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Abstract

1. Catechol-O-methyltransferase (COMT) is involved in the O-methylation of L-DOPA, dopa-
mine, and other catechols. The enzyme is expressed in two isoforms: soluble (S-COMT),
which resides in the cytoplasm, and membrane-bound (MB-COMT), which is anchored to
intracellular membranes.

2. To obtain specific information on the functions of COMT isoforms, we studied how a
complete MB-COMT deficiency affects the total COMT activity in the body, peripheral
L-DOPA levels, and metabolism after L-DOPA (10 mg kg�1) plus carbidopa (30 mg kg�1)
administration by gastric tube in wild-type (WT) and MB-COMT-deficient mice. L-DOPA and
3-O-methyl-L-DOPA (3-OMD) levels were assayed in plasma, duodenum, and liver.

3. We showed that the selective lack of MB-COMT did not alter the total COMT activity, COMT
enzyme kinetics, L-DOPA levels, or the total O-methylation of L-DOPA but delayed
production of 3-OMD in plasma and peripheral tissues.
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Introduction

Catechol-O-methyltransferase (COMT) catalyzes the conver-

sion of catecholamines and other catechols, e.g. L-DOPA and

catechol estrogens, into their O-methylated metabolites using

S-adenosyl-L-methionine as the methyl donor (Guldberg &

Marsden, 1975; Männistö & Kaakkola, 1999). The COMT

gene (COMT) codes for two isoforms of the COMT enzyme

protein, soluble (S-COMT), and membrane-bound (MB-

COMT) (Lundström et al., 1991; Salminen et al., 1990).

The latter protein is slightly larger because it incorporates 50

additional hydrophobic amino acids that form the membrane

anchor (Lundström et al., 1991; Bertocci et al., 1991). COMT

contains six exons, the first two of which are non-coding. In

exon 3, there are two AUG start codons for two promoters that

control the expression of the two COMT transcripts

(Tenhunen et al., 1994). The distal P2 promoter regulates

the synthesis of a 1.5-kb transcript in humans. Based on the

leaky scanning mechanism of translation initiation, this longer

transcript can code for both S-COMT and MB-COMT

proteins (Tenhunen & Ulmanen, 1993; Tenhunen et al.,

1993, 1994). The P1 promoter almost completely overlaps

exon 3 and falls between the S-COMT and MB-COMT ATG

start codons, partially overlapping the MB-COMT coding

sequence. Therefore, the shorter mRNA transcript (1.3 kb in

humans) regulated by P1 only codes for the S-COMT protein.

S-COMT and MB-COMT share the same enzymatic

mechanism, but their kinetic parameters for catecholamine

neurotransmitters are different. S-COMT shows high Km

values but also high Vmax values, suggesting that S-COMT is

the predominant isoenzyme under conditions where substrate

concentrations are high, such as during detoxification of

exogenous catechol compounds in the liver and gut wall

(Guldberg & Marsden, 1975; Männistö & Kaakkola, 1999;

Roth, 1992). MB-COMT, on the contrary, has low Vmax

values as well as a higher affinity to catechol substrates than

S-COMT, implying a role in catecholamine neurotransmitter

metabolism under low, evidently physiological concentrations

(Bai et al., 2007; Lotta et al., 1995; Masuda et al., 2006; Roth,

1992). Nevertheless, differences in these kinetic parameters

are not universal for all substrates. In the case of many

catechol compounds, such as L-DOPA, 3,4-dihydroxybenzoid

acid (DHBAc) and catecholestrogens, the affinity and rate of

enzymatic reaction are similar for both isoenzymes (Lotta

et al., 1995; Reid et al., 1986).

COMT is expressed widely in tissues throughout the body.

The highest levels of expression are found in the liver and

kidneys (Guldberg & Marsden, 1975; Männistö & Kaakkola,

1999; Myöhänen & Männistö, 2010). Distribution of COMT

activity does not fully parallel COMT protein levels,

suggesting that the activity is regulated at the tissue level.

