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Abstract

Multiple types of oncolytic viruses are currently under investigation in clinical trials. To optimize therapeutic outcomes it is
believed that the plethora of different tumor types will require a diversity of different virus types. Sendai virus (SeV), a
murine parainfluenza virus, displays a broad host range, enters cells within minutes and already has been applied safely as a
gene transfer vector in gene therapy patients. However, SeV spreading naturally is abrogated in human cells due to a lack of
virus activating proteases. To enable oncolytic applications of SeV we here engineered a set of novel recombinant vectors
by a two-step approach: (i) introduction of an ubiquitously recognized cleavage-motive into SeV fusion protein now
enabling continuous spreading in human tissues, and (ii) profound attenuation of these rSeV by the knockout of viral
immune modulating accessory proteins. When employing human hepatoma cell lines, newly generated SeV variants now
reached high titers and induced a profound tumor cell lysis. In contrast, virus release from untransformed human fibroblasts
or primary human hepatocytes was found to be reduced by about three log steps in a time course experiment which
enables the cumulation of kinetic differences of the distinct phases of viral replication such as primary target cell infection,
target cell replication, and progeny virus particle release. In a hepatoma xenograft animal model we found a tumor-specific
spreading of our novel recombinant SeV vectors without evidence of biodistribution into non-malignant tissues. In
conclusion, we successfully developed novel tumor-selective oncolytic rSeV vectors, constituting a new tool for virotherapy
of solid tumors being ready for further preclinical and clinical development to address distinct tumor types.
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Introduction

One of the most important barriers that limit the successful

treatment of cancer today is constituted by the presence of primary

or by the development of secondary resistance phenomena. Thus,

the tools to hit cancer cells should contain as much as possible

fundamentally different target options. An evolving new field in

clinical oncology is the application of conditionally replicating

viruses that selectively destroy tumor cells, so called oncolytic

viruses [1,2,3,4]. Several different mechanisms leading to a virus-

induced, cancer cell-specific killing have been found, such as

activation of viral particles by cancer-specific proteases, entry

through cancer cell-specific receptors or exploiting specific defects

of cancer cells [5]. An example for such tumor cell defect is the

inability of most tumor cells to produce or to respond to interferon

(IFN) after viral infection [6,7,8]. As a consequence, IFN-sensitive

viruses preferentially replicate in cancer cells while normal cell

types and tissues are able to launch a powerful counterattack [9].

Virotherapy based clinical studies are currently undertaken for

several different DNA and RNA viruses [3,10]. Due to the

diversity of the so far established viral systems and the plethora of

different tumor types that have to be addressed, it is challenging to

identify or develop distinct oncolytic viruses that are most suitable

for a subset of tumor entities.

In this context, some of the attractive features of Paramyxovi-

ruses with negative stranded RNA genomes are an exclusively

cytoplasmic replication without any risk for DNA integration, a

strong and adjustable gene expression of virally encoded genes, the

determination of host cell tropism by viral surface glycoproteins,

and well established genetic manipulation procedures

[5,11,12,13]. The feasibility of an application of the paramyxo-

viruses measles vaccine virus (MeV) and Newcastle disease virus

(NDV) to cancer patients has already been shown as a proof-of-

principle in early clinical trials [14,15].

Unmodified wild type Sendai virus (murine parainfluenzavirus

type I, SeV), another well-known member of this virus family, was

even used as a vaccine vector against hPIV1 and has been
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demonstrated to be safe in clinical trials [16]. Additionally, a first-

in-man application of recombinant Sendai virus has been reported

very recently as a vector for gene delivery of human FGF-2 to treat

peripheral arterial disease and was shown to be safe and well

tolerated [17].

Basically, SeV as a prototype paramyxovirus has been

intensively investigated and characterized on a molecular level.

SeV displays a very broad host range because it can use

ubiquitously expressed sialic acid containing ganglioside receptors

for cell entry via SeV HN protein interaction [18,19,20,21],

leading to a rapid uptake into the cytoplasm within minutes [11].

These characteristics are of specific interest for broad range

antitumoral approaches, because cell entry occurs independently

of the expression of specialized receptors on the tumor cell surface.

However, cleavage of the viral precursor fusion protein F0 into the

active subunits F1 and F2, which is essential for virus entry into the

target cell, takes place by proteases, which by nature are only

present in the murine respiratory tract (trypsin-like proteases [22]).

This fact severely limits the replication of SeV to only a single

round of infection in all other tissues, which per se prevents any

substantial oncolytic capacity.

Driven by the attractive profile of SeV, efforts have been

undertaken to purposefully engineer wild-type SeV for application

in oncology. In contrast to our approach here, those efforts tried to

restrict the cleavability of the viral fusion protein F rigorously to

predefined tumor secreted proteases, such as matrix-metallopro-

teinases, combined with an enhancement of the SeV-inherent

syncytia formation capacity by deletion of the structural matrix

gene M or truncation of the fusion protein F [23,24,25]. However,

that strategy restricts the usage of SeV as a potential antitumor

agent strictly to the injection site and to tumors that overexpress

individual proteases, which might favor the unwanted selection of

tumor cells with an altered protease composition.

