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ABSTRACT 

Introduction: The immune system is our defense system against microbial infections 

and tissue injury, and understanding how it works in detail is essential for developing 

drugs for different diseases. Mass spectrometry-based proteomics can provide in-

depth information on the molecular mechanisms involved in immune responses. 

Areas covered: Summarized are the key immunology findings obtained with MS-

based proteomics in the past five years, with a focus on inflammasome activation, 

global protein secretion, mucosal immunology, immunopeptidome and T cells. 

Special focus is on extracellular vesicle-mediated protein secretion and its role in 

immune responses. 

Expert commentary: Proteomics is an essential part of modern omics-scale 

immunology research. To date, MS-based proteomics has been used in immunology 

to study protein expression levels, their subcellular localization, secretion, post-

translational modifications, and interactions in immune cells upon activation by 

different stimuli. These studies have made major contributions to understanding the 

molecular mechanisms involved in innate and adaptive immune responses. New 

developments in proteomics offer constantly novel possibilities for exploring the 

immune system. Examples of these techniques include mass cytometry and different 

MS-based imaging approaches which can be widely used in immunology. 

 

 

 

 

 



3 
 

 

 

 

 

 

 

1. Introduction  

Pathogens can rapidly adapt and evolve and thereby avoid detection by the human 

immune system. However, multiple defense mechanisms have developed to 

recognize and eliminate pathogens, including innate and adaptive cell-mediated 

immunity (Figure 1). The innate immune system is the first line of defense against 

microbial infections. It also responds to host factors that arise during tissue damage 

and metabolic dysregulation. Inflammasomes are multimeric cytosolic protein 

complexes that mediate innate immune responses to microbial infection, cellular 

damage, and metabolic dysregulation [1]. The assembly of inflammasomes triggers 

activation of inflammatory cysteine protease caspase-1 and proteolytic processing 

and secretion of pro-inflammatory cytokines Interleukin (IL)-1� and IL-18. These 

cytokines are important mediators of inflammatory responses and are critical in both 

local and systemic inflammation. Activation of innate immunity is essential to control 

infections and provide the necessary signals to trigger adaptive immunity [1]. 

Activation of adaptive immunity is usually required to completely eradicate microbial 

infections. 

Protein secretion is an important part of the immune response. Proteins can be 

secreted through multiple pathways (summarized in Fig 2). According to the Human 

Protein Atlas [2], approximately 39% of the ~20,000 human protein-coding genes are 
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predicted either to express a signal peptide that is required for secretion through the 

ER/Golgi secretory pathway or to have at least one transmembrane region, 

suggesting active transport of the corresponding protein out of the cell. Proteins that 

lack a signal peptide can be secreted through unconventional, vesicle-mediated 

pathways. Immune cells secrete a wide range of proteins including 

immunomodulatory factors (e.g., cytokines and chemokines) that are indispensable 

for proper coordination of appropriate cellular responses. 

 

Mass spectrometry (MS)-based proteomics can provide in-depth information about 

how the immune system is regulated and the molecular mechanisms involved in 

immune responses. The main goal of this review is to summarize the key findings in 

molecular immunology in the past five years using different MS-based proteomics 

approaches, with a focus on inflammasome activation, global protein secretion and 

extracellular vesicles, mucosal immunology, immunopeptidome and T cells. Key 

findings obtained with proteomics studies related to these topics are summarized in 

Table 1. 

 

2. Proteomics contributes to immunology research at multiple levels  

Modern MS-based proteomics methods give detailed spatio-temporal information on 

proteins on a global scale. Proteomics provides information on protein expression, 

sub-cellular localization, post-translational modifications (PTMs), and interactions. 

Most proteomics methods use a so-called ‘bottom up’ approach, where the proteins 

are first digested into peptides; the resulting peptides are analyzed by liquid 

chromatography (LC)-tandem mass spectrometry (MS/MS) followed by 

computational data analysis. Several methods are available for the identification and 
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quantification of thousands of proteins from biological samples and comparison of the 

proteome profiles of different samples (reviewed in [3,4]). Quantitative MS-based 

proteomics provides data on protein expression levels and also on protein 

localization and trafficking inside the cells when it is combined with sub-cellular 

fractionation. Several studies have used this approach to characterize changes in 

sub-cellular proteomes due to viral infection [5,6] and other stimuli activating innate 

immune responses [7,8]. In addition to global screening, MS-based proteomics 

provides methods for targeted protein quantification (reviewed in [9]). 

 

Protein phosphorylation is a widely studied PTM with major impacts on most cellular 

signaling cascades. In phosphoproteomics, the phosphorylated peptides need to be 

enriched before the LC-MS/MS analysis. The two most common enrichment methods 

take advantage of titanium dioxide or immobilized metal ion affinity chromatography. 

Advances in phosphopeptide enrichment methods and MS analysis, together with 

improved data analysis tools, have made it possible to identify thousands of 

phosphoproteins from cellular samples (reviewed in [10,11]). Phosphoproteome 

studies on host responses to viral infection [12-16] have shown that viral infection 

alters the phosphorylation status of hundreds of proteins involved in pathways critical 

to the host response to infection. For example, phosphoproteome characterization of 

influenza A virus (IAV) infection in human macrophages, combined with 

bioinformatics and functional studies, showed that cyclin-dependent kinases are 

activated upon IAV infection; targeting these kinases with small-molecule inhibitors 

could be a novel strategy to treat severe influenza virus infections [13]. This study 

also highlights the importance of using primary cells in proteome-level studies to 

obtain the most novel and biologically meaningful data for further functional studies.  
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In addition to large-scale phosphoproteomic analysis, MS-based studies focusing on 

the detailed characterization of individual protein’s phosphorylation status have 

contributed to our understanding of immune system regulation. Very recently, Lee et 

al. used this approach to show that infection-specific phosphorylation of glutamyl-

prolyl tRNA synthetase induces antiviral immunity [17]. In a very elegant study, Liu 

and co-workers used targeted quantification by MS to demonstrate that the adaptor 

molecules of the innate immunity, MAVS, STING, and TRIF are phosphorylated to 

mediate activation of transcription factor interferon regulatory factor 3 [18].   

