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1 Introduction

In many applications in real-world problems, we need to interpret indirect measure-
ments of a target of interest. As an example, in airport security, baggage screening
is required to show what is inside each bag. The measurements are collected by
penetrating X-rays through the baggage. In mathematics, a problem how to model
the measurement process is called the direct or forward problem. The opposite
of forward problem is the so-called inverse problem, in which we collect all avail-
able observations from indirect measurements, quite often incomplete, and use the
data to obtain the target of interest. In this example, the collected X-ray mea-
surement data are used to reconstruct the inside of the baggage. There are many
other examples of inverse problems, for instance, image denoising to remove noise
from photographic images, remote sensing to monitor land use using reflected en-
ergy (often from sunlight), imaging the subsurface of the Earth using seismic waves
produced by earthquakes.

Forward problems are usually well-posed, meaning that they are numerically stable
and can be solved reliably. However, typically inverse problems are ill-posed, which
means the problem either has no solution or has many solutions, or the solution
procedure is unstable (having an arbitrarily small error in the measurement data may
cause large errors in the solutions). Most difficulties in solving ill-posed problems
come from the instability of the solution. In practice, the measured data given by
the measurement device are always corrupted by noise. Mathematically, the inverse
problem is difficult to solve due to the sensitivity to the measurement noise.

In this overview, we focus on X-ray tomography, a subfield of inverse problems in
which an object is penetrated by X-rays along multiple views and the measurements
are the integration along the ray paths. The aim of X-ray tomography is to reveal
the inner structures of the object using a non-invasive procedure from the X-ray
measured data. X-ray tomography, also known as computerized tomography (CT),
was introduced by Allan Cormack and Godfrey Hounsfield (Nobel laureate) in the
1970s [10, 11]. CT has been widely implemented for visualizing the internal structure
of products in industrial applications [1, 15, 5] and of patients in medical imaging
[32, 12, 49]. The inverse problem of the X-ray attenuation reconstruction (the target
structure) is well understood using standard methods in which dense measured X-
ray data from a full angle of view is required to obtain a satisfying reconstruction
image. As an example, Figure 1.1 shows the human trabecular bone reconstructions



1 Introduction

from full angle using Feldmann, David and Kress (FDK) method [3]. Unfortunately,
in many applications, sufficient information is not available. In reverse engineering,
for example, X-ray tomography is used to duplicate and manufacture an existing
object. However, to convert the data into a discrete model representation can be very
costly computationally and time-consuming [28]. Therefore, by using only limited
or sparse data of tomographic images would be one way to cope the problem.

Another example is in biomedical imaging in which the full data are often difficult
to collect due to:

e the needs to reduce the radiation dose to the patient or in vivo samples since
the high dose can modify the properties of living tissues,

e the long acquisition time to obtain high-resolution data of in vitro samples, or

e restrictions in the geometry of the measurement setting, for example in mam-
mographic imaging [42, 44, 55, 56] and electron imaging [19].

In the situation in which only limited projection data are available, it is well
known that the standard CT method does not yield satisfactory reconstructions
[30]. A priori information such as enforcing regularity in the model is required in
the reconstruction algorithm in order to compensate for the incomplete datasets.
As an example, a Bayesian framework is a statistical approach to solve the inverse
problems with statistical inference scheme. In this approach, the prior knowledge
is formulated as a prior distribution, and the measurement model is constructed
as a likelihood. Bayes’ formula combines the prior distribution and the likelihood
together as a posterior distribution [29]. In the Bayesian framework, the posterior
density is the solution of the inverse problem. Popular statistical point estimates
are:

e mazimum a posteriori estimate (MAP): the highest mode of the posterior and

e conditional mean estimate (CM): the mean or the expected value of the pos-
terior.

Finding the MAP estimate requires a solution of an optimization problem. In order
to obtain CM estimate, a more powerful method is needed, for instance, Markov
chain Monte Carlo (MCMC).

In this thesis, two novel computational inversion methods for solving sparse X-ray
tomography problems are proposed:

e MCMC algorithm in which the tomography reconstruction is in terms of non-
uniform rational basis spline (NURBS) which is commonly used in computer-
aided design (CAD) format. The proposed method assesses the boundary



shape of a homogeneous object (consists of one material) by estimating the
coordinates of the control points in the NURBS curve and the attenuation
value of the object. MCMC method offers relatively simple algorithm but
powerful method to generate samples of the desired distribution.

e Adaptive method for tuning regularization parameter based on a control al-
gorithm driving the sparsity of the reconstruction to an a priori known ratio
of nonzero versus zero wavelet coefficients in the unknown. A central slice
of walnut were tested. In the higher-dimensional case, instead of exploiting
wavelets, we use shearlets which have a distinctive feature known as shearings
to control directional selectivity. In this work, an automatic regularization
method based on enforcing sparsity in three-dimensional shearlet transform
domain is implemented. Human subchondral bone samples were tested and
morphometric parameters of the bone reconstructions were then analyzed. In
real applications, the algorithm seems to be a promising strategy and the
end-users could avoid the tuning parameters manually.

The rest of this overview is organized as follows. In Chapter 2, the mathematical
model of X-ray tomography and sparse tomography model are described. Introduc-
tion to NURBS and the tomographic model using NURBS are given in Chapter 3.
Chapter 4 reviews the basics of wavelets and shearlets. Bayesian approach and the
different types of MCMC algorithms are discussed in Chapter 5. The results of
the publications are then reviewed in Chapter 6 and finally, Chapter 7 presents the
conclusion and future outlook.

(b)

Figure 1.1: 3D reconstructions of healthy (a) and osteoarthritis (b) human trabec-
ular bone using FDK method from full projections.






2 X-ray tomography model

Consider a physical domain Q C R? and a density function f : Q — R. The X-rays
travel through 2 along straight lines L C €2 and we assume that the initial intensity
of the X-ray is Ip(L) and the exiting X-ray intensity is /;(L). Then the formula for
the intensity loss is

/Lf(:lr)d:v = —logggg. (2.1)

In X-ray tomographic imaging, the aim is to collect information about f using
available measurement data collected from the intensities I1(L) of X-rays for all
lines L through 2 and from different angles of view. The problem can be written as
Radon transform:

Rf(s,0) = /L f(x)dx, (2.2)

with x = (z,y) and L = {(z,y) € R? : xcosf +ysinf = 5,0 € [0,7),s € R}. In the
idealized continuum case, the inverse Radon transform, the so-called filtered back-

projection (FBP) algorithm can reconstruct the attenuation coefficient f perfectly
(3, 30, 41].

2.1 Discrete tomographic data

In practice, a discrete model is required for numerical computation. Commonly,
the measurement geometry can be modelled as a parallel beam, fan beam or cone
beam geometry as it can be seen in Figures 2.1 - 2.3. In the case that we have P
equiangularly sampled projections from full 360 degrees, then the angles of view are

of the form or 2(2m) 3(2n) P 1)2
T ™ T —1)2rm
0=1{0,— o : 2.
{O’ P ) P ) P ) ) P } ( 3)
In two-dimensional case, let us represent f by a matrix f = | f”] € RVXN - After
calibration, the measurements of line integrals can be modelled as

[ f@)ds =3 ay . (24)

i=1j5=1
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Figure 2.1: Parallel beam X-ray measurement geometry. There are five different
: ; . 57 4w 3w 27 : :

directions: , 7%, °F, < and <F applying 12 ray-lines. Black dots show

the locations of the X-ray source at different times of measurement. The

thick line represents the detector measuring the intensity of the X-rays

after passing through the target.

where a;; is a distance that the lines L travel in the voxel with indices (z, 7).
For three-dimensional case, the construction of the measurement matrix is anal-
ogous to 2D case. Consider a matrix f = [f;;x] € RV*N*N_ The line integral can be

approximated by
N

| F@)de =330 5 i (25)

i=1 j=1k=1

where a;j is a distance that the line L travels in the voxel with indices (i, j, k).
Then the practical tomographic X-ray measurement data is given as follows:

m = Af +¢, (2.6)

where a measurement matrix for 2D case A = [a;5] (in 3D, A = [a;j]) containing
one row for each voxel in the set of measurements and ¢ is the measurement noise.



Figure 2.2:

Figure 2.3:

2.1 Discrete tomographic data

Fanbeam X-ray measurement geometry. There are five different direc-
3 . 8m 6w 4w 2 : .

tions: 2m, 5, 7%, 7 and < applying 12 ray-lines. Black dot show the

locations of the X-ray source at different times of measurement. In the

opposite of the source there is a detector measuring the intensity of the

X-rays after passing through the target.

