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Abstract. The pattern of connectivity between local populations or between microsites sup-
porting individuals within a population is a poorly understood factor affecting the evolution
of dispersal. We modify the well-known Hamilton–May model of dispersal evolution to allow
for variable connectivity between microsites. For simplicity, we assume that the microsites are
either solitary, i.e., weakly connected through costly dispersal, or part of a well-connected cluster
of sites with low-cost dispersal within the cluster. We use adaptive dynamics to investigate the
evolution of dispersal, obtaining analytic results for monomorphic evolution and numerical re-
sults for the co-evolution of two dispersal strategies. A monomorphic population always evolves
to a unique singular dispersal strategy, which may be an evolutionarily stable strategy or an
evolutionary branching point. Evolutionary branching happens if the contrast between connec-
tivities is sufficiently high and the solitary microsites are common. The dimorphic evolutionary
singularity, when it exists, is always evolutionarily and convergence stable. The model exhibits
both protected and unprotected dimorphisms of dispersal strategies, but the dimorphic singular-
ity is always protected. Contrasting connectivities can thus maintain dispersal polymorphisms
in temporally stable environments.

∗Corresponding author. Present address: Petteri Karisto, Department of Environmental Systems Science,
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1 Introduction

For analytical tractability, many models studying the evolution of dispersal strategies assume
that dispersers join a global, well mixed dispersal pool, from which they can immigrate to every
patch of available habitat with equal probability (e.g. Hamilton and May 1977; Olivieri et al.
1995; Ronce et al. 1998; Gandon and Michalakis 1999; Gyllenberg and Metz 2001; Parvinen
2002; Poethke and Hovestadt 2002; Gyllenberg et al. 2011; Massol et al. 2011; etc.). In real-
ity, however, connectivity between patches is variable, and this has an important effect on the
dynamics of metapopulations (Hanski 1994; Ovaskainen and Hanski 2001). Since connectivity
influences the mortality cost of dispersal, a key component of fitness of dispersal strategies,
variable connectivity must have an effect also on the evolution of dispersal. Yet, apart from
lattice models assuming nearest-neighbour dispersal or similar translation-invariant, symmetric
rules for the connectivity between sites (e.g. Comins 1982; Harada 1999; Murrell et al. 2002;
Rousset and Gandon 2002), surprisingly few models of dispersal evolution allow for variability
in how well different locations are connected.

Recently, Henriques-Silva et al. (2015) conducted individual-based simulations to explore
the evolution of density-dependent dispersal between populations that are the nodes of various
networks. Next to a regular lattice, their networks included a random graph, an exponential
network and a scale-free network, an array with increasing variability in patch connectivity, each
favouring a different dispersal strategy. While this study demonstrates that variable connectivity
affects dispersal evolution, it is not obvious how these networks correspond to a spatial arrange-
ment of habitat patches, where dispersal and connectivity are subject to geometrical constraints.

Spatially realistic models, which use connectivity estimates based on the geography of real
landscapes, are relevant since they incorporate natural variation in patch connectivity. The
simulations of Heino and Hanski (2001) and Muneepeerakul et al. (2011) found that groups
of habitat patches within the same landscape may evolve different dispersal strategies. In the
butterfly metapopulation of Heino and Hanski (2001), these groups of patches are relatively
isolated clusters that can maintain differences due to limited immigration. It is, however, not
clear why the differences seen between the clusters evolve in the first place. Since patch areas
influence local extinctions (an important driver of dispersal evolution in this model) and also
scale emigration, area effects may well explain the evolution of different dispersal propensities;
but differences in within-cluster connectivity may also play a role. In the river system studied
by Muneepeerakul et al. (2011), the evolution of different dispersal strategies is linked to con-
trasting carrying capacities of the patches, with semi-isolated subnetworks playing a minor role.

North et al. (2011) used an artificial but realistic landscape to investigate the evolutionary
dynamics of the width of the dispersal kernel. An evolutionarily transient (but ecologically sta-
ble) coexistence of short- and long-range dispersal strategies was possible and could be reinforced
with frequent mutations, but this could be explained by patch turnover rather than connectivity
(as in Olivieri et al. 1995). Bonte et al. (2010) simulated the evolution of dispersal on a lattice
where suitable sites were clustered to various degrees. These simulations uncovered some local
adaptation of dispersal; the width of the dispersal kernel (and therefore also the probability of
leaving the site) of an individual correlated with the distribution of suitable sites in its neighbour-
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hood, which indicates that sites with different connectivities favour different dispersal strategies.

Despite these hints to the effect of variable connectivity, the simulation model of Henriques-
Silva et al. (2015) seems to be the only theoretical study addressing the effect of variable
connectivity directly. In particular, models that incorporate some form of variable connectivity,
and yet are amenable to mathematical analysis, are lacking.

Fragmented landscapes represent complex environments with habitat patches of different
sizes and different connectivities at multiple spatial scales. In most models, a local population
occupying a habitat patch is considered to be well mixed. In reality, however, this may not be so
because competition is often localized, especially in case of plants and other sessile organisms.
Moreover, a habitat patch itself is often fragmented on a smaller scale. For example, a meadow
may be seen as a habitat patch for a plant, but in fact much of the meadow’s area is unaccessible
to the seedlings, and the offspring compete for the suitable fragments of the meadow. Since the
fragments are scattered across the meadow, the seeds need to disperse within as well as between
the meadows. Connectivity can thus pertain to movement on a large scale such as between
separate patches, movement on a short scale such as between separate fragments within the
same patch, and possibly to intermediate scales in complex landscapes.

One way to model a complex fragmented habitat is to consider it as a network of its smallest
fragments, henceforth called sites. Within a site, the population is assumed to be well mixed.
The sites may differ in their size, i.e., in how many individuals they contain, and how they
connect to the rest of the population. Some of the sites, like the fragments of a meadow, may
form a well-connected cluster, whereas others may be more isolated. We thus see the fragmented
habitat as a network of sites with clusters of variable size (from a single site to many) and vari-
able connectivity (both within and among clusters), with possibly a continuum of how strongly
the clusters separate or blend in the network.

In the present paper, we simplify this complexity by assuming that the offspring compete
within microsites, i.e., sites so small that each can support only one adult individual. Some
microsites, such as those in the same meadow, form a large cluster, whereas other microsites are
solitary with no other microsites nearby. The clustered microsites are well-connected as one can
be reached from another by short-range dispersal at a relatively low cost; e.g. wind-dispersed
seeds that remain close to the ground will likely remain within the meadow and will fall into a
microsite with a relatively high probability. The solitary microsites are only weakly connected
as they can be reached only by more costly long-range dispersal; e.g. by seeds picked up high by
air currents and blown across the forest, which implies a very high probability of landing outside
any microsite. This model simplifies the network of sites depicted in the previous paragraph in
two different ways: first, it assumes no variation in the size of individual sites (each site supports
exactly one adult), and second, it assumes only two distinct levels of connectivity (part of a large
cluster vs solitary) in a spatially implicit setting.

Our model of clustered and solitary microsites is a simple and analytically tractable exten-
sion of the Hamilton–May (1977) model to variable connectivity. In the Hamilton–May model,
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as in our model, the offspring compete within microsites and only one offspring survives in each
site; but unlike in our model, the dispersed offspring are randomly distributed over all sites. Kin
competition within the microsites selects for dispersal, whereas the mortality cost of dispersal
selects against it. In the Hamilton–May model, the evolutionarily stable strategy is to disperse
the fraction d = 1/(2− σ) of the offspring, where σ is the probability of survival during disper-
sal. Since in our model long-range dispersal and short-range dispersal have different mortality
costs, they select for different dispersal strategies. Under contrasting selection, one may expect
the evolution of a ”compromise” intermediate strategy, but one may also expect that selection
becomes disruptive and facilitates the evolution of dispersal polymorphisms. Using the methods
of adaptive dynamics, we explore under which conditions these outcomes of dispersal evolu-
tion occur and investigate the ecological and evolutionary dynamics of dispersal polymorphisms
maintained by variable connectivity.

2 The ecological model

Following the model of Hamilton and May (1977), we envisage a large population of an an-
nual, clonal organism where each adult occupies a microsite able to support only one individual.
Each adult produces B offspring and dies. The offspring disperse with probability dk, and this
probability characterizes the kth dispersal strategy (k = 1, ...,M). We assume large fecundity
(B → ∞) so that there is no demographic stochasticity during dispersal that would affect the
number of non-dispersing offspring and the number of immigrants. After dispersal, the offspring
compete for the site according to a fair lottery, whereby only one offspring matures and the
others perish.