 

Proteins act in cells in complexes with other proteins, and in-depth knowledge of 

these complexes is essential to understand cellular signaling in detail. Affinity 

purification (AP) combined with MS is a widely-used strategy to characterize protein 

complexes. Several methods of AP are available and have been reviewed recently 

[19]. The AP-MS methods include traditional immunoprecipitation using a protein of 

interest as bait. The main drawback of this technically simple approach is the high 

background of proteins non-specifically binding to the antibody. Therefore, many 

approaches have been developed using two-step AP to maximize the recovery of 

specific interactions. AP-MS has produced significant new knowledge of key proteins 

involved in immune responses [20-24]. These include studies of 14-3-3 and Rab 

GTPase proteins. 14-3-3 proteins are a family of conserved regulatory molecules that 

can bind a multitude of functionally diverse signaling proteins through 

phosphorylation-dependent interactions. Öhman et al. [21] combined 

phosphoproteomics with quantitative 14-3-3 protein AP to characterize the 14-3-3 

protein-mediated signaling pathways activated during cytosolic dsRNA-induced 
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innate immune responses in human keratinocytes. Through extensive bioinformatics 

analysis of the combined datasets combined with functional studies, they showed 

that sirtuin 1 and Rel A-associated inhibitor are novel regulators of antiviral innate 

immune responses. Rab GTPases regulate many stages of membrane traffic, 

including vesicle formation, vesicle movement, and membrane fusion. In a recent 

study, Li et al. [24] depicted the interactomic landscapes of major mammalian Rab 

GTPase family proteins in dendritic cells (DCs) and provided a global view of 

intracellular membrane organization in combination with AP-MS and imaging tools. 

Further analysis showed that the Rab32 subnetwork of proteins has anti-microbial 

functions. 

 

3. Intracellular proteome characterization of inflammasome activation  

Inflammasomes are critical components of the innate immune system that activate 

inflammation and contribute to the initiation and pathology of human disease in many 

ways. Inflammasomes are critical for the clearance of pathogens and damaged cells, 

but overwhelming inflammasome activation is a major driver of autoimmune disease 

and metabolic disorders [1]. The canonical inflammasome protein complexes consist 

of caspase-1, adapter protein apoptosis-associated speck-like protein containing a 

caspase-recruitment domain (ASC), and a sensor protein. These sensor proteins 

belong to NOD-like receptor (NLR) or to the absent in melanoma 2 (AIM2)-like 

receptor families and include NLRP1, NLRP3, NLRC4, and AIM2 inflammasomes[1]. 

Of these, NLRP3 inflammasome is the most extensively studied because of its 

activity in many human diseases, including autoinflammatory diseases, Alzheimer’s 

disease, atherosclerosis, and diabetes [25].  
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Several AP-MS-based studies have identified novel components and regulators of 

inflammasomes. A systematic proteomic screen for proteins that associate with DNA 

led to the identification of the AIM-2 inflammasome, which is involved in the 

cytoplasmic recognition of double-stranded DNA [26]. In addition, AP-MS resulted in 

the identification of end-binding protein 1 as a crucial component of the AIM-2 

inflammasome [27]. Further, He and co-workers recently identified an essential 

mediator of NLRP3 activation called NIMA Related Kinase 7 (NEK7) using AP-MS 

[28]. NEK7 associates with NLRP3 following ATP stimulation and is required for 

NLRP3-mediated caspase-1 activation [28]. Imiquimod is a small-molecule ligand of 

Toll-like receptor-7 that is licensed for the treatment of viral infections and skin 

cancers. It is also a known activator of NLRP3 inflammasome in myeloid cells [29]. A 

recent study used AP-MS with a bead-coupled imidazoquinoline to identify the 

targets of imiquimod [30]. These results show that imiquimod inhibits the quinone 

oxidoreductases NQO2 and mitochondrial Complex I. This resulted in reactive 

oxygen species formation and thiol oxidation and was followed by NLRP3 activation 

via NEK7. AP-MS-based techniques have also been exploited to study the post-

translational regulation of inflammasome activation: Yan et al. showed that dopamine 

inhibits NLRP3 inflammasome activation via a second messenger cyclic adenosine 

monophosphate that binds to NLRP3 and promotes its ubiquitination and degradation 

via the E3 ubiquitin ligase MARCH7 [31].  

 

In addition to canonical inflammasomes, non-canonical inflammasomes have recently 

been described [32]. Non-canonical caspase-4/5 inflammasome activates pyroptosis, 

an inflammatory form of cell death in response to infections of gram-negative bacteria 

[62]. Human non-canonical caspase-4/5 inflammasome can also activate the 



9 
 

canonical NLRP3 inflammasome by an unidentified mechanism [33]. The AP-MS 

approach identified a new component of the inflammasomes called gasdermin D [34]. 

Gasdermin D is required for pyroptosis in response to both NLRP3 inflammasome 

and non-canonical inflammasome activation [25].  

 

Quantitative proteomics has also produced new knowledge on the inflammasomes. 

Worah and co-workers utilized label-free quantitative MS to identify differences 

between the proteome profiles of primary human DC subsets. They showed that 

plasmacytoid DCs do not express caspase-1, the central component of canonical 

inflammasomes, and that they also express other inflammasome-related proteins at 

low levels [35]. This suggests that the role of plasmacytoid DCs is not related to 

inflammasome-mediated secretion of pro-inflammatory cytokines: instead, they are 

potent producers of antiviral type I interferons [36].   