An illustration for a cone beam X-ray measurement geometry from one
direction: 27. The point of the cone indicates the X-ray source. The
rays penetrates through all the object. In the opposite side of the source,
the intensity of the X-rays after passing through the target is recorded
by the detector.
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2.2 Sparse X-ray tomography

In some applications of X-ray tomography, the datasets are limited. One example
is in biomedical imaging such as dental imaging and mammographic imaging, in
which the X-ray data acquisition cannot cover all directions [40]. Another example is
dynamic tomography, where the target changes in time between the recording of two
consecutive projection images. Due to the restriction of the measurement setting,
an adjustment in the measurement geometry model is necessary. For instance:

e if the data collection is sparse over full 360 degrees, then the number of pro-
jection data P in (2.3) is small, or

e if the data is sampled from limited angle geometry, for instance, the angle of
view is 90 degrees only, then

B T 7 3w (P—1)rm
9—{0,2P,P,2P,..., P }. (2.7)

When only sparse sample data is available, FBP algorithm is not well-suited any-
more to perform the reconstruction. As an example, Figure 2.4 shows a real data
reconstruction of the central slice using FBP and modern algorithm, so-called To-
tal Variation (TV) method, in which prior information is used, [2, 6, 47]. As it
can be seen, the FBP result gives unsatisfying reconstruction, while the TV result
yields a much better reconstruction. In general, other computational approaches
that enforce a priori knowledge or regularization are highly demanded.

2.3 Ill-posed problems

Let us recall the mathematical model (2.6). The inverse problem is to find the
vector f where the measurement m is given. As mentioned in the introduction,
inverse problem is typically ill-posed if at least one of the well-posed properties of
Hadamard condition below is failed:

Hi: Existence. There should be at least one solution.
H,: Uniqueness. There should be at most one solution.
Hj: Stability. The solution must depend continuously on data.

In this section, let us consider an example in a finite dimensional-setting so called
singular value decomposition (SVD) of matrix A. We know that any matrix A €
REXN can be formulated in the following form

A =TUxVT, (2.8)



2.3 Ill-posed problems

BoAy
Y
L] 8
K
*
4 ) ]
5 F { ' o TR,
)
§ R od
> &
% v paa®

Figure 2.4: An example of tomographic reconstruction of real data. Left: The emoji
data built from ceramic stones. Middle: FBP reconstruction from 15
projection data out of 360°. Right: TV reconstruction using the same
number of projection data and measurement geometry as FBP setting.

where UK*EK and V¥N*N are orthogonal matrices and 5>V is a diagonal matrix.
The formula (2.8) is called SVD of matrix A and the diagonal elements of matrix X
are the singular values of A. The diagonal elements o; have a decreasing property:

01202 2 -+ 2 Omin(k,N) = 0.
Recall the definitions below:
Ker(A) = {f e RV : Af =0}
Range(A) = {m € R¥ : there exists f € R"such that Af = m}
Coker(A) = (Range(A))*t c R¥
Now, let us consider three cases:

(i) For K > N (overdetermined problem), then

]71 0 e 0
0 g9
ZKXN _ oN
0
0 ce e 0




2 X-ray tomography model

(i)

(iii)

10

It follows that the dimension of Range(A) is less than K so that there is a
nonzero m’ € Coker(A). In the case ¢ = 0, we cannot find any f € R”
that satisfies Af = m'. It is even worse for the case ¢ > 0, even though
Af € Range(A), it is possible that Af + ¢ ¢ Range(A). Hence, the existence
condition H; fails.

For K < N (underdetermined problem), then

5, 0 -+~ 0 0 --- 0]
SNKK _ 0 o3
0 v coi 0 0 - 0

Therefore dim(Ker(A))> 0 and there exists f € Ker(A). Even though ¢ = 0,
we have Af = m and A(f 4+ f') = m. Hence, the uniqueness condition Hs
fails.

For K = N, the matrix X is a square-shaped

o 0 - 0
SEXK _ U
0 - - ok

Consider ox > 0. For ¢ = 0, let us write the solution using SVD:

T

K
f=A"m=(UTV") 'm=>

i—1 Ui

v; (2.9)

Hence if ok is small, then small perturbations in A or m will cause a significant
change in f. Consider a condition number below:
Cond(A) = 7%, (2.10)
OK
If the min{o;} is very small, then Cond(A) becomes larger and the matrix is
ill-conditioned. In inverse problems, the small singular values are understood
as an amplification for the noise components.

In the case € > 0, we can write

A'm=AYAf+e)=Ff+A e



2.3 Ill-posed problems

The error A~'e can be bounded by ||A™e|| < ||A~!|||¢]|. Consequently, even
though ¢ is small, the the error A~'e can be very large if [|A™"|| is large. Thus
the Hadamard condition Hj; fails.

Moreover, let us still consider the case K = N and recall the inversion matrix A~!
in (2.9). Even though o, is several orders of magnitude greater than o and it leads
to the large condition number in (2.10), the matrix A is invertible. However, the
numerical inversion of A is difficult since the Y=! contains very different sizes of
floating point numbers.

Thus, to understand the ill-posedness in this case, we must consider the infinite-
dimensional problem. Suppose that we model the continuum measurement by a
sequence of matrix Ay with a size K x K where K = Ky, Ko+ 1, Ko+ 2,---. The
approximation to the forward model will be better as K grows. Then if

I}1_r}noo Cond(Ak) = oo,
then condition Hj fails. Hence, the ill-posed behavior of a large class of linear

systems cannot be detected by examining a single approximation of matrix Ag, but
from the sequence {Ax}3_g., -

11
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3 NURBS-based tomographic
model

In industrial production, computer numerical control (CNC) machines using computer-
aided design (CAD) have been widely used in reverse engineering. Non-uniform
rational basis splines (NURBS) representation has been commonly used in CAD
system to describe the shape of an object [43, 46, 48]. In this section, we present
the measurement model of X-ray in terms of a NURBS curve.

3.1 Non-uniform rational basis splines

A NURBS curve as a piecewise rational function S defined on ¢ € [0, 1], is introduced
briefly here. We introduce the curve representation as a function of the parameter
t as follows:

S(t) = Y piRi(t), 0<t<1 (3.1)

where the n + 1 points p; € R? configure the curve shape. The n + 1 points are
called control points and R;,(t) is the following rational function of degree p:

UJiNi,p(t)
Yo wilNip(t)’
where {w;} are nonnegative weights for all ¢ and {N;,(¢)} are basis functions that

describe how strongly the control points {p,} attract the NURBS curve. For p > 0,
they are defined recursively as

Ri,p(t) =

t—t, bivpiq —t
Nip(t) = -———Nip-1(t) + %Nlﬂ‘,p—l(t)a (3.2)
tz—l—p tz tz—i—p—f—l tz+1

where % = 0 by definition, and for p =0 as

1 1ft1§t<tl+1,

0 otherwise.

Nio(t) = {

13



3 NURBS-based tomographic model

A collection of K breakpoints is then called knot vector:

t = [t1,ty, .. tr)”, (3.3)

where K = p+n+2 and the values of ; satisfy the relation 0 = t; <t < ... <tg = 1.

If the breakpoints 0 = t; < t5 < ... < txg = 1 are evenly spaced, then t is called a
periodic uniform knot vector. We implement a closed NURBS curve using periodic
uniform knot vector to recover the boundary of the object. By repeating the first p
control points after the last point, an unclamped closed NURBS curve is obtained.

Two examples of closed NURBS curves of 3rd-degree basis functions with seven
control points are given in Figure 3.1. It illustrates a closed curve with the basis
functions defined on the same periodic uniform knot vector:

0, —, = — — = — — = = = = 1

123456789101112]T
"137137137137137137 137137137137 137 13’

2 2
15 15 °
1 1r
0.51 0.5
or o 6 o
035 0 05 1 15 035 0 05 1 15

Figure 3.1: Left: NURBS curve with control points (0,0), (0.5,0.5), (1,0), (1,0.7),
(0.8,1.5), (0.2,1.5), (0,0.7). Right: NURBS curve with control points
(0,0), (0.5,0.5), (0.7, -0.5), (1,0.7), (0.8,1.5), (0.2,1.5), (0,0.7).

In these examples and in our computations, we assume that the weights corre-
sponding to all of the control points are the same.