Therefore, we now developed a completely new SeV based

oncolytic system in a two-step approach. First, we introduced a

new cleavage-site into the viral fusion protein that can be cleaved

by ubiquitously available proteases to expand viral replication to

tumor cells. Second, we attenuated SeV particles to a low

replication capacity in non-malignant cell types by deleting

accessory viral proteins that are well known to harbor e. g.

interferon-antagonizing properties [26,27,28,29,30]. Thus, our

newly generated SeV particles are (i) able to benefit from the

broad and attractive host range and rapid cellular uptake of SeV,

(ii) have the capacity to generate complete infectious viral particles

in vivo, and (iii) harbor a strong attenuation by repressing any

relevant viral replication in untransformed or non-malignant cell

types.

Materials and Methods

Ethics statements
Primary human hepatocytes (PHH) from different donors were

provided via the charitable state controlled foundation Human

Tissue & Cell Research HTCR (http://www.htcr.de) with written

informed patient’s consent approved by the local ethical commit-

tee of the University of Regensburg, Germany.

All animal experiments were performed in agreement with the

German animal welfare act. The protocol (M 8/09) was approved

by the local ethics committee for animal experimentation

(Regierungspräsidium Tübingen, Baden-Württemberg, Germany).

Generation of recombinant SeV
For construction of a full-length SeV cDNA with mutations in

SeV P-gene, plasmid pSVV10 coding for the SeV genome of

strain Fushimi and also harboring an enhanced green fluorescent

protein (EGFP) at leader position was used (manufactured by Guy

Ungerechts, UKT Tübingen). Different plasmid variants with P-

gene mutations were generated via mutagenesis. To perform

mutagenesis (QuikChange Multi Site-Directed Mutagenesis Kit,

Stratagene, Amsterdam, the Netherlands), the cloning relevant

sequence of the SeV vector pSVV10 (Guy Ungerechts, UKT

Tübingen) was subcloned using SphI and EcoRI restriction

enzymes into the cloning vector pSL1180 (Amersham, Munich,

Germany). To insert single point mutations into the SeV P-gene

sequence, three different mismatch primers were used: SeVCko59-

CGCATGGATCAAGACGCCTTCATTCTAAAAGAAGATT-

CTGAAGTAGAGAGG-39, SeVYko 59-CTCTCGGACGTTAT-

CGGATTCCTCGACGCTGTCCTG-39, SeVVko 59-GACT-

CAACAAAGAAAGGCATAGGTGAGAACACATCATCTAT-

G-39. Resulting mutated sequences were inserted via SphI and

EcoRI into a pSVV13DFDHN SeV cDNA genome coding plasmid

(strain Fushimi, Guy Ungerechts, UKT Tübingen), equivalent to

vector pSVV10 but without F and HN genes. To reconstitute the

full-length SeV cDNA, the lacking sequences (EcoRI-EcoRI

fragment) with fragments of the P- and L-gene, the M- and the

F-gene with F-protein cleavage-site from Newcastle disease virus

(Fmut; RRQKR instead of VPQSR) of the SeV plasmid

pRSldEGFP Fmut (strain Fushimi; Sabine Schlecht, Munich,

Germany) were inserted. All P-gene mutations were double

checked via sequencing. More detailed information is provided

upon request. Recombinant Sendai viruses (rSeV) were rescued

and propagated as described before [31]. Propagation of control

virus SeV D52 (also of strain Fushimi), representing SeV-P/SeV-F

wild-type genes, was performed in serum free medium (DMEM)

with 3 mg/ml acetyl trypsin. Viral titers were determined via 50%

tissue culture infective dose titration (TCID50) on Vero cells [32].

Cells
African green money kidney cells (Vero, DSMZ, Braunschweig,

Germany), human lung fibroblasts (MRC-5, ECACC, Porton

Village, UK), and human hepatoma cell lines (Hep3B, ECACC;

PLC/PRF/5, ECACC; HuH7, Riken Gene Bank, Tsukuba,

Japan) were cultured in Dulbecco’s modified Eagle’s medium

(DMEM with 2 mmol/l L-glutamine; Biochrom AG, Berlin,

Germany) containing 10% fetal calf serum (FCS, PAA Labora-

tories GmbH, Pasching, Austria). All cells were tested to be

negative for mycoplasma contamination. Primary human hepato-

cytes (PHH; provided by Dr. Thomas Weiss, UKR) from different

donors were isolated and cultured as described before [33]

according to the guidelines and informed consent of the charitable

state-controlled Human Tissue & Cell Research Foundation

HTCR (http://www.htcr.de).

Virus Growth curves
Cells were seeded in a 12-well plate (cell lines: 16105 cells per

well; PHH: 1.26105 cells per cm2) and infected with 56103 Sendai

virus particles (TCID50) in Opti-MEM (Invitrogen, Darmstadt,

Deutschland). After an incubation time of 3 h, the inoculum was

removed and the cells were washed with PBS twice. One ml fresh

DMEM medium supplemented with 5% FCS was added and

supernatants were harvested immediately (3 hpi) or after 24, 48, 72

and 96 hpi. The remaining cells were washed with PBS twice and

scraped in 1 ml DMEM containing 5% FCS. Supernatants and

lysates were frozen and stored at -80uC. After controlled thawing

for exactly 3 min at uC, vortexing and centrifugation, amounts of

infectious virus particles in supernatants and cell lysates were

determined via TCID50 titration.
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Determination of cytotoxicity
To determine virus mediated cytotoxicity, the amount of

remaining cell mass and the loss of cellular integrity were

determined via sulforhodamine B (SRB [34]) and lactate

dehydrogenase (LDH; P-mono, Analyticon Biotechnologies AG,

Lichtenfels, Germany) assays. For time course viability analysis,

the CytoTox-Glo AssayTM (Promega, Mannheim, Germany) was

used. The cells were seeded in 96-well plates and infections were

performed at MOIs of 0.1 and 1. Control cells were chemically

treated with 0.1% TX (Triton X-100) to induce maximum grade

destruction. At each time point post infection (0 h, 24 hpi, 48 hpi,

72 hpi, 96 hpi) supernatants were removed, cells were washed with

PBS, followed by addition of 50 ml of lysis buffer. After 15 min of

incubation, the resulting luminescence was quantified.

