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a b s t r a c t

Phytoplankton and heterotrophic bacteria are key groups at the base of aquatic food webs. In estuaries
receiving riverine water with a high content of coloured allochthonous dissolved organic matter (ADOM),
phytoplankton primary production may be reduced, while bacterial production is favoured. We tested
this hypothesis by performing a field study in a northerly estuary receiving nutrient-poor, ADOM-rich
riverine water, and analyzing results using multivariate statistics. Throughout the productive season, and
especially during the spring river flush, the production and growth rate of heterotrophic bacteria were
stimulated by the riverine inflow of dissolved organic carbon (DOC). In contrast, primary production and
photosynthetic efficiency (i.e. phytoplankton growth rate) were negatively affected by DOC. Primary
production related positively to phosphorus, which is the limiting nutrient in the area. In the upper
estuary where DOC concentrations were the highest, the heterotrophic bacterial production constituted
almost 100% of the basal production (sum of primary and bacterial production) during spring, while
during summer the primary and bacterial production were approximately equal. Our study shows that
riverine DOC had a strong negative influence on coastal phytoplankton production, likely due to light
attenuation. On the other hand DOC showed a positive influence on bacterial production since it rep-
resents a supplementary food source. Thus, in boreal regions where climate change will cause increased
river inflow to coastal waters, the balance between phytoplankton and bacterial production is likely to be
changed, favouring bacteria. The pelagic food web structure and overall productivity will in turn be
altered.
© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Phytoplankton and heterotrophic bacteria are key groups at the
base of the food web as both assimilate dissolved nutrients and
constitute a link between the chemical environment and the food
web (e.g. Azam et al., 1983). Their production regulates the energy
and nutrients that can be channelled through the food web and
thus the production potential of intermediate and higher trophic
levels, such as mesozooplankton and fish (e.g. Lef�ebure et al., 2013;
and Environmental Science,

ersson).
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Degerman et al., 2018). However, phytoplankton-based pathways
are in many cases more efficient than bacteria-based pathways (e.g.
Berglund et al., 2007; Degerman et al., 2018), and therefore envi-
ronmental conditions leading to a dominance of heterotrophic
bacterial production may result in lower food web efficiency and
lower top-trophic level production (Berglund et al., 2007; Eriksson-
Wiklund et al., 2009; Dahlgren et al., 2011). The fact that bacteria in
general also represent a less nutritious resource than phyto-
plankton for grazers amplifies this issue (Klein Breteler et al., 2004;
Dahlgren et al., 2011). It is therefore important to elucidate how
environmental changes affect the balance between primary and
bacterial production.

Model simulations indicate that climate change will not only
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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cause elevated temperature in high latitude coastal areas but also
affect the hydrology (IPCC, 2013). For example, in the northern
Baltic Sea the surface water temperature is expected to increase
~4 �C by 2100, along with a ~30% increase in regional precipitation
(Meier, 2006; Omstedt et al., 2012; Andersson et al., 2015). This will
be accompanied with an increase in run-off of allochthonous dis-
solved organic matter (ADOM) from the surrounding terrestrial
systems, and consequently of dissolved organic carbon (DOC) (e.g.
Stepanauskas et al., 2002; Andersson et al., 2013). Previous studies
indicate that phytoplankton might be disfavoured owing to the
brown colour of ADOM, while heterotrophic bacteria might be
favoured as they can use ADOM as a carbon food source (Andersson
et al., 2015; Harvey et al., 2015). In line with this, Wikner and
Andersson (2012) showed a negative correlation between the
freshwater inflow to the northern Baltic Sea (Gulf of Bothnia) and
primary production, and Figueroa et al. (2016) found a negative
correlation between DOC concentration and primary production
and a positive correlation with bacterial production in a northerly
boreal estuary. However, these relationships may have alternative
explanations, as for example the dilution of organisms by river
discharge. Hence, to get a deeper understanding of the ecological
effects of ADOM, it is critical to analyse the relationships between
DOC concentrations, photosynthetic efficiency and bacterial
growth rate.

ADOM is an environmental stressor in coastal systems, and is
likely to affect the food web structure and ecological function of the
ecosystem. By promoting bacterial production and disfavouring
primary production, additional internal trophic levels will be
required to facilitate trophic transfer in a food web predominantly
based on smaller organisms. This will increase the energy losses
throughout the food web since at each trophic level 70e90% of the
energy is lost due to respiration, excretion and sloppy feeding
(Straile, 1997). Thus, even if the food web length is only slightly
increased, the production of higher trophic levels can be substan-
tially decreased (Berglund et al., 2007). Additionally, bacteria are in
general of reduced nutritional quality compared to eukaryotic
phytoplankton, commonly lacking important lipids and fatty acids
that are vital for grazers (Larsson et al., 2000), and having relatively
low carbon: nitrogen: phosphorus ratios (C:N:P-ratio 50:10:1, e.g.
Fagerbakke et al., 1996, Cotner et al., 2010). On the other hand eu-
karyotes conform to the Redfield ratio (106:16:1) and are nutri-
tionally more suitable. Consequently, environmental drivers that
turn the base of the food web from phytoplankton to bacterial
dominance may induce a poorer physiological state of the grazers
(e.g. poor fatty acid content), the effects of which propagate up-
wards through the food web, also affecting higher trophic levels.