 

4. Secretome analysis of immune cells 

Protein secretion through multiple pathways is an important part of immune 

responses. In immunology, studies in protein secretion have focused mostly on 

analyzing secretion of cytokines and chemokines using antibody-based assays such 

as ELISA. However, recent system-level characterizations using MS-based 

proteomics approaches have shown that immune cells activate a much more global 

protein secretion than just secretion of cytokines and chemokines. The global pattern 

of secreted proteins (secretome) of a cell depends largely on its activation state; the 

detailed characterization of secretomes provides valuable information for 

understanding immune response mechanisms. At present, high-resolution MS 

combined with advanced sample preparation methods allows for analysis of the total 
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secretome from low numbers of cells: Meissner and co-workers were able to achieve 

low picogram sensitivity by quantifying the time-resolved release of 775 proteins from 

as little as 150,000 stimulated mouse macrophages per condition [37]. This study 

linked specific secretory profiles to the activation of distinct intracellular signaling 

adaptor proteins and demonstrated that the secretions of many pro-inflammatory 

mediators have redundant mechanisms, leading to a potentially vast increase in their 

secretion. 

 

Total secretomes of human cells upon virus infection have been widely studied with 

the rationale of understanding the cellular response to the infection, elucidating the 

physiopathology of the resulting disease as well, and determining potential 

therapeutic targets. Global secretome analysis of human macrophages after infection 

by IAV [5] and herpes simplex virus [38] revealed massive release of danger signal 

proteins and identified secreted host factors that have a role in antiviral defense. In 

addition to viral infection, the secretomes of human macrophages have been studied 

following different stimuli [39-41]. These include ATP, monosodium urate (MSU) and 

�-glucans. Extracellular ATP and MSU are endogenous danger signals known to 

activate inflammatory responses; β-glucans are the main constituents of fungal cell 

walls, triggering an effective innate immune response. The secreted proteins 

identified in these studies involved many danger signal proteins that amplify 

inflammatory response during innate immune activation, such as annexins, high 

mobility group proteins and S100 and heat shock proteins. Bioinformatic 

characterization of these secretomes revealed that most identified proteins did not 

have the signal sequence required for classical ER/Golgi-mediated secretion and that 
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most of the proteins are found in the ExoCarta database, having been identified in 

the exosomes of multiple organisms [42]. 

 

The effects of bacterial infection on the secretome of several human cell types have 

also been investigated with proteomic tools. For example, total secretome analysis 

revealed strong differences in the inflammatory responses induced by different 

Staphylococcus aureus strains [43]. Uhlmann and colleagues identified a novel 

secreted streptococcal factor that can potentially trigger neutrophil activation and 

degranulation during Streptococcus pyogenes infections of human neutrophils [44]. 

In addition to live bacteria, secretome analysis has been performed in cells that have 

been activated with lipopolysaccharide (LPS), the cell wall component of gram-

negative bacteria. Secretome analysis of endothelial cells stimulated with 

extracellular LPS to activate Toll-like receptor (TLR)4  led to the discovery of 19 

potential biomarkers for sepsis [45]. Most secreted proteins induced by LPS 

stimulation were related to the regulation of actin cytoskeleton [45]. 

 

Secretome analysis of human adipose tissue-derived mesenchymal stem cells 

(hASCs) revealed secretion of several chemokines and cytokines in response to 

stimulation with tumor necrosis factor (TNF), a key pro-inflammatory cytokine [46]. 

This demonstrated that TNF-treated hASCs secrete factors that drive the monocyte 

migration and subsequent tissue regeneration. Oh and co-workers performed 

secretome analysis of human monocytes from newborn and elderly donors 

stimulated with several commonly used adjuvants [47]. These adjuvants activate an 

innate immune response, typically via TLR stimulation. TLR-mediated immune 

responses show distinct differences between different age groups, and the study 
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demonstrated that adjuvants induce different yet partially overlapping secretomes 

that vary with the adjuvant types and the age of the study participants. These data 

are important when designing vaccines for certain age groups. 

 

5. Proteome analysis has shown that extracellular vesicles play an important 

role in immune responses 

Proteins that do not carry an N-terminal signal peptide required for the classical 

ER/Golgi secretory pathway are released unconventionally. They are packed into 

various types of membrane-enclosed structures, collectively called “extracellular 

vesicles” (EVs) [48]. These EVs include microvesicles (MVs) that bud directly from 

the plasma membrane and are shed into the extracellular space, exosomes that are 

formed when multivesicular bodies fuse with the plasma membrane, and other 

vesicles whose origin has been linked with different cellular processes including 

secretory autophagy, apoptosis and lysosome secretion. EVs are released from 

virtually all cell types for long-distance intercellular communication, carrying a diverse 

and well-protected cargo of biomolecules: proteins, nucleic acids, and bioactive lipids. 

They can travel considerable distances throughout human body fluids and tissues 

and deliver molecular information to recipient cells upon endocytosis. When released 

from stimulated cells, they have been shown to modulate the immune response [49].  

 

Proteomics has been used extensively for the characterization of EVs released from 

immune cells. For proteomics analysis, EVs are isolated from a multitude of biological 

fluids and growth media using different protocols involving high-speed centrifugation, 

affinity purification, precipitation, and filtration-based methods. For example, Groot 

Kormelink and co-workers used high-speed ultracentrifugation to isolate EVs from 
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mast cells following immunoglobulin E-mediated cell activation. They established that 

during their degranulation mast cells release EVs containing mast cell-specific 

proteases and concluded that these EVs and their content are potentially important 

immune regulators [50]. Another proteomic study utilizing similar EV isolation method 

showed that foam cells, which are fat-laden macrophages in atherosclerotic plaques, 

secrete more EVs than unstimulated macrophages. These foam cell-derived EVs 

promote vascular smooth muscle cell migration and adhesion and potentially play a 

role in the disease progression [51]. The optimal methods for isolation and separation 

of different EVs are still highly debated [52]. A recent study by Kowal and colleagues 

provided an extensive characterization of proteins in different EV classes secreted 

from human DCs. They first purified different EVs by their sedimentation speed and 

then either by their behavior upon upward floatation into iodixanol gradients or by 

immuno-isolation. Based on quantitative proteome analysis of separated EV 

populations, they suggest novel protein markers to distinguish different EV 

populations [53]. 

