et al., 2009; more than 10 

mm outside occipital cortex; Vartiainen et al., 2011). Moreover, the association 

between BOLD and MEG signals can be region- and frequency-dependent (Kujala et 

al., 2014) as well as task-related (Furey et al. 2006).  
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Earlier comparisons between MEG/EEG and fMRI during movie viewing have 

demonstrated an association between source-level EEG activity (0.5–45 Hz) and 

BOLD signal with a ~5-s delay that was calculated only in the primary visual cortex 

(V1) by using a 2-min movie clip presented 25 times (Whittingstall et al., 2010). In a 

study using of 30-s video clips of Superbowl advertisements as stimuli, the level of 

intersubject correlation of EEG signals covaried with the amount of BOLD activity in 

temporal regions, precuneus and medial prefrontal cortex (Dmochowski et al., 2014). 

Furthermore, 5-min movie clips were used to compare changes of functional 

connectivity as reflected in MEG and fMRI signals during movie viewing versus 

resting state (Betti et al., 2013).  The current study extends these findings by 

providing a systematic comparison of unaveraged 15-min MEG and fMRI signals. 

 

4.4	Relationship	between	brain	activity	and	movie	content	

Viewing of the same film can be assumed to elicit highly similar sensory and 

relatively similar cognitive responses across trials and participants, as the events in 

the film unfold in a similar manner at each viewing. One may thus expect the 

similarity of the responses be high in the extrinsic and less similar in the intrinsic 

brain networks (Golland et al., 2007, 2008). Accordingly, in our analysis, the occipital 

brain regions showing replicable intersubject MEG and fMRI correlations were 

consistent with the extrinsic brain network reflecting stimulus-driven brain activity. 

Although we did not study the relationship between the movie content and brain 

signals, finding—as the first step—consistent features in the complex brain data using 

MCCA provides a good starting point for further analysis.  
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5	Conclusions		
 

Our results show that the similarities between MEG and fMRI responses to a 

continuous naturalistic stimulus cannot be characterized robustly with the commonly 

used univariate voxel-wise correlation approach, where temporally correlated 

activations are assumed to occur at the same anatomical locations. However, using a 

multivariate MCCA-based spatial-filtering approach significantly increased the MEG 

intersubject correlations. Furthermore, combining the envelopes of the MEG 

canonical variates with fMRI signals in GLM indicated similarities in time courses in 

occipital, temporal and frontal brain regions.  
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Figure 1.  Intrasubject correlations between two runs. Top: fMRI results for 

one representative subject. Bottom: Intrasubject correlations of MEG envelopes for 

the same subject in all frequency bands. Only statistically significant correlation 

coefficients are shown. The maximum values of correlation coefficients for each 

frequency band are shown on the right side of the figure. 

 

Figure 2.  Intersubject correlations for fMRI and MEG for the first run. 

Top: fMRI intersubject correlations. Bottom: Intersubject correlations of MEG 

envelopes for all frequency bands. Only statistically significant correlation 

coefficients are shown. The maximum values of correlation coefficients for each 

frequency band are shown on the right side of the figure. 

 

Figure 3. MCCA train and test data. Pair-wise calculated intersubject 

correlations of MCCA canonical variates in frequency bands tested. Distributions of 

correlation coefficients are layed over a box covering 1 SD, and white stripes shows 

the mean of the data. Gray boxes show train data, and black boxed test data. 

 

Figure 4. Comparison of MEG voxel-wise time series and MCCA canonical 

variates. (A) Location of highest intersubject correlation coefficient in the band 1–4 

Hz (blue arrow). (B) Example of MEG signals (black, mean with red, arbitrary units) 

from all 8 subjects in the same band (first run) before MCCA at the location of highest 

intersubject correlation coefficient. (C) Activation map (arbitrary units) from spatial 

filtering with MCCA in the band 1–4 Hz. (D) Signals from all the subjects after 

applying MCCA (black, mean with magenta, arbitrary units) in the same band.  
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Figure 5. GLM fit between MEG and fMRI. Results from GLM fit between 

the envelopes of MEG MCCA canonical variates and fMRI data in different 

frequency bands (beta values, arbitrary units).  