3.2 NURBS-based measurement model

Consider a physical domain  C R? and a continuous tomography model f: R? — R
where f(x,y) > 0 is defined as

¢, for (z,y) € Q

3.4
0, for (z,y) € R*\ Q, (3.4)

f(x,y)z{

14



3.2 NURBS-based measurement model

Oy

0

Figure 3.2: Left: the NURBS-based object model where 0f2 is a NURBS curve.
Middle: The attenuation function f defined in (3.4). The N x N pixel
grid is indicated in gray. Right: the pixel-based attenuation model (3.6).

with constant X-ray attenuation ¢ > 0.
Assume that the boundary 02 is given by a NURBS curve as it is shown in the
leftmost of Figure 3.2. Let us define

/Lf(x, y)ds = cl(LNQ), (3.5)

where £ is one-dimensional Lebesgue measure and L denotes a line in (x,y)—plane.
The X-ray tomography model discussed in Section 2 enables an approximate compu-
tational method for evaluating the right-hand side of (3.5). In this work, we define
the control points of the NURBS curve in polar coordinates, p; = (r; cos 6;,r; sin 6;),
it =1,...,n, where r is the radius and @ is the angle. We put together the radius and
the angles for each control points as v = [ry, 01, ..., 7,0, c|T € R*""3 where n is the
number of control points of the NURBS curve and c is the attenuation parameter.

We construct the interior of €2y into N x N square-shaped pixels with indices
(7, k) as shown in Figure 3.2 with j for the row index and k for the column. Define
a nonlinear operator B : RE™™ — R¥*N by

¢, if the center of pixel (j, k) is inside the NURBS curve,

: (3.6)
0, otherwise,

B(v)jr = {

where v is the parameters defining the homogeneous object in the NURBS form, see
Figure 3.2. Recalling A from (2.6), the measurement model can now be written as
a composition:

m = A(B(v)) +e. (3.7)

From the model (3.7), we can then recover the quantity of interest v by using MCMC
as discussed in Section 6.1.

15






4 Multiscale framework: Wavelets
and Shearlets

4.1 A brief introduction of frame theory

In this section, a brief introduction of frame theory is given. Let us denote H is a
Hilbert space.

Definition 4.1.1. A sequence (¢;)icr in H is called a frame for H, if there exists
constants 0 < A < B < oo such that

Allz)* <3 Kz, 00)* < Bl
iel
for all x € H. If A = B, then the frame is called a tight frame, and if A = B =1
is possible, then (¢;);cr is a Parseval frame. A frame is called equal norm if there
exists some ¢ > 0 such that ;|| = c for all ¢ € I. If ¢ = 1, then the frame is called
unit norm.

Frame provides redundant expansions and serves as an analysis tool. If (¢;);er in
‘H is a frame for H, it allows the analysis of data via the study of the associated
frame coefficients ((x, ¢;))ier and the operator T" is defined as

T:H— ), x+— ({z,0))icr

and it is called the analysis operator. The adjoint of T™ of the analysis operator is
called the synthesis operator if it satisfies

T : 62(1) — H, ((Q’)ie[) — ZClgOl
iel
The main operator associated with a frame (which provides a stable reconstruction
process) is the frame operator defined as follows

F=T'T:H—H, z— ((z,0))¢,

with F' is a positive, self-adjoint invertible operator on H where A- Iy < F < B- 1y
and Iy denotes the identity operator on H. In the case of a Parseval frame, F' = Iy.
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4 Multiscale framework: Wavelets and Shearlets

Consider a signal z € ‘H. Generally, it can be recovered from its frame coefficients
through the following formula

T = Z(x, g0i>F_1g0i.

iel
Regarding a frame as a means for expansion in the system (y;);e;, for each vector
x € H can be written as

T = Z(aj, Fr o) ;.

il
If the frame (p;);c; does not constitute a basis, then the coefficient sequence
({x, F~Yp;));er of this expansion is not unique, and the frame is called redundant.

4.2 Wavelets

One of the popular mathematical tools that can be used to extract information from
the large datasets is wavelets. The major reason for the success of wavelets is their
ability to provide the sparse approximation of signals and to represent singularities
efficiently. Wavelets are very suitable to approximate signals with sharp discontinu-
ities and have been successfully used in many applications such as the algorithm of
JPEG2000 and FBI fingerprint compression [22].

4.2.1 One-dimensional case

We start with a discrete wavelet systems in L*(R) that can represent efficiently the
signal through the action of dilation and translation operator

(i = 2/2p(20 - —k) : .k € Z}, (4.1)

where ¢ € L*(R), j and k are the scale and the position index, respectively. The
associated Discrete Wavelet Transform of a function f is given by

Wialf) = (i), (4.2)

where (f, ;) denotes the so-called wavelet coefficients [13].

The system (4.1) is called an orthonormal wavelet system if it is an orthonormal
basis of L?(R). There is a general tool to construct orthonormal wavelet bases called
multiresolution analysis (MRA).

18



4.2 Wavelets

Definition 4.2.1. In one-dimension, an MRA of L?*(R) is a sequence of closed
subspaces of L*(R)

e CVaCcVayclyocWicVaConee
with properties
(i) U, Vy is dense in L*(R).
(ii

)
) Na Vo = {0}
(iii) f(z) €V, < f(2x) € Vypy for all n € Z.
) f
)

(iv) f(x) eV, <= f(z—27"k) €V, for all n, k € Z.
(v) There exists a function ¢ € L*(R) so that {¢(z—k) : k € Z} is an orthonormal
basis for V4.

The basis function ¢ is called the scaling function. If ¢ is orthogonal, the MRA is
called orthogonal.

With this approach, the decomposition of functions into different resolution level
with respect wavelet spaces W, j € Z and it is defined to be the orthogonal com-

plement:
Vin=V;®eW;, jeL,

where @ is the direct sum. It decomposes a function f;11 € Vi1 as fj11 = fj+9; €
V; @ W; with f; contains the lower frequency component of f;;, while g; contains
its higher frequency component. It follows that

L*(R) = @Wj.

Another result from the MRA approach is that there always exists a function ¢ €
L*(R) such that {¢;; € Z} is an orthonormal basis for L*(R). Also, with MRA
approach, an orthonormal basis involves both the wavelet and the scaling functions,
of the form

{op=Trp=0(—k) k€ Z}U{y;):7 >0,k € Z}.

The translates of the scaling function take care of the low-frequency region and the
wavelet systems of the high-frequency region.
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4 Multiscale framework: Wavelets and Shearlets

4.2.2 Two-dimensional case

In this study, we work on the image reconstruction from the CT data, so the two-
dimensional case of the wavelet transform is considered. In 2D, we consider the
standard tensor-product extension of the 1D wavelet transform. In detail, for the
scaling function ;i () = 29/2¢(27x — k), the 2D wavelet system is spanned by four
types of functions:

k() ik (y),
Uin(@) e (y),
4.3
Da@)su(y), 4
@ik () Pjor ()
where jg is the coarsest scale and 7,k € Z, 7 > 7jo.
The associated 2D discrete wavelet transform of f is given by
1 X Y
Cp = N e% ;::1 y; F (@, 9)@iok () 5ok (Y) (4.4)
b 1 X Y
Dy = Noe% ;::1 yZ:l f(@,y)en(x)¥n(y) (4.5)
1 X Y
Dy = XV ;::1 yz::l [, y)bie() e (y) (4.6)
J 1 X Y
Dy = m;;ﬂx,y)%k(ﬂf)%k@) (4.7)
(4.8)

where X, Y € Z. An illustration of 2D discrete wavelet transform is presented in
Figure 4.1.

For a function f € L*(R?), the best N-term approzimation fy of f with respect to
a wavelet basis is obtained by approximating f from its NV largest wavelet coefficients
in magnitude and it is defined as

fN = Z <f7¢>\>¢m

AEAN

with Ay is the index set corresponding to the N largest wavelet coefficients |(f, 1)
assosiated with some wavelet basis (¢ )en-
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Figure 4.1: An illustration of decomposition obtained using the discrete wavelet
transform. The image (a) is the original Sibelius monument image, and
it is denoted as C°. Image (b) shows the schematic representation of
the two-dimensional wavelet transform. The original image is high-pass
filtered, yielding the three large images, as it can be seen from (c). It is
then low-pass filtered and downscaled, yielding an approximation image
(C1); then this image is high-pass filtered to produce three smaller de-
tailed images, and low-pass filtered to produce the final approximation
image (C?) in the upper-left corner of (c).
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4 Multiscale framework: Wavelets and Shearlets

4.3 Shearlets

In 2005, a new multi scale framework called shearlets was introduced [23, 36]. Shear-
lets promote directional representation systems for multidimensional data. They
have a distinctive feature to control directional selectivity or orientations by means
of the shearing parameter. In order to achieve optimal sparse approximations of
images that contain anisotropic singularities, the elements of shearlet systems must
be distributed over various scales, locations and orientations [33]. However, the
shearlet system only constitutes a frame, not a basis.

To obtain a simplified model of the object, which emphasizes anisotropic features
and most notably edges, a class of functions so-called cartoon-like images class was
introduced.