The aim of this study was to find out how inflows of ADOM
affect the bacterial and primary production as well as the photo-
synthetic efficiency and specific growth rate of bacteria in high
latitude coastal areas receiving river water from nutrient poor
catchment areas dominated by coniferous forests and mires and
loads of phosphorus from offshore areas during winter-spring, thus
having a pronounced nutrient cycle. We chose the €Ore estuary,
northern Baltic Sea, as the study system. The Baltic Sea is a brackish
semi-enclosed sea where salinity, nutrients and production
decrease gradually towards the north. The most limiting nutrient
for primary production shifts from nitrogen in the south to phos-
phorus in the north (Graneli et al., 1990; Tamminen and Andersen,
2007). Both phytoplankton and bacteria have been shown to be
phosphorus limited in the actual study area (Andersson et al., 1996;
Zweifel et al., 1993). Furthermore, the study region is strongly
influenced by ADOM-rich and nutrient-poor river discharge (Skoog
et al., 2011). We hypothesized that: (1) primary production and
photosynthetic efficiency in the upper estuary would be hampered
by coloured DOC, while in the lower estuary primary production
and photosynthetic efficiency would be governed by phosphorus
concentration, and (2) bacterial production and bacterial growth
rate would benefit from DOC in the upper estuary due to the large
influence of river borne ADOM in this area of the estuary.

2. Material and methods

The study was performed in the €Ore estuary, northern Baltic Sea
(Fig. 1). Nineteen stations, radiating from the river to the open sea,
were sampled on nine occasions, from May to August 2010
(Suppl. Table 1). The bottom depth in the estuary varies from 5mat
the river mouth (station 2) to 34m offshore (station 18). The bot-
tom depth at the stations situated on the eastern part of the sam-
pling grid is deeper than at stations located along coast (e.g.
stations 5, 8, 12 or 16).

At each sampling occasion, water for all analysis was collected at
a depth of 1m using a Ruttner sampler, and in situ temperature and
Secchi depth were recorded (the Secchi disk was not deployed at
station 1). For primary and bacterial production estimates water
was additionally collected at 3 and 5m depth, though due to their
shallow nature water was only collected at 1m depth at station 1,
and at 1 and 3m at station 2. Primary production samples were
incubated in situ (at 1, 3 and 5m) and other water samples were
immediately transported to the laboratory for analysis. Data on
river water discharge were obtained from the Swedish Meteoro-
logical and Hydrological Institute (SMHI). Surface incident PAR
(Photosynthetically Available Radiation) was recorded fromMay to
August at the Umeå Marine Sciences Center (located 7e10 km from
the sampling area) with a Licor LI-193 spherical quantum sensor.

2.1. Physicochemical variables

Maximum light (PAR) at the air-water interface was calculated
based on the surface PAR measurements, solar declination, solar
elevation and Fresnel's equation (Kirk, 2011). PAR at 1 and 5m
depth, and the penetration depth of 1 and 0.1% PAR were calculated
based on the PAR at the air-water interface and the Secchi depth
(Kirk, 2011).

Conductivity and pH were measured using a Mettler Toledo
probe at 25 �C and recalculated to in situ values using themethod of
Fofonoff and Millard (1983). Salinity was calculated from conduc-
tivity as practical salinity units.

Total phosphorus (TP) and total nitrogen (TN) were measured in
unfiltered water samples using a Braan and Luebbe TRAACS 800
autoanalyzer, according to standard analytical methods (Grasshoff
et al., 1983). Unfiltered samples for humic substances were
measured with a Perkin Elmer LS 30 fluorometer at 350/450 exci-
tation/emission wavelengths. Calibration standards were prepared
from quinine dihydrogen sulfate dehydrate in 0.05M sulfuric acid
(Hoge et al., 1993; Wedborg et al., 1994), and sulfuric acid (0.05M)
was used as a blank. Dissolved organic carbon (DOC) analyses were
carried out on 0.22 mm filtered (Supor Membrane Syringe Filter,
non-pyrogenic; Acrodisc®) and acidified (8mM HCl final concen-
tration) water samples on a Shimadzu TOC-5000 instrument.

The absorbance of coloured dissolved organic matter (CDOM)
was measured on water samples filtered through 0.22 mm poly-
carbonate membrane filters and stored in amber glass bottles in the
dark at 4 �C until analysis. Absorbance values were recorded from
300 to 850 nm with a Shimadzu UVPC-2501 scanning spectro-
photometer, using ultrapure water as a blank. The absorbance was
corrected for the average reading between 700 and 750 nm ac-
cording to D’Sa et al. (1999) and the absorption coefficient at
440 nm (g(440)) was calculated according Kirk (2011).