 

5.1 EVs secreted during microbial infection  

Proteomic analyses of EVs released from virally infected cells have been performed 

with the purpose of understanding the observed overlap between natural 

endocytosis-exocytosis pathways and the virus life cycle. Accumulating evidence for 

viral hijacking of human EV secretory pathways and membranes raised the 

hypothesis of the existence of “Trojan exosomes,” as carriers of viral genetic material, 

facilitating viral infections [54]. Consequently, identification of EV proteins directly 

associated with virus dissemination is of interest for the identification of novel drug 

targets and development of antiviral therapies.   
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Several groups applied proteomics to analyze the EVs from human 

immunodeficiency virus (HIV)-1-infected cells. Li and colleagues revealed that EVs 

released from HIV-1-infected H9 cells contain a unique and quantitatively different 

protein signature than exosomes released from uninfected cells and harbor 

regulatory molecules that impact the processes of cellular apoptosis and proliferation 

[55]. This study also showed that EVs facilitate the transfer of HIV-1 and viral 

constituents from infected macrophages to neighboring uninfected cells [56]. Meckes 

et al. performed a large-scale quantitative proteomic study, infecting eleven B cell 

lines with Kaposi sarcoma-associated virus and Epstein-Barr virus or with both 

viruses and purifying the secreted EVs. This study demonstrated that viral infection 

causes virus- and host cell-specific modifications of the proteome of secreted EVs 

that is correlated with and dependent on the expression of viral oncogene latent 

membrane protein-1. This discovery not only shed new light on the roles of EVs in 

the pathogenesis of these common viruses but also identified immune regulatory 

pathways affected by the EVs that directly facilitate virus survival and spreading [57]. 

By applying an SILAC quantitative proteomics approach, Zhao and colleagues 

revealed that hepatitis B virus also alters the proteomic composition of hepatic cell 

line Huh-7-derived EVs [58]. A similar modulation was observed in the case of human 

T cell lymphotropic virus-infected T cell lines [59]. 

 

A recent article described the proteomic characterization of EVs released from 

human macrophages upon IAV infection [60], showing a robust EV-mediated protein 

secretion as early as 9 h post-infection. Proteins secreted in response to IAV 

infection included many proteins involved in translation, such as components of 
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spliceosome machinery and the ribosome. The data also shows that EVs derived 

from IAV-infected macrophages contain antiviral cytokines, fatty acid-binding proteins, 

copper metabolism Murr-1 domain proteins, and autophagy-related proteins. These 

data suggest an important role for EVs in intercellular communication during IAV 

infection. 

 

Some of the most extensively studied EVs in the context of host cell-bacteria 

interaction involve those released from Mycobacterium tuberculosis-infected human 

macrophages. Hare et al. demonstrated that EVs from infected macrophages contain 

several interferon-inducible proteins [61]. Wang et al. compared the proteomic 

composition of EVs from Mycobacterium avium-infected macrophage-like THP1 cells. 

M. avium infection significantly changed the protein composition of exosomes 

isolated from THP-1 cells [62]. Exosomes isolated from infected cells contained 

components that induced immune responses in resting cells, suggesting an important 

function for exosomes in anti-mycobacterial host defense.  

 

In addition to viral and bacterial infections, the role of fungal infection on EV secretion 

and composition has also been studied. Cypryk and co-workers showed that the 

major components of fungal cell walls, β-glucans, enhance vesicle-mediated protein 

secretion in human macrophages. The unconventionally secreted proteins included 

several receptors, such as cation-dependent mannose-6-phosphate receptor, 

macrophage scavenger receptor, P2X7 receptor, and several integrins [63]. A recent 

study of EVs from C. albicans-infected THP1 cells indicated that fungal stimulation 

induces secretion of EVs with alternated content of several signaling proteins 
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including chitinase-3-like protein 1, which has been proposed as the component 

responsible for the pro-inflammatory properties of the secreted EVs [64]. 

 

5.2 Inflammasomes and EV secretion 

The NLRP3 inflammasome activates caspase-1 and the subsequent secretion of pro-

inflammatory cytokines in response to microbial infection and endogenous danger 

signals. A study utilizing iTRAQ-labelling-based quantitative proteomics linked 

caspase-1 to unconventional protein secretion as early as 2008 [65]. Subsequent 

proteomics studies showed that NLRP3 activators including ATP, �-glucans, and 

monosodium urate activate robust unconventional vesicle-mediated protein secretion 

in human macrophages [39-41,63]. In contrast to these inflammasome activators, 

LPS-induced TLR4 triggering did not result in EV-mediated protein secretion despite 

the fact that TLR4 signaling resulted in a strong activation of gene expression [41]. 

Active forms of the lysosomal proteases cathepsins were identified in EVs after 

NLRP3 inflammasome activation [40,41]. Cathepsins are proteases that are required 

for NLRP3 inflammasome activation. This suggests that EVs released during 

inflammasome activation can amplify and/or activate NLRP3 inflammasome in 

recipient cells. In line with these results, Zhang and co-workers have shown that 

nigericin, a known activator of the NLRP3 inflammasome, activates EV-mediated 

protein secretion from LPS-primed macrophages [66]. They identified several Toll-like 

receptors, as well as components of the NF-�B and NLRP3 inflammasome signaling 

pathways, in EVs isolated from LPS-primed and nigericin-activated mouse 

macrophages. These results also suggest that EVs isolated from macrophages after 

NLRP3 inflammasome activation can enhance inflammatory responses in recipient 

cells.  
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A recent study showed that, in addition to NLRP3 inflammasome,  also the non-

canonical caspase-4/5 inflammasome can activate unconventional vesicle-mediated 

protein secretion in human macrophages [67]. The proteins secreted through EV-

mediated pathway contained ribosomal and danger signal proteins, including TLR4-

ligands S100A8 and prothymosin-α which may contribute to endotoxic shock during 

non-canonical inflammasome activation.   

 

6. Proteomics to study mucosal immunology  

Mucosal immunology is in the front-line status within the immune system preventing 

the uptake of pathogens and other foreign materials. Proteomics has been used to 

study mucosal specimens during microbial infection [68]. A label-free quantitative MS 

was used to study specimen isolated from small intestine of patients with acute and 

convalescent stages of Vibrio cholerae infection. This study identified 27 host 

proteins that were differentially abundant between the acute and convalescent stages 

of infection.  The majority of these proteins had known roles in innate immunity 

including cytokine production and apoptosis. The authors conclude that a strong 

inflammatory response is generated in the gut mucosa early after onset of V. 

cholerae infection, which may be critical for the development of long-term immunity 

against V.  cholerae [68].  

 

Proteomics has also been used to identify disease mechanisms and novel 

biomarkers and from mucosal colon biopsies for inflammatory bowel disease (IBD) 

including Crohn’s disease (CD) and ulcerative colitis (UC) [69-73]. Accurate 

differentiation between new onset CD and UC is demanding and therefore novel 
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biomarkers are needed. Similarly, differentiation of CD and intestinal tuberculosis 

(ITB) is challenging. Starr et al. used SILAC to analyze mucosal biopsies from 99 

pediatric control and biopsies of patients with CD and UC. The study identified two 

panels of candidate biomarkers for the diagnosis of IBD and the differentiation of IBD 

subtypes [71].   Rukmangadachar and co-workers analyzed colonic biopsies from 

inflamed mucosa of treatment-naïve patients with ITB, CD and controls with iTRAQ.  

This study concludes that there are differentially expressed proteins in tissue 

proteome of CD and ITB but fails to identify biomarkers that could be used to 

differentiate these diseases. Bennike and co-workers analyzed mucosal colon 

biopsies from non-inflamed tissue of patients with UC and compared the proteomes 

of those samples with the samples taken from healthy controls with label-free 

quantitative MS-based proteomics. Proteins with increased abundances in the UC 

colon biopsies included proteins associated with neutrophil extracellular traps and 

proteins functioning in innate immunity [71]. These results suggest a role for innate 

immunity in the etiology of UC. Mottawea et al. found altered host proteome in new-

onset pediatric patients with DC [73]: especially mitochondrial proteins implicated in 

H2S detoxification were expressed at low level. At the same the relative abundance 

of H2S microbial producers was increased and dysfunctional host mitochondrial 

function was observed. The study shows that host-microbiota interactions are 

disturbed in CD and provides a new mechanistic explanation for the pathogenesis of 

CD [73].  

 

7. Proteomic characterization of the immunopeptidome 

The immunopeptidome is the collection of peptides associated with and presented by 

major histocompatibility complex (MHC) molecules. Characterization of these 
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peptides is important for the development of better vaccines and immunotherapies 

against autoimmunity. The MHC immunopeptidome is highly complex and MS-based 

approaches have proven to be the method of choice in these studies (reviewed in 

[74]). At present, most immunopeptidome studies utilize affinity column coupled with 

monoclonal antibody (mAb) specific for a certain MHC class or allotype followed by 

MS-analysis of the captured peptides. 

Several recent studies have shown that it is possible to identify thousands of HLA-

bound antigenic peptides from diverse biological samples using this approach. The 

samples include celiac disease-associated MHC molecules, different cancer cell lines, 

fibroblasts, DCs, macrophages, and bronchoalveolar lavage (BAL) from patients with 

sarcoidosis [75-79].  

PTMs are an additional source of complexity in the immunopeptidomes. So far, 

phosphorylated and arginine methylated HLA-bound peptides have been identified 

[80,81]. These modifications potentially provide a unique source of disease-related 

MHC peptides that can elicit specific immune responses which may offer a novel 

targets for immunotherapy. 

The analyses of immunopeptidomes have usually been done using large amount of 

starting material not feasible to obtain from clinical samples. Heyder et al. optimized 

the method to identify HLA-DR-bound peptides from low cell numbers and utilized it 

to study BAL cells obtained from patients with sarcoidosis [78], and showed that the 

investigation of the BAL immunopeptidome from individual patients and healthy 

controls is possible with MS-based methods in order to identify disease-associated 

peptides. Moreover, a very recent report by Bassani-Sternberg et al. showed that 

advanced MS can be used directly for identification of mutated peptide ligands 

isolated from HLAs on the surface of native tumor tissues and concluded that these 
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mutated peptide ligands yield true neoepitopes with high relevance for 

immunotherapeutic strategies in cancer [82].  

The proteasome generates the epitopes presented on HLA class I molecules that 

elicit CD8+ T cell responses. The key step for the transformation of a protein into an 

HLA-I–restricted epitope is usually processed by the proteasome, which cuts proteins 

into peptides; alternatively, the proteasome can also cut and paste peptide 

sequences, thereby releasing peptide antigens that do not correspond to the original 

protein sequence. However, this proteasome-catalyzed peptide splicing has long 

been considered to occur only rarely. Liepe et al. developed an MS-based strategy to 

analyze this and unexpectedly revealed that a large fraction of HLA class I ligands 

are proteasome-generated spliced peptides [83]. Such merged peptides might turn 

out to be useful in vaccine or cancer immunotherapy development. 

 

8. Proteomic studies on T cells  

T cells play a central role in adaptive, cell-mediated immunity; their action is usually 

required for the final eradication of a microbial infection. Proteomics has been applied 

extensively to characterize T cells. Early quantitative MS-based proteomics studies 

on human primary CD4+ T helper (Th) cells revealed proteome changes in both 

microsomal and nuclear fractions [84-86]. These include the regulation of several 

immune-related proteins, including galectin-1, small GTPases GIMAP1 and GIMAP4, 

and SATB1, during Th cell differentiation. Recently, the proteomes of human Th1 and 

Th1/Th17 clones derived from intestinal biopsies of Crohn's disease patients were 

characterized using high-resolution MS [87]. In total, more than 7,000 proteins from 

the Th1 and Th1/Th17 clones were identified, with 334 proteins being differentially 
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expressed. Major differences were observed for cytotoxic proteins that were 

overrepresented in the Th1 clones. 