To include variable connectivity into a spatially implicit model, we assume that some of the
microsites cluster into L large groups of well-connected sites (e.g. sites in the same meadow,
which can be reached via short-range dispersal), whereas other sites are solitary (can be reached
only by long-range dispersal). Of the offspring dispersed from a site of a cluster, a fraction
1− q remains in a local dispersal pool, survives dispersal with probability s, and lands in a ran-
domly chosen site within the same cluster. A fraction q of the dispersed offspring enter a global
dispersal pool. The globally dispersed offspring survive dispersal with probability γs (where
0 < γ ≤ 1 measures the reduction in survival due to the extra hazards experienced during long-
term dispersal, such as the increased risk of landing outside any site), and enter a site selected
at random in the entire population. An offspring dispersed from a solitary site survives only if it
enters the global dispersal pool, i.e., it survives dispersal with probability qγs. In other words,
a fraction 1− q of the offspring dispersed from a solitary site perish because they engage in local
dispersal only, but there are no sites they could reach with short-range dispersal; and another
fraction q(1− γs) engages in long-range dispersal but dies during it. Figure 1 summarizes these
assumptions graphically, and Table 1 lists all variables and parameters.

Let p1 denote the fraction of sites that are solitary and let p2, ..., pL+1 denote the fraction
of sites that are in the L clusters (

∑L+1
j=1 pj = 1). Note that we label the clusters with the

indices 2, ..., L + 1 because index 1 is reserved for the solitary sites. For the case of a single
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Figure 1: Variable connectivity in a spatially implicit model. Microsites (small circles) in a
cluster (on the left) exchange dispersers via both a local and a global dispersal pool. Solitary
sites (on the right) are accessible only via the global dispersal pool.

cluster (L = 1) and when the clusters can be lumped into one, we shall also write p = p1 for
the frequency of solitary sites and 1 − p for the frequency of clustered sites. In generation t,
n1k(t) is the fraction of sites that are solitary and occupied by an adult with dispersal strategy
dk, whereas nik(t) is the fraction of sites that are in cluster (i = 2, ..., L + 1) and occupied by
strategy dk. Note that we express population size always relative to the total number of sites
(not as a fraction of solitary sites or a fraction within a cluster), such that

∑M
k=1 njk(t) = pj for

j = 1, ..., L+1. Therefore n1k(t)/p1 is the fraction of solitary sites that are occupied by strategy
dk, and analogously nik(t)/pi is the frequency of strategy dk within cluster i.

To ease the presentation of the equations governing the dynamics of this population, we
first define some auxiliary variables. Let

I1 = qγs

L+1∑
j=1

M∑
k=1

njkdk (1a)

so that I1B is the number of immigrants per site from the global dispersal pool, and let

Ii = (1− q)s
M∑
k=1

nik
pi
dk for i = 2, ..., L+ 1 (1b)

so that IiB is the number of immigrants to each site in cluster i from the local dispersal pool.
Further, let

E1 =
M∑
k=1

n1k
p1
· 1

1− dk + I1
(1c)
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Parameters
L number of clusters

p = p1 fraction of sites that are solitary
pi fraction of sites that are in cluster i (i = 2, ..., L+ 1)

1− p fraction of sites that are in any of the clusters
s probability of survival in the local dispersal pool (short-range dispersal)
q probability of entering the global dispersal pool (long-range dispersal)
γ reduction of survival in the global dispersal pool (probability of survival is γs)
B number of offspring per adult (assumed to be large)

Strategies
M number of resident strategies
dk probability of dispersal of strategy k (d1 = d when there is only one resident)

dmut probability of dispersal of a mutant strategy
d∗ singular strategy (ESS or evolutionary branching point)

Ecological variables
n1k fraction of sites that are solitary and occupied by strategy k
nik fraction of sites that are in cluster i (i = 2, ..., L+ 1) and occupied by strategy k
m1 fraction of sites that are solitary and occupied by a mutant
mi fraction of sites that are in cluster i (i = 2, ..., L+ 1) and occupied by a mutant

Ij , Ej environmental feedback variables defined in equations (1)

Table 1: List of symbols

and

Ei =
M∑
k=1

nik
pi
· 1

1− dk + I1 + Ii
for i = 2, ..., L+ 1 (1d)

so that E1/B and Ei/B are respectively the probabilities that a specific juvenile that has landed
in a solitary site or in a site of cluster i wins the site during competition. Note that these aux-
iliary variables change in time since they depend on njk = njk(t).

To calculate n1k(t+ 1), note that each solitary site occupied by an adult of strategy dk will
be occupied in the next generation by one of its own non-dispersing offspring with probability
(1− dk)/(1− dk + I1). In addition, each of the

∑L+1
j=1 njkBdk dispersing offspring of strategy dk

enters a solitary site with probability qγsp1 and, upon landing, wins this site with probability
E1/B. Hence we obtain

n1k(t+ 1) =
1− dk

1− dk + I1
n1k(t) + dkqγsp1E1

L+1∑
j=1

njk(t) (2a)

nik(t+ 1) for i = 2, ..., L+ 1 is calculated analogously, adding also the offspring dispersed locally
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within cluster i:

nik(t+ 1) =
1− dk

1− dk + I1 + Ii
nik(t) + dksEi

(1− q)nik(t) + qγpi

L+1∑
j=1

njk(t)

 (2b)

In appendix A we show that equations (2) have an equilibrium such that nik/pi is the same
for all i = 2, ..., L + 1, i.e., the fraction of sites within a cluster occupied by a certain strategy
k is the same in every cluster. This is because every cluster receives the same distribution of
immigrants from the global dispersal pool and the same selective forces operate within every
cluster. If the population settles at such a ”symmetric” equilibrium, then the clusters can be
pooled into a single cluster containing a fraction 1−p1 of all sites. Moreover, receiving the same
immigrants and having the same selective forces within each cluster also imply that if there is
a locally asymptotically stable equilibrium of the model with its clusters pooled into a single
cluster of size 1− p1, then the corresponding symmetric equilibrium of the original model with
L clusters is also locally asymptotically stable.

Next to its symmetric equilibrium, however, a polymorphic population may also have equi-
libria where nik/pi differ among clusters (”asymmetric equilibria”). To understand this, first
note that a single cluster with no immigrants from the global dispersal pool is equivalent to
the Hamilton–May (1977) model. The Hamilton–May model exhibits alternative stable fixation
equilibria in the following manner: there exist strategy pairs (d1, d2) such that a population fixed
for strategy d1 cannot be invaded by d2 (the fixation equilibrium is transversally stable against
introducing d2 at a small initial frequency), and vice versa, a population fixed for d2 cannot
be invaded by d1 (Motro 1982; Kisdi 2016). Consider now the present model with two clusters
(labelled 2 and 3) and assume p1 = 0, q = 0 so that there are no solitary sites and no globally
dispersed offspring. The two clusters are then isolated, and thus one can be fixed for d1 and
the other for d2 (in our present notation, (n21/p2, n31/p3) = (1, 0)). Since the fixation equilibria
are asymptotically stable, there exists a stable asymmetric equilibrium (1 − ε1, ε2) also if the
clusters are weakly coupled by global dispersal and/or receive a few immigrants from solitary
sites, i.e., for sufficiently small values of q and p1. With more than two clusters, the number of
asymmetric equilibria can be high.