Total suspended particulate matter (SPM) was measured using
the gravimetric method described by Strickland and Parsons



Fig. 1. Map of the study area and sampling stations in the €Ore estuary northern Baltic Sea.
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(1972). One litre of sea water was filtered through pre-combusted
(450 �C) and pre-weighted Whatman GF/F filters (47mm). Filters
were dried for 24 h at 60 �C and re-weighted. Final concentrations
of SPM were calculated as the mean of duplicate samples per
station.

All physicochemical samples were processed immediately after
sampling and completed within ~4 h of initial water collection.

2.2. Phytoplankton and bacterial biomass

Chlorophyll a (Chl a) was used as a proxy for phytoplankton
biomass. 100ml samples were filtered onto 25mmGF/F filters
under low vacuum and stored at �80 �C. The pigments were
extracted in 95% ethanol in the dark at 4 �C overnight. Chl a was
measured with a Perkin Elmer LS 30 fluorometer (433/674 nm
excitation/emission wavelengths) (HELCOM, 2014).

Samples for heterotrophic bacteria were preserved with sterile
filtered glutaraldehyde (1% final concentration). Preserved samples
(1e3ml) were filtered onto black 0.2 mm 25mm polycarbonate
filters (Poretics) and stained with acridine orange (Hobbie et al.,
1977). Prepared slides were analyzed with an epifluoresence mi-
croscope using blue excitation light (Nikon TE 300). At least 300
bacterial cells per slide were counted in >20 randomly distributed
fields of view. To calculate biomass, a bacterial carbon content of
20 fg C cell�1 was assumed (Lee and Fuhrman, 1987), which has
been shown to be representative for the coastal area (data not
shown).

2.3. Primary production and photosynthetic efficiency

Primary production was measured in situ at 1, 3 and 5m depth
using the 14C method (Gargas, 1975). Five ml of seawater and
0.72 mCi of sodium (14C) bicarbonate (0.1mCimmol�1) were added
to each of three 20ml transparent polycarbonate tubes and one
dark tube, replicating this set up at each depth. The samples were
incubated for ~3 h around noon. After incubation the samples were
immediately transferred to glass scintillation vials and 100 ml 6M
HCl were added to stop the reaction. The samples were gently
bubbled with air for 30min to get rid of excess 14C. 15ml scintil-
lation liquid were added (Optiphase Hisafe 3) and the samples were
analyzed in a Beckman 6500 scintillation counter. Daily primary
production (PP) was calculated using the “light factor method”, as
described in Andersson et al. (1996), and depth-integrated primary
production was calculated by trapezoidal integration.

The ratio between primary production and Chl a (PP:Chl a) at
1m was used as a proxy for photosynthetic efficiency, i.e. the
production to biomass ratio (P:B ratio).
2.4. Bacterial production and growth rate

Bacterial production was measured at 1, 3 and 5m depths using
the [3H-methyl]-thymidine incorporation method (Fuhrman and
Azam, 1982). Triplicate 1ml seawater samples (one control and
two samples) were incubated with 0.074� 106 Bq (saturation level,
2.81� 1012 to 3.07� 1012 Bq mmol�1) of [3Hmethyl]-thymidine at
the in situ temperature for 1 h (HELCOM, 2014). The control sample
was killed by the addition of 100 ml ice-cold 50% trichloroacetic acid
(TCA) and a 5min incubation at �20 �C. After 1 h of incubation
thymidine uptakewas stopped by the addition of 100 ml of 50% TCA.
The samples and controls were then centrifuged, the pellet was
washed with 5% TCA, 1ml of scintillation fluid was added, and the
samples were analyzed in a Beckman 6500 scintillation counter.
Cell production was calculated using a conversion factor of
1.4� 1018 cells mol�1 of incorporated thymidine (Wikner and
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Hagstr€om, 1999). Daily production rates were calculated assuming
stable uptake rates over the day and a bacterial carbon content of
20 fg C cell�1 (Lee and Fuhrman, 1987), and depth-integrated bac-
terial production was calculated by trapezoidal integration.

The ratio between heterotrophic bacterial production and bac-
terial carbon biomass at 1mwas used as proxy for bacterial growth
rate, the BP:BB ratio.