Definition 4.3.1. For fixed g > 0 and d = {2,3}, the class &2(R?) of cartoon-like
image shall be the set of functions f : R? — C of the form

f=Jfo+ fixs, (4.9)

where B C [0, 1]¢ is a set with B being a closed C?-curve (for d = 2) or C*-surface
(for d = 3) with bounded curvature/surface and f; € C?(R?) with suppfy C [0,1]%
and || fillc2 < p for each i =0, 1.

For dimension d = 2, OB is assumed being a closed C?-curve with bounded
curvature, and for d = 3, the discontinuity 9B shall be a closed C?-surface with
bounded principal curvature.

Let us start with the two dimensional discrete shearlet system.

Definition 4.3.2. In two-dimensional case, let ¢ € L*(R?), a (reqular) discrete
shearlet system assosiated with v is defined by

{Wjkm = 22M(Sk Ay - —m) : 4,k € Z,m € Z*}, (4.10)
. 270 1 k
where A} = 0 22| is parabolic scaling matriz, Sy = 0 11’ is shearing matrix,

and being j is the scale index, k is the orientation index and m is the position index.

Definition 4.3.3. For ¢ € L*(R?), the discrete shearlet transform of f € L*(R?) is
defined as follows

f = SH)={fiYirm), (G, k,m)ELXTxTZ (4.11)

To avoid the shear parameters to become arbitrarily large, which leads to a biased
treatment of directions, cone-adapted 2D discrete shearlet systems are introduced by
dividing the frequency plane into four cones as depicted in Figure 4.2.
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4.3 Shearlets

Figure 4.2: The frequency plane is partitioned into four cones. The ®(¢p;c;) is
associated with the square (the low-frequaency region). The W(¢);c¢) is
associated with the horizontal cones, while the \il(w; ¢) is associated with
the vertical cones

Definition 4.3.4. For ¢,¢,¢) € L*(R?) and ¢ = (c1,c2) € (Ry)?, the (regular)
cone-adapted discrete shearlet system SH (¢, 1, ;c) is defined by
SH(¢, 0,5 ¢) = ®(¢; ¢1) U (¢ ¢) U (¢ ¢)
where
O(¢;¢1) ={dm = &(- — c1m) : m € 72},
(15 ¢) ={Whm = 2590 (SyAgs - —=M,m) : j > 0, [K] < [29/7],m € 27)},

Co 0
0 C1 ’
Figure 4.3 presents an illustration of 2D discrete shearlet transform. In three-

dimensional case, the pyramid-adapted discrete shearlets are scaled according to the
paraboloidal scaling matrices defined by

&1

0 .
with M, = [ ] and M, =

0 Co
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4 Multiscale framework: Wavelets and Shearlets

I
‘wn'_‘ | l il il
i /N}/ I |

Figure 4.3:
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(d)

An illustration of decomposition obtained using the discrete shearlet
transform from the same Sibelius monument image in Figure 4.1. The
top image is the coarse-scale image. The shearlet corresponding to the
coefficients in (a) has a scale parameter j = 1 a shearing parameter k = 0
,and in (b) j = 2 and k = 0 and both located on the vertical frequency
cones. The shearlet corresponding to the coefficients in (c¢) has a scale
parameter j = 1 a shearing parameter £ = —1 , and in (d) j = 2 and
k = —1 and both located on the horizontal frequency cones.



4.3 Shearlets

2070 0 29/2 0 0 2120 0
Ay = [0 272 0| Ay=]0 22 0| A,=|0 2/ 0
0 0 272 0 0 2/? 0o 0 2

where j € Z. The directionality is represented by the shearing matrices

1k ks 10 0 1 0 0
Se=10 1 0] 5=k 1 k| § =10 1 0f,
00 1 0 0 1 ki oKy 1

where ky, ko € Z2.
In the 3D shearlet systems, we will make use of the vector notation |k| < K for
k = (ki,k2) and K > 0 to denote |k;1| < K and |ky| < K.

Definition 4.3.5. For ¢ = (¢, ¢2) € (Ry)?, the pyramid-adapted discrete shearlet
system SH(¢, 1,1, ;) generated by ¢, ¢, , ;¢ € L2(R) is defined by

H(¢,, 0, 05¢) = O(5 1) UT(¥5¢) U T (dhyc) U D (3h;0),

where
(p;c1) ={pm = ¢(- —m) : m € 127},
W(;0) ={Ujhm = 20(S; A0 - —m) 1 j = 0,]k| < [20/%],m € M.Z*)}
U (i ) ={jpm = 290(S; Ay - —m) : j > 0,|k| < [27/%],m € M.Z*)}
U ¢) ={Wjpm = 299(S; A9 - —m) 1 j > 0, |k| < [27/2],m € M,Z%)}

where j € Ny and k € Z* with M. = diag(cy, c3,¢2), M, = diag(cy, ¢1,¢2), and
M, = diag(cg, ¢, c1) for ¢ > 0 and ¢y > 0.

The frequency plane into four cones is presented in Figure 4.4.
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4 Multiscale framework: Wavelets and Shearlets

Figure 4.4: The frequency plane is partitioned into six pyramids. The ®(¢;c;) is
associated with the cube (the low-frequency region). The arrangement
of the six pyramids is indicated by the diagonal lines.
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5 Bayesian framework

Bayesian inversion arises from the need of interpreting real-world observations, which
often contain only incomplete information is available. In consequence, the outcome
is not fully predictable. The randomness appears due to the lack of information.
Fortunately, we usually have prior knowledge or belief about the circumstances and
it can compensate the incompleteness of the information.

The objective of Bayesian approach is to extract information and obtain the un-
certainty about the unknown quantity based on:

1. the information of the measurement process, and

2. the knowledge about the unknown quantity prior to the measurement.

Both the measurement and our belief about the outcome are modelled as random
variables. Instead of producing a single estimate as in deterministic inversion,
Bayesian inversion approach provides probability distribution as a solution that
contains information of the variables.

Let us first briefly discuss random variable and probability.

Definition 5.0.1. Given €2 as a sample space. A random variable X in R™ is defined
by
X: Q= R".

Here random variables are denoted by capital letters and their realizations by
lowercase letters, i.e. X(w) = x € Q. The probability distribution function P :
R"™ — [0 1] of the random variable X is defined as

P(z) =Pr(X <ux),

with Pr(X < x) denotes the probability of the event X < z, where X < z :=
{Xi <21,Xy < a9,--+, X,, < 2,}. Consider continous random variables X € R”
and Y € R™. The joint probability distribution function P : R*™™ s [0 1] of X
and Y is defined as

P(z,y) =Pr(X <z,Y <vy).

By assuming that the joint probability distribution is absolutely continuous with
respect to the Lebesgue measure on R"*™ . there exists a measurable function m(x, y),
so-called the joint probability density of X and Y such that
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5 Bayesian framework

P(z,y) = /_yoo /_;W(a, b) dadb.

We introduce the conditional probability density of X given Y = y as follows:

m(z,y)
m(y)

where a normalization constant m(y) > 0 is marginal density of y. By constructing
the conditional probability density of Y given X = z, i.e., w(x,y) = n(y|z)m(z), we
can form the Bayes formula:

m(zly) =

I

m(y|z)m(z)

) 7(y) > 0.

m(zly) =

5.1 Bayesian model for inverse problem

This section discusses the formulation of our model (2.6) in terms of a Bayesian
framework. Recall that in statistical inverse problems, all parameters are viewed as
random variables. We write the measurement model containing an additive noise
E:

M=AF+F,

where M, F' and E are random variables and A is the measurement matrix.

Let us consider Gaussian case where E = ¢ and ¢ ~ N(0,%). Hence, up to
normalization constant, the probability distribution of the noise with covariance ¥
is

1
— S(Af —m)SH(Af - m)), (5.1)
where f and m are the realizations of F' and M, respectively. The formula (5.1) is
called the likelihood function. If ¥ = oI, where I is identity matrix and variance
0?2, then

m(m|f) o<exp<

1
rlm| ) o< exp(— 5 | Af — m]). (5.2)

Prior to the measurement, some information about the unknown needs to be ex-
ploited to compensate the missing information in the measurement [29, 31, 50]. The
prior construction is a crucial step in the statistical inverse problem. Typically, our
prior knowledge of the unknown is qualitative in nature. The challenging task is to
translate this qualitative information into a quantitative form that can be postulated
into a mathematical form which is written down as a density 7(f). It is quite com-
mon that Gaussian probability density is used for the prior, called Gaussian prior.
This is because it is easy to construct.
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5.2 Conditional mean estimate

The solution of the inverse problem is the posterior distribution which has the
following form:

m(f | m) oc w(f)m(m | f).

There are well-known approaches to estimate the unknown parameter: maximum
a posteriori (MAP) and conditional mean (CM) estimates. Both are point estima-
tors.