 

CD8+ cytotoxic T cells (CTLs) have also been characterized using quantitative 

proteomics [88,89]. Hukelmann et al. used high-resolution MS to map the proteome 

of CTLs and quantify the regulatory effect of selective inhibition of the mammalian 

target of rapamycin complex 1 (mTORC1) and combined inhibition of mTORC1 and 

mTORC2 on CTL proteomes. They identified almost 7,000 proteins from CTLs, 

demonstrating the diversity of the CTL proteome and how mTOR inhibitors control T 

cell function and program T cell signal-transduction pathways [88]. Böttcher et al. 

used transcriptome and proteome profiling of different memory CD8+ cell populations 

to demonstrate that CX3CR1 is superior for classification of these cell populations 

[89]. This analysis allowed the authors to establish a core gene and protein signature 

shared by memory CD8+ cells with a cytotoxic function independent of their tissue 

localization. The results will help establish better immune monitoring that will improve 

guidance of immune therapies.    

 

Navarro et al. used targeted proteomics, namely, selected reaction monitoring (SRM), 

to quantify PKD2 abundance in naïve CD8+ T cells [90]. PKD2 is a serine and 

threonine kinase that is activated in T cells by diacylglycerol and protein kinase C in 

response to stimulation of the T cell receptor (TCR) by an antigen. They quantified 

the activation of PKD2 at the single-cell level and found that this kinase acts as a 

sensitive digital amplifier of TCR engagement. SRM can yield absolute quantification 

of target peptides from a particular protein in a complex sample. In principle, it also 

has the potential to detect proteins in the low-attomole range of abundance. 
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Several phosphoproteome studies on T cell lines have aimed to dissect IL-2- and IL-

15-induced cell signaling events. In these studies, Osinalde and co-workers utilized 

SILAC labeling and high resolution MS combined with phosphotyrosine 

immunoprecipitation [91-93] and TiO2 enrichment of the phosphopeptides [94,95] to 

demonstrate that the signaling pathways activated by IL-2 and IL-15 are very similar 

[94,95]. In addition, they combined antibody- and TiO2-based enrichment with SILAC 

labeling before MS analysis to show that serine/threonine phosphorylation of the 

scaffold protein Gab2 is an important step in regulating IL-2 signaling [96] 

Quantitative phosphoproteomics has also been used to characterize CD8+ CTLs in 

detail [97,98]. Ross and co-workers showed that CTLs contain an IL-2-induced 

JANUS kinase independent signaling network. This SRC family tyrosine kinase-

controlled signaling network regulates 10% of the CTL phosphoproteome and 

critically contributes to CTL function [97].  

 

In addition to protein phosphorylation, TCR-induced ubiquitination is known to 

regulate the function of T cells. More specifically, the function of T cells is negatively 

regulated by the E3 ubiquitin-protein ligases CBL and CBLB. Voisinne et al. utilized 

AP-MS to analyze the dynamics of the CBL and CBLB signaling complexes formed 

after TCR stimulation [99]. They identified several proteins that had not yet been 

implicated in those signaling complexes and demonstrated that the CD5 

transmembrane receptor constitutes a key scaffold for ubiquitin-ligase mediated 

ubiquitylation following TCR engagement [99]. These results provide a molecular 

basis for understanding the negative regulation of TCR signaling.   
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Cluster of Differentiation 28 (CD28) is a protein expressed on T cells that provides 

co-stimulatory signals required for T cell activation and survival. Roncagalli et al. 

combined AP-MS analysis and mouse functional genomics to determine the mode of 

action of RLTPR cytosolic protein, also known as CARMIL2, which is essential for 

CD28 co-stimulation in mouse T cells. They developed mice that bear a genetic tag 

allowing for AP-MS analysis of the RLTPR interactome in primary T cells, showed 

that RLTPR acts as a scaffold, bridging CD28 to the CARD11/CARMA1 cytosolic 

adaptor and to the NF-κB signaling pathway, and identified previously unknown 

proteins in the CD28 signaling pathway [100]. 

 

9. Expert commentary 

Proteomics is an essential part of modern life science research. Proteome-level 

information is needed to elucidate disease mechanisms, find new drug targets, and 

develop personalized medicines. To date, MS-based proteomics has been used in 

immunology to study protein expression levels, their subcellular localization, post-

translational modifications, and interactions in immune cells upon activation by 

different stimuli. These studies have contributed significantly to our understanding on 

the molecular mechanisms involved in both innate and adaptive immune responses 

(Table 1). 

Post-translational modifications affect protein activity; sub-cellular localization also 

has a key impact on understanding the molecular mechanisms involved in immune 

responses in detail. Information about PTMs is also important for drug discovery. So 

far, most of the focus has been on phosphoproteome analysis, mainly because the 

techniques for these studies are already well established. However, the importance 

of other modifications is being increasingly appreciated, and previously 
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uncharacterized modifications are frequently being discovered. In innate immunity, 

the cross-talk between protein phosphorylation and ubiquitination is an emerging 

topic [101,102]. Other, less well-studied PTMs that modulate innate immunity are 

acetylation, glutamylation, and deamidation [102]. A main challenge for PTM 

analyses is that they usually require that the modified peptides are enriched from the 

total peptide pool before MS-analysis, and enrichment methods for different PTMs 

are newly established. Additionally, MS data analysis is more challenging than the 

analysis required for protein identification and quantification. However, the methods 

for both of these are actively being developed; it is likely that many new tools to 

facilitate these analyses will arise in the next five years. 

 

Global proteome studies of secretomes and EVs have shown that unconventional, 

vesicle-mediated protein secretion is an essential part of immune responses. Most 

proteome studies of protein secretion have focused on protein identification and 

quantification. In addition to intracellular PTMs, there are some reports on protein 

modifications in EVs; it will be important to characterize these PTMs from EV proteins 

in more detail in the future [103,104]. Proteome studies have also highlighted the fact 

that vesicle-mediated protein secretion is activated upon canonical NLRP3 and non-

canonical caspase-4/5 inflammasome activation. Future proteome studies are 

needed to reveal novel components and regulators of the non-canonical caspase-4/5 

inflammasome.  