In this paper, we do not pursue the asymmetric equilibria further. In the next section,
we investigate the adaptive dynamics of monomorphic resident populations (M = 1), where,
irrespectively of the number of clusters L, the ecological equilibrium nj1/pj = 1 (j = 1, ..., L+1)
is unique and trivial. For dimorphic resident populations in section 4, we assume that either
there is only one cluster next to the solitary sites (L = 1) or if there are several clusters, the
population is settled at the symmetric equilibrium.
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3 Adaptive dynamics in monomorphic resident populations

3.1 Invasion fitness

Assume that a new mutant dmut appears at a low frequency in a resident population at equilib-
rium. Let m1 denote the fraction of sites that are solitary and occupied by a mutant, and let
mi (i = 2, ..., L+ 1) be the fraction of sites that are in cluster i and are occupied by a mutant.
As before, mi/pi is the frequency of mutants within cluster i, and

∑L+1
i=1 mi is the frequency

of mutants in the population. Analogously to equations (2), the dynamics of the mutant are
governed by

m1(t+ 1) =
1− dmut

1− dmut + I1
m1(t) + dmutqγsp1E1

L+1∑
j=1

mj(t) (3a)

and, for i = 2, ..., L+ 1,

mi(t+ 1) =
1− dmut

1− dmut + I1 + Ii
mi(t) + dmutsEi

(1− q)mi(t) + qγpi

L+1∑
j=1

mj(t)

 (3b)

In a monomorphic resident population of strategy d1 = d, the variables defined in (1)
simplify to

I1 = qγsd (4a)

Ii = (1− q)sd for i = 2, ..., L+ 1 (4b)

E1 =
1

1− d+ qγsd
(4c)

Ei =
1

1− d+ qγsd+ (1− q)sd
for i = 2, ..., L+ 1 (4d)

Note that in (4b) and (4d), Ii and Ei do not depend on i, i.e., all clusters provide the same
environment for the mutant when the resident population is monomorphic. Mutants in the
clusters can thus be pooled. Define m̃1 = m1 (fraction of sites that are solitary and occupied
by a mutant individual), m̃2 =

∑L+1
i=2 mi (fraction of sites that are in any of the clusters and

occupied by a mutant), and the mutant population vector m̃ = [m̃1, m̃2]
T . Substituting (4) into

(3) and pooling the L variables in (3b) into m̃2, the linearized dynamics of the mutant (valid as
long as the mutant is present only at a low frequency and can thus be neglected in (4)) can be
written as m̃(t+ 1) = Amutm̃(t) with the projection matrix

Amut =

[
a11 a12
a21 a22

]
a11 =

1− dmut
1− dmut + qγsd

+
dmutqγsp

1− d+ qγsd

a12 =
dmutqγsp

1− d+ qγsd
(5)

a21 =
dmutqγs(1− p)

1− d+ qγsd+ (1− q)sd

a22 =
1− dmut

1− dmut + qγsd+ (1− q)sd
+
dmuts(1− q + qγ(1− p))
1− d+ qγsd+ (1− q)sd
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where p = p1 is the fraction of solitary sites and 1− p =
∑L+1

i=2 pi is the fraction of sites in (any
of the) clusters.

We assume 0 < p < 1, assume that q, γ and s are strictly positive, and consider only
positive, nonzero dispersal (dmut > 0) so that the projection matrix Amut is irreducible; note
that the same assumptions also guarantee that Amut is primitive. The invasion fitness of the
mutant, λmut, is the leading eigenvalue of Amut. Because it is somewhat cumbersome to use the
leading eigenvalue directly, we use instead the fitness proxy

F (dmut, d) = tr(Amut)− det(Amut) (6)

where tr and det denote the trace and the determinant, respectively. For 2 × 2 non-negative
projection matrices, F (dmut,d) has following property:

tr(Amut) ≤ 2⇒
(
F (dmut, d) T 1⇔ λmut T 1

)
tr(Amut) > 2⇒

(
λmut > 1, irrespectively of F (dmut, d)

)
(Metz and Leimar 2011; see Kisdi 2016 for a summary). Thus the mutant can invade if
F (dmut, d) > 1 or tr(Amut) > 2, and the invasion boundary λmut = 1 consists of points (dmut, d)
where F (dmut, d) = 1 and tr(Amut) ≤ 2. Note that for dmut sufficiently close to d (or, in poly-
morphic populations, for mutants sufficiently close to any one of the residents) the condition
tr(Amut) ≤ 2 always holds (Metz and Leimar 2011), and therefore the fitness proxy F alone
can be used to determine the evolutionary singularities and their local stability properties (see
below).

Figure 2 shows a few examples of pairwise invasibility plots obtained numerically using the
conditions F (dmut, d) > 1 or tr(Amut) > 2 for invasion. In each example, dispersal evolves to a
unique interior evolutionarily singular strategy, which is either an ESS (as in Figure 2a,c) or an
evolutionary branching point (as in Figure 2b,d; Geritz et al. 1998).

3.2 Evolutionary singularities

The evolutionary singularities are found by solving the equation

∂F (dmut, d)

∂dmut

∣∣∣∣
dmut=d

= 0

for the unknown d (Geritz et al. 1998). This equation has three solutions:

d̄0 = 0

d̄1,2 =
2

3− s(1− q + 2qγ)±
√
A/B

(7)

where
A = (1− p)(1− q)(1− (1− q)s)2 + qγ [1− (1− q)s(2− 4p− (1− q)s)]
B = (1− p)(1− q) + qγ

(8)
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Figure 2: Pairwise invasibility plots (PIP). In the shaded areas, λmut > 1 so that the mutant
can invade; in the white areas, λmut < 1 and the mutant dies out. In (a) and (c), the interior
evolutionarily singular strategy is an ESS; in (b) and (d), it is an evolutionary branching point.
Parameter values: s = 0.8, γ = 0.2, and (a) q = 0.05, p = 0.8; (b) q = 0.05, p = 0.95; (c)
q = 0.15, p = 0.8; (d) q = 0.15, p = 0.95.

At the boundary solution d̄0 = 0, the projection matrix Amut is reducible and hence the
invasion fitness is not defined. In Appendix B, we show that when the resident dispersal strat-
egy d is near zero, dispersal evolves towards higher values, so that d̄0 = 0 is always convergence
unstable. In Appendix C, we prove that d̄2 (the root with ”−” in front of the square root) is
outside the interval [0, 1), whereas d̄1 is a valid dispersal strategy for all possible parameter val-
ues. Since d̄0 = 0 is repelling, the only interior singularity, d∗ = d̄1, is always convergence stable.

Appendix C further shows that d∗ always exceeds 1/2. This result is similar to the evo-
lutionarily stable dispersal strategy of the Hamilton–May (1977) model, d = 1/(2 − σ), which
exceeds 1/2 for any positive probability of survival during dispersal (σ). In our model, both lim-
iting cases of solitary sites without clusters (p → 1) and clusters without solitary sites (p → 0)
yield to the Hamilton–May model, albeit with different σ (when all sites are solitary, σ = qγs,
the probability of entering the global dispersal pool and surviving global dispersal; and when all
sites are in clusters, σ = qγs + (1 − q)s, the average survival of globally and locally dispersed
offspring; see Appendix D). Dispersal thus evolves to exceed 1/2 in both limiting cases, and the
same remains true also when selection in solitary sites and selection in clusters are coupled.
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3.3 Bifurcations of monomorphic evolutionary singularities

The unique convergence stable singularity d∗ is an evolutionarily stable strategy (ESS) or an
evolutionary branching point depending on whether the second partial derivative

∂2F (dmut, d)

∂d2mut

∣∣∣∣
dmut=d=d∗

is negative or positive, respectively (Geritz et al. 1998). Figure 3 shows bifurcation diagrams of
the monomorphic singularity indicating its evolutionary stability (shaded areas: d∗ is an evolu-
tionary branching point, white areas: d∗ is evolutionarily stable).

Figure 3: Bifurcations of the interior monomorphic singularity. Shaded areas: d∗ is an evolu-
tionary branching point; white areas: d∗ is an ESS. The lines are contour lines of d∗; in each
panel, d∗ = 0.6 on the leftmost line (recall that d∗ > 0.5 for all parameters) and d∗ increases by
0.1 between the lines.

Evolutionary branching of dispersal is driven by contrasting selection in the well-connected
sites of clusters and in the weakly connected solitary sites. As Figure 3 demonstrates, s must
be sufficiently high for evolutionary branching to happen, otherwise no site (including those in
the clusters) is well connected. Low values of q, the fraction of dispersers entering the global
dispersal pool, and γ, the probability of surviving there relative to short-range dispersal, gen-
erally facilitate evolutionary branching because they amount to a low connectivity of solitary
sites relative to the sites in the clusters. Upon closer inspection of Figure 3, increasing γ from
zero to one can result in d∗ bifurcating from an ESS to a branching point and then back again
to an ESS, provided that q is sufficiently large. If q and γ are high, most dispersers enter the
global dispersal pool and likely survive long-range dispersal, so that the solitary sites are also
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well connected and the contrast with the sites in the clusters is not strong enough to obtain
evolutionary branching. On the other hand, if γ is very small, then dispersers leaving solitary
sites likely die (so that dispersing more offspring does not return fitness benefits) and the solitary
sites hardly receive any immigrants (so that retaining more offspring in the natal site does not
increase the probability that one of them wins the site, as this probability is almost 1 anyway).
In this situation, selection on dispersal in the solitary sites is weak (this is analogous to the
Hamilton–May (1977) model, where selection becomes vanishingly weak when the probability
of surviving dispersal goes to zero), so that selection in the clusters dominates and dispersal
evolves to an ESS when γ is very small.

Evolutionary branching happens only if both solitary sites and sites in the clusters are suf-
ficiently common, otherwise a dispersal strategy favoured in the common type of sites swamps
the rare sites. Therefore increasing p from zero to one can result in d∗ changing from an ESS
to a branching point and then back to an ESS. In Figure 3, this can be seen by comparing the
panels; as p increases, a point at the same coordinates (s, γ) can be first in a white area, then
in a shaded area and then in a white area again. Figure 5 in section 4 shows the effect of p and
q directly and compares the region of evolutionary branching to dimorphisms. Note that a high
fraction of solitary sites generally favours evolutionary branching as it prevents that the solitary
sites are swamped from the clusters. Although the singularity always becomes an ESS as p→ 1
(see Appendix D), for low values of q and γ this happens only at p very close to 1, i.e., outside
the range shown in Figure 3 and invisible in much of Figure 5. A similar bifurcation pattern
from an ESS to a branching point and back to an ESS can result also when increasing q, the
fraction of dispersers who enter the global pool.

4 Dimorphic populations

As explained in section 2, populations with two resident dispersal strategies, d1 and d2, may have
many asymmetric equilibria of their population dynamics when the landscape contains several
clusters. Here we initially simplify the analysis by assuming that there is ony one cluster next
to the solitary sites (L = 1), so that the population dynamics has the four variables n11, n12,
n21, and n22 for the fraction of solitary and clustered sites occupied by d1 and d2, respectively.
At the end of this section, we discuss to what extent the results generalize to several clusters.

Since the equations for the equilibrium population densities are too difficult to solve analyt-
ically, we found n11 and n21 numerically (recall that n12 = p− n11 and n22 = 1− p− n21), and
ascertained the asymptotic stability of this equilibrium by evaluating the Jacobian of popula-
tion dynamics. We found stable coexistence equilibria both within the area of mutual invasibity
(where strategies d1 and d2 invade each other’s monomorphic population; dark shading in Fig-
ure 4) and outside of it. The latter represent unprotected dimorphisms, where a stable fixation
equilibrium exists next to the locally stable coexistence equilibrium, so that a large perturbation
of a dimorphic population may result in the extinction of one of the strategies (light shading in
Figure 4). In the upper left corner of Figure 4, the invasion boundaries cross each other and
there is a small area of mutual exclusion (both boundary equilibria of population dynamics are
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stable; see inset (i)). In the neighbourhood of crossing invasion boundaries, an area of unpro-
tected dimorphisms generically exists (Priklopil 2012).

Figure 4: Adaptive dynamics in dimorphic resident populations. Dark shading: protected
dimorphism (mutual invasibility), light shading: unprotected dimorphism, white: no stable co-
existence. The arrows show the direction of evolution given by the selection gradients G1(d1, d2)
(horizontal) and G2(d1, d2) (vertical). The thick lines are the isoclines Gk(d1, d2) = 0, and their
intersection is the dimorphic singularity. The upper inset (i) shows the upper left corner of the
main figure, where the invasion boundaries cross each other and there is an area of mutual exclu-
sion (white) between the two crossing boundaries; the area of unprotected dimorphism extends
also over the area of mutual exclusion. The lower inset (ii) shows the part marked with a dotted
square in the main figure, where an isocline crosses the invasion boundary but remains within
the area of (unprotected) coexistence. Parameter values: s = 0.8, γ = 0.2, q = 0.1, p = 0.9.

Once the equilibrium population densities are known, we can easily compute I1, I2, E1

and E2 defined in (1), and obtain the invasion fitness proxy of a rare mutant strategy dmut as
F (dmut, d1, d2) = tr(Amut) − det(Amut) where, from (3) and using the notation p1 = p and
p2 = 1− p, the mutant’s projection matrix is

Amut =

[
a11 a12
a21 a22

]
a11 =

1− dmut
1− dmut + I1

+ dmutqγspE1

a12 = dmutqγspE1

a21 = dmutqγs(1− p)E2

a22 =
1− dmut

1− dmut + I1 + I2
+ dmutsE2[1− q + qγ(1− p)]

By repeated invasions of mutants, the kth resident strategy (k = 1, 2) evolves towards higher
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or lower dispersal depending on whether

Gk(d1, d2) =
∂F (dmut, d1, d2)

∂dmut

∣∣∣∣
dmut=dk

is positive or negative (Geritz et al. 1998; the arrows in Figure 4 show the direction of evolution).
The interior evolutionary singularity of a dimorphic population, (d∗1, d

∗
2), is determined by the

equations Gk(d
∗
1, d
∗
2) = 0 for k = 1, 2. In Figure 4, the dimorphic singularity is shown by the

intersection of the isoclines of Gk(d
∗
1, d
∗
2) = 0, across which the direction of evolution changes.

The dimorphic singularity is evolutionarily stable if

∂2F (dmut, d
∗
1, d
∗
2)

∂d2mut
< 0 (9)

holds for both dmut = d∗1 and dmut = d∗2.

To establish the convergence stability of a dimorphic singularity, we use the concept of
strong convergence stability (Leimar 2009) applied to polymorphic populations with scalar traits
as follows (see also Kisdi and Geritz 2016). We approximate the joint adaptive dynamics of the
two residents with the canonical equation

ḋ1 = κ1(d1, d2)G1(d1, d2)

ḋ2 = κ2(d1, d2)G2(d1, d2)

where the dot denotes the time derivative on the evolutionary time scale (Dieckmann and Law
1996; Durinx et al. 2008). κ1, κ2 > 0 are (unknown) speed factors that combine two differ-
ent effects: (i) the frequency and phenotypic size of mutations, as derived by Dieckmann and
Law (1996) and Durinx et al. (2008); and (ii) a positive conversion factor that arises because
Gk(d1, d2) is based on the fitness proxy F rather than on the invasion fitness itself, and therefore
Gk(d1, d2) is sign-equivalent to the selection gradient of the kth strategy (which should appear
on the right hand side of the canonical equation) but numerically not equal to it. Note that
the speed factors depend on the resident strategies because the frequency of mutations the kth
resident receives depends on its population size, which in turn depends on d1 and d2; and be-
cause the conversion from the fitness proxy to the selection gradient varies with the entries of
the mutant projection matrix, which again depend on d1 and d2.

The dimorphic singularity is strongly convergence stable if it is an asymptotically stable
fixed point of the canonical equation for every choice of positive speed factors. This is the case
if the 2× 2 Jacobian of the canonical equation[

κ1
∂G1
∂d1

κ1
∂G1
∂d2

κ2
∂G2
∂d1

κ2
∂G2
∂d2

]
d1=d∗1,d2=d

∗
2

has a negative trace and a positive determinant for any κ1(d
∗
1, d
∗
2), κ2(d

∗
1, d
∗
2) > 0, i.e., the

dimorphic singularity (d∗1, d
∗
2) is strongly convergence stable if the conditions

∂G1

∂d1
< 0,

∂G2

∂d2
< 0 and

∂G1

∂d1

∂G2

∂d2
>
∂G1

∂d2

∂G2

∂d1
(10)
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hold at (d∗1, d
∗
2).

We explored the dimorphic singularities using a numerical continuation procedure. Starting
with the parameters γ = 0.01, q = 0.01, p = 0.99 and s = 0.99 (a parameter set conducive to
dimorphisms), we gradually changed the value of γ and tracked the dimorphic singularity as
long as it existed; then for each such value of γ, we varied q; then for each pair of γ and q, we
varied p; and finally s, with stepsize 0.03 in every direction. (Note that this procedure may miss
some dimorphic singularities.)

All dimorphic singularities we found in our numerical analysis were both evolutionarily sta-
ble and strongly convergence stable. The dimorphic singularity therefore does not undergo any
bifurcation of the evolutionary dynamics. The dimorphic singularity was also always in the
area of protected dimorphism. With changing parameters, the dimorphic singularity can cross
the lower boundary of the coexistence area (the boundary between dark shading and white in
Figure 4) and therefore be lost as a biologically feasible dimorphism. This happens through
a transcritical bifurcation of the population dynamic equilibrium of the singular dimorphism,
whereby the lower dispersal strategy goes extinct.

Figure 5 shows in which part of the parameter space we found an evolutionarily stable di-
morphism (marked with dots). Generally, parameter values that imply a large contrast between
the connectivity of solitary sites and that of the sites in the cluster are conducive to the existence
of a dimorphic singularity. This is the case for low values of q and γ, i.e., when the connectivity
of solitary sites is weak because only few of the dispersers enter the global dispersal pool and
even fewer survive there. High values of s are necessary because otherwise all dispersers have
only a small probability of survival so that all sites are only weakly connected. Finally, a suffi-
ciently large fraction of the sites should be solitary (high p) for a dimorphic singularity to exist
so that the solitary sites are not swamped by dispersers from the cluster.