5.2 Conditional mean estimate

A popular method to get an estimate of f is to consider conditional mean as it is
defined as follows:

FoM = /RN £ 7(f | m)df. (5.3)

High-dimensional integration problem appears in (5.3), hence we shall employ an
MCMC technique for solving it [9, 20, 21]. In the following section, details of MCMC
method are discussed.

5.2.1 Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) is one of the most popular techniques for sam-
pling from probability distributions, and is based on the construction of a Markov
chain that has the desired distribution as its equilibrium distribution.

The basic idea of Monte Carlo integration is to generate samples {a:(l), AL ,m(f)} C
RM from 7(x). Monte Carlo estimate is obtained by sampling a set of realizations

0) vid

from the distribution 7(x) i.e. (¥ “Z m(z) and then approximate the integral f(z)

by the sample mean

1 & '
/f(:zc)ﬂ(x)dx ~ ?Z:lf(m ). (5.4)

With the increasing availability of computer power, Monte Carlo techniques are
being increasingly used. Monte Carlo methods are especially useful for simulating
systems with many coupled degrees of freedom.

In general, generating samples {2(¥} independently from 7(-) is often not feasible.
However, if the sequence {x(@} is dependent and as long as it is Markov chain, then
Monte Carlo integration still converges. This holds since Markov chain has 7(-) as
its equilibrium distribution [29]. This technique is then called Markov chain Monte
Carlo.

29



5 Bayesian framework

In detail, let X = {X;, Xs,...Xy} be a real valued random variable in R™. A
Markov chain is a sequence of random variables {X®} c R which has property
that when all values of the sequence is available, the distribution of the state X ¢+1
only depends on the state X In other words, at each time ¢ > 1, the next state
is sampled which depends only on the current state, and it is written as below:

7T(X(Z-H) < y|X(1) — x(l),X(Q) — $(2)7 ...,X(K) =)= 7T(X(H-l) < y|X(f) = ).
(5.5)
When the probability in (5.5) does not depend on ¢ or time-independent, the chain
is called homogeneous. For a homogeneous Markov chain, the transition kernel from
state £ to state ¢ + 1 is defined by

T(z,y) = n(X“D < y| XY = a).

The homogeneous Markov chain has a property that as the chain runs for a long
time, ¢ — oo, the chain will reach an equilibrium called stationary distribution.
Few concepts concerning transition kernels is still needed to be introduced. The
transition kernel T is irreducible if there exists finite number m of transitions such
that for any z,y € Q, T™(x,y) > 0. In other words, irreducibility means regardless
the present state, the chain can reach any other state in finite time. Now let M(x) =
{m >1:T"(xz,x) > 0} as the set of times when it is possible for the chain to return
to starting position x. The period of state x is defined as the greatest common
divisor (ged) of M(x). The irreducible T is called aperiodic if all the states have
period 1 [54].

Back to the integral of the form (5.4), the convergence is guaranteed if the irre-
ducibility and aperiodicity of the Markov chain are hold.

5.2.1.1 Metropolis-Hastings

In recent years, statisticians have been increasingly drawn to MCMC methods to
simulate nonstandard multivariate distributions. The Gibbs sampling algorithm is
one of the best known of these methods but a considerable attention is now being
devoted to the Metropolis-Hasting algorithm [8, 9, 20, 21, 51].

Consider the proposal distribution or candidate-generating density denoted by
q(x,y) with the property [¢(x,y)dy = 1. The density is to be interpreted as the
probability of a candidate value y generated from ¢(x,y) when the current state is
x. The candidate y can be either accepted or rejected. It brings us to the so-called
acceptance ratio or probability of move. If the move is not made, then the next state
remains the same as the current state, i.e v, instead of y. As it is studied in [8],
to obtain an invariant distribution of m(-), the reversibility condition (also called
detailed balance) must be hold:

m(z)q(z,y) = 7(y)a(y, x) (5.6)

30



5.2 Conditional mean estimate

However, we might end up in the situation where the process moves from x to y is
more often than from y to x:

m(y)a(y, z) < m(x)q(z,y).

Thus a correction factor, «, needs to be determined. Our aimed is to choose « so
that
m(y)aly, v)qly, ) = m(z)o(z, y)q(z, y),

and it can be achieved by setting

7(y)aly, v) )Q(y7$)
m(z )q(fv,y)

By reversing the = and y, to obtain the reversibility in (5.6) then
ale,y) = min{l, w(y)q(y)}
s

As a remark, the calculation of a(z,y) does not require the value of normalizing
constant of 7(+), since it appears both in the denominator and numerator. Hence,
formidable task can be avoided. We point out if the proposal distribution ¢(-) is

symmetric, i.e q(z,y) = q(y,z), then the acceptance ratio reduces to %, which

aly,z) =1, a(z,y)=

means if 7(y) > w(x), the candidate y is accepted as the next state, otherw1se it

is accepted with the probability E ; The Metropolis-Hastings algorithm takes the

form:

1. Initialize value ¥ € RN, and set £ =1

2. Draw y € RY from the proposal distribution ¢(z),y) and calculate the ac-

ceptance ratio
m(y)a(y, )
m(z®)q(z®,y) |-

3. Draw t € [0, 1] from uniform probability density

a(z9,y) = min{l,

4. If a(z®,y) > t, accept the candidate by setting 2“+1) = y, else 2+ = z()

5. If £ = L (the number of iteration) then stop, else set £ = ¢ 4+ 1 and return to
step 2.

A good rule of thumb of the candidate-states ys should be accepted is around 20% —
30% [45].
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5 Bayesian framework

5.2.1.2 Delayed Rejection Adaptive Metropolis

Combination of two ideas, Delayed rejection and Adaptive Metropolis, was proposed
in [24] to improve efficiency of the resulting MCMC estimators.

32

e Delayed rejection (DR). DR is an improvement of Metropolis Hastings by

reducing the number of rejected proposals [39]. Suppose that the current state
of the Markov chain is X) = z, and a candidate move y; is generated from a
proposal ¢i(x,-) with acceptance probability

W(y)q(w)} (5.7)

(T, y1) = min{l, m(x)q1(z, 1)

In DR, if the proposal state is rejected, instead of remaining in the same
position, a second stage is proposed. The second stage proposal depends not
only on the current state but also on the one we have just proposed and
rejected. The acceptance probability of the second stage proposal:

7(y2) a1 (Y2, y1)a2(y2, y1, ) [1 — a1 (Y2, y1)] } (5.8)

(T 11, 32) = mm{l’ m(@)a1 (@, y1)a2(z, y1, y2)[1 — aa (@, 1))

This process can be iterated further for higher stage proposals.

Adaptive Metropolis (AM). It is well known that in MCMC algorithm,
the choice of proposal distribution is very crucial. In one hand, if the proposal
distribution is too large, the convergence is slow since too many candidate
points are rejected. On the other hand, if the proposal distribution is too
small, too many candidate points are accepted. Therefore it is very impor-
tant to choose the proposal distribution so that the computational efficiency is
obtained. Adaptive Metropolis algorithm was proposed to tune the proposal
distribution suitably updating the covariance from all of the previous states
[25, 26, 52]. The core idea in AM is to construct a Gaussian proposal distribu-
tion with a covariance matrix calibrated using the history of the MCMC chain.
In detail, after generating initial ¢; samples using standard process (such as
MH or DR), the Gaussian proposal to be centered at the current state of the
Markov chain and its covariance is set to be

. _ [ (<t
- 5qCov(XY, -+ X)) +s4ely, >0

with s; is the scaling factor which depends on the dimension d of the state
space on which the posterior distribution is defined, the small number of € > 0
to prevent the covariance matrix becoming singular, and I; denotes the d-
dimensional identity matrix.



5.2 Conditional mean estimate

-2 -1 a 1 2

Figure 5.1: A demonstration of Metropolis-Hasting (MH) (Left) and Delayed Re-
jection Adaptive metropolis (DRAM) (Right) for drawing chains in a
banana shaped distribution. Each of them were run for 100 000 samples.
It is clearly seen that the samples produced by the DRAM method is
well mixed, while the samples from MH has a very slow movement to
cover the important region.

In general, MCMC can perform well if the proposal distribution fits the target dis-
tribution. In DR strategy, a given number of fixed proposals is used for different
stages. Thus, it is very important to have at least one of the proposals is success-
fully calibrated. The idea of AM is to efficiently tune the proposals based on the
information obtained during the run of the chain. The DR and AM strategies are
combined to obtain more efficient method. The outline of implementing the method
is given as follows:

e Assume that we use m-stages DR algorithm. The AM process is applied at
the first stage of DR: the 3} is computed from the sampled chain (which is
independent with m)

e The covariance X! of the proposal for the i-th stage, where i = 2,---  m is
computed as ¥) = ;3. The ; is freely chosen.