 

Figure 6. Time courses of the most similar MEG and fMRI signals. Top: 

Location of largest beta-value from SPM GLM analysis (blue arrow). Bottom: MEG 

regressor in the band 1–4 Hz (envelopes of first MCCA canonical variate, red, 

arbitrary units) and fMRI signal (black, arbitrary units) time courses at the same 

location.  

 

Supplementary Figure S1. fMRI intrasubject correlations. Intrasubject 

correlation for fMRI between the first and the second run for all the subjects. Only 

statistically significant correlation coefficients are shown. 

 

Supplementary Figure S2. MEG intrasubject correlations in band 0.03–1 

Hz. Intrasubject correlations for MEG envelopes between the first and the second run 

for all the subjects in frequency band 0.03–1 Hz. Only statistically significant 

correlation coefficients are shown. 

 

Supplementary Figure S3. MEG intrasubject correlations in band 1–4 Hz. 

Intrasubject correlations for MEG envelopes between the first and the second run for 

all the subjects in frequency band 1–4 Hz. Only statistically significant correlation 

coefficients are shown.  
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Supplementary Figure S4. MEG intrasubject correlations in band 4–8 Hz. 

Intrasubject correlations for MEG envelopes between the first and the second run for 

all the subjects in frequency band 4–8 Hz. Only statistically significant correlation 

coefficients are shown. 

 

Supplementary Figure S5. MEG intrasubject correlations in band 8–11 Hz. 

Intrasubject correlations for MEG envelopes between the first and the second run for 

all the subjects in frequency band 8–11 Hz. Only statistically significant correlation 

coefficients are shown. 

 

Supplementary Figure S6. MEG intrasubject correlations in band 13–23 

Hz. Intrasubject correlations for MEG envelopes between the first and the second run 

for all the subjects in frequency band 13–23 Hz. Only statistically significant 

correlation coefficients are shown. 

 

Supplementary Figure S7. MEG intrasubject correlations in band 25–45 

Hz. Intrasubject correlations for MEG envelopes between the first and the second run 

for all the subjects in frequency band 25–45 Hz. Only statistically significant 

correlation coefficients are shown. 

 

Supplementary Figure S8. MEG intrasubject correlations in band 55–100 

Hz. Intrasubject correlations for MEG envelopes between the first and the second run 

for all the subjects in frequency band 55–100 Hz. Only statistically significant 

correlation coefficients are shown. 
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Supplementary Figure S9.  Intersubject correlations for fMRI and MEG 

for the second run. Top: fMRI intersubject correlations. Bottom: MEG intersubject 

correlations for all frequency bands. Only statistically significant correlation 

coefficients are shown. The maximum values of correlation coefficients for each 

frequency band are shown on the right side of the figure. 

 

Supplementary Figure S10. Comparison of MEG and fMRI voxel-wise time 

series. Top: MEG signal envelopes convolved with HRF (black, mean with red, 

arbitrary units) from all 8 subjects in the band 1–4 Hz (first run) in the voxel (right) 

that showed the highest MEG intersubject correlation coefficient (0.02). Middle: 

fMRI signal (black, mean with red, arbitrary units) from all 8 subjects (first run) at the 

same location. Intersubject correlation of the signals is 0.14. Bottom: Averages of the 

MEG (black) and fMRI (red) signals in top and middle plots at the same locations. 

Correlation between the signals is 0.11. The signals are scaled to the same units (zero 

mean, variance 1).  

 

Supplementary Figure S11. Activation maps from spatial filtering.  The 

activation maps from the MCCA spatial filters for each frequency band (arbitrary 

units and signs).  
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