These conditions are qualitatively similar to those promoting evolutionary branching (see
section 3.3), but the parameter combinations where evolutionary branching occurs and where
a dimorphic singularity exists do not coincide. A dimorphic singularity always exists when the
monomorphic population has an evolutionary branching point, but there is also a large part of
parameter space where an evolutionarily stable dimorphism exists but a monomorphic popula-
tion evolves to an ESS (Figure 5; Geritz et al. 1999).

In Figure 6, we vary one parameter at a time and show the effect on the dispersal strategies
of the evolutionarily stable dimorphism (panel (a)) and on the population dynamic equilibrium
of the singular dimorphism (panel (b)). As expected, the greater the contrast between the con-
nectivity of sites (lower values of q and γ, higher values of s), the greater is the difference between
the two dispersal strategies of the evolutionarily stable dimorphism (Figure 6a). In Figure 6b,
all points are below the identity line (n11/p > n21/(1− p)), which means that the low-dispersal
strategy d∗1 is more frequent among individuals occupying the solitary sites than among those
who live in the cluster. This is in accordance with the Hamilton–May (1977) model; since dis-
persal from the solitary sites is more dangerous, lower dispersal is favoured in the solitary sites
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Figure 5: Evolutionarily stable dimorphisms vs evolutionary branching. The dots mark pa-
rameter combinations where an evolutionarily stable dimorphism exists. The grey background
shading shows where the monomorphic evolutionary singularity is a branching point (similarly
to Figure 3). Notice that the parameter region with evolutionarily stable dimorphism covers the
region of evolutionary branching but also extends well beyond it. (a) s = 0.75, γ = 0.16; (b)
s = 0.9, γ = 0.16; (c) s = 0.75, γ = 0.01; (d) s = 0.9, γ = 0.01.

(but see the Discussion on contrasting forces of selection).

As the contrast between the connectivity of sites decreases (higher q and γ, lower s), the
low-dispersal strategy becomes less frequent in the solitary sites (n11/p decreases) and initially
more frequent in the cluster (n21/(1−p) increases; see the right half of Figure 6b), i.e. the differ-
ence between the solitary sites and the cluster diminishes. This happens because there is more
dispersal between the solitary sites and the cluster, but also because the dispersal probability of
the low-dispersal strategy increases (Figure 6a) and therefore it is less strongly selected against
in the cluster. Yet its presence in the cluster depends on the immigrants from the solitary sites,
where the low-dispersal strategy is favoured. As the contrast between the connectivities further
decreases and the low-dispersal strategy is no longer common in the solitary sites, immigration
can no longer support its population in the cluster. The frequency of the low-dispersal strategy
therefore declines also in the cluster (left half Figure 6b), and eventually the dimorphism is lost
when the low-dispersal strategy goes extinct and the hump-shaped curves in Figure 6b arrive at
the origin.
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Figure 6: Changes in the dispersal strategies of the evolutionarily stable dimorphism (a) and
in the population dynamic equilibrium (b) when varying the four model parameters p, s, q, γ.
We label the strategy with lower dispersal as strategy 1 and the one with higher dispersal as
strategy 2. Each curve varies one parameter with steps of size 0.01, except q for which the
stepsize is 0.0025, omitting the points p = 1, q = 0 and γ = 0 because these have been excluded
by assumption (see section 3). The parameter values written at the endpoints of the curves
indicate the range of each parameter for which a dimorphic singularity exists, cf. Figure 5 (in
panel (b), values belonging to the endpoints near the origin had to be lumped for readability).
Non-varied parameters take the values used in Figure 4, s = 0.8, γ = 0.2, q = 0.1, p = 0.9 (at
these values all curves intersect). Notice the different scales of the axes in (a). For (b), recall
that n12/p = 1− n11/p and n22/(1− p) = 1− n21/(1− p).

Consider now a landscape with an arbitrary number of clusters next to the solitary sites. If
the population is at its symmetric equilibrium (see section 2), then the clusters can be lumped
into one, similarly to the monomorphic case (section 3.1). The so-called Tube Theorem of Geritz
et al. (2002) ensures that the population remains at the symmetric equilibrium and therefore
one can continue lumping the clusters as the resident strategies evolve by small mutational steps,
provided that the symmetric equilibrium remains stable. In section 2 we argued that the latter
condition is satisfied whenever the lumped model with only one cluster has a stable equilib-
rium. Hence we can apply the results of this section directly to a model with L clusters: if the
initial population is at the symmetric equilibrium, then the selection gradients, the dimorphic
evolutionary singularity and its stability properties are the same as in case of a single cluster
equivalent in size to the L clusters together. Moreover, since the pairwise invasibility plot is the
same for L clusters as in the lumped model with one cluster (section 3.1), the set of protected
dimorphisms (dark shaded area in Figure 4) is also the same. The unprotected dimorphisms
may, however, be different.

5 Discussion

Variable connectivity must be the norm at all spatial scales in populations occupying fragmented
habitats. In this paper, we have found that variable connectivity between microsites can facil-
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itate the diversification of dispersal strategies and can maintain evolutionarily stable dispersal
polymorphisms. We used a simple, mathematically tractable model with two contrasting levels
of connectivities (solitary sites and sites in large clusters; Figure 1). Evolutionary branching
and evolutionarily stable dimorphisms are favoured generally by the same conditions, i.e., high
contrast between connectivities and many solitary sites. While the existence of the clusters is
essential, dispersers from the cluster easily swamp the solitary sites, so that diversity occurs
most easily when most sites are solitary (cf. Figures 3 and 5).

Concerning the evolution of monomorphic populations, the analysis of our model is com-
plete. We have shown that there exists a unique interior singularity which is always convergence
stable, we have obtained the location of this singularity explicitly, and determined analytically
whether it is an ESS or an evolutionary branching point (Figure 3).

The analysis of dimorphic adaptive dynamics is complicated by the ”asymmetric” equilibria
of the resident population (see Section 2). Assuming either that all well-connected sites form
a single cluster (in which case there are no asymmeric equilibria) or the population is at its
symmetric equilibrium, we found that all singular dimorphisms are protected, convergence stable,
and also evolutionarily stable, i.e., no further branching occurs into trimorphisms. This however
does not exclude the existence of trimorphisms, and a trimorphism might even be evolutionarily
stable (analogously to the simultaneous existence of a monomorphic ESS and an evolutionarily
stable dimorphism, see Figure 5 and Geritz et al. 1999). The number of potentially coexisting
strategies is bounded by the number of environmental feedback variables, i.e., the number of
quantities through which the resident population affects the invasion dynamics of a mutant
(Levin 1970; Metz et al. 1992; Geritz et al. 1997; Meszéna et al. 2006). In the present model
with one cluster (L = 1), there are four environmental feedback variables, I1, I2, E1, and E2,
which appear in the mutant dynamics in equations (3). Hence this upper bound would allow
also for three or four coexisting dispersal strategies, a possibility we did not explore.

5.1 Selective forces under variable connectivity vs variable patch size

The present model is simplified from a model depicting a fragmented landscape as a network
of sites with variable size and connectivity (see Introduction). Recall that by definition, we call
a fragment of the habitat a ”site” if it is internally well mixed. In models with variable patch
size (such as Massol et al. 2011; Kisdi 2016), a patch corresponds to a well-mixed site. In these
models, the sites differ in the number of individuals they support but not in their connectivity.
In contrast, the present model assumes that every site supports exactly one individual but the
sites have different connectivity (similar to the model of Henriques-Silva et al. (2015), who set
the same finite carrying capacity for every site and varied their connectivity according to dif-
ferent rules of network generation). The clusters of our model are different from the patches of
previous models because the clusters are internally structured into microsites, and competition
happens separately within each microsite. As we argued in the Introduction, what physically
appears as a habitat patch (e.g. a meadow) is often not well-mixed and is better described as a
cluster of microsites connected by short-range dispersal.
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Models with variable patch size predict evolutionary branching of dispersal (Massol et al.
2011; Kisdi 2016) and predict that in polymorphic populations, low-dispersal strategies are com-
mon in large patches and high-dispersal strategies are favoured in small patches (Kisdi 2016; Fig.
3 of Laroche et al. 2016). This is easy to understand in terms of the underlying selective forces;
costly dispersal is favoured where kin competition is strong, i.e., in small patches where many
of the competitors are siblings, but it is disfavoured in large patches where it has no benefit.
In the model of Massol et al. (2011) and Laroche et al. (2016), high-dispersal strategies are
further disfavoured in large patches by the large patches being sources and the small patches
being sinks; this source–sink structure is not present in the model of Kisdi 2016 and in the
present model. In contrast to models with variable patch size, the present model of variable
connectivity predicts that the high-dispersal strategy is common in the large clusters and the
low-dispersal strategy is common among the solitary sites (Figure 6b shows that the frequency
of the low-dispersal strategy among the solitary sites, on the horizontal axis, always exceeds its
frequency in the clusters, on the vertical axis).