A demonstration of drawing samples using MH and DRAM techniques is given in

Figure 5.1. With 100000 iterations, samples produced by DRAM mix very well to
the banana-area, while for MH, the candidate-samples are too often rejected.

33



5 Bayesian framework

5.3 Maximum a posteriori estimate

Maximum a posteriori (MAP) estimate is one of the most popular statistical esti-
mates that equals the highest mode of the posterior distribution. The MAP estimate
fyap satisfies
fuar = argmax w(f | m).
£

Often, optimization methods are used to find the MAP estimate. Typically, the
optimization strategies such as iterative methods are carried out to search the max-
imizer and they lead to the same computational problem as with the deterministic
regularization methods [18, 29, 40, 53].

5.3.1 Sparsity-promoting regularization

It is quite often that we need to deal with complicated signal or big data in which the
computational task becomes very challenging. However, actually, some dominant
or important features in the signal or data can be exploited as a representation of
the signal. This idea promotes sparsity in the sense that the less dominant features
are not taken into account in the signal extraction. With this sparsity-promoting
idea, we now only face the smaller data. One of well-known example is Compressed
Sensing [16, 4, 17] and they study that a finite-dimensional signal can be recovered
or well-approximated as a linear combination of just a few elements from a known
basis or dictionary. If the representation is exact, the signal is-called sparse. Sparsity
can be thought of as Occam’s razor principle: when many possible representations
can predict equally well, the simplest choice (in this case, the fewest number of
elements) should be selected.

Now, we go back to our example using a multiscale wavelet transform [38]. As it
can be seen in Figure 4.1, the lowest frequency components provide a coarse scale
approximation of the image, and the higher frequency components provide the detail
and resolve the edges of the image. In the same figure, we see that many of the
coefficients are very small, thus we can obtain a good approximation of the image
by only using a smaller number of wavelet coefficients, or in other words, by setting
the small coefficients to zero. Figure 5.2 shows the sparse recovery images using two
different numbers of nonzero wavelet coefficients. By only keeping the largest 10%
of the wavelet coefficients, we can still achieve a good recovery image, for instance,
the edges are recovered well.

Now we move to another inverse problem application, such as X-ray tomography
where the X-ray measured data is not only noisy but also the complete data is not
available. In this case, the problem is, of course, ill-posed. We are interested in
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5.3 Maximum a posteriori estimate

(e)

Figure 5.2: An illustration of sparse representation using the wavelet transform. Im-
age (a) is the original image, images (b) and (c) show 3% and 10% of
the largest wavelet coefficients which are kept to represent the approx-
imation images, respectively. Images (d) and (e) present the difference
between the original image and the representation images (b) and (c),
respectively. By compressing the original image by using only 10% of
the largest wavelet coefficients, the compressed image is still presenting
a good quality image.
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Figure 5.3: The implementation of ISTA algorithm to X-ray tomography. Left: The
emoji data built from ceramic stones. Middle: ISTA reconstruction using
60 projection images out of 360° with fix value of thresholding parameter
p. Right: The ratio of the non-zero wavelet coefficients against the
number of iterations.

finding the vector f that minimizes the variational regularization functional

FERN?

. 1
£ = argmm{QHAf— 3+ S I(F, w}, (5.9)
Y

where A and m are modelled as in Section 2, and the parameter i describes a trade-
off between emphasizing the data fidelity term and the regularizing penalty term.
The term -, [(f,1,)| could be replaced by |[Wf||;, where W could be the wavelet
or shearlet transform. For orthonormal basis {¢,}, one of popular techniques to
solve the problem above is the iterative shrinkage/thresholding algorithm (ISTA)
introduced by [14]. It iterates

f"=S,(f" ' + AT(m — Af")),

where n is the current iteration and .S, is the soft-thresholding function defined by

=

v+ 5 if <-4
Tu(z) =10 it |zl <&

x—% if > -4

V)

oz ™

Figure 5.3 illustrates the tomographic reconstruction using the ISTA algorithm.
Nevertheless, convergence rate for a constrained problem, such as non-negativity
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constraints, is not taken into account in [14, 37]. However, in tomographic problems,
enforcing non-negativity on the attenuation coefficients is highly desired. This is
based on the physical fact that the X-ray radiation can only attenuate inside the
target, not strengthen. Thus, the problem we need to solve reads as:

fERN? £>0

1
fs = argmin {2||Af —ml; + ,u||VVf||1}7 (5.10)

where the inequality f > 0 is meant component-wise. In their seminal paper [7],
Peijun Chen, Jianguo Huang, and Xiaoqun Zhang showed that the minimizer of
(5.10) can be computed using the primal-dual fixed point (PDFP) algorithm:

y ) = Bo (10— rg(E0) — AWT)
vt — <I — 7;) (Wy(iﬂ) - v(i)> (5.11)
£i+D = Py, <f<i> V() — AWTW“))

where 7 and A are positive parameters, g(f) = i||Af — m||3, and 7T is the soft-
thresholding operator. Here p > 0 represents the thresholding parameter, while 7
and A are parameters that need to be suitably chosen to guarantee convergence. In
detail, 0 < A < 1/ )\maX(WWT), where A, denotes the maximum eigenvalue, and
0 < 7 < 2/Tp, being 7y, the Lipschitz constant for g(f). Furthermore, in (5.11) the
non-negative “quadrant” is denoted by C' = ]R_]f * and P¢ is the Euclidean projection.

In other words, P¢ replaces any negative elements in the input vector by zero.

5.3.2 Automated regularization parameter tuning

In this work, a novel tomographic reconstruction strategy using sparsity-based reg-
ularization parameter is presented. The method requires a priori knowledge about
the number of nonzero wavelet /shearlet coefficients of the unknown quantity. The
penalty term promotes sparsity of expansion of f with respect to v,, which in this
research 1, can be wavelet systems or shearlet systems. Choosing a suitable regu-
larization parameter is a difficult problem. Here, a novel method for automatically
choosing the parameter based on sparsity is introduced. The main idea of the
method is that the parameter p in (5.10) is automatically tuned based on a control
algorithm which drives the sparsity of the reconstruction to a priori known ratio
0 < €, < 1 of nonzero coefficients in f. Our approach is based on the following
idea: in sparsity-promoting reqularization, it is natural to assume that the a priori
information is given as the percentage of nonzero coefficients in the unknown.
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If C™ is the degree of sparsity at the current iterate, we change u adaptively as

follows: ' , .
P = 4 4+ 3e® —¢,,), (5.12)

where 8 > 0 is a parameter used to tune the controller. Ideally, C,, is computed
from many similar objects.
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The goals of the thesis are:

e to reconstruct an attenuation value and a boundary shape of a homogeneous
target in terms of a NURBS curve using MCMC algorithm for sparse X-ray
data,

e to recover inner structures of a target using adaptive methods for tuning regu-
larization parameter for sparse X-ray data. In 2D, the automatic regularization
method based on enforcing sparsity in the two-dimensional wavelet transform
domain is implemented. While in 3D case, the three-dimensional shearlet
transform domain is used as it promotes directional representation systems.

To resolve the incomplete measurement data, a good prior knowledge needs to be
enforced.

In Article I, IT and III, tomographic reconstructions using NURBS-MCMC method
are proposed to recover the shape of the object from very sparse X-ray tomogra-
phy data. In Article I, a stricter prior distribution is constructed as a preliminary
study, while in Article II, a Gaussian prior is used along with the hard prior. In
both articles, the method is tested using simulated data and Metropolis Hastings
is implemented as the MCMC strategy. In Article III, the method is implemented
to reconstruct the shape of the object from two physical X-ray data sets with the
Gaussian prior and a more suitable hard prior is used. To improve the efficiency of
the method, DRAM strategy is applied as the MCMC method.

Article IV and V present novel reconstruction techniques where the regularization
parameter is tuned automatically based on a prior knowledge of a sparsity level of
the reconstruction. The article IV proposes a new strategy so-called controlled
wavelet domain sparsity (CWDS) and in the Article V controlled shearlets domain
sparsity (CSDS). Both methods seem to be promising strategies, especially in real
life applications where end-users could avoid manually tuning the parameters.

6.1 NURBS-MCMUC strategy

As mentioned above, we assume that our target is one homogeneous object. It
means that we could build prior knowledge based on the fact that we only have one
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material in the object (one attenuation value) and one boundary object. Formulating
a qualitative information of the prior to a quantitative form as a prior distribution
is a challenging task. Therefore, spending considerable amount of time to design
the prior distribution can be necessary. In this research, the design of the prior
distribution is improved gradually in each article.