For SRB and LDH assays, cells were seeded in 24-well plates

(cell lines: 56104 cells per well; PHH: 36105 cells per well) and

were infected with a multiplicity of infection (MOI) 0.01 and 0.1 in

Opti-MEM in triplicates, each. Mock infected control cells were

used as controls. Pictures (fluorescence or phase contrast) were

taken every 24 h to track the infections (microscope: Olympus

IX50, Hamburg, Germany; software: Analysis 3.1, Soft Imaging

System GmbH, Münster, Germany). To quantify the remaining

cell mass, cells were fixed with cold trichloroacetic acid (TCA,

10% w/v) and stained with SRB-staining solution (0.4% w/v

sulforhodamine B in 1% acetic acid). The protein bound SRB dye

was resolved in Tris (10 mM, pH 10.5) and the optical density was

measured at 550 nm. Remaining cell mass was calculated by

normalization of optical density between uninfected and virus

treated samples.

For LDH assay, 72 h post infection the amount of lactate

dehydrogenase (LDH) was measured in both supernatants and the

remaining cell masses. For this purpose, reaction buffer (pyruvate

and NADH, P-mono Kit, Analyticon Biotechnologies AG,

Lichtenfeld, Germany) was added to culture supernatant and

lysates of remaining cells (lysis buffer: PBS/0.1% Triton-X). The

decrease of NADH was measured at 340 nm. The cellular lysis

was calculated by the ratio of LDH activity in supernatant to total

LDH activity per each well corrected by LDH activity in the fresh

culture media. The virus-induced lysis was related to cellular lysis

in mock infected cultures.

In vivo studies
All animal experiments were performed in agreement with the

German animal welfare act. The protocol was approved by the

local ethics committee for animal experimentation. PLC/PRF/5

cells (16107) were injected into the right flank of Balb/c-nude

mice (CanN.Cg-Foxn1nu/Crl, Charles River, Sulzfeld, Germany).

Every two to three days animal weights and tumor volumes were

measured. After the tumor reached a size of more than 200 mm3,

16107 TCID50 SeV virus particles were injected intratumorally

(2–3 animals per group). Two days after virus injection, animals

were sacrificed and liver, spleen, heart, lung and tumor were

harvested using fresh scissors for each organ. Parts of the organs

were snap frozen in 1 ml Opti-MEM or transferred into formalin

(4%, Fischar GmbH & Co. KG, Saarbrücken, Germany) or RNA

later (Ambion, Life Technologies GmbH, Darmstadt, Germany)

for further analysis.

Histology
Formalin fixed tissue samples were dehydrated and embedded

in paraffin. Microtome sections (4 mm) were prepared and the

virally expressed GFP was detected applying a specific antibody

(anti GFP, ab290, Abcam, Cambridge, UK) and the Vectastain

rabbit ABC Kit (Vector Laboratories, Burlingame, CA, USA).

Haematoxylin (Gill; Roth, Karlsruhe, Germany) was used for

counterstaining.

Isolation of SeV virus particles from primary tissues
Frozen tissues (in Opti-MEM, a quarter of each organ) were

thawed and pressed through a cell strainer (40 mm) using a sterile

plunger. The cellular debris was sedimented by centrifugation

(12,0006g) and the supernatant was transferred to Vero cells in 6-

well plates to identify even minimal amounts of infectious viral

particles. 1 day post infection, medium was changed to DMEM/

2 mmol/l L-glutamine with 5% FCS for rSeV Fmut and DMEM/

2 mmol/l L-glutamine with 3 mg/ml acetyl trypsin for SeV D52.

For virus quantification, frozen tissue sections were thawed at

37uC in 1 ml OptiMEM and pressed though a cell strainer. After

centrifugation, the amount of infectious particles in the superna-

tant was quantified via TCID50 Titration.

Results

Generation of recombinant Sendai viruses
For the generation of SeV particles that conditionally replicate

in tumor cells and thereby induce a profound oncolysis, a two-

step-approach was performed: first, the natural protease cleavage-

site of SeV-F protein was replaced by a cleavage-site which can be

cleaved by ubiquitously available proteases followed by an artificial

attenuation of SeV that selectively exploits tumor cell defects

within the innate defense system. Basically, the spread of SeV wild

type infection is restricted to the presence of trypsin-like proteases

that are able to activate the viral precursor fusion. Therefore, the

monobasic F cleavage-site (VPQSR) was replaced by a NDV-

derived oligobasic cleavage-site (RRQKR), a substrate for

ubiquitously expressed furin-like proteases, generating the virus

variant Fmut (Figure 1A).

As a second step we addressed the reaction pattern of SeV host

cells to viral infection. It is well known that viral replication

induces cellular innate defense mechanisms such as dsRNA

detection during RNA virus replication, which triggers the

expression and secretion of IFN a/b, followed by an IFN a/b
receptor (IFNAR) mediated activation of the JAK/STAT pathway

and the expression of IFN-stimulated genes (ISG [35]). To

overcome cellular innate defense mechanisms, some viruses

express antagonizing proteins [36]. SeV accessory proteins (C9,

C, Y1, Y2, V, W) are well known to harbor such an IFN-

antagonizing capacity [29,30,37] and recombinant viruses without

these proteins are strongly attenuated in vitro and in vivo [28,38]. It

is further assumed that these viral proteins also interfere with other

unspecific cellular defense mechanisms. Thus, to exploit tumor-

specific defects in viral defense mechanisms, we introduced point

mutations in the P gene of the SeV cDNA genome without

altering the amino acid sequence of the P protein but selectively

disturbing the transcription of C/Y or V/W proteins. Altogether,

five SeV P gene variants were newly generated (Figure 1A/B,

variants 3–7). Viruses with at least two C or Y proteins (Figure 1,

SeV FmutVko, SeV FmutCko and SeV FmutCkoVko) could easily

be propagated and displayed a stable genotype, which was

confirmed by sequencing the region of interest. In contrast,

although the rescue of variants missing all four C proteins (C9, C,

Y1, Y2) was successful, it was not possible to produce stable high

titer preparations of these viruses as already observed by others

[39,40]. During the initial propagation of our new SeV variants

lacking all four C proteins (SeV FmutCkoYko and SeV FmutCk-

oYkoVko), in which the expression of V/W proteins was omitted

too, point mutations occurred which led to two new genotypes

(Figure 1):

Protease Profile-Modified Attenuated Oncolytic SeV
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Figure 1. Generation of recombinant Sendai virus variants. (A) Schematic representation of SeV genomes and the protein sequence of the
SeV-F protein cleavage-site of newly generated SeV virus variants. At the 39-end all variants encode a reporter gene for enhanced green fluorescent
protein (EGFP). In contrast to the P and F gene wild-type variant (D52), in all SeV Fmut variants the wild-type F protein cleavage-site (VPQSR) was
replaced by the oligobasic cleavage-site of Newcastle disease virus F protein (RRQKR). The seven wild-type P gene encoded proteins are a result of
multiple open reading frames (ORF; C9, C, Y1, Y2) and RNA editing, respectively, leading to a frame shift and thus to the V or W ORF’s. For attenuation
in non-malignant cell types, different mutations were introduced in C (ORFs; C9-, C-, Y1-, Y2) or V/W-ORFs. For the Vko variants (no V and no W
proteins), mutations of the editing-site within the P frame were introduced without changing the amino acid sequence of the P protein. Thus, P
protein but no truncated P protein variants (V and W proteins) can be synthesized. For the C protein deficient variants (Cko: no C9 and C proteins; Yko:
no Y1 and Y2 proteins), inserted point mutations are marked by numbers from 1-5 (1: M1T, 2: L5stop, 3: L11stop, 4: M24T, 5: M30T; numbers refer to
amino acid position in C/Y-frame whereas 1 refers to the initiator methionine of the C protein). (B) Schematic overview of functional ORFs from the P
gene of different SeV variants. The SeV P-gene wild-type expression pattern is shown for D52 and Fmut (1.+2.).
doi:10.1371/journal.pone.0090508.g001
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(i) a reversion of an inserted STOP codon in the C/Y frame of a

preliminary SeV FmutCkoYko variant (Fig 1A, point mutation 2)

enabled the translation of either C9- and C-mRNA, resulting in a

SeV FmutYko variant, and (ii) the development of a single point

mutation in a previous SeV FmutCkoYkoVko variant, which led to

a late C/Y frame start codon (I61M) enabling the expression of a

C-terminal C/Y protein (SeV FmutC/YtermVko variant). Since no

high performance (commercial) antibodies being specific for these

accessory SeV proteins are available, expression analysis via

western blotting was found to be rather difficult. In this line, also

low amounts of these proteins and an expression pattern which

seems to vary throughout the virus replication cycle contributed to

these difficulties.

To investigate whether these additionally acquired mutations

are stable, they were further propagated and sequenced after three

propagation cycles. Notably, the point mutations did not change

during this propagation procedure, thereby reflecting a stable viral

genotype for SeV FmutYko and for SeV FmutC/YtermVko. Thus,

six recombinant SeV Fmut variants (Figure 1) and a variant

representing the wild-type P and F gene (SeV D52) were available

for testing of their possible oncolytic properties.

Tumor selective high titer replication and rapid spread of
newly generated SeV variants in malignant human
hepatoma cell lines

After successful rescue of the different recombinant viruses,

replication in Vero cells demonstrated a trypsin-independent

propagation for all SeV Fmut variants (Figure 2). As an in vitro

tumor model we chose three human hepatoma cell lines, namely

PLC/PRF/5, Hep3B and HuH7. All newly generated SeV Fmut

variants were able to replicate efficiently in these human tumor

cells (Figure 3A). Notably, SeV Fmut and SeV FmutVko produced

even higher amounts of viral progeny particles in the hepatoma

cell supernatants compared to Vero cell supernatants (Figure 2)

with a maximum amount at 48 to 72 h post infection (hpi).

Maximum attainable peak titers over a collection period of 96 h

(addition of the amounts of viral particles in supernatant and

cellular lysate, 1 ml each) in Vero cells for all SeV Fmut variants

ranged between 7.66106 and 8.66107 TCID50, and in hepatoma

cells between 6.26106 and 7.16108 TCID50 (Table 1).

In contrast to the malignant cell lines (Figure 3A), all SeV Fmut

viruses showed a significantly reduced replication in two human-

derived non-malignant cell types, the lung fibroblast cell line

MRC-5 and in primary human hepatocytes (PHH) (Figure 3B).

Over a collection period of 96 hpi maximum attainable peak titers

now ranged between 2.56103 and 2.86106 TCID50 (Table 1).

Interestingly, variants without C9/C or Y1/Y2 proteins produced

less viral progeny than SeV Fmut or SeV FmutVko.

Besides the effective production of viral progeny particles, we

assume that the spreading within tumor tissues depends on both,

the release of newly generated progeny virions, which theoretically

can reach distant tumor cells, and the direct spreading to

neighboring cells by a fusion of cellular membranes and syncytium

formation. As shown in pictures of infected PLC/PRF/5 tumor

cells (Figure 3C), nearly 100% of GFP expression (used here as a

sign of viral infection) already displayed in the monolayer at 48 hpi

for all SeV Fmut variants. In contrast, the F and P gene wild-type

variant SeV D52 was not able to spread through the culture,

which is due to its naturally restricted protease cleavage. At 72 hpi

all SeV Fmut variant infections induced fluorescence negative

areas within the cellular monolayer, being a result of massive

tumor cell destruction. In contrast, the strongly reduced produc-

tion of viral particles in non-malignant MRC-5 cells was in line

with virus spread in these cells (Figure 3D, bottom panels). MRC-5

fibroblasts only allowed an effective spread throughout the culture

for SeV Fmut or SeV FmutVko but SeV variants lacking C9/C or

Y1/Y2 showed localized infection foci only (Figure 3D, panels to

the right).

In a direct comparison of peak titers (Figure 4) over a period of

96 hpi in human hepatoma cells (PLC/PRF/5, Hep3B and

HuH7) versus human PHH or MRC-5 cells, a clear tumor

selective replication was determined for the SeV Fmut knockout

variants lacking the expression of full-length C/Y proteins with a

low replication in non-malignant cells (up to 7,000-fold decrease).

In particular, for SeV FmutYko the peak titers in non-malignant

cells (MRC-5: 3.26103 TCID50; PHH: 2.56103 TCID50) did not

even exceed the amount of particles used for primary infection

(56103 TCID50) over a period of 96 h. We conclude, that no

effective replication of SeV FmutYko took place in non-malignant

cells, which was in clear contrast to the production of a high

amount of viral progeny in hepatoma cells (mean peak titer for

PLC/PRF/5, Hep3B and HuH7 hepatoma cells over the same

collection period: 1.86107 TCID50).

A strongly limited spreading of oncolytic viruses in tumor

surrounding healthy cells is of utmost importance for the treatment

of solid tumors. Therefore, we examined the GFP reporter gene

expression and replication of all virus variants in detail in primary

human hepatocytes as potential unwanted target cells for a

virotherapeutic treatment of hepatocellular carcinoma (HCC)

(Figure 5A). Infection experiments applying a MOI of 0.1 induced

a GFP expression for SeV Fmut in 42 - 69% of PHH 72 hpi

(determined ratio of counted GFP-positive cells; Figure 5B). Due

to a lack of a F-protein specific protease in PHH, SeV D52 could

only induce a primary infection but no spread, leading to 5–11%

GFP positive cells. Notably, Fmut Cko, Fmut Yko, Fmut CkoVko,

and Fmut C/YtermVko did not reach a much higher percentage of

GFP positive cells than SeV D52. This supports our hypothesis

that the strongly attenuated phenotype of variants lacking

accessory proteins does not allow any efficient multi-round viral

replication in non-malignant cell types.

Cytolytic capacity of recombinant SeV particles in
different cell types

To investigate the influence on cellular viability in a time- and

dose-dependent manner, Vero and PLC/PRF/5 hepatoma cells

were infected by all variants of the newly generated Sendai viruses

(at MOIs 1 and 0.1) as well as by the wild type variant SeV D52,

used here as a P- and F-gene wild type control vector. At different

time points post infection (0 h, 24 hpi, 48 hpi, 72 hpi, 96 hpi)

cellular viability was tested using the CytoTox-Glow AssayTM. As

a result, a time- and dose-dependent loss of cellular viability could

be shown for all new recombinant variants (Figure 6; black lines;

SeV2-SeV7). In contrast, the wild-type variant SeV D52 which -

due to its naturally restricted protease cleavage - is not able to

spread through the cultures was found to exhibit only minor

reductions in cellular viability (Figure 6; green line; SeV1).

To further investigate the cytotoxic and especially the cytolytic

potential in tumor cells we examined the cellular viability cell mass

determined by a sulforhodamine B (SRB) assay as well as the loss

of membrane integrity by determination of lactate dehydrogenase

(LDH) release into the cellular supernatant 72 hpi. As a result, all

hepatoma cell lines infected by the Fmut variants (MOI 0.01 and

0.1, respectively) showed a clear reduction of cell mass (Figure 7A).

The most prominent results were observed for SeV variants

FmutVko, FmutYko, FmutCkoVko, and FmutC/YtermVko. Howev-

er, the different tumor cell lines showed a different level of

response to infection with PLC/PRF/5 being the most sensitive

cell line in this context. According to these results, the analysis of

Protease Profile-Modified Attenuated Oncolytic SeV
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the percentage of LDH release into the supernatant (Figure 7B)

was most prominent for PLC/PRF/5 cells for all of these viruses

(11- to 25-fold change relative to baseline values of mock

infections), whereas LDH release by HuH7 cells only displayed

a slight elevation over baseline (between 2- and 9-fold; Figure 7B).