2.5. Statistical analyses

Environmental and biological variables were compared be-
tween seasons using a Mann-Whitney test. Spearman rank corre-
lation coefficients were estimated between selected variables.
Principal component analyses (PCA) were used to visualize the
distribution of primary production and biomass, bacterial produc-
tion and biomass, and photosynthetic efficiency and bacterial
growth rate in relation to physicochemical factors. The PCAs were
based onmatrices of correlation of standardized data, and variables
with high correlation were excluded from the analyses. Station 1
(river station) was not included in the analyses. Stepwise multiple
linear regressions were performed to elucidate if DOC and TP were
drivers of primary production (PP), photosynthetic efficiency
(PP:Chl a), bacterial production (BP) and bacterial growth rate
(BP:BB) in different areas of the estuary (upper estuary stations 2, 3,
4, 5 and 6; lower estuary stations 14, 15, 17, 18 and19; entire estuary
(stations 2e19)). All data in the regression analysis were ln trans-
formed. The different areas of the estuary were selected from
average salinity and variations in salinity: the upper estuary had
low and highly variable salinity (mean 1.7, CV 55%), lower estuary
had relatively high and stable salinity (2.5, CV 12%), while the entire
estuary (station 2e19) had an average salinity of salinity 2.2 (CV
35%). Data analyses were performed in SPSS Statistics 22 and
Canoco 5.

3. Results

3.1. Temporal variation of physicochemical and biological variables

The majority of the variables displayed strong temporal varia-
tion, with pronounced seasonal differences between the initial
three sampling events and the subsequent period (Suppl. Fig 1,
Fig. 2). The three first sampling occasions (May 18th to June 8th)
are classified as spring and the remainders are considered as
summer (June 22nd to August 31st).

The first sampling occasion coincided with themaximum spring
flush of the €Ore River (ca. 280m3 s�1 on May 18th, Suppl. Fig. 2).
The river flow decreased within a couple of weeks and remained
relatively stable (20e60m3 s�1) until the end of August (Table 1).
The surface temperature increased from May to July (9e15 �C),
remaining high until the end of August when the water tempera-
ture decreased to 13 �C (mean values presented in Table 1).

Most of the physicochemical variables tightly followed the
seasonal pattern of the river flow, showing the highest variation in
spring and stabilizing during the summer (Suppl. Fig 2). Salinity,
Secchi depth and PAR increased from spring to summer before
plateauing, fluctuating or steadily decreasing, respectively, during
summer (Suppl. Fig. 1 AeC). SPM, DOC, humic substances, TN and
TP displayed the highest values on the first sampling occasion and
generally decreased, stabilizing at lower values in summer
(Suppl. Fig. 1 DeH). The variation of the CDOM absorption coeffi-
cient g(440) closely followed that of humic substances (Table 1, data
not shown), and is therefore not described further.

Both the depth-integrated primary production and the respec-
tive values at 1m depth showed a peak on the first sampling
occasion (Fig. 2 A and C), declining markedly in the following
weeks. Subsequently primary production increased during summer
and levelled out in late summer (Fig. 2 A and C). Chl a concentra-
tions also displayed maximal values on the first sampling occasion,
but remained relatively constant for the rest of the period, at ~2mg
Chl m�3 (Fig. 2 E). The ratio of primary production to Chl a (PP:Chl
a) was lowest in the beginning of the sampling period, progres-
sively increased to a maximum at the end of July before subse-
quently decreasing (Fig. 2 G).

The seasonal variation of bacterial production differed from that
of phytoplankton and nearly followed the opposite trend until July.
Both the depth-integrated bacterial production and the values at
1m were high during the spring period, declined until July, before
increasing again and stabilizing until the end of August (Fig. 2 B and
D). Bacterial biomass also peaked in spring and steadily declined to
reach stable numbers by the beginning of July (Fig. 2 F). This
resulted in a bi-modal peak of bacterial growth rate (BP:BB), one
peak in spring and a second peak at the beginning of August (Fig. 2
H).

3.2. Distribution of physicochemical and biological variables along
the river-seaward gradient

The spatial distribution of the variables was mainly driven by
the transport of river water within the €Ore estuary. The €Ore River
carried warmer waters into the estuary, especially in July; however
the temperature difference between the river mouth and the lower
estuary remained below 1.5 �C over the entire study period (data
not shown). The dominant winds in the area directed the river
plume south-westwards, resulting in a stronger influence of
freshwater on the western part of the estuary, along the peninsula
coast (stations 2, 3, 5, 8, 12 and 16). This is clearly evident in the
surface patterns of salinity and DOC, and was also illustrated by the
strong difference in salinity and DOC between eastern and western
stations situated at the same distance from the river mouth
(Suppl. Fig. 3 A, Suppl. Table 2). Over the entire data set, strong and
significant linear regressions were observed between DOC and
salinity, and DOC and humic substances (Suppl. Fig. 4), highlighting
that DOC could be used asmeasure of allochthonous organicmatter
(ADOM). Therefore, in order to visualize the influence of river input
on the spatial distribution, the variables were plotted against the
average DOC concentration at each station (Fig. 3 and Suppl. Fig. 5).

