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Abstract 60 

The aryl hydrocarbon receptor (AHR) mediates the toxicity of dioxins, but also plays important 61 

physiological roles. Selective AHR modulators, which elicit some effects imparted by this receptor 62 

without causing the marked toxicity of dioxins, are presently under intense scrutiny. Two novel such 63 

compounds are IMA-08401 (N-acetyl-N-phenyl-4-acetoxy-5-chloro-1,2-dihydro-1-methyl-2-oxo-64 

quinoline-3-carboxamide) and IMA-07101 (N-acetyl-N-(4-trifluoromethylphenyl)-4-acetoxy-1,2-65 

dihydro-5-methoxy-1-methyl-2-oxo-quinoline-3-carboxamide). They represent, as diacetyl prodrugs, 66 

AHR-active metabolites of the drug compounds laquinimod and tasquinimod, respectively, which are 67 

intended for the treatment of autoimmune diseases and cancer. Here, we toxicologically assessed the 68 

novel compounds in Sprague-Dawley rats, after a single dose (8.75–92.5 mg/kg) and 5-day repeated 69 

dosing at the highest doses achievable (IMA-08401: 100 mg/kg/day; and IMA-07101: 75 mg/kg/day). 70 

There were no overt clinical signs of toxicity, but body weight gain was marginally retarded, and the 71 

treatments induced minimal hepatic extramedullary haematopoiesis. Further, both the absolute and 72 

relative weights of the thymus were significantly decreased. Cyp1a1 gene expression was substantially 73 

increased in all tissues examined. The hepatic induction profile of other AHR battery genes was distinct 74 

from that caused by TCDD. The only marked alterations in serum clinical chemistry variables were a 75 

reduction in triglycerides and an increase in 3-hydroxybutyrate. Liver and kidney retinol and retinyl 76 

palmitate concentrations were affected largely in the same manner as reported for TCDD. In vitro, the 77 

novel compounds activated CYP1A1 effectively in H4IIE cells. Altogether, these novel compounds 78 

appear to act as potent activators of the AHR, but lack some major characteristic toxicities of dioxins.  79 

They therefore represent promising new selective AHR modulators.  80 

 81 

 82 
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1. Introduction 85 

The aryl hydrocarbon receptor (AHR) