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Abstract
A crucial stage in the origin of life was the emergence of the first molecular entity that was able to replicate, transmit infor-
mation, and evolve on the early Earth. The amyloid world hypothesis posits that in the pre-RNA era, information processing 
was based on catalytic amyloids. The self-assembly of short peptides into β-sheet amyloid conformers leads to extraordi-
nary structural stability and novel multifunctionality that cannot be achieved by the corresponding nonaggregated peptides. 
The new functions include self-replication, catalytic activities, and information transfer. The environmentally sensitive 
template-assisted replication cycles generate a variety of amyloid polymorphs on which evolutive forces can act, and the 
fibrillar assemblies can serve as scaffolds for the amyloids themselves and for ribonucleotides proteins and lipids. The role 
of amyloid in the putative transition process from an amyloid world to an amyloid–RNA–protein world is not limited to 
scaffolding and protection: the interactions between amyloid, RNA, and protein are both complex and cooperative, and the 
amyloid assemblages can function as protometabolic entities catalyzing the formation of simple metabolite precursors. The 
emergence of a pristine amyloid-based in-put sensitive, chiroselective, and error correcting information-processing system, 
and the evolvement of mutualistic networks were, arguably, of essential importance in the dynamic processes that led to 
increased complexity, organization, compartmentalization, and, eventually, the origin of life.
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Introduction

It is generally believed that life on Earth passed through 
an RNA-world era in which RNA or an RNA-like polymer 
performed both informational and catalytic functions [1–4]. 
It is, however, unlikely that a functional ribonucleotide poly-
mer could have existed under early Earth conditions [5–7]. 
The amyloid world hypothesis of the origin of life [8] pos-
its that during that early period, about 4 billion years ago, 
peptide amyloids were the first molecular entities that were 
able to self-replicate, transmit information, and evolve. The 
model has gained momentum from recent empirical and 
theoretical studies clarifying the molecular mechanisms 
underlying amyloid formation, amyloid-related catalysis, 
and protein-encoded information processing. Here, I exam-
ine the model in light of recent advancements, develop the 

model further, and broaden the perspective to include an 
outline how a transition from a primitive β-sheet-based repli-
cator world to a complex amyloid–ribonucleo-protein world 
might have occurred.

The amyloid replicator

Within the framework of origin-of-life research, the question 
of the mechanism of replication and information transfer is 
crucial. Given the stability and functionality problems con-
nected with the RNA-world hypothesis [5–7, 9], the view 
that some other type of informational system probably pre-
ceded the RNA-based one has gained an increasing attention. 
According to the amyloid world hypothesis, the primordial 
information system was based on structurally stable catalytic 
and self-replicating β-sheet amyloid conformers [8, 10, 11]. 
The basis for the model is the conformational arrangement 
of the amyloid fold (Fig. 1). The cross-β sheet structure of 
amyloid, in addition to providing remarkable stability, can 
convey multifunctionality to peptides [12–26]. Even very 
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short peptides may express diverse catalytic, replicative, and 
informational properties when adopting the amyloid con-
formation. This is in contrast to native peptides, which are 
easily denatured under harsh conditions, and whose func-
tionality requires longer peptide sequences, the synthesis of 
which, again, would require an existing metabolic apparatus. 
Thus, under early Earth conditions, the amyloid fold would, 
obviously, have provided a substantial advantage for the sur-
vival and propagation of prebiotic peptides.

Encrypting environmental information

Recent research has clarified many aspects of the molecular 
mechanisms underlying the amyloid-mediated information 
system. It has become evident that the coding element is the 
steric zipper structure of the amyloid motif and that recogni-
tion occurs by amino acid side chain complementarity [13, 
18]. In the encryption process, environmental information 
is encoded in the three-dimensional structure of the amyloid 
conformer [27, 28]. The steric information can then be trans-
ferred to “daughter” molecular entities through the template-
assisted conformational replication cycles generating replicas 

of the spatially altered amyloid conformer [11]. Fragmentation 
and the formation of new seeds characterize the primary rep-
lication process; the importance of fragment recycling in 
the prebiotic evolutive processes has been emphasized [29]. 
The oligomeric phase of the replication process appears to 
be essential for the inscription of environmental information.