 

An important proteomic technique to elucidate intracellular signaling pathways is AP-

MS. This method has revealed several critical components and regulators of the 

inflammasomes. In AP-MS, the typical workflow includes one- or two-step affinity 
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purification of the protein complex followed by MS-based identification and 

quantification of proteins in the complex. The starting material is most often the total 

cellular lysate; the method requires that false-positive interactions are minimized as 

efficiently as possible, both during sample preparation and in data analysis after MS-

analysis. 

 

Additionally, several targeted MS-based approaches have been developed that allow 

for MS-based monitoring of a set of pre-selected proteins from complex mixtures. In 

these methods, the proteins of interest do not need to be purified from the sample; 

the selection of the proteins to be measured and quantified is performed in the MS 

workflow. These methods can be used in immunology to complement traditional 

antibody-based assays such as western blotting and ELISA. The main advantages of 

these assays are that they are not dependent on the available antibodies and that 

they can be fully automated. 

 

 

 

10. Five-year view 

MS-based proteomics has made major contributions to understanding the molecular 

mechanisms involved in immune responses. New developments in proteomics 

constantly provide novel possibilities for advanced proteome analysis. Examples of 

novel proteomics techniques that will most likely be used widely in proteomics include 

mass cytometry and different MS-based imaging approaches. Mass cytometry 

enables high-dimensional, single-cell analysis of cell type and state. It combines the 

cellular analysis principles of traditional fluorescence-based flow cytometry with the 



26 
 

selectivity and quantitative power of inductively coupled plasma-mass spectrometry; 

multiplexing of up to 40 independent measurements on a single cell is possible 

[105,106]. 

 

Creating proteome maps is exemplified by a study of Marakalala et al.: they 

combined laser-capture microdissection, high resolution MS, and confocal 

microscopy to generate detailed molecular maps of human granulomas that are the 

pathological hallmark of tuberculosis [107]. They showed that the centers of 

granulomas have a pro-inflammatory environment characterized by the presence of 

antimicrobial peptides, reactive oxygen species and pro-inflammatory eicosanoids; 

conversely, the tissue surrounding the caseum has a comparatively anti-inflammatory 

signature. Based on the protein and lipid snapshots obtained, they hypothesize that 

the pathologic response to M. tuberculosis is shaped by the precise anatomical 

localization of these inflammatory pathways during the development of the granuloma.  

 

The proteome of blood immune cells has been extensively investigated; however, so 

far, there is little data on tissue-resident immune cells. Very recently, Holzlechner et 

al. [108] characterized these cells in colon tissue, which exhibited a strong infiltration 

of immune cells. They used MALDI MS-imaging (MALDI MSI) and showed for the 

first time that it is well-suited for visualizing the spatial distribution of immune cells in 

human colon tissue. The MALDI MSI technique has vast potential for use in rapid 

investigations of tissue-specific features of cells in the future. 

 

At present, the fundamental importance of proteomics in all life science research is 

well recognized. The participants of the National Institutes of Health Workshop in 
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Clinical Proteomics in 2012 concluded that ‘deeper understanding of the human 

proteome could help fill in the gaps between genomes and phenotypes, transform the 

way we develop diagnostics and therapeutics, and thereby enhance overall 

biomedical research and future healthcare’ [109]. Additionally, the current methods 

allow for deeper and faster proteome characterization than what has ever been 

possible before. However, proteomics is still not routinely used in most immunology 

research groups. This is due to two main reasons: proteomics techniques are not 

always easily accessible to biomedical researchers, and more education is needed 

for biomedical students and researchers so they understand how proteomics could 

contribute to their research. As early as 2008, one of the leading pioneers in MS-

based proteomics, professor Matthias Mann, argued that the true integration of 

proteomics technology into molecular biology laboratories could be a paradigm shift 

for all of biology and biomedicine, but quantitative proteome measurements need to 

become as accessible and convenient as western blots are now for this to happen; 

equally important, proteomics should be incorporated into biology education [110]. 

Another key issue for implementing proteomics into immunology and other 

biomedical research is the seamless collaboration of researchers from multiple 

disciplines (immunology, proteomics, and bioinformatics). 

 

Key issues  

• Proteomics can provide detailed information on cellular signaling mechanisms 

involved in immune responses; MS-based proteomics has made important 

contributions to understanding the human immune system in more detail 

• Developments in MS-based proteomics during the last decade have enabled 

deeper and more rapid proteome analysis than what has previously been 
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possible; with current methods, it is possible to identify, quantify, and 

characterize thousands of proteins in a single experiment 

• MS-based proteomics techniques have been applied extensively to 

characterize T cells and immunopeptidomes 

• Phosphoproteomics has shown that the functions of key receptors and adaptor 

molecules of the innate immune system are regulated by phosphorylation 

• Proteomics has revealed several novel components and regulators of 

inflammasomes 

• Global protein secretion analyses have shown that vesicle-mediated protein 

secretion plays an important role in innate immune responses 

• Proteomics techniques develop constantly and MS-based imaging methods 

will offer important new possibilities for immunological studies 

• To make full use of the power of proteomic techniques, true integration of this 

technique into immunology laboratories and close collaboration between 

immunology, proteomics and bioinformatics researchers are needed  
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Figure legends  

Figure 1. Innate immunity is required for the activation of adaptive T cell-mediated 

immunity. Macrophages and dendritic cells (DCs) are central effector cells of innate 

immunity; their pattern recognition receptors (PRRs) detect the presence of pathogens and 

endogenous danger signals. This recognition results in the activation of innate immune cells. 