The spatial distribution of most of the variables directly fol-
lowed the DOC gradient (Fig. 3 and Suppl. Fig. 5). The concentra-
tions of humic substances, SPM, and TN increased along the DOC
gradient (Suppl. Fig. 5 EeG), indicative of the terrestrial origin of
these compounds. The Secchi depth decreased along the same
gradient, as well as PAR levels at 1 and 5m (Suppl. Fig. 5 BeD), a
result of the light attenuation by ADOM. On the contrary, TP was
recorded at higher concentrations in the more marine waters
characterized by much lower DOC concentrations (Suppl. Fig. 5 H).
Both primary production rates (depth-integrated and 1m) and Chl
a concentrations decreased at stations with higher DOC concen-
trations (Fig. 3 A, C and E), however the ratio of primary production
to Chl a did not display a linear pattern along this gradient (Fig. 3 G).
The ratio was variable at lower DOC concentrations and decreased
at stations with higher DOC concentrations. Primary production
profiles showed decreasing values from 1 to 5m depth, and this
vertical pattern was more pronounced in the lower estuary than
close to the river mouth (Suppl. Fig. 6). Bacterial production and
biomass at 1m showed a constant increase along the increasing
DOC gradient (Fig. 3 D and F), as did the bacterial growth rate
(BP:BB) (Fig. 3 H). However, the depth-integrated bacterial pro-
duction showed a less clear distribution along the gradient (Fig. 3
B), owing to the shallow water column at the river station (~1m)
where the DOC concentrations were highest. Bacterial production



Table 1
Summary of biological and physicochemical variables (mean and range of variation) at all stations studied during spring and summer. * denotes significant (p< 0.05) dif-
ferences between spring and summer.

Spring Summer

Bacterial production at 1m (mgCm�3 d�1) 53.7 (0.3e169.3) * 35.8 (9.2e150.5) *
Bacterial biomass (mgCm�3) 15.7 (5.9e30.5) 13.3 (3.7e25.4)
BP:BB (mgCmgC�1 d�1) 3.5 (0.4e9.5) 2.9 (0.6e10.6)
Integrated bacterial production (mgCm�2 d�1) 186.7 (13.4e504.5) 145.3 (33.0e356.8)
Primary production at 1m (mgCm�3 d�1) 76.8 (1.2e509.9) * 82.1 (1.9e413.4) *
Chl a concentration (mgm�3) 6.7 (0.5e57.2) * 2.3 (0.9e7.8) *
PP:Chl a (mgCmgChl�1 d�1) 14.2 (0.7e44.6) * 34.9 (0.8e125.7) *
Integrated primary production (mgCm�2 d�1) 192.1 (1.2e1058.4) * 282.3 (1.9e1442.3) *
Temperature (�C) 9.9 (6.5e12.3) * 15.1 (10.9e21.0) *
pH 7.7 (6.6e8.6) 7.8 (7.1e8.0)
Salinity 1.4 (0.0e2.5) * 2.4 (0.0e2.9) *
CDOM (g(440)) (m�1) 4.3 (1.3e8.8) * 1.7 (0.7e7.6) *
Humic substances (gm�3) 64 (22e120) * 31 (17e132) *
Secchi depth (m) 2.0 (0.5e4.0) * 3.8 (1.4e6.0) *
PAR 1m (mmol photon m�2 s�1) 136 (8e307) * 248 (106e378) *
PAR 5m (mmol photon m�2 s�1) 14 (0e56) 44 (1e107)
Depth 1% PAR (m) 2.3 (0.5e4.7) 4.5 (1.7e7.1)
Depth 0.1% PAR (m) 3.5 (0.8e7.1) 6.7 (2.5e10.6)
DOC (gm�3) 6.9 (4.4e10.2) * 4.7 (3.8e9.9) *
TN (mgm�3) 309 (119e800) * 206 (79e374) *
TP (mgm�3) 18.8 (4.3e114.1) * 8.0 (1.9e3.9) *
SPM (gm�3) 5.1 (0.2e35.7) * 1.4 (0.4e5.7) *
River flow (m3 s�1) 143 (29e292) * 26 (11e45) *
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showed rather similar values in the depth profiles (Suppl. Fig. 7),
except close to the river mouth where the production rates were
clearly higher at 1m than at 3 and 5m.

Throughout the sampling period bacterial production was
highest within the river, where the DOC concentrations were
highest, decreasing seawards; while the primary production often
showed an opposite trend. The proportion of bacterial production
to total basal production (primaryþ bacterial production) generally
showed a positive relationship with DOC concentration (Fig. 4).
This pattern was especially observed during the spring period
(Fig. 4A and B), where bacterial production constituted almost 100%
of the basal production in the river and upper estuary, with DOC
concentrations of ~10 gm�3. Although this DOC-induced domi-
nance of bacterial production was clearest during spring, it could
still be observed during summer (Fig. 4C and D).
3.3. Factors governing phytoplankton and bacterial production,
photosynthetic efficiency and bacterial growth rate

To get an understanding of factors influencing phytoplankton
and bacterial production, photosynthetic efficiency and bacterial
growth rate, we performed two principal component analyses
(PCA). In the PCA including primary and bacterial production, the
first two axes summarized 65% of the variance (Table 2). The first
axis was mostly driven by DOC, TN and PAR, and the second by PP,
Chl a and TP. The PCA indicated a positive relationship between the
primary production and TP and a negative relationship with DOC,
while bacterial production was positively related to DOC (Fig. 5A).