A schematic representation of the replication cycles is 
shown in Fig. 2. Importantly, two different nucleation mecha-
nisms exist. A primary one, that typically involves a short seed, 
and a secondary, fibril surface-catalyzed step, which occurs 
when a small, but critical amyloid concentration has been 
achieved [30–33]. The fibril-catalyzed step is characterized by 
an initial fast docking phase followed by a slow structural rear-
rangement locking phase [34]. From a prebiotic perspective, 
the demonstrations of template-assisted ligation of fibrillo-
genic peptides from two shorter building blocks [23–25] and 
of amyloid-directed synthesis of its constituent peptides from 
amino acids [26] are important.

Fig. 1  Schematic representation of the β-sheet structure of amyloid. 
a Section of a β-pleated sheet. The β-strands, which run perpendicu-
lar to the long axis of the fibril, are marked in green and interstrand 
hydrogen bonds in red. b Hydrogen-bonding pattern of two antipar-
allel β-strands. c Antiparallel bilayered β-sheet. d Parallel bilayered 
β-sheet. Typically, the repeating unit of the amyloid fibrils consists 
of two tightly packed layers of β-sheets with side chains within the 
bilayers forming a dry interdigitating zipper interface. The zippers 
differ in the organization of the β-strands within and between the 

β-sheets and in the stacking of the β-sheets enabling the formation of 
a diversity of structural variants. The cross β-structure gives rise to 
a characteristic X-ray diffraction pattern with a meridional reflection 
at 0.48 nm and an equatorial reflection at about 1.0 nm. These reflec-
tions correspond to the interstrand and intersheet spacings, respec-
tively. The mature amyloid fibril is a highly ordered linear supramo-
lecular structure forming long unbranched fibrils ranging from 5 to 
12 nm in diameter. References are given in the text
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Adaptive and enantioselective amyloids

A distinctive feature of amyloid formation is that the same 
peptide monomer can generate functionally and structur-
ally different amyloid conformers of which one or several 
can propagate and make new copies of itself/themselves 
[35, 36]. This ability is important with respect to the 
evolvability of the system: evolution requires variation. 
The replicating system can adapt to even small changes 
in the external milieu. The environmentally induced fine-
tuned changes in the amyloid architecture can then be rep-
licated and the pool of the fittest variants can expand. In 
this model, the environmentally less suitable conformers 

are degraded and the released monomers/oligomers are 
reutilized in the replication cycles [11].

The amyloid polymorphs differ from each other in the 
architecture of the β-strands within and between the β-sheets 
and in the stacking of the β-plates, as well as in filament 
length. The number of protofilaments per fibril and the 
degree of twisting of the fibril can also vary. The β-sheets 
are tightly packed without water molecules between them; 
hydrogen bonds, van der Waals forces, and electrostatic 
polarization hold the zippers together [13, 18, 37]. Typically, 
amyloid is found as a homochiral structure which has been 
explained by a poorer spatial fit of heterochiral structures 
[38, 39]. The high enantioselectivity of the molecular rec-
ognition of β-sheets is likely to be relevant to the question of 

Fig. 2  Schematic representation of the amyloid model of the origin 
of life. The figure outlines the proposed pathway of one type of pep-
tide monomer from a prebiotic mixture of various protopeptides. The 
nucleation-dependent replication system is in-put sensitive, chiro-
selective, and error correcting. An initial slow nucleation process is 
followed by a fast polymerization phase where peptide monomers are 
added the growing end of the protofilament. Fragmentation generates 
new seeds that can initiate repeated replication cycles. The same pep-
tide monomer can give rise to different amyloid structures and molec-
ular rearrangements are possible. Specific conformational changes 

can be replicated in the fibril/protofibril-catalyzed cycle II. Amyloid 
is also able to direct the synthesis of its own constituent peptides. 
The β-sheet conformers and ribonucleotides interact dynamically and 
cooperatively, and the amyloid-based supramolecular fibrillar assem-
blies can function as a primitive metabolic apparatus catalyzing the 
formation metabolite precursors. The model does not exclude the pos-
sibility an extraterrestrial origin of the primordial amino acids or a 
contribution of extraterrestrial amino acids to the terrestrial prebiotic 
amino acid pool. References are given in the text
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the origin of biological homochirality [40, 41]. In a prebiotic 
setting even a minute enantiomeric precursor imbalance [42, 
43], if present, could be amplified in the template-directed 
chiroselective β-sheet self-replication cycles, explaining 
both the amplification and the chiral transmission steps of 
terrestrial homochirality.