Interestingly, the non-malignant fibroblast cell line MRC-5 and

PHH from two different patient donors did neither show a

comparable cell mass reduction, nor a relevant release of LDH

into the supernatant (Figure 7C, D). Taken together, the

attenuated rSeV Fmut variants clearly showed a tumor cell-

specific destruction shown by the loss of cell mass or cellular lysis.

In vivo safety of rSeV-knockout variants
As a prerequisite for a successful application of our newly

generated rSeV particles in vivo, viral spread in tumor tissues was

investigated in a murine model of human hepatoma xenograft

with subcutaneously grown tumors of PLC/PRF/5 cells. Based on

our in vitro studies, we chose to investigate the two most promising

virus variants SeV FmutCkoVko, or SeV FmutC/YtermVko and

injected 16107 TCID50 of respective SeV variants directly into the

tumors. As control viruses, we employed (i) SeV D52, which is not

able to spread in this tumor tissue context due to the restrictive F

protein cleavage-site, as well as (ii) SeV Fmut, which should

facilitate an extensive spread without the presence of rare

proteases. As wild-type SeV harbors a clear tropism for mouse

cells, the xenograft model was very well suited to investigate both

questions, efficient spread within the tumor and limited spread to

distant tissues due to the engineered attenuation.

Two days after intratumoral virus injection tumor as well as

liver, spleen, heart and lung were dissected and the tissue was

analyzed for virus presence. In a histological staining of tumor

Figure 2. Growth kinetics of newly generated SeV variants in Vero producer cells. Growth kinetics of six different recombinant SeV viruses
over a 96 h period in Vero cells determined via TCID50. Each time point represents the average and SEM for at least three independent titer
determinations from the cellular supernatant and lysates. A line at 16107 TCID50 was inserted for better orientation.
doi:10.1371/journal.pone.0090508.g002

Table 1. Peak titers in different cell types.

Cells SeV Fmut SeV FmutVko SeV FmutCko SeV FmutYko SeV FmutCkoVko SeV FmutC/YtermVko

Vero 6.56107 8.66107 2.06107 2.56107 7.66106 9.26106

Hep3B 1.56108 1.36108 4.56107 1.76107 6.26106 1.46107

HuH7 1.16108 2.76107 2.56107 1.36107 9.36106 1.26107

PLC/PRF/5 7.16108 2.36108 5.46107 2.46107 3.26107 2.76107

MRC-5 7.96105 6.26104 2.06104 3.26103 8.06103 6.06103

PHH 2.86106 4.66105 4.06104 2.56103 3.86103 7.76103

Mean peak titers of resulting progeny virus of the six different SeV variants in Vero cells, three hepatoma cell lines (Hep3B, HuH7, PLC/PRF/5) and two non-malignant
cells (MRC-5 and PHH). Numbers represent the mean of three independent experiments and are given as TCID50/2 ml.
doi:10.1371/journal.pone.0090508.t001
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samples for virus-encoded GFP, it became obvious, that SeV D52

induced only clearly distinguishable single infection foci (Figure 8A,

second panel from the left). In contrast, all viruses with an altered

F protein cleavage-site (Fmut) were able to spread throughout the

tissue over a distance of more than 100 mm (Figure 8A, panels to

the right).

Next, samples (1/4 each) from the xenograft tumors as well as

from liver, spleen, heart and lung were analyzed (i) for the pattern

of intratumoral spreading of our rSeV variants (Figure 8A), (ii) for

the presence / absence of our rSeV variants in tumorous versus

non-tumorous tissues (i.e., tumor, liver, spleen, heart, and lung)

(Figure 8B), and (iii) for the amount of infectious virus particles

Figure 3. Growth kinetics and spreading of newly generated SeV variants in different cell types. (A+B) Growth kinetics of six different
recombinant SeV viruses over a 96 h period. Each time point represents mean and SD for at least three independent titer determinations from 1 ml
supernatant. For better orientation, a line at 16107 TCID50 is depicted. (A) Malignant human hepatoma cells PLC/PRF/5, Hep3B and HuH7. (B) Non-
malignant MRC-5 fibroblasts and primary human hepatocytes (PHH) from three different donors. (C+D) Detection of EGFP reporter protein
expression over a 72 h observation period by fluorescence microscopy as a surrogate marker for viral replication and spread to neighboring cells. Size
bar: 200 mm. (C) Infection of PLC/PRF/5 hepatoma cells. (D) Infection of MRC-5 human fibroblast cells.
doi:10.1371/journal.pone.0090508.g003
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Figure 4. Comparison of attainable peak SeV titers during replication in different cell types. The mean peak titer (sum of the infectious
virus particles determined via TCID50 for super natant and lysate) over a period of 96 h was determined including all experiments with the
investigated three hepatoma cell lines (HuH7, Hep3B, PLC/PRF/5) and compared to the achievable peak titer in non-malignant cells (MRC-5 or PHH).
Numbers over the columns display fold-changes between the mean of all hepatoma cells compared to either MRC-5 or PHH. The dotted line shows
the amount of inoculated viral particles during the initial infection (56103 TCID50). Data represent mean and SEM.
doi:10.1371/journal.pone.0090508.g004

Figure 5. Attenuated SeV variants in primary human hepatocytes (PHH). PHH from three different donors were infected with SeV D52 and
all six recombinant SeV variants (MOI of 0.1). (A) Exemplarily chosen pictures of PHH 72 hpi for seven different recombinant viruses (detection of GFP
by fluorescence microscopy). Bar represents 200 mm. For donor 1, the analysis of the SeV FmutC/YtermVko variant was not done (n.d.). (B) 72 h after
the inoculation with the different viruses, infected cells were counted in three randomly chosen areas and calculated as a ratio of all cells in the same
area. Data are shown in mean and SD of three independent experiments in triplicates.
doi:10.1371/journal.pone.0090508.g005
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being present in the fine needle-addressed tumor tissues at

48 hours after virus injection (Figure 9).