In addition, the S-COMT/MB-COMT ratio varies between
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tissues, which likely affects the relation between combined

COMT expression levels and enzyme activity (Myöhänen &

Männistö, 2010). Generally, the importance of MB-COMT-

mediated O-methylation is higher in the brain than in the

periphery, and S-COMT expression and activity levels are

higher in peripheral tissues than in the brain (Männistö &

Kaakkola, 1999; Myöhänen et al., 2010). Since estrogens

down-regulate the expression of both COMT isoforms,

COMT activity is generally lower in females than males

although not in all tissues (Schendzielorz et al., 2011; Xie

et al., 1999). Significance of the COMT gene to sex

differences in brain function and predisposition to psychiatric

disorders has remained unsolved (Tunbridge & Harrison,

2011).

The dopamine precursor L-DOPA, combined with an

aromatic acid decarboxylase (AADC, DDC, dopa decarb-

oxylase) inhibitor like carbidopa, is the most important

component of treatment for Parkinson’s disease (PD). COMT

inhibitors, such as entacapone and tolcapone, are used in PD

to improve further the bioavailability of L-DOPA and prolong

its action (Männistö & Kaakkola, 1999).

We have developed a novel genetically engineered mouse

strain that selectively lacks MB-COMT (Tammimäki et al.,

2016). These mice had a distinct phenotype with increased

aggressiveness, reduced prepulse inhibition, and prolonged

immobility time in tail suspension test in male mice and

sensitization to pain and worsened short-term memory in both

sexes. Earlier, we found in S-COMT-deficient mice that the

total COMT activity was decreased by about 30% in all

tissues studied (Käenmäki et al., 2009). However, after

L-DOPA/cardidopa administration, the levels of L-DOPA

either in plasma or peripheral tissues were only slightly

increased, although the levels of the O-methylated metabolite

of L-DOPA, 3-OMD, were significantly decreased. Based on

that, we hypothesized that overall COMT activity would be

decreased in MB-COMT-deficient mice and that the periph-

eral metabolism of L-DOPA would be hampered as well.

In the present study, L-DOPA kinetics after oral adminis-

tration of L-DOPA with carbidopa was explored. We

measured L-DOPA and 3-OMD levels in plasma and periph-

eral tissues of the WT and MB-COMT-deficient mice. These

studies provide new information on the role of COMT

isoforms in L-DOPA metabolism in mice.

Materials and methods

Materials

L-DOPA (levodopa), 3-OMD, and 3,4-dihydroxybenzoid acid

(DHBAc) were purchased from Sigma Chemical Co. (St.

Louis, MO), and carbidopa was obtained from Orion Pharma

(Espoo, Finland). Carboxymethyl cellulose and EDTA were

purchased from Fluka Chemie (Steinheim, The Netherlands).

Animals

MB-COMT knock-in mutant mice were generated as

described elsewhere (Tammimäki et al., 2016). Briefly, a

knock-in approach was used that allowed site-directed muta-

genesis on the whole animal level. Two-point mutations

were introduced in exon 2 of the Comt gene (ATGCTG

–>GAGCTC) altering just one amino acid, methionine, to

glutamic acid. Consequently, the function of the P2 promoter

is disabled and only the P1-regulated S-COMT transcription

remains.

MB-COMT-deficient male and female mice as well as

their WT littermates were used for the animal experiments.

The mice were bred in a SPF barrier unit at the Laboratory

Animal Centre of University of Helsinki, Finland. They were

weaned, sexed, and earmarked at the age of 3 weeks. After

weaning, they were group housed in clear polycarbonate

individually ventilated filter-top cages with aspen chip

bedding and nesting material under 12:12 light cycle at an

ambient temperature of 22 �C with drinking water and mouse

chow available ad libitum. The mice were kept in the home

cages with their same-sex littermates until sacrificed. Mice (in

total 146 mice) of the sixth to seventh generations of

heterozygous mating pairs were used for the experiments;

C57BL/6JHsd mice were regularly included in the breeding to

maintain the strain on that particular background.