Catalytic amyloids

The catalytic activity of the peptide-based β-sheet assem-
blies is an important aspect of the amyloid world model. 
Amyloids not only catalyze their own formation, but they 
are able to catalyze other chemical reactions too. Rufo et al. 
[16] showed that small, 7-residue amyloid-forming peptides 
form efficient catalysts of ester hydrolysis. Other studies 
have demonstrated amyloid-related aldolase [17, 19], ATP-
ase [44], and carbonic anhydrase [22] activities, as well as 
copper-mediated oxygen activation [45]. The catalytic func-
tions are fibril/protofibril-dependent: the corresponding 
nonaggregated peptides are catalytically inactive. Another 
feature is the metal dependence of several amyloid catalysts; 
metal ions both stabilize the fibrillar structure and shape 
ligand geometry. In a recent study, Lee et al. [46] deter-
mined the structure of a metalloamyloid esterase catalyst by 
solid-state NMR. The peptide formed parallel β-sheets that 
assembled into stacked bilayers with alternating hydropho-
bic and polar interphases. The hydrophobic interphase was 
stabilized by apolar side chains, whereas the polar interphase 
contained zinc-binding histidines. In another recent study, 
Omosun et al. [19] examined the catalytic activities of pep-
tides assembling into well-defined amyloid nanotubes. They 
found that the density and proximity of the extended arrays 
of chiroselective catalytic sites accomplished template-
assisted polymerization of new polymers. The depth of the 
co-linear cross-β grooves of a heptapeptide assembling in 
antiparallel in-register β-strands was shown to be important 
for the retro-aldol activity; the shallower grooves limited 
substrate binding and diminished catalytic activity. Though 
the total efficiency of the catalytic activities of the cross-β 
assemblies is, in most cases, only moderate and the catalytic 
repertoire limited, the amyloid supramolecular network can, 
in a way, be regarded as a primitive metabolic apparatus with 
protoenzymatic activities.

The prebiotic relevance of the β-sheet networks and 
assemblies was recently highlighted by Tena-Solsona et al. 
[17] who provided evidence for emergent catalytic behavior 
of self-assembled low-molecular-weight peptide aggregates, 
and by Nanda et al. [21] who demonstrated error correction 
within replication networks through the emergence of short 
polymers exhibiting selective autocatalytic properties. Very 
recently, Rout et al. [26] showed that an amyloid can direct 
the sequence-, regio-, and stereo-selective condensation of 

amino acid synthesis, and that the templating reaction is 
stable over a wide range of pH (5.6–8.6) and temperature 
(25–90 °C). This is of particular interest from the perspec-
tive of early molecular evolution as it demonstrates that an 
amyloid formed from short peptides can direct the synthe-
sis of its own constituent peptides under plausible prebiotic 
Earth conditions.

Emergence of cooperative networks

The amyloid model fulfils key criteria of a valid origin-of-
life theory, i.e., the requirements of replication, information 
transfer, and variation. By repeated replication cycles, the 
amyloid conformers can generate a variety of polymorphic 
fibrillar networks (Fig. 3) and structures such as nanotubes, 
nanospheres, and hydrogels [47]. The fibrillar assemblies 
can act as scaffolds for the amyloids themselves and for 
RNA, protein, and lipids [48–55]. They could also, under 
harsh prebiotic conditions, provide protection for nucle-
obases and natively folded peptides/proteins. Notably, extant 
organisms utilize amyloid structures for protection against 
environmental hazards [56–58] and for driving compartment 
formation [59].