This equilibrium represents a balance between three selective forces (cf. Gandon and Micha-
lakis 1999). First, by staying in its natal microsite, an offspring increases the probability that
this site will be occupied by one of the siblings born in that site rather than by an unrelated
immigrant. The importance of this, however, depends on the number of immigrants. If no
immigrant arrived at the site, then the best strategy would be to disperse all but one offspring,
because all but one non-dispersed offspring would succumb to kin competition. Similarly, if few
immigrants arrive at the site, then the probability of retaining the site for the family quickly
saturates with the number of non-dispersed offspring and thus many of the offspring should be
dispersed. If, however, many immigrants arrive at the site and dilute competition among kin,
then the probability of retaining the site for the family saturates only slowly with the number
of non-dispersed siblings, and therefore low dispersal is favoured. Solitary sites receive fewer
immigrants both because only part of the dispersers travel long-range and because many of
those who do, die en route. Therefore, this first factor selects for higher dispersal in solitary
sites relative to the well-connected sites of the clusters, the opposite of the pattern we found.

By dispersing, an offspring has a chance to win a microsite elsewhere. This chance depends
on the probability of surviving dispersal and on the number of competitors encountered in the
site where the offspring arrives. An offspring leaving a solitary site has a high probability of
dying during dispersal (either could not engage in long-range dispersal or died during it), thus
this second factor selects for lower dispersal in solitary sites relative to the clusters. Offspring
dispersing from well-connected sites have a higher probability to land in another well-connected
site, where they encounter more competitors than in a solitary site; this third factor implies
a lower benefit from dispersal and therefore selects for lower dispersal in well-connected sites
relative to solitary sites.

Taken together, the first and third factors of selection favour higher dispersal in solitary
sites, but are, in our model, overpowered by the second factor. The spatial distribution of high-
and low-dispersal strategies is thus predominantly determined by the costs of dispersal, and
since offspring dispersing from well-connected sites pay a lower cost, high dispersal is favoured
in the well-connected sites of the clusters. This pattern is different from the prediction of models
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assuming variable patch size, because the clusters of our model are internally structured into
microsites, and dispersal within a cluster is necessary to avoid kin competition by moving be-
tween the clustered microsites.

5.2 Limiting cases

In the Hamilton–May (1977) model, dispersal evolves to a unique evolutionarily and convergence
stable strategy. We recover this result in four different limiting cases of our model: (i) q = 1,
every dispersed offspring enters the global dispersal pool and hence every site is equally con-
nected to every other site; (ii) p→ 0 or (iii) p→ 1 so that all sites are of the same type; and (iv)
qγ → 0, the solitary sites are unreachable. In Appendix D, we analyze these four limiting cases
in detail. In cases (i) and (ii), we show that the invasion fitness of our model converges to that
of the Hamilton–May (1977) model, and therefore the pairwise invasibility plot as well as the
evolutionary singularity and its stability properties are the same as in the Hamilton–May model.
In cases (iii) and (iv), however, the convergence of models is only local; the evolutionary singu-
larity of our model and its stability properties converge to those of the Hamilton–May model,
but the pairwise invasibility plot remains different (see Figure 7 in Appendix D). In particular,
coexistence remains possible also in the limit, even though the Hamilton–May model admits no
coexistence (see Motro 1982). For (iii) p→ 1, the reason for this is that even if almost every site
is solitary, there are still infinitely many sites in the clusters, and these can support a locally
adapted dispersal strategy. In case (iv) qγ → 0, the almost perfect isolation of solitary sites and
clusters makes coexistence possible. A similar situation of local, but not global, convergence
of the pairwise invasibility plots was found also in the model of Kisdi (2016). The biological
significance of this limiting behaviour is that the presence of a cluster can maintain dispersal
polymorphism (but not evolutionary branching) even if an arbitrarily high fraction of microsites
is solitary; but the presence of solitary sites cannot do the same if the majority of sites are
clustered.

Even though the singularity becomes an ESS in the limit p→ 1, a high fraction of solitary
sites favours evolutionary branching and the bifurcation point between an ESS and evolutionary
branching can exceed p = 0.99 (Figures 3 and 5). Since evolutionary branching is driven by
the contrast between solitary and well-connected sites, both must be sufficiently common for
evolutionary branching to happen; this parallels the finding that in models with variable patch
size, evolutionary branching happens when both small and large patches contain a sufficiently
high fraction of the population (Massol et al. 2011; Kisdi 2016). Yet in our model, a small
fraction of well-connected sites is often sufficient for evolutionary branching. This is different
from the case of variable patch size, where the small and large patches have to be more balanced
(see Fig. 2 of Kisdi 2016).

5.3 Model assumptions revisited

For the sake of analytical tractability, we assumed a very simple spatial structure with well
connected vs solitary microsites each supporting only one adult. These assumptions could be
relaxed in many interesting directions. First, allowing for variation not only in connectivity but
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also patch size would yield a more realistic model of fragmented landscapes.

Further, if different clusters had different internal connectivity, then in isolation they would
select for different dispersal strategies as each would correspond to the Hamilton–May (1977)
model but with different survival probability. A network with such clusters weakly connected
by long-range dispersal would be akin to models of local adaptation to contrasting environments
with weak coupling between the different habitats, a situation conducive to evolutionary branch-
ing.

If clusters were small (i.e., contained only finitely many microsites), then siblings dispersed
within the cluster would have a chance to end up in the same microsite after dispersal, so that
there would be kin competition also among the dispersed offspring. Dispersed offspring would
also have a positive probability of returning to their site of origin (both possibilities are excluded
in our model in Eqs. (2)). As long as these effects are present, selection within the cluster de-
pends on the size of the cluster, and therefore with sufficiently weak coupling via global dispersal,
clusters of different size could maintain different, locally adapted dispersal strategies. As the
number of microsites in the clusters goes to infinity, these effects vanish and selection within
the clusters becomes asymptotically independent of the relative size of the clusters. This fact
underpins pooling the clusters at the symmetric equilibrium (see section 2), and it is analogous
to the fact that the ESS of the Hamilton–May (1977) model is independent of the number of sites.

As in the Hamilton–May (1977) model, we assumed that every microsite is occupied at
reproduction, i.e., there is no mortality after competition but before reproduction. In reality,
however, there would be sites where the occupant dies before it would produce offspring. The
presence of sites without non-dispersed offspring selects for higher dispersal (because of low
post-dispersal competition in these sites; Comins et al. 1980) and facilitates the coexistence
of dispersal strategies (Weigang and Kisdi 2015), but in itself, it does not lead to evolutionary
branching (Appendix A of Weigang and Kisdi 2015).

In our model, the propensity to disperse (d) evolves, but the probability of long- vs short-
range dispersal (q) is considered to be constant. However, the traits of an offspring that influence
the probability of dispersal (e.g. the presence and morphology of seed wings or pappi) may well
influence also whether the offspring remains in the local dispersal pool or travels afar. The
following argument shows that evolving q instead of d would likely also result in evolutionary
branching. If we take s = 1 and d = 1 (fixed) in the present model, evolve q, and, contrary to
section 2, assume that dispersers leaving a solitary site but failing to enter the global dispersal
pool return safely to their site of origin, then we recover the variable patch-size model of Kisdi
(2016), with our present q being the probability of dispersal and γ being the probability of
survival during dispersal in Kisdi (2016). With s = 1 and d = 1, the cluster of our model
becomes the well-mixed patch of Kisdi (2016) because all offspring leave the microsites and those
who remain within the cluster are well-mixed at no cost. Since dispersal undergoes evolutionary
branching in Kisdi’s model, q must undergo evolutionary branching in our model if s and d are
sufficiently close to 1 and we change the assumption that short-range dispersers from solitary
sites perish. If γ is small, then this change probably does not make a large difference, because
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leaving a solitary site is very risky whether or not failing to enter the global dispersal pool is
fatal. Hence we expect that q could undergo evolutionary branching also in our original model,
yielding two strategies specialized for short-range and long-range dispersal. Note that a similar
comparison of our model with the variable patch-size model of Massol et al. (2011) is not
possible because their model has a source-sink structure among patches of different sizes which
is not present here.