In the PCA including phytoplankton and bacterial growth rate
(PP:Chl a and BP:BB), the first two axes summarized 65% of the
variance (Table 2). The first axis was mostly driven by DOC, TN and
PAR, and the second axis by pH and TP. The PCA indicated that the
photosynthetic efficiency (PP:Chl a) was positively related to tem-
perature and negatively to DOC, while the bacterial growth rate
(BP:BB) was positively related to DOC (Fig. 5 B).

Multiple linear regressions showed that DOC had a negative
effect on primary production and photosynthetic efficiency and a
positive effect on bacterial production and growth rate in the es-
tuary (Table 3). These relationships were especially pronounced in
the upper estuary (Fig. 6). We could also find a positive effect of TP
on primary production (Table 3).
4. Discussion

4.1. Drivers of primary production and photosynthetic efficiency

Primary production showed two peaks, one coinciding with the
spring flush and one during the summer. Both peaks were driven by
the availability of phosphorus, which has been recognized as the
limiting nutrient in the study area (Andersson et al., 1996). TP
concentrations were generally higher at the more seaward loca-
tions throughout the sampling, since river water was relatively
deficient in P. This scenario can be attributed to the characteristics
of the €Ore River catchment, consisting mainly of forests and peat-
lands (Stepanauskas et al., 2002; R€aike et al., 2012), while the
offshore Bothnian Sea contains relatively high P concentrations due
to the inflow of P rich seawater from the Baltic Proper (Rolff and
Elfwing, 2015). However, owing to the high N content of ADOM,
the TN concentrations generally decreased from the river towards
the more seaward locations. Similar, although less pronounced,
distribution patterns of N and P have been found in the Råne es-
tuary situated further north in the Baltic Sea (Figueroa et al., 2016),
which can be explained by the stronger influence of Baltic Proper
waters in our study region. The second peak in primary production
may have been due to predator-induced remineralization of nu-
trients. During late summer heterotrophic protists and zooplankton
have their maximum, remineralizing nutrients which in turn can
favour primary producers.

While P was a positive driver of primary production, light
attenuation by ADOM and SPMmost likely had a negative effect on
photosynthesis. Variations of the underwater light field followed a
similar spatial pattern across the entire sampling period, where the
Secchi depth increased from ~0.5m at near-shore stations to
~4m at the more seaward stations, though the strongest spatial
gradient was recorded in spring. In general, the photosynthetic
efficiency showed positive correlationwith Secchi depth (rs¼ 0.442
in spring and rs¼ 0.386 in summer, p< 0.05). Phytoplankton
photosynthetic efficiency was hampered by coloured DOC,



Fig. 2. Temporal variation of (A) depth-integrated primary production (PP), (B) depth-integrated bacterial production (BP), (C) primary production (PP) at 1m, (D) bacterial
production (BP) at 1m, (E) Chl a concentration, (F) bacterial biomass (BB), (G) PP:Chl a ratio and (H) bacterial specific growth rate (BP:BB) in the €Ore estuary. Values were averaged
per sampling week for all the stations. Error bars denote the standard error.
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especially in the upper estuary. However, as TP concentrations were
also lowest when the Secchi depth was lower, it is thus difficult to
determine if photosynthesis close to the river mouth was con-
strained by low P concentrations or ADOM-induced light limitation,
or a combination of both. Primary production within the sampled
region was lower at 5m depth, compared to 1m, due to decreasing
PAR levels with depth in the water column. However, at 1m depth
the light was not at limiting levels, not even at stations close to the
river mouth, while at 5m depth PAR should have been a strong
limiting factor for photosynthesis at stations close to the river
mouth (Andersson et al., 1994). The photosynthetic efficiency was
lowest in spring and highest in July, which may partly have been
driven by the seasonal variations in PAR. This is supported by the
multiple regression analysis, showing that DOC had a negative ef-
fect on photosynthetic efficiency in the entire estuary.

4.2. Drivers of bacterial production and bacterial growth rate

Heterotrophic bacterial production and bacterial specific growth
rate (BP:BB) peaked twice during the sampling period, once during
spring and once in summer. However, unlike the patterns observed
for phytoplankton, we suggest that these two peaks of



Fig. 3. Distribution of (A) depth-integrated primary production (PP), (B) depth-integrated bacterial production (BP), (C) primary production (PP) at 1m, (D) bacterial production
(BP) at 1m, (E) Chl a concentration, (F) bacterial biomass (BB), (G) PP:Chl a ratio and (H) bacterial specific growth rate (BP:BB) along the DOC gradient in the €Ore estuary during
spring and summer. Values were averaged per station over the entire sampling period. Error bars denote the standard error.
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heterotrophic bacterial production have different drivers.
Throughout the sampling period spatial patterns of bacterial pro-
duction showed that the highest rates occurred at the river mouth,
where DOC concentrations were highest, steadily decreasing at the
more seaward stations (i.e. the opposite pattern to primary pro-
duction). This was especially pronounced in spring, when hetero-
trophic bacterial production accounted for almost 100% of the basal
production in the river mouth and only ~10% at the seaward sta-
tions. Thus the voluminous discharge of ADOM-rich river waters,
laden with partly bioavailable DOC, was the most likely driver of
bacterial production during this initial peak.