The role of amyloid in the putative transition of the pris-
tine amyloid world to an amyloid–RNA–protein world is 
not limited to scaffolding and protection; the interactions 

Fig. 3  Electron micrograph of a polymorphic fibrillar amyloid net-
work self-assembled from a prebiotically relevant 9-mer peptide 
(EGGSVVAAD) in aqueous environment. Experimental conditions 
were as described in Ref. [10]
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of amyloid with ribonucleotides and protein are both coop-
erative and dynamic. Fibrillar amyloid can act as an auto-
catalyzing surface [34, 60–62] and, in addition to promot-
ing its own formation, can, in a similar manner to that of 
clay and other mineral surfaces [63, 64], bind nucleic acids 
and enhance their polymerization, which, in turn, can pro-
mote amyloid production [15, 65–68]. Moreover, the amy-
loid–nucleic acid complexes may enhance nucleic acid 
hybridization [65]. With respect to compartmentalization 
and membrane formation, amyloid–lipid interactions are of 
key importance [50, 52, 55, 69, 70]. Amyloidogenesis is 
promoted by lipid interphases that lead to accelerated fibril-
lar network formation and the recruitment of both nucleic 
acids and lipids generating feed-back loops. The complex 
interactions between amyloids and ribonucleotides are also 
reflected in current biology: amyloid-forming proteins are 
overrepresented among the factors that modulate the tran-
scription, translation, and storage of RNA [71], and amyloid-
like aggregation has been implicated in the formation of both 
RNA granules [72] and P-bodies [73]. In certain instances, 
protein’s amyloidogenic properties and RNA-modulating 
activity are associated with the occurrence of glutamine/
asparagine-rich sequence motifs.

The transition from an amyloid world to an amy-
loid–RNA–protein world is likely to have evolved over a 
long period of time. However, the amyloid model [8, 11, 74] 
is also compatible with a gradually coevolving RNA–protein 
world [75, 76]. The scaffolding properties, protection, and 
protocompartments provided by amyloid supramolecular 
structures in combination with the cooperative interactions 
and interdependence between amyloid, ribonucleotides, and 
protein are likely to have constituted a driving force in prebi-
otic molecular evolution.

The prion connection

Prions are self-propagating infectious protein-based agents 
that can cause severe neurodegenerative disease. The prion 
hypothesis postulates that a misfolded form of the prion 
protein is the causative and transmissible agent of prion 
disorders [77]. Most, if not all, of the extraordinary char-
acteristics of prions, such as protease-resistance, ther-
mal stability, transmissibility, and strain specificity, are 
closely related to the amyloid fold [12, 14, 35, 78, 79]. 
The conversion of the prion protein into the infectious 
form involves a conformational rearrangement of the pro-
tein that generates an amyloid structure, and the propaga-
tion of the prions occurs via a template-seeded replication 
mechanism very similar to that of amyloids in general [12, 
78, 80]. In addition to disease-related prions, a number of 
functional prions that exploit the amyloid fold for evolu-
tionarily selected biological processes have been identified 

[81]. These processes include polyamine regulation [82], 
signal transduction [83, 84], regulation of gametogenesis 
[85], hormone storage [86], epigenetic inheritance [87], 
and memory persistence [88].

The amyloidogenic regions of prions are evolutionarily 
conserved, and in many instances represented by short, 
low-complexity sequences enriched in glutamine/aspara-
gine domains [89, 90]. Importantly, a marked homology 
exists between the amino acid sequences of peptides pref-
erentially produced in the salt-induced peptide forma-
tion reaction simulating early Earth conditions and the 
sequences of known prions [91]. Extant prions, and their 
amyloid-based functional entities, may represent a relic 
of the pristine β-sheet-based information system, and the 
amyloid fold may represent the first functional protein fold 
[8, 74, 91–93].

Genetics before genetics

Information transfer on the early Earth for about 4000 mil-
lion years ago occurred, according to the amyloid hypoth-
esis, by means of a β-sheet peptide-based prion-like amy-
loid system in which environmentally derived information 
encrypted in the β-sheet zipper structure was transmitted 
by a templated conformational self-replication mechanism 
to “daughter” amyloid entities [8, 11, 74]. Recognition was 
mediated by amino acid side chain complementarity and 
coding by the β-sheet zipper structure [13, 18, 94]. The 
proposed system is characterized by both robustness and 
variability: the replication cycles are able to produce opti-
mized stable molecular variants for evolutive forces to act 
on. From a primordial pool of random uncoded short pro-
topeptides, the adaptive template-directed chiroselective 
and error correcting replication cycles generated amyloids 
that represented the first “coded” peptide polymers. Direct 
chemical interaction between amino acids/peptides and 
ribonucleotides in the primordial environment was prob-
ably important the evolution of the genetic code [95, 96].