6 Conclusion

A number of previous models have predicted diversity in dispersal strategies, but most of these
assume that non-equilibrium population dynamics, driven either internally or by environmental
stochasticity, maintain dispersal (e.g. Doebeli and Ruxton, 1997; Mathias et al., 2001; Parvinen,
2002). Our work adds to a growing list of models demonstrating that in stable environments,
kin competition can maintain not only dispersal (as shown by Hamilton and May, 1977) but also
dispersal polymorphisms. Weigang and Kisdi (2015) introduced post-competitive mortality and
a non-linear trade-off into the HamiltonMay (1977) model, and showed that the former facilitates
coexistence and the latter can then lead to disruptive selection on coexisting dispersal strategies,
i.e., to evolutionary branching. Environmental heterogeneity is a straightforward mechanism fa-
cilitating diversification. When kin competition maintains dispersal, two important factors are
the size of well-mixed habitat patches (and therefore the strength of kin competition) and the
connectivity between these sites (and therefore dispersal mortality). The simple HamiltonMay
(1977) model assumes both to be homogeneous. Massol et al. (2011) and Kisdi (2016) have
shown that heterogeneity in patch size can lead to evolutionary branching of dispersal, whereas
the present model shows that heterogeneity in connectivity can do the same.
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Kisdi É. 2016. Dispersal polymorphism in stable habitats. J. Theor. Biol. 392: 69-82.
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Appendix A

In this Appendix, we prove the existence of a symmetric equilibrium of the population dynamics
in equations (2), i.e., an equilibrium where n2k/p2 = n3k/p3 = ... = nL+1,k/pL+1 for k = 1, ...,M .
Let fik = nik/pi denote the frequency of strategy dk within cluster i for i = 2, ..., L+1 or among
the solitary sites for i = 1. Further, let xk =

∑L+1
i=1 nik =

∑L+1
i=1 pifik be the frequency of

strategy k in the entire population. By dividing equation (2a) with p1 and (2b) with pi, and
taking nik(t+ 1) = nik(t) = nik for equilibrium, we obtain

f1k =
1− dk

1− dk + I1
f1k + dkqγsE1xk

and

fik =
1− dk

1− dk + I1 + Ii
fik + dksEi [(1− q)fik + qγxk]

Substituting

Ii = (1− q)s
M∑
j=1

fijdj

E1 =
M∑
l=1

f1l
1− dl + I1

Ei =

M∑
l=1

fil
1− dl + I1 + Ii

from (1b), (1c) and (1d), we arrive at

f1k =
1− dk

1− dk + I1
f1k + dkqγs

M∑
l=1

f1l
1− dl + I1

xk (A.1a)

and

fik =
(1− dk)fik

1− dk + I1 + (1− q)s
∑M

j=1 fijdj
+

+ dks

[
M∑
l=1

fil

1− dl + I1 + (1− q)s
∑M

j=1 fijdj

]
[(1− q)fik + qγxk]

(A.1b)

for i = 2, ..., L+ 1, where, from (1a), I1 = qγs
∑M

j=1 xjdj .

The following proof rests on the fact that the right hand side of (A.1b) does not depend on
i in any other way than through the fij ’s, i.e., the equilibrium condition is the same for each

cluster. However, the right hand side of (A.1b) also depends on xk =
∑L+1

i=1 pifik, which, though
does not create a difference between the clusters, couples the equations across all clusters and
the solitary sites.

26



We therefore proceed in two steps. First, suppose that the xk’s, collected in the M -
vector x = [x1, ..., xM ], are fixed; this also fixes the value of I1. Let φ ∈ SM be an M -
vector of frequencies i.e., a vector in the M dimensional simplex SM = {[z1, ..., zM ] : zi ≥
0 for all i and

∑M
i=1 zi = 1} and let

Φk(φ) =
(1− dk)φk

1− dk + I1 + (1− q)s
∑M

j=1 φjdj
+

+ dks

[
M∑
l=1

φl

1− dl + I1 + (1− q)s
∑M

j=1 φjdj

]
[(1− q)φk + qγxk]

where the right hand side is exactly like in (A.1b), except that φj replaces fij for all j. It is

easily verified that
∑M

k=1 Φk(φ) =
∑M

l=1 φl = 1, i.e., the (continuous) function

φ 7→ Φ(φ)

maps vectors from the convex compact set SM to SM . Brouwer’s fixed point theorem therefore
guarantees that there is a solution φ̂ to the equation φ = Φ(φ). The frequencies fij = φ̂j
(i = 2, ..., L+ 1, j = 1, ...,M) therefore solve equation (A.1b), provided that x is known.

We can follow exactly the same procedure with Eq. (A.1a). Let ψ ∈ SM a vector of
frequencies and let

Ψk(ψ) =
(1− dk)ψk
1− dk + I1

+ dkqγs

M∑
l=1

ψl
1− dl + I1

xk

Once again,
∑M

k=1 Ψk(ψ) =
∑M

l=1 ψl = 1, and Brouwer’s fixed point theorem guarantees a solu-

tion ψ̂ to the equation ψ = Ψ(ψ). The frequencies f1j = ψ̂j (j = 1, ...,M) therefore solve Eq.

(A.1a), provided that x is known. In the following, we write φ̂j as φ̂j(x) and ψ̂j as ψ̂j(x) to
emphasize that they depend on which frequency vector was used to obtain them.

In the second step, define the map x 7→ x′(x) with

x′k = p1ψ̂k(x) +

L+1∑
i=2

piφ̂k(x) = p1ψ̂k(x) + (1− p1)φ̂k(x)

As ψ̂, φ̂ ∈ SM and 0 ≤ p1 ≤ 1, x′ is a vector in SM . Since x ∈ SM , too, Brouwer’s fixed point
theorem applies to the map x 7→ x′(x). This guarantees the existence of a solution x̂ such that

x̂k = p1ψ̂k(x̂) + (1− p1)φ̂k(x̂)

for all k.

The frequencies f1k = ψ̂k(x̂), fik = φ̂k(x̂) (i = 2, ..., L + 1, k = 1, ...,M) solve the equi-
librium equations (A.1a) and (A.1b) and also satisfy x̂k =

∑L+1
i=1 pifik for k = 1, ...,M . Since

fik = nik/pi is the same for all clusters i = 2, ..., L+ 1, this is a symmetric equilibrium.

Note that Brouwer’s theorem ensures that a fixed point exists, but does not imply that it is
unique. Multiple solutions for φ̂ lead to the asymmetric equilibria described in the main text.
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Appendix B

To prove that in monomorphic populations d̄0 = 0 is repelling, we approximate the selection
gradient

G(d) =
∂F (dmut, d)

∂dmut

∣∣∣∣
dmut=d

with its Taylor expansion near d = 0,

G(d) = G(0) +G′(0) · d+O(d2) = 0 + dqγs2[(1− p)(1− q) + qγ] +O(d2)

which is positive for sufficiently small d whenever the assumptions q, γ, s > 0 are satisfied. The
positive selection gradient means that mutants with higher dispersal can invade and d̄0 = 0 is
always repelling.

Appendix C

In this Appendix, we investigate the roots d̄1,2 given in equation (7). First we prove that the
roots are real, i.e., that A/B is positive. From its definition in (8), it is obvious that 0 < B ≤ 1
(recall the assumptions 0 < p < 1, q, γ, s > 0). To see that A is positive, notice that A is linear
in p and therefore its value must be between

A|p=0 = (1− q)(1− (1− q)s)2 + qγ [1− (1− q)s(2− (1− q)s)]

and
A|p=1 = qγ [1 + (1− q)s(2 + (1− q)s)]

A|p=1 is strictly positive. To see that A|p=0 is non-negative, notice that it is linear in γ, and
therefore it must be between

A|p=0,γ=0 = (1− q)(1− (1− q)s)2

and

A|p=0,γ=1 = (1− q)(1− (1− q)s)2 + q [1− (1− q)s(2− (1− q)s)]
= (1− q)(1− s)2 + q(1− (1− q)s2)

which are both non-negative. Hence for all p > 0, A must be positive.