The second peak of heterotrophic bacterial production and
bacterial specific growth rate in summer occurred concomitantly
with a sustained plateau of high primary production and somewhat
elevated river discharge. Although ADOM represents a supple-
mentary food source for bacteria it is nevertheless unlikely that
ADOM represents a sufficient nutritional supply to sustain the
bacterial production levels observed considering the much lower



Fig. 4. Contribution of bacterial production to basal production (bacterial þ primary production), %BP, along the DOC gradient at selected dates representative of the spring (A) May
18th, (B) May 25th, and of the summer (C) July 20th and (D) August 3rd.

Table 2
Variable scores for the first and second components of the PCAs performed with (A)
BB, BP, Chl a and PP, and with (B) BP:BB and PP:Chl a ratios (PP: primary production;
BP: bacterial production; BB: bacterial biomass; T: temperature; PAR: PAR at 1m).

Component 1 Component 2

A
PP �0.120 �0.752
BP �0.518 0.585
BB �0.275 0.508
Chl a �0.562 �0.711
T 0.619 0.040
pH 0.517 �0.649
PAR 0.792 �0.026
DOC �0.878 0.364
TN �0.883 �0.205
TP �0.681 �0.677
SPM �0.706 0.054

% variance explained 40.58 24.80

B
PP:Chl a 0.564 �0.274
BP:BB �0.375 �0.596
T 0.648 �0.434
pH 0.549 0.730
PAR 0.802 0.038
DOC �0.887 �0.239
TN �0.848 0.202
TP �0.598 0.562
SPM �0.753 �0.101

% variance explained 47.28 17.53
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DOC concentrations recorded at this stage of the season. Thus
during the summer period inwhich primary productionwas high it
is likely that phytoplankton production was a major driver of bac-
terial production. In summer the nutrient concentrations in this sea
region are low, as seen here and recorded previously (e.g.
Andersson et al., 1996), and under such conditions phytoplankton
exudation is generally higher than under nutrient replete condi-
tions (Larsson and Hagstr€om, 1982). Since higher rates of primary
production occur over a sustained period during summer and
phytoplankton exudation levels are also higher, it is therefore likely
that phytoplankton production directly sustained the bacterial
population. In line with this, we found positive relation between
bacterial growth rate and primary production at the most seaward
stations (e.g. station 17 r2¼ 0.87).

Our results are in general agreement with earlier studies per-
formed in diverse estuaries in temperate areas, e.g. in the Scheldt
River estuary (Goosen et al., 1997), the Hudson River estuary
(Findlay et al., 1991; Sa~nudo-Wilhelmy et al., 1999), the York River
estuary in Chesapeake Bay (Schultz et al., 2003), in tropical (Bega
and Clyde River estuaries, SE Australia, Hitchcock and Mitrovic,
2015), and sub-tropical regions (Fly and Purari Rivers, Gulf of
Papua, Robertson et al., 1998). In the Scheldt River estuary, they
found a high degree of heterotrophy in the estuarine system, yet
the bacterial production also closely followed the peaks of primary
production, likely due to the highly bioavailable organic exudates
released by phytoplankton (Goosen et al., 1997). During spring, our
study system seems to be highly influenced by ADOM, since bac-
terial production was clearly decoupled from primary production.



Fig. 5. Principal component analyses (projection of the variables and observations)
showing the distribution of abiotic (DOC, pH, SPM, T: temperature, TP: total phos-
phorus, TN: total nitrogen) together with the biotic variables (A) BB: bacterial biomass,
BP: bacterial production, Chl a concentration, PP: primary production and (B) BB:BP:
bacteria specific growth rate, PP:Chl a: primary production to Chl a concentration ratio
for the entire period. Spring samples are indicated by open diamonds, and summer
samples by open circles.

A. Andersson et al. / Estuarine, Coastal and Shelf Science 204 (2018) 225e235 233
Similar findings were recorded in a study performed in a more
northerly Baltic Sea estuary (Råne), where not only spatial but also
temporal decoupling between primary and bacterial production
was observed (Figueroa et al., 2016). The patterns we observe in this
study are consistent with previous findings, which indicate that in
estuaries, especially those entering semi-enclosed seas such as the
northern Baltic Sea, allochthonous material can be a crucial
component for basal production. Previous studies have shown that
bacterial production in coastal waters of the northern Baltic Sea can
be both C and P limited (Zweifel et al., 1993; Figueroa et al., 2016)
and although riverine DOC is generally of low bioavailability
(5e10%, Stepanauskas et al., 2002, Figueroa et al., 2016), the plen-
tiful inflows to coastal areas can promote heterotrophic bacterial
production (Figueroa et al., 2016).