Experimentally naı̈ve animals entered the experiments when

they were two to three months old and weighed 20–30 g. The

phase of the estrus cycle was not determined. In all

experiments, MB-COMT-deficient male and female groups

were compared with respective WT control groups. In the end

of experiments, the animals were sacrificed by cervical

dislocation.

Animal experiments were conducted according the 3R

principles of the EU directive 2010/63/EU governing the care

and use of experimental animals, and following local laws and

regulations [Finnish Act on the Protection of Animals Used

for Scientific or Educational Purposes (497/2013),

Government Decree on the Protection of Animals Used for

Scientific or Educational Purposes (564/2013)]. The protocols

were authorized by the national Animal Experiment Board of

Finland.

Genotyping of MB-COMT-deficient knock-in mice

Genotype was determined from tissue samples obtained

during earmarking of the mice. Genomic DNA was extracted

from the ear biopsies as described by Laird et al. (1991). PCR

mix consisted Comt3HAUF2 (oligo No: 40612F3A03 1/4,

sequence: 50-GAAGTGGGTATGGCAGCGCTTATA-30) and

Comt5HADR2 (oligo no. 40612F3B03 2/4 sequence:

50-AACACACATTCCTCTC-ATGCTCCT-30) primers from

Oligomer (Helsinki, Finland) and Fail safe system premix

B. The amplified fragments were visualized by SyBr Green

(Qiagen, Venlo, The Netherlands) staining under ultraviolet

light after electrophoresis in a 1.7% agarose gel.

COMT activity assay

Livers for total COMT activity assay were collected from

MB-COMT-deficient and WT mice of both sexes. The tissues

were frozen on dry ice and stored at �80 �C before analysis.

Detailed method of the COMT activity assay is given

elsewhere (Käenmäki et al., 2009). Activity data are given

as picomoles of vanillic acid (and isovanillic acid for meta/

para calculation) formed per minute per milligram of tissue.

Liver COMT activities were measured with graded concen-

trations of DHBAc (1, 10, and 100 mM) and enzyme kinetics
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(Km and Vmax) were calculated with GraphPad Prism 5.0. (San

Diego, CA).

Western blotting

For Western immunoblotting (WB), the tissue samples (liver

and duodenum) were collected from at least two male and two

female mice and rinsed in physiological saline solution.

Immediately after dissection, the tissues were placed in ice-

cold centrifuge tubes on dry ice to minimize decomposition.

All the tissue samples were frozen and stored in –80 �C until

analyzed. Tissues were lysed in 10 volumes of RIPA lysis

buffer (20 mM Tris-HCl (pH 8.0), 137 mM NaCl, 10%

glycerol, 1% NP-40, 2 mM EDTA) containing protease and

phosphatase inhibitors, homogenized manually, incubated for

20 min on ice and centrifuged (18 000 � g for 15 min at 4 �C).

The supernatants were resolved by electrophoresis on a

4–20% precast gel (Mini Protean TGX Gel, Biorad, Hercules,

CA). Proteins were transferred onto Trans-Blot Turbo

Nitrocellulose filter and transferred using the Trans-Blot

Turbo Transfer system (Biorad, Hercules, CA). The mem-

branes were blocked with 0.1% (w/w) Tween-20/TBS

containing 5% (w/w) non-fat-dried milk at room temperature

for 1 h. After blocking, the membranes were incubated

overnight with mouse anti-COMT antibody (1:8000, BD

Biosciences, Franklin Lakes, NJ) and mouse anti b-actin

antibody (1:10 000, clone AC-74, purified immunoglobulins,

107K4791, Sigma-Aldrich Inc., MO) followed by incubation

with goat anti-mouse secondary antibody, HRP conjugated

(1:2000, Thermo Fisher Scientific, Waltham, MA) for 1 h at

room temperature. The membranes were incubated with ECL

detection reagent (Thermo Fisher Pierce, Rockford, IL) for

5 min to visualize proteins, and then visualized using C-Digit

blot scanner (Li-COR, Lincoln, NE). Blots were analyzed

using ImageJ freeware (NIH, Bethesda, MD).