Macrophages and DCs start to secrete cytokines to mount an inflammatory response, 

chemokines to recruit other immune cells to the site of infection or inflammation, and other 

proteins inducing anti-microbial defense and tissue regeneration. Activation of 

inflammasomes, which are PRRs expressed by macrophages and DCs, triggers the 

secretion of IL-1 family cytokines and unconventional protein secretion in general. Activated 

innate immune cells also express co-stimulatory molecules, including cluster of differentiation 

(CD) 80 and CD86, on their surface which makes antigen presentation to T cells possible. 

Antigens are presented to T cells through the human leukocyte antigen (HLA) system, which 

is a gene complex encoding the major histocompatibility complex (MHC) proteins in humans. 

HLAs corresponding to MHC class I present peptides from inside the cell. This typically 

occurs during viral infections, resulting in the activation of cytotoxic T cells that kill virus-

infected cells. HLAs corresponding to MHC class II present antigens from outside of the 

innate immune cell to T cells. These particular antigens stimulate T helper cell activation, 

which in turn stimulates B cell antibody production against the specific antigen.  
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Figure 2. Protein secretion mechanisms in immune cells. A fraction of the secreted 

proteins contain an N-terminal signal sequence and are secreted by the classical (ER/Golgi) 

secretory route. However, most of the proteins are secreted by unconventional means: an 

ATP-dependent ABC transporter-assisted route, incorporation into extracellular vesicles 

(secretory lysosomes, exosomes and microvesicles) or bypassing Golgi. Additional 

mechanisms or combinations of different pathways of secretion probably exist, as signal 

sequence-containing proteins are also abundantly found on EVs. Figure adopted with 

permission from: [111] 
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Table 1. Key findings obtained in immunology using different proteomics method. The 

proteomics methods have been reviewed in [3,4,9-11] 

Inflammasomes Proteomic method(s) used* Reference
AIM2 is a cytoplasmic DNA sensor for the 
inflammasome 

AP-MS [26] 

Gasdermin D is an inducer of pyroptosis in 
response to non-canonical inflammasome 
activation 

AP-MS [34] 

Nek7 is an essential and novel component of 
NLRP3 inflammasome 

AP-MS [28] 

Dendritic cell subsets have differential 
inflammasome function 

label-free quantitative 
proteomics 

[35] 

Secretomes of immune cells   

Caspase-1 is a regulator of unconventional 
protein secretion 

quantitative proteomics 
(iTRAQ) 

[65] 

Influenza A virus infection of human 
macrophages activates secretion of several 
danger proteins  

quantitative proteomics 
(iTRAQ) 

[5] 

Highly sensitive secretome analysis from only 
150 000 mouse macrophages. Identification of 52 
cytokines from TLR4-activated macrophage 
secretomes 

label-free quantitative 
proteomics 

[37] 

Dectin-1 pathway activates robust 
unconventional protein secretion in human 
macrophages 

quantitative proteomics 
(iTRAQ) 

[41] 

EV-mediated protein secretion   

Biochemical and biological characterization 
reveals microvesicles and exosomes as 
facilitators of HIV-1 infection 

protein identification by LC-
MS/MS  

[56] 

Identification of novel markers to characterize 
heterogeneous populations of extracellular 
vesicle subtypes in human dendritic cells 

label-free quantitative 
proteomics 

[53] 

Influenza A virus infection activates vesicle-
mediated protein secretion in human 
macrophages  

GeLC-MS/MS [60] 

Non-canonical inflammasome activates vesicle-
mediated protein secretion in human 
macrophages 

GeLC-MS/MS combined with 
label-free quantitative 
proteomics 

[67] 

Mucosal immunology   

Analysis of protein expression in the small 
intestine of patients infected with Vibrio cholerae 
shows that a strong inflammatory response is 
generated in the gut mucosa early after onset of 
the infection 

label-free quantitative 
proteomics 

[68] 

Altered intestinal microbiota-host mitochondrial 
interaction in new onset Crohn's disease 

quantitative proteomics 
(superSILAC) 

[73] 

Immunopeptidomes   
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Identification of celiac disease-relevant T cell 
epitopes. The approach presented is relevant for 
epitope identification in other MHC class II-
associated disorders 

MALDI-TOF and nano-LC–
MS/MS analysis to identify 
MHC peptides 

[75] 

Investigation of the bronchoalveolar lavage cells 
immunopeptidome from individual patients and 
healthy controls in order to identify disease-
associated peptides 

optimized AP-MS to identify 
HLA-DR-bound peptides from 
low cell numbers  

[78] 

Large fraction of HLA class I ligands are 
proteasome-generated spliced peptides which 
could be useful in vaccine or cancer 
immunotherapy development 

two-dimensional peptide 
prefractionation strategy 
followed by MS analysis 

[83] 

T cells   

GIMAP family proteins 1 and 4 are differentially 
regulated during human T helper cell 
differentiation 

quantitative proteomics 
(ICAT) 

[85] 

Gut-derived Th1 and Th1/Th17 clones have 
major differences in the expression of cytotoxic 
proteins  

label-free quantitative 
proteomics 

[87] 

Detailed map of the cytotoxic T lymphocyte (CTL) 
proteome and the effect of the metabolic 
checkpoint kinase mTORC1 on CTLs. Also 
shows how mTOR inhibitors control T cell 
function and program T cell signal-transduction 
pathways 

label-free quantitative 
proteomics 

[88] 

 IL-2 signaling is both JAK-kinase-dependent and 
independent in CD8-positive T cells 

quantitative proteomics 
(SILAC) and 
phosphoproteomics 

[97]  

CD5 transmembrane receptor constitutes a key 
scaffold for E3 ubiquitin-protein ligases following 
T cell receptor stimulation 

AP-MS [99] 

 

* AP-MS = affinity purification combined with mass spectrometry to identify protein 

complexes 

iTRAQ = isobaric tags for relative and absolute quantification 

GeLC-MS/MS = protein separation by SDS-PAGE and identification by MS 

SILAC = stable isotope labeling in cell culture 

ICAT = isotope-coded affinity tags 
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