In many productive marine and freshwater systems the yearly
succession starts with a spring phytoplankton bloom, while
bacteria exhibit their maximum during summer, associated with
warmer temperatures (e.g. Elmgren, 1984; Legrand et al., 2015).
Although temperature is undoubtedly important for bacteria,
nutrient availability and food resources can also have an influ-
ence (Degerman et al., 2013). Exceptions to this “classical” suc-
cession pattern have been documented in unproductive brown
lakes and sub-Arctic estuaries, where heterotrophic bacterial
production exhibits a growth maximum in spring and the highest
phytoplankton production occurs in summer (Drakare et al.,
2002; Figueroa et al., 2016). In such cases these patterns have
been driven by variations in the inflow of ADOM. In the €Ore es-
tuary, the bacteria-phytoplankton succession pattern appeared to
follow both patterns, with both groups showing maxima in
spring and in summer, as observed in the Scheldt estuary
entering the North Sea (Goosen et al., 1997). Traditionally, it is
anticipated that river discharge causes eutrophication in the
recipient waters, but if the ADOM-induced light attenuation is
strong the production in the recipient estuary may in fact be
hindered (e.g. Andersson et al., 2013). This indicates that elevated
riverine inflows rich in ADOM can cause substantial changes in
estuarine ecosystem functioning, and that classical assumptions
may no longer apply.

4.3. Conclusion

We conclude that ADOM is commonly overlooked as an envi-
ronmental stressor in estuarine and coastal ecosystems, especially
considering climate change projections. Instead of causing
phytoplankton blooms and eutrophication in the recipient waters,
river waters rich in ADOM can cause a decrease in phytoplankton
production, while heterotrophic bacterial production and the mi-
crobial food web are favoured. As observed at the stations located
closer to the river mouth, the spring river flush reduces the extent
of the phytoplankton spring bloom production. This may have a
negative effect on higher trophic levels within the pelagic food
web and on the benthic fauna feeding on settling phytoplankton.
Although we did not quantify top-down effects, we believe the
described patterns to be robust since micro- and meso-
zooplankton are low in abundance during spring (Elmgren, 1984;
Samuelsson et al., 2006; Dahlgren et al., 2010), thus only exerting a
minor predation-pressure, while their increased presence in
summer would be counterbalanced by the regeneration of organic
substances and nutrients within the water column (Andersson
et al., 1985). Furthermore, our findings may offer an explanation
for previously identified trends. For example, during a rainy period
with periodically lower primary production in the northern Baltic
Sea (Wikner and Andersson, 2012) the benthic amphipod
Monoporeia affinis showed a drastic decrease in the area at a large
spatial scale (Eriksson-Wiklund and Andersson, 2014). In a low-
diversity system such as the brackish Baltic Sea, changes in
ADOM inputs will lead to altered balance between primary and
bacterial production, which in turn has a potential to propagate to
higher levels in the food web and ultimately also affect fish pro-
duction. Since the resilience of such low-diversity systems can be
relatively poor, extended recovery times from such changes may
also occur.



Table 3
Stepwise multiple linear regression of primary production (PP), photosynthetic efficiency (PP:Chl a), bacterial production (BP) and bacterial growth rate (BP:BB) as dependent
variables and dissolved organic carbon (DOC) and total phosphorus (TP) as independent (potential explanatory factors) variables (all data ln transformed). Upper estuary
(stations 2, 3, 4, 5 and 6): average salinity 1.7, CV 55%. Lower estuary (stations 14, 15, 17, 18 and 19): average salinity 2.5, CV 12%. Entire estuary (stations 2e19): salinity 2.2, CV
35%.

Area in estuary Variable Mod. R2 Model sign. Factor Beta/slope Factor sign

Upper PP 0.51 <0.001 DOC �0.72 <0.001
Lower PP 0.29 <0.001 TP þ0.54 <0.001
Entire PP 0.42 <0.001 DOC �0.70 <0.001

TP þ0.51 <0.001

Upper PP:Chla 0.42 <0.001 DOC �0.64 <0.001
Lower PP:Chla 0.29 <0.001 DOC �0.54 <0.001
Entire PP:Chla 0.40 <0.001 DOC �0.63 <0.001

Upper BP 0.27 <0.001 DOC þ0.52 0.002
Lower BP e e e e e

Entire BP 0.06 0.006 DOC þ0.24 0.006

Upper BP:BB 0.22 0.002 DOC þ0.47 0.002
Lower BP:BB 0.15 0.01 DOC �0.39 0.010
Entire BP:BB 0.05 0.013 DOC þ0.22 0.013

Fig. 6. Relationship between primary production (PP), photosynthetic efficiency (PP:Chl a), bacterial production (BP) and bacterial growth rate (BP:BB) and DOC in the upper
estuary (stations 2, 3, 4, 5 and 6).
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