Pharmacokinetics of L-DOPA

The mice were given L-DOPA (10 mg kg�1) and carbidopa,

30 mg kg�1) suspended in 0.25% carboxymethyl cellulose gel

(volume 5 ml kg�1) with a silicon-tipped stainless steel gastric

tube. The drug doses were chosen to match the ones used in

our previous L-DOPA studies (Huotari et al., 2002; Käenmäki

et al., 2009). From each mouse, one baseline blood sample

and two blood samples after L-DOPA administration were

collected in Microvette capillary blood collection tubes

containing potassium EDTA (Sarstedt, Nümbrecht,

Germany) at time points 30, 60, and 120 min. The first two

samples (100ml) were taken from the saphenous vein (https://

www.nc3rs.org.uk/mouse-saphenous-vein-non-surgical) and

the third, terminal sample (approximately 300 ml of the

whole trunk blood) by decapitation of the cervically

dislocated animals. The blood samples were centrifuged at

4900 � g at 4 �C for 10 min. We aimed to collect six

independent samples of each genotype at every time point was

measured. After the terminal blood sample (at 60 or 120 min)

was collected by decapitation, pieces of the liver and

duodenum were dissected and frozen on dry ice. Control

tissues (shown as time point 0 in results) were collected from

drug-naı̈ve mice. Plasma and tissues were stored at �80 �C
until assays.

Plasma (Käenmäki et al., 2009) and tissue (Airavaara et al.,

2006; Huotari et al., 2002) samples were prepared as

previously described and L-DOPA and 3-OMD were quanti-

fied from the filtrates using HPLC with electrochemical

detection as described in (Käenmäki et al., 2009). The values

are presented as nanograms per mg of wet tissue weight or

nanograms per ml of plasma. The number of animals per

group in these analyses was 4–7. In our experience, this

number is large enough to show potential significant differ-

ences between groups. There were seven animals in male WT

group at 0 min, six animals in male MB-COMT-deficient

mice a 0 min, female WT mice at 120 min, female MB-

COMT-deficient mice at 60 min and female MB-COMT-

deficient mice at 120 min groups and four animals in female

WT 0 min group. Rest of the groups had five animals. Four

tissue samples were excluded due to failed sample preparation

or analysis. Thus, in these groups, there are fewer replications

than in others (male WT mice at 60 min, female MB-COMT-

deficient mice at 30 and 60 min).

Statistics

SPSS 22 statistic software (SPSS Inc., Chicago, IL) was used

for all calculations. The results are shown as mean ± standard

error of mean (SEM). AUC values were calculated employing

the trapezoidal rule (calculated of time points between 0 and

120 min).

Two-way ANOVA for repeated measures with sex and

genotype as independent variables was used to test the

L-DOPA kinetic data and COMT enzyme activity. If the

initial two-way ANOVA showed a significant sex effect,

the data were further analyzed with one-way ANOVA for

repeated measures. Differences in L-DOPA/3-OMD ratios at

each time point were analyzed by two-way ANOVA and meta/

para ratios with one-way ANOVA followed by Newman–

Keuls test.

Results

COMT proteins in the liver and duodenum

Representative Western blots from duodenum and liver of

male and female WT and MB-COMT-deficient mice

(Figure 1) show that the latter express S-COMT protein,

while no MB-COMT protein is present. The amount of MB-

COMT is about one-tenth of S-COMT. We did not see any

Figure 1. Western blot analysis of the liver and duodenum showing a
complete lack of MB-COMT protein in the mutated mice. WT: wild-
type, –/–: MB-COMT-deficient mice.
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upregulation of S-COMT as a reaction to the lacking MB-

COMT.