Let us recall the measurement model in (3.7) with measurement matrix A in the
following form:

m = A(B(v)) +e.

where B is defined in (3.6), m is the X-ray measurement vector, v is our quantity
of interest and ¢ is the measurement error. The vector v contains the radii, angles
and attenuation parameters, i.e. v = [ry,01,...,7p, 0n, c]T, where n is the number
of control points of the NURBS curve and ¢ is the attenuation parameter. The
likelihood is constructed as:

r(m [ 0) ox exp(— 5 5| A(B()) — ml).

In each article, the prior distribution is constructed in order to:
e avoid self-intersecting NURBS-curve, and

e avoid the uncontrollable rotational movement of the control point set.

Prior distribution in Article I With respect to the parameter angles, the
prior is constructed as follows

_ 16:=67]

1 45

for 0 — 45 < 6; < 0/ + 45

0, otherwise,
where 6 = 457, where ¢ is the index of the i-th control point.
With respect to the radius parameter, the prior is constructed as follows

1- I for 0 <ry <15

0, otherwise.

Then we write

40



6.1 NURBS-MCMC strategy

v

Figure 6.1: An illustration of the vector mean ¥ in (6.2). The dashed circle is the
NURBS curve produced by the control points in v with a fixed uniform
periodic knot vector.

Prior distribution in Article I We formulate the prior formula as follows

exp(—gz|lv — 0)[13), for 0 <r; <rP™and 0.1 < ¢ < ¢
2
m(v) = and 0@ < 0; < G, (6.1)
0 otherwise,

with the mean v = [?I,@Nl, ...,?;,HNn,E]T.

Prior distribution in Article III We assume that the attenuation function
f is supported in the disc {(z,y) |22+ y% < r} € R? with a known radius r > 0.
In terms of control points, this condition means that |p;| < 2r.

Assume that the prior information is Gaussian distributed with variance oy. Then
a prior information has the following quantitative form

Lo -7, (6.2)

7(v) exp(—f‘2
0

with the mean v = [ry, 5{, ey Ty é;, dT. Figure 6.1 depicts the prior information.
In addition, to avoid uncontrollable rotational movement of the control point set,
we impose hard constraints on the angles 6;:

max {(91-,2, F{“} < #; < min {QHQ, F?/I}, (6.3)

where '™ is a lower bound for #; and '™ is an upper bound for ;. The radii are
restricted as well as: 0 <7; <™ where I'}", ', 7™ € R.
To minimize oscillations in the curve, the following condition should be satisfied

|d —py|| < kllp;_y — pi+1||>
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Figure 6.2: The illustration of hard prior is given, where p,_;,p,; and p;,; are the

control points and d = (Z=tffur vty )

where p,_;, p; and p,,; (recall that p, = (x;,¥;)) are the control points as in Figure
6.2, d = (“=p%es Y=idinl) and k is a constant. Finally, another hard prior is
added to avoid an intersection of the control polygons.

The posterior distribution is then:

m(v|m) o eXp(—Q;IIA(B(v)) —m|3)7(v) (6.4)

with respect to corresponding prior distribution.

In Article I and II, Metropolis Hastings algorithm is implemented to generate
samples from posterior distribution. Objects with different shapes are simulated to
test the method. For Article III, simulated and real data of crystal sugar are used
and tomographic reconstructions are computed using DRAM strategy. In all results,
the point estimate from conditional mean is calculated to obtain the estimation of
v, the control points of the NURBS curve and the attenuation value of the object.

6.1.1 Computational results of NURBS-MCMC method

An example of computational results of physical phantom using NURBS-MCMC for
formulation in Article IIT is presented in Figure 6.3, the image (a) is the phantom
filled by crystal sugar. We set the number of control points to be 12. We use the
following measurement setup: sparse-angle (6 angles) from full 360° angles of fan
beam geometry are employed. Thus, the total number of our parameters of interest
are 25 (2n+ 1, where n is total number of control points). We used DRAM package,
available at http://helios.fmi.fi/~lainema/mcmc/. We set ¢; to be 100.

FBP reconstruction (in the middle of the picture) is computed as well for compar-
ison. It is clearly seen that using very sparse projection images, the NURBS-MCMC
method outperforms FBP, as evaluated by visual inspection. The NURBS-MCMC
result recovers the boundary of the target better. The non-convex shapes of the tar-
get are represented well by the proposed method. The binary image is automatically
generated since the reconstruction is in the NURBS form.
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(a) (b) (©)

Figure 6.3: Reconstruction of a physical phantom with 6 projections from full 360°
directions: (a) the ground truth. (b) filtered backprojection reconstruc-
tion and (¢) NURBS-MCMC reconstruction.

Figure 6.4 presents the evolutions of the MCMC chain of the radii. It shows that
after a long run, the chains are mixing properly. The multimodality of marginal dis-
tribution of angle parameters is presented in Figure 6.5. The final result is obtained
by computing the conditional mean (CM estimate) of the chains of radii and angles
(control points) and the attenuation coefficient.

6.2 Automatically tuning parameter methods in
sparsity domain for X-ray tomography

In Article IV and V, X-ray tomographic reconstructions are done using adaptive
methods for tuning the regularization parameter using wavelets and shearlets. In Ar-
ticle IV, we propose a method so-called controlled wavelet domain sparsity (CWDS)
and implement it to 2D X-ray tomography problem. In Article V, instead of using
wavelets, we propose the controlled shearlet domain sparsity (CSDS) algorithm to
3D X-ray tomography case. We use primal-dual fixed point (PFDP) algorithm intro-
duced by [7] and adapt regularization parameter as it is discussed in Subsection 5.3.2
using the algorithm (5.11).

For Article IV, we consider the matrix underlying the wavelet transform, which
we shall denote by W € RV *N? If f € RN, the vector collecting all the wavelet
coefficients is given by:

Wt e RV, (6.5)

where it is clear that the matrix product Wf is the digital counterpart of (4.2).
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Figure 6.4: The Markov chain Monte Carlo chains of the radii.

In Article V, we implement Digital 3D Shearlet Transform SH generated by
ShearLab3D [35, 34], available at http://www.shearlab.org/. When we consider
f € RV**T_ the shearlet coefficients are then given by:

SH(f) e RN *TxK (6.6)

where K is the number of 3D shearlets.

6.2.1 Computational results of adaptive methods for
choosing regularization parameter

Review of Article IV Article IV presents 2D tomographic reconstruction of
Shepp-Logan phantom and a middle slice of a walnut using the CWDS. We use
the tomographic X-ray real data of the walnut, consisting of a 2D cross-section
of the real 3D walnut measured with a custom-built CT device available at the
University of Helsinki (Finland). The open-access datasets are available at http:
//fips.fi/dataset.php. For a detailed documentation of the acquiring setup,
including the specifications of the X-ray systems, see [27]. We tested the sparse
projections: 120 and 30 out of full 360° angles.
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Figure 6.5: Histograms of the 1-d marginal posterior distribution of angles in the
Markov chain Monte Carlo chain.
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We assume that we have a prior object f, similar to the one we are imaging.
Given k > 0, for a vector w € RN, we define the number of elements larger than k
in absolute value as follows:

#ow = H#{1 |1 <i < N?, |w| > K},
with w; is the i-th Haar wavelet coefficient. Now, the prior sparsity level is defined

by
o #eAWE )
pr N2 )
where N? is the total number of coefficients. In practical computations the value of
k is set to be small. In Article IV, the sparsity level is computed from two different
walnut photographs. In addition, the reconstruction of Shepp-Logan phantom (gen-
erated by MATLAB) is computed as well. The method is tested for sparse X-ray
data and the results outperform the conventional FBP method via visual inspec-
tion. As it can be seen in Figure 6.6, the reconstructions using CWDS produce less
streak artefacts. Figure 6.7 illustrates the ratio of nonzero wavelet coefficient for the

walnut case converge to Cp, value relatively fast.

Figure 6.6: Reconstructions of the middle slice of walnut using FBP with (a) 120 pro-
jections, and (c) 30 projections. Reconstructions of the walnut using the
wavelet-based method with (b) 120 projections, and (d) 30 projections.
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Figure 6.7: The ratio of nonzero wavelet coefficients as the iteration progresses for
the walnut case. Top: 120 projections. Bottom: 30 projections. The
dashed line shows the desired sparsity Cp,.

Review of Article V In Article V, 3D human trabecular bone tomographic
reconstruction using controlled shearlets domain sparsity is applied. X-ray data
from two osteochondral samples were acquired. Two samples (diameter = 4 mm)
were harvested from weight bearing area of tibial plateus from two cadavers under
the approval of The Research Ethics Committee of the Northern Savo Hospital Dis-
trict, Kuopio, Finland (approval no 134/2015). The X-ray tomography data was
acquired with SkyScan 1272 high-resolution pCT scanner (Bruker microCT, Kon-
tich, Belgium). We collected 300 projection images acquired over a full 180 degree
rotation with uniform angular step of 0.6 degrees between projections and used the
Feldmann, David and Kress (FDK) reconstruction as baseline reconstructions. We
picked 50 and 30 projection images from the measured data with uniform angular
sampling and tested in our experiments.