As expected, infectious particles of all three virus rSeV variants

containing the Fmut protease cleavage-site could be isolated at

high levels from the tumor tissues (Figure 8B, Figure 9), whereas

SeV D52 infectious particles could only be isolated from tumor

tissue at a quite low level (Figure 8B, upper panel; Figure 9, left

bar). For the SeV Fmut variant expressing all accessory proteins,

the expanded tissue tropism could be documented by the detection

of single infectious particles in spleen, heart and lung tissues

(Figure 8B, upper panel). In contrast to SeV Fmut, for the

attenuated viruses (Figure 8B, lower panel) no infectious particles

were detected in non-tumorous, normal tissues (employed by a

very sensitive virus amplification assay based on Vero indicator

cell cultures), a finding which clearly documents the high level of

selectivity of these viruses for tumor cells in vivo (Figure 8B).

Discussion

SeV particles as potential antitumor agents harbor an attractive

profile including a broad host range due to ubiquitously available

sialic acid residues that serve as cellular receptors and ensure a

rapid uptake into the cytoplasm of host cells within minutes.

Additionally, infections are cytotoxic, which is at least in part

mediated by a pronounced syncytium generating activity [11,41].

The aim of this study was to develop a new generation of Sendai

viruses exhibiting profound oncolytic activities while showing a

highly attenuated phenotype in non-malignant cells. Efforts have

already been undertaken to engineer SeV for a tumor application,

but in contrast to our strategy, the so far reported anticancer effect

was limited twofold: (i) it was dependent on the secretion of tumor

cell-specific proteases such as urokinase-type plasminogen activa-

tor [24,25] or matrix metalloproteinases [23], and (ii) spread of

viruses did only occur by fusion events with neighboring cells due

to a lack of progeny release via the cellular membrane. Thus, all

these approaches were strictly limited to the injection site and to a

preselected small subset of tumor types.

As a proof-of-concept study we here show that a new generation

of SeV particles with a different safety concept rapidly and

selectively spreads in tumor cells in vitro as well as in tumor tissue in

vivo. This new phenotype could be achieved by a two-step

approach: First, a broadening of the tissue restriction by

introduction of a cleavage-site into the F protein that is recognized

by ubiquitous furin-like proteases. Second, a limitation of viral

replication in non-malignant cell types was achieved by preventing

the expression of accessory regulatory proteins (C9, C, Y1, Y2, V,

W). These accessory regulatory proteins of SeV are e. g. known to

interfere with molecules of the IFN type I system and thus suppress

the establishment of an antiviral state in virus infected cells [36]. In

generating rSeV Fmut C/Y/V knockout variants we expected a

reduced spread and replication in IFN competent non-malignant

Figure 6. Quantification of cellular viability in a dose and time-dependent manner. Infection experiments with Vero and PLC/PRF/5 (at
MOIs of 1 and 0.1) cells were performed with all variants of the newly generated Sendai viruses as well as the wild type variant SeV D52. Cellular
viability was investigated via CytoTox-GloTM assay at different time points post infection (0 h, 24 hpi, 48 hpi, 72 hpi, 96 hpi). The assay was performed
in triplicates and repeated three times; data are shown as mean and SEM. SeV 1 (green line): SeV D52, SeV 2: SeV Fmut, SeV 3: SeV FmutVko, SeV 4: SeV
FmutCko, 5: SeV FmutYko, 6: SeV FmutCkoVko, 7: SeV FmutC/YtermVko, TX: Triton X-100 (positive control for the induction of a maximum grade,
chemically-mediated destruction of test cells).
doi:10.1371/journal.pone.0090508.g006
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cells, similar to IFN-sensitive VSV viruses [7] or oncolytic measles

viruses with defects in IFN-antagonizing proteins [5]. As a matter

of fact, we observed a highly reduced replication especially

for rSeV knockout variants without C and Y proteins in

non-malignant MRC-5 cells and PHH while keeping the ability

to replicate to high titers and spread in hepatoma cells. These

observations may be due to the fact, that hepatoma cells are

known to have defects at several steps in the IFN signal

transduction [42,43,44], whereas non-malignant cells are able to

induce an antiviral state limiting the virus replication and thus

Figure 7. Cytolytic capacity of recombinant SeV particles in different cell types. Cell growth and cell lysis in different cell types with SeV
D52 and six recombinant SeV Fmut variants (black bars: MOI 0.01, grey bars: MOI 0.1). (A+C) Analysis of cell mass by sulforhodamine B (SRB) assay 72
hpi in (A) hepatoma and (C) non-malignant MRC-5 cells or PHH. All values are shown in relation to uninfected control cells (mock). (B+D) Analysis of
LDH release of infected cells relative to LDH release of uninfected control cells (mock) as a surrogate marker of cellular membrane integrity 72 hpi.
Results represent mean and SD of three independent experiments in triplicates, for PHH two different donors, in triplicates each.
doi:10.1371/journal.pone.0090508.g007
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virus-induced cytotoxicity. Beyond that, also other factors, such as

reduced rates of (i) primary target cell infection and / or (ii) target

cell progeny virus particle release, could have been contributed to

the observed attenuated phenotype of our rSeV Fmut C/Y/V

knockout variants. Especially in the context of any future clinical

application it is expected that kinetic differences of the distinct

phases of viral replication of our rSeV variants in malignant versus

non-malignant cells (i.e., primary target cell infection, target cell

replication, and target cell progeny virus particle release) will

contribute to differences in vector spreading and replication.