Total COMT activity in the liver

As expected, increased total COMT activity in the liver

(Figure 2) was observed with increasing concentrations of the

substrate without any significant difference between the

values in the WT and MB-COMT-deficient mice. There

were no significant differences in the kinetic values between

genotypes and sexes calculated from the present substrate

concentrations (1, 10, and 100 mM) and those measured

earlier at 3, 30, and 300 mM (Tammimäki et al., 2016): Vmax:

in males, 481 ± 65 versus 385 ± 57 min�1 in WT and MB-

COMT-deficient mice, and in females, 381 ± 113 versus

536 ± 110 min�1, respectively; Km: in males, 115 ± 56 versus

89 ± 27 mM, and in females, 180 ± 79 versus 277 ± 75 mM, in

WT and MB-COMT-deficient mice, respectively.

However, there was a sex difference in liver COMT

activity across different substrate concentrations [two-way

ANOVA for repeated measures: F2, 40 = 8.645, p50.01].

Meta/para ratios were always less than 15, typical to S-COMT

activity, at all substrate levels. In all material, meta/para ratios

of the males were 12.0 ± 1.4 (WT) and 11.6 ± 1.7 (MB-

COMT deficient) and in females, 6.7 ± 0.4 and 6.5 ± 0.4,

respectively. Female values were significantly lower than

male values [one-way ANOVA: F3,50 = 6.81, p50.01].

Pharmacokinetics of L-DOPA

L-DOPA and 3-OMD in plasma

Figure 3 shows the concentrations of L-DOPA and its 3-OMD

in the plasma of the MB-COMT-deficient mice and their WT

littermates of both sexes. Neither the sex nor the genotype

affected concentrations of L-DOPA in plasma. Although there

was neither a genotype- nor sex-dependent effect on 3-OMD

levels, the interaction between the two was significant [two-

way ANOVA for repeated measures, sex� genotype inter-

action: F1, 17 = 5.338, p50.05]. This means that genotype

had a different effect on 3-OMD levels in males than in

females. In practice, male mice showed no genotype effect

whereas in females the 3-OMD levels tended to be lower in

MB-COMT deficient than in WT mice. Furthermore, the

kinetics of the 3-OMD was altered in the MB-COMT-

deficient mice, as the levels of 3-OMD did rise more slowly in

the mutated mice as compared with the WT animals [two-way

ANOVA for repeated measures, time� genotype interaction

F4, 68 = 6.965, p50.001].

L-DOPA/3-OMD ratios at 30 min confirmed that O-

methylation of L-DOPA was significantly delayed in both

male (WT, 4.3 ± 1.6 versus MB-COMT deficient, 11.8 ± 1.1)

and female (5.3 ± 0.7 versus 14.8 ± 1.1) MB-COMT-deficient

mice [two-way ANOVA: genotype effect F1, 16 = 19.42,

p50.01]. However, there was a significant overshooting of

O-methylation at 120 min in MB-COMT-deficient mice

(males: 3.1 ± 0.5 versus 0.5 ± 0.2; females: 4.0 ± 1.4 versus

0.5 ± 0.08, for WT and MB-COMT deficient, respectively)

[two-way ANOVA: genotype effect F1,18 = 6.65, p50.05].

L-DOPA and 3-OMD in tissues

Figure 4 shows that neither the gender nor the genotype

significantly affected the L-DOPA levels in hepatic and

duodenal tissues. In addition, neither sex nor genotype

affected hepatic and duodenal concentrations of 3-OMD.

However, in both tissues, genotype affected the 3-OMD levels

in male mice measured over time [two-way ANOVA for

repeated measures, liver: time� genotype interaction F2, 30

= 6.990, p50.01; duodenum: time� genotype interaction F2,

30 = 5.617, p50.01]. Like 3-OMD levels in plasma, also 3-

OMD tissue levels appeared to increase more slowly in MB-

COMT-deficient mice as compared with their WT littermates

(excluding duodenal tissue in females).