The amyloid model emphasizes the importance of the 
cooperative interactions between amyloid and ribonucleo-
tides and of the transition from a primitive β-sheet world 
to a more complex amyloid–RNA–protein world, a tran-
sition that was necessary from both an evolutionary and 
informational point of view: The information content of 
the β-sheet system, though potentially large, is very lim-
ited when compared to the virtually unlimited informa-
tion content of a nucleic acid-based genetic system [13]. 
The β-system allows, on the other hand, for more rapid 
responses to environmental changes which would likely 
have been an advantage during early molecular evolution.
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The amyloid hypothesis versus peptide/
protein‑first hypotheses

Though based on amino acids and peptides, there are funda-
mental differences between the amyloid world hypothesis [8, 
11] and the peptide-/protein-/GADV-first hypotheses of the 
origin of life [97–100]. The key point is conformation: the 
differences are based on the particular folding patterns of the 
molecular entities involved. The amyloid fold is structurally 
different from all the other protein folds and it is functionally 
unique. It has an extraordinarily stable molecular structure 
and conveys functionality even to short (e.g., 3- to 9-mer) 
peptides. This is in contrast to nonaggregated peptides 
that are likely to decompose under harsh conditions, and 
functionality requires longer peptide lengths. In a prebiotic 
setting, short functional (aggregated) peptides with a rigid 
structure would, obviously, have had a selective evolutionary 
advantage over less stable, natively folded longer peptides. 
Importantly, template-directed reactions in β-sheet-driven 
replication networks can perform error correction and lead 
to the enrichment of a functional polymer within prebioti-
cally relevant mixtures [21].

Amyloid fibril formation by prebiotically 
relevant peptides

It is well documented that under conditions simulating 
early Earth conditions, amino acids and short peptides are 
readily formed [101–105]. A high content of hydrophobic 
amino acids and the presence of alternating hydrophobic 
and hydrophilic residues tend to increase the β-sheet form-
ing potential of peptide mixtures [106–111]. In a recent 
study, Greenwald et al. [112] specifically addressed the 
question of whether amyloid fibers can result from a con-
densation of amino acids under prebiotically plausible 
conditions. The study showed that fibrillar amyloid spon-
taneously formed under such conditions from a mixture 
of glycine, alanine, aspartate, and valine, all represent-
ing prebiotic “consensus” amino acids. An earlier study 
[10] had shown that a nonapeptide composed of six of 
the most abundantly produced amino acids in experiments 
simulating early Earth conditions [113], and also present 
in carbonaceous meteorites [114], generated polymorphic 
amyloid networks in an aqueous solution at temperatures 
likely to have existed on the primitive Earth. Moreover, 
intriguingly, a marked amino acid sequence homology has 
been observed between experimentally produced prebiotic 
peptides and extant amyloid-forming prions [91]. These 
findings are in line with the view that amyloids could have 
been formed and existed under early Earth conditions.

Toward life

A crucial stage in the origin of life was the emergence of 
the first informational molecular entity that was able to self-
organize and evolve on the primordial Earth. The amyloid 
model, a hybrid replication-metabolism model of the origin 
of life, posits that, in the pre-RNA era, information storage 
and transfer was based on peptide-based catalytic amyloids. 
The template-assisted conformational replication cycles 
generate a variety of amyloid polymorphs on which evo-
lutive forces can act. Amyloid, RNA, and protein interact 
dynamically and cooperatively, and the amyloid assemblages 
can function as primitive metabolic entities catalyzing the 
formation of simple metabolite precursors.

In conclusion, the emergence of an amyloid-based pris-
tine in-put sensitive, chiroselective, and error correcting 
information-processing system, and the evolvement of mutu-
alistic networks were, arguably, of essential importance in 
the dynamic processes that led to increased complexity, 
organization, compartmentalization, and, eventually, the 
origin of life.
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