These samples have full 300 projections from half-circle 180° of the healthy and
osteoarthritis (OA) human trabecular bone. The shearlets coefficients of a baseline
reconstruction, i.e. FDK method is computed [3]. We compute the nonlinear ap-
proximation as the best k—term approximation of the baseline (FDK reconstruction
from full 300 projection images) image where « is ranging between 5% to 95%. Once
it is done, morphometric parameters from the trabecular bone of each approximation
images are computed:

1. Percentage of bone volume (BV/TV). BV refers to volume of the region seg-
mented as bone and BV/TV refers to the ratio of the segmented bone volume
to the total volume of the volume of interest (VOI);
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Figure 6.8: The value of bone parameters from inverse 3D shearlet transform of the
healthy and OA bone using different sparsity levels. Stars with circles
are the stable/unchanged values.

2. Trabecular thickness (7b.Th): the diameter of the largest sphere which is
entirely bounded within the solid surfaces (mm);

3. Trabecular separation (7.Sp): the thickness of the spaces as defined by bina-
rization within the VOI (mm).

At a particular level, as k decreases, the morphometric parameters start to deterio-
rate. The sparsity level C,, is chosen at the stage before the trabeculae parameters
start deteriorating as shown in Figure 6.8. In this case we can choose C,, between
35% — 40%.

We apply the FDK and CSDS methods to reconstruct the samples. When the
number of projection images was reduced, the significant streak artefacts overwhelms
the FDK reconstruction images while in the CSDS reconstructions the appearance
of the streak artefacts is less. The non-negativity constraint and the enforcement
of the penalty term ¢;-norm combined with the sparsity transform which acts as
denoising process in the CSDS method give significant contribution to produce better
reconstructions as it shown in Figure 6.9. Figure 6.10 presents the ratio of nonzero
shearlets coefficients in each iteration. We stress that the proposed method CSDS
offers an automatic method in choosing regularization parameter.

For these particular samples, we also compute the morphometrics parameter of
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the trabecular bone of each reconstruction. Standard steps are applied to compute
the parameters. Once we obtain the reconstruction images, we choose the inner area
of the reconstruction images to avoid the artefacts caused by the dust due to the
drilling process. Then, the images are segmented using CTAn software to produce
binary images.

When the number of projection images is reduced, the quality of the binary im-
ages from the FDK reconstructions were relatively poor due to appearance of noise
speckles in the binary images. It can be seen from Figure 6.11 that many of trabec-
ulae become also broken. As a result, morphometric parameters of the trabecular
bone for the FDK reconstructions contain large deviations of its baseline parame-
ters as it is confirmed in Table 6.1 and Table 6.2. However, CSDS method performs
better in the sense that there is no presence of noise speckles. Thus, the morphome-
tric parameters values are closer to the baseline values. For instance Table 6.3 and
6.4 show that for both samples, the FDK reconstructions using 50 projections had
differences in the Th.Sp parameter of 9.86% — 17.1%, while for 30 projections it was
28.17% — 40%. Other parameters such as Th.Th was affected significantly as well
for the two different numbers of projections. The Tb.Th decreased by up to 43.2%
of its baseline values (from 0.37 mm to 0.21 mm or from 0.34 mm to 0.24 mm). The
results from the CSDS algorithm show that the differences in the parameters are
relatively smaller than those of the FDK method. For instance Th.Sp increased by
up to 14.43% difference of its baseline value for 50 projections and 5.71% — 11.27%
for 30 projections. It is reported as well that Tb. Th increased only up to 5.88%. The
BV/TV increased by a relatively small amount: from CSDS method it increased up
t0 6.06%, not significant difference compared to the FDK method for which the devi-
ation was up to 5.66%. Overall, the results show that the CSDS approach to recover
the inner structure of the human trabecular bone samples from sparse projection
images outperforms the conventional FDK approach.
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Figure 6.9: Axial micro-CT cross-section images of the 3D reconsructions. The base-
line images (FDK reconstruction from 300 projections) are given in (a)
and (f), FDK reconstructions from 50 projections are shown in (b) and
(g), FDK reconstructions from 30 projections are shown in (c) and (h),
CSDS reconstructions from 50 projections are shown in (d) and (i) and
CSDS reconstructions from 30 projections are shown in (e) and (j).
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Figure 6.10: The ratio of nonzero shearlet coefficients as the iteration progresses
from healthy sample using: (a) 30 projections and (b) 50 projections
and from OA sample using: (c) 30 projections and (d) 50 projections.
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e

(i) ()
Figure 6.11: Axial cross-section images of thresholded images or binary images of
the volume of interest which correspond to Figure 6.9.

Table 6.1: The trabecular bone morphometric parameters calculation for the healthy
sample reconstruction from different number of projection images.

Method | Number of | BV/TV | Tb.Th | Tb.Sp
projections (mm) | (mm)
Baseline 300 32.33% | 0.34 | 0.71
FDK 20 30.50% | 0.28 0.64
30 32.17% | 0.24 0.51
CSDS 50 33.77% | 0.36 0.70
30 34.29% | 0.33 0.63
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Table 6.2: The morphometric parameters calculation for the OA sample reconstruc-
tion from different number of projection images.

Method | Number of | BV/TV | Tb.Th | Tb.Sp
projections (mm) | (mm)
Baseline 300 51.30% 0.37 0.35
FDK 50 50.60% 0.30 0.29
30 48.57% 0.21 0.21
CSDS 50 53.69% 0.36 0.31
30 52.79% 0.37 0.33

Table 6.3: The relative error of the morphometric parameters of the healthy trabec-

ular bone from different number of projection images.

Method | Number of | BV/TV | Tb.Th | Tb.Sp
projections

FDK 50 5.66% | 17.65% | 9.86%

30 0.50% | 29.41% | 28.17%

CSDS 50 4.45% | 5.88% | 1.41%

30 6.06% | 2.94% | 11.27%

Table 6.4: The relative error of the morphometric parameters of the OA trabecular
bone from different number of projection images.

Method | Number of | BV/TV | Tb.Th | Tb.Sp
projections

FDK 50 1.36% | 18.92% | 17.14%

30 5.32% | 43.24% | 40.00%

CSDS 50 4.66% | 2.70% | 14.43%

30 2.90% 0% 5.71%







7 Conclusion and future outlook

This thesis presents novel methods in X-ray computed tomography imaging from
limited data:

(i) The NURBS-MCMC strategy to recover the boundary of a homogeneous object
(an object that contains only one material) in terms of NURBS curve and its
attenuation value.

(ii) Adaptive methods for choosing regularization parameter. The first approach
so-called the controlled wavelet domain sparsity (CWDS) is based on enforcing
sparsity in the two-dimensional wavelet transform domain, and the second so-
called the controlled shearlet domain sparsity (CSDS) in the three-dimensional
shearlet transform domain.

Novel algorithms above have been successfully implemented for real measured X-ray
data and the results using under-sampled data outperform the baseline method.

Method (i) exploit MCMC strategy to solve the problem, and instead of a single
output, the solution in the Bayesian framework is the posterior distribution. In
addition, the results of the method (i) are conveniently in CAD-compatible format.
In more detail, in this work, the knot vector of the NURBS curve is fixed, the future
work is to consider it as random variables as well. The method has heavy compu-
tation, hence the future outlook can be to further speed-up the heavy computation
such as optimizing the covariance of the sampling strategy. The choice of initial
value could be improved by exploiting spline fitting to the baseline reconstruction.

The proposed method (ii) offers a strategy to automatically choosing regulariza-
tion parameter where the end-users could avoid manually tuning the parameters.
A known a priori sparsity level calculated from some available objects/samples is
required. The future outlook is to study and to collect more objects that can be
used to obtain the desired sparsity level. In addition, the strategy to choose the a
priori sparsity level is problem-dependent. Also, the choice of the wavelet in CWDS
method can vary depends on the applications.

The CSDS method can be implemented in dynamic tomography as well, for ex-
ample in spatio-temporal CT imaging in (2 4+ 1) dimensions or combining different
regularization methods: 2D-shearlets for the spatial part and 1D-wavelet transform
in time. Moreover, for the trabecular bone samples case, a statistical comparison is
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one of the future studies. Another future research is to do in vivo experiments as

well.
Finally, implementing parallelization strategy could save the computation time.

Especially for the shearlet-based algorithm, computation of shearlet decomposition
in a serialized manner can be another acceleration strategy.
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