Discussion

In this study, we explored the effect of complete MB-COMT

deficiency on hepatic COMT activity and L-DOPA kinetics

and metabolism in mouse. We showed that the lack of MB-

COMT affected neither the total COMT activity in the liver

nor L-DOPA levels in but shifted the 3-OMD time–concen-

tration curve to the right in plasma and peripheral tissues.

In our previous studies in S-COMT-deficient mice, we

found a non-significant 20–30% increase of L-DOPA levels in

the plasma, liver and duodenum (Käenmäki et al., 2009),

while in the COMT knock-out mice, L-DOPA levels were

approximately doubled as compared with the WT mice

(Käenmäki et al., 2009). In the present study, we did not

observe a significant overall effect of MB-COMT genotype

on 3-OMD levels in the plasma and peripheral tissues

(Figures 3 and 4). Instead, in the MB-COMT-deficient

mice, we observed a significant delay in plasma and

peripheral tissue 3-OMD levels as compared with WT

animals. This was reflected in the significantly reduced

L-DOPA/3-OMD ratios at 30 min in the MB-COMT-deficient

mice of both sexes. At 120 min, there was an overshoot of the

ratio balancing the total L-DOPA O-methylation to the level

of the WT mice. In the previous study, we showed 30–40%

lower 3-OMD levels in plasma, liver, and duodenum in

S-COMT-deficient animals than in their WT littermates

Figure 2. Total COMT activity in the liver (mean ± SEM, n = 4–5/
group) measured at three substrate (DHBAc) concentrations (1, 10, and
100mM). There was a significant sex effect females having generally
lower COMT activity than males. However, the lack of MB-COMT did
not alter the total COMT activity.
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(Käenmäki et al., 2009). Altogether, these results suggest that

S-COMT can effectively compensate functionally for the

deficit caused by the lack of the MB-COMT isoform. The

delayed initial metabolism of L-DOPA was an exception,

stressing an unexpected importance of MB-COMT in the

peripheral metabolism of L-DOPA where S-COMT was not

fully able to compensate for the lack of MB-COMT.

Enzyme kinetic properties of pure recombinant human

COMT isoforms for L-DOPA, dopamine and noradrenaline

have shown that compared with S-COMT, the Vmax (capacity)

of MB-COMT for L-DOPA, DHBAc (the substrate of activity

assay), dopamine, and noradrenaline is about one-half,

whereas the affinity (Km) for L-DOPA is only two-fold (for

DHBAc even less) but more than 10-fold for both catechol-

amines. The amount of MB-COMT protein was about 10% of

that of S-COMT in the duodenum. Also in our earlier study,

the amount of MB-COMT in the mouse duodenum was

considerably smaller than that of S-COMT (Myöhänen et al.,

2010). The relatively small affinity difference between MB-

COMT and S-COMT for L-DOPA probably means that

MB-COMT is participating to a minor extent in L-DOPA

O-methylation in the upper gastrointestinal tract in the WT

mice and, therefore, a lack of MB-COMT may contribute to

the initial delay of L-DOPA O-methylation.