Next, we show that

d̄2 =
2

2 +
[
1− s(1− q + 2qγ)−

√
A/B

]
is not in the interval [0, 1), i.e., that the bracketed expression in the denominator is non-positive.
If 1− s(1− q + 2qγ) is negative, then this is obviously so. If 1− s(1− q + 2qγ) is non-negative,
then

1− s(1− q + 2qγ) ≤
√
A/B
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is equivalent to
A− (1− s(1− q + 2qγ))2B ≥ 0

After substituting A and B from (8), the left hand side of this inequality can be rearranged into
4qγs(1− q(1− γ))(1− sB), which is non-negative since 0 < B ≤ 1.

An analogous argument shows that

d̄1 =
2

2 +
[
1− s(1− q + 2qγ) +

√
A/B

] ≤ 1

This inequality holds whenever the bracketed expression in the denominator is non-negative,
i.e., if either 1−s(1− q+2qγ) is non-negative or, if it is negative, A− (1−s(1− q+2qγ))2B ≥ 0
holds; the latter has been shown above.

Finally, we show that d̄1 always exceeds 1/2. Write

d̄1 =
2

4−
[
1 + s(1− q + 2qγ)−

√
A/B

]
to see that d̄1 > 1/2 holds whenever the bracketed expression is positive (since we already have
that d̄1 ≤ 1, we know that the denominator does not change sign). The bracketed expression is
positive when

(1 + s(1− q + 2qγ))2B −A > 0

After some algebra, the left-hand side of this inequality can be rewritten as

4s(1− q + qγ)((1− p)(1− q) + qγsB) + 4qγsB

which is indeed strictly positive.

Appendix D

Here we consider four limiting cases of our model, each of which recovers the evolutionarily
stable dispersal strategy of the Hamilton–May (1977) model.

Assume first that all dispersed offspring enter the global dispersal pool, i.e., q = 1. This
implies that every dispersed offspring survives dispersal with probability γs. In this case, there
is no difference in connectivity, and it is irrelevant whether a site is solitary or is in a cluster.
The mutant projection matrix in (6) simplifies to

Amut =

[
α+ βp βp
β(1− p) α+ β(1− p)

]
= αI + βP

where α = (1− dmut)/(1− dmut + γsd), β = dmutγs/(1− d+ γsd), I is the identity matrix, and

P =

[
p p

1− p 1− p

]
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Recall that the eigenvalues of a matrix of the form αI + βP are α + βλP , where λP stands for
the eigenvalues of P. Since P is a singular stochastic matrix, its eigenvalues are 1 and 0. The
leading eigenvalue of Amut is therefore

α+ β =
1− dmut

1− dmut + γsd
+

dmutγs

1− d+ γsd

which is the invasion fitness of a mutant dmut in the resident population d in the Hamilton–May
(1977) model with survival probability σ = γs. Hence the pairwise invasibility plots of the
present model with q = 1 are the same as those of the of the Hamilton–May model (Figure 7a).
In particular, the boundaries between the invasion and non-invasion areas, given by λ1 = 1, are
two straight lines, the main diagonal dmut = d and dmut = 1− (1− γs)d, and the evolutionarily
stable dispersal strategy is d∗ = 1/(2− γs).

Second, assume that all sites are in the cluster(s), i.e., p = 0. The mutant projection matrix
in (6) is then a lower triangular matrix. This means that the matrix is reducible, and the invasion
fitness cannot be defined unequivocally (invasion may depend on where the mutant appears).
However, since the eigenvalues of a matrix depend continuously on the matrix elements, the
eigenvalues of this triangular matrix are informative for the limit p → 0 of irreducible (p > 0)
systems. The eigenvalues of the triangular matrix are its diagonal elements,

λ1 =
1− dmut

1− dmut + qγsd

and

λ2 =
1− dmut

1− dmut + [qγs+ (1− q)s]d
+

dmut[qγs+ (1− q)s]
1− d+ [qγs+ (1− q)s]d

The first eigenvalue is always less than 1, so that the mutant can invade if λ2 > 1 (note
that for sufficiently small dmut, λ1 > λ2 is the leading eigenvalue, so that λ2 is not always the
invasion fitness but always a valid fitness proxy). λ2 is the same as the invasion fitness of the
Hamilton–May (1977) model with survival probability σ = [qγs + (1 − q)s], the survival prob-
ability of offspring who disperse from a cluster. Hence the fitness proxy of this limiting model
coincides with the invasion fitness of the corresponding Hamilton–May model, and so do the
evolutionary singularity and its stability properties.

Third, assume that all sites are solitary, i.e., p = 1. This implies that dispersed offspring
survive with probability qγs (recall that if an offspring dispersed from a solitary site does not
enter the global dispersal pool, it vanishes). The mutant projection matrix in (6) is now an
upper triangular matrix with eigenvalues

λ1 =
1− dmut

1− dmut + qγsd
+

dmutqγs

1− d+ qγsd

and

λ2 =
1− dmut

1− dmut + qγsd+ (1− q)sd
+

dmuts(1− q)
1− d+ qγsd+ (1− q)sd

and, as above, the eigenvalues of the irreducible system with p < 1 go to these eigenvalues as
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p → 1. For dmut = d, the first eigenvalue is λ1 = 1 and the second eigenvalue is less than
1. By continuity, also for small mutations (dmut = d ± ε) λ1 is the leading eigenvalue of the
mutant projection matrix, and λ1 is again the invasion fitness in the Hamilton–May (1977)
model with survival probability σ = qγs. This proves that in the neighbourhood of dmut = d,
invasion/noninvasion coincides with invasion/noninvasion in the Hamilton–May model. There-
fore the evolutionary singularities and their stability properties also coincide with those of the
corresponding Hamilton–May model, i.e., there is a unique singular strategy which is both con-
vergence stable and evolutionarily stable.

However, the pairwise invasibility plot of the present model with p → 1 differs from that
of the Hamilton–May (1977) model outside the neighbourhood of the main diagonal dmut = d,
and the present model exhibits coexistence of different dispersal strategies, which is impossible
in the Hamilton–May model (see Figure 7b for an example). The reason for this discrepancy is
that even with p → 1, the model assumes infinitely many well-connected sites in the clusters;
only the fraction of these sites goes to zero. A dispersal strategy adapted to well-connected sites
can coexist with the one adapted to the solitary sites even though it will be constrained to the
clusters are therefore will attain only an infinitesimal relative frequency in the population (see
Kisdi 2016 for a more detailed discussion).

Fourth, assume that qγ = 0, i.e., no offspring enters the global dispersal pool (q = 0) or no
one in the global dispersal pool survives (γ = 0). In both of these cases, the solitary sites are
isolated and the mutant projection matrix in (6) simplifies to a diagonal matrix. The eigenvalues
of the mutant projection matrix are 1 and

λHM (dmut, d) =
1− dmut

1− dmut + (1− q)sd
+

dmut(1− q)s
1− d+ (1− q)sd

which is the invasion fitness in the Hamilton–May (1977) model with survival probability σ =
(1 − q)s (a dispersed offspring may survive only if it remains in the local dispersal pool; this
further simplifies to s in case q = 0). Since the diagonal matrix is reducible, we need to assume
qγ > 0 and consider the limit qγ → 0; and because 1 is an eigenvalue with qγ = 0, we need to
make a formal expansion of the mutant projection matrix and of the invasion fitness proxy in
terms of qγ. This results in the first order approximation

F (dmut, d) = 1 + g(dmut, d) [1− λHM (dmut, d)] qγ +O((qγ)2)

with

g(dmut, d) =
dmutps

1− d
− ds

1− dmut
For any fixed qγ > 0, the trace of the mutant projection matrix is less than 2 when dmut is
sufficiently close to d, and therefore the fitness proxy F can be used in the neighbourhood
of dmut = d (Metz and Leimar 2011). Since g(d, d) = −(1 − p)ds/(1 − d) < 0, by continu-
ity g(dmut, d) is negative for dmut sufficiently close to d. In the neighbourhood of dmut = d,
therefore, F (dmut, d) T 1 ⇔ λHM (dmut, d) T 1, so that the evolutionary singularities and their
stability properties coincide with those of the Hamilton–May model. As with p → 1, however,
the pairwise invasibility plot differs from that of the Hamilton–May model and coexistence is
possible away from the diagonal.
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Figure 7: Pairwise invasibility plots for s = 0.8, γ = 0.2 and (a) q = 1, p = 0.9 and (b) q = 0.1,
p → 1. Shaded areas: the mutant can invade; white: the mutant dies out. Coexistence by
mutual invasibility occurs where the shaded area overlaps with its mirror image on the diagonal
dmut = d (Geritz et al. 1998).
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