However, up to now there are no means to discriminate major

from minor factors of attenuation in a clinical context.

Together with a recent report that SeV vectors have for the first

time reached the clinics for therapeutic gene transfer [17], our

backbone modifications open up the perspective to investigate SeV

particles also in clinical oncology. The destruction of tumor cells

by virus-induced apoptosis [45,46] or syncytia formation by SeV

add new target mechanisms to the already existing therapeutic

tools that are currently applied in routine patient treatment. Thus,

virotherapeutics may be applied in the future to overcome

resistance phenomena to conventional therapeutic strategies or

even may be ideal combination partners to already existing

therapeutic approaches [2,3,5]. Of note, a direct and detailed

comparison of different oncolytic vector types in a given tumor

entity has not been performed yet, but it can be expected that for

each tumor type or even subtype an optimal virotherapeutic

approach has to be developed separately, defining the most

promising virotherapeutic strategy for clinical routine application.

As hypothesized, our data clearly show a tumor selective

replication of the newly generated SeV Fmut variants in different

cell types in vitro. As SeV has a broad host range, which opens up

the possibility to apply SeV-based virotherapeutics in the context

of different cancer types, the focus of our study did not intend to

show efficacy in a selected specific tumor model. In fact, our aim

was to demonstrate that SeV can be employed as a tool to

selectively target tumor tissues, followed by a distribution therein.

In our exemplarily selected HCC xenograft model we found a

spread of SeV within tumor tissue, which was dependent on the

introduction of the modified SeV cleavage-site (Fmut). Thus, the

protease-restriction of SeV wild-type, which strictly limits the virus

spreading to the respiratory tract, where SeV specific proteases are

present, could be overcome. Concerning biodistribution of our

new vector type, in a highly sensitive assay for detection of

infectious particles we found a tissue restriction to the tumor site

for all attenuated virus variants. Infectious particles could not be

detected within samples from organs of mice after intratumoral

application of SeV, including liver, spleen, heart and lung.

Especially in the case of a direct (i.e., fine needle-bound)

intratumoral virus application in the preclinical setting, contact

of virotherapeutics only is made to tumor areas directly

surrounding the needle tract, resulting in a strictly tumor-bound

colonization with virotherapeutics. Similarly, in the clinical

context only minor contacts, to non-tumorous areas (localized

immediately adjacent to virotherapeutically addressed tumors) are

established in the course of virus injection. Therefore, presence of

in-patient foci exhibiting high MOIs in normal tissues (amount of

virus particles locally outnumbering the amount of neighbouring

normal cells) is supposed to constitute an exemption. This setting

of ‘‘low normal tissue MOIs’’ has to be considered even more true

for the intravenous and intracavital (intraperitoneal, intrapleural)

routes of virus application in which a quite rapid and profound

dilution of virus particles takes place through the blood stream or

through contact with intraperitoneal or intrapleural fluids.

The value of a selectively replicating virus within tumor tissue

could be recently shown in a clinical pilot study in which the

systemic injection of an oncolytic poxvirus in patients induced a

profound infection of tumor tissues with the expression of virus

encoded transgenes [47]. This implies that tumor selective viruses

are not only able to use tumor cells as host cells; moreover, they

might even be applied to express high concentrations of

therapeutic or imaging proteins in solid tumors in humans

[48,49]. Therefore, our newly generated tool of oncolytic SeV

particles will have to be tested in different tumor models in the

near future. Additionally, it will be possible to generate enhanced

‘‘armed’’ rSeV variants which express prodrug converting

enzymes or immunostimulatory molecules, such as cytosine

deaminase [50,51] or GM-CSF [52] within their viral backbones.
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Figure 8. Intratumoral spread of recombinant SeV particles in vivo in a PLC/PRF/5 hepatoma xenograft model. Recombinant SeV
variants (SeV D52, SeV Fmut, SeV FmutCkoVko, SeV FmutC/YtermVko, 16107 TCID50/100 ml) were injected intratumorally in tumors of a PLC/PRF/5
hepatoma xenograft mouse model. (A) 48 h post injection the mice were sacrificed, tumors were removed and one quarter of each tumor was fixed
and embedded in paraffin. Virus spread was investigated applying an anti-GFP antibody for immunohistochemistry analysis (brown color). Bar
represents 100 mm. (B) Indicator cultures (Vero cells) were infected with lysates from frozen tissue sections (one quarter of tumor, liver, spleen, heart,
lung, each). Early primary infections (24-72 hpi) were observed and single infected cells were counted as initial virus particles (VP). Fluorescence
microscopy pictures of the infected Vero cells were taken 72 hpi. Shown are representative picture for each animal. Bar represents 400 mm.
doi:10.1371/journal.pone.0090508.g008

Figure 9. The amount of infectious virus particles in tumor
tissue was quantified with the TCID50 method. 48 h after
intratumoral virus injection, a huge amount of infectious virus particles
was detectable in the tumor of animals treated with the SeV Fmut
variants via TCID50 titration (mean and standard deviation of two (D52)
or three analyzed tumors of each group).
doi:10.1371/journal.pone.0090508.g009
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