Unaltered total COMT activity in the mice lacking MB-

COMT could be explained by significant differences of

enzyme kinetic properties of the two COMT isoforms for

catecholamines (see Introduction and the preceding para-

graph) as we have thoroughly discussed before (Tammimäki

et al., 2016). Km value of MB-COMT for catecholamines is

less than one-tenth (or even smaller in some studies, Roth,

1992) of the corresponding value of S-COMT. In addition, the

meta/para ratio suggests dominance of O-methylation by S-

COMT even in WT mice (less than 15) and this ratio was not

altered by a complete lack of MB-COMT. Considering the

dominance of behavioral effects of MB-COMT deficiency in

males (Tammimäki et al., 2016), it is notable that meta/para

ratios were significantly higher in males than females,

suggesting an important role for MB-COMT, particularly in

males. There is no doubt that S-COMT is the dominating

Figure 3. l-DOPA and 3-OMD in plasma. Concentrations of L-DOPA and 3-OMD in the plasma of male and female MB-COMT-deficient animals and
their wild-type littermates as well as AUC0–120 min values calculated based on time–concentration curves. The mice were treated with L-DOPA (10 mg/
kg) and the dopa decarboxylase inhibitor carbidopa (30 mg/kg) by gastric tube and blood samples were taken at 30, 60, 90, and 120 min after drug
administration. Control blood was drawn before drug administration. From each mouse, three blood samples were taken. The time points of blood
sampling were randomized within each genotype and sex group. WT: wild-type, MB-COMT �/� : MB-COMT-deficient mice. One-way ANOVA for
repeated measures indicated a significant time effect for both sexes in L-DOPA and 3-OMD data analyses. However, genotype� time interaction proved
to be significant only for the male 3-OMD levels. One-way ANOVA F-values are presented in the figure. Data are given as mean ± SEM, n = 5–7 per
time point.
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Figure 4. L-DOPA and 3-OMD in peripheral tissues. Concentrations of L-DOPA and 3-OMD in hepatic and duodenal tissue from MB-COMT-deficient
mice and their wild-type (WT) littermates as well as AUC0-120 min values based on time–concentration curves. The mice were treated with L-DOPA
(10 mg/kg) and the dopa decarboxylase inhibitor carbidopa (30 mg/kg) by gastric tube. Mice were sacrificed 60 or 120 min after drug administration.
Control tissues were collected from drug-naı̈ve mice. WT: wild-type; MB-COMT �/�= MB-COMT-deficient mice. One-way ANOVA for repeated
measures indicated a significant time effect for L-DOPA in females in the liver and in both sexes in the duodenum and 3-OMD in both sexes and tissues.
However, genotype� time interaction proved to be significant only for 3-OMD in males. One-way ANOVA F-values are presented in the figure. Data
are given as mean ± SEM, n = 5–7 per time point.
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enzyme of overall COMT activity in the body. It is interesting

to note that in the S-COMT-deficient mice (Käenmäki et al.,

2009), MB-COMT was able to maintain about 70% of the

total COMT activity, suggesting that under extreme condi-

tions MB-COMT can compensate for missing S-COMT

protein. We do not report brain tissue levels of L-dopa, 3-

OMD, or dopamine after L-DOPA plus carbidopa adminis-

tration in this article, but after a similar treatment, we earlier

found profound alterations in the extracellular dopamine

levels in microdialysis studies (Tammimäki et al., 2016).

Notably, dopamine levels were increased in the striatum but,

instead, decreased in the prefrontal cortex in the MB-COMT-

deficient mice compared with the WT mice. MB-COMT

certainly has a function under normal conditions as well, and

the behavioral phenotype of MB-COMT-deficient mice gives

hints of its functional role in some brain areas (Tammimäki

et al., 2016). However, in peripheral L-DOPA metabolism, the

effect of MB-COMT can be considered marginal, and our

finding does not have any eminent clinical significance.

Present COMT inhibitors inhibit both isoforms of COMT

(Männistö & Kaakkola, 1999) and, therefore, the peripheral

distribution profile remains insignificant.

In conclusion, our initial hypothesis did not turn out to be

true. In the MB-COMT-deficient mice, S-COMT is generally

capable of maintaining a normal level of COMT function and

enzyme kinetics. L-DOPA levels and 3-OMD formation after

L-DOPA plus carbidopa administration do not change signifi-

cantly in the absence of MB-COMT, but the 3-OMD

concentration–time curve shifts to the right in plasma and

peripheral tissues, suggesting a temporarily delayed L-DOPA

O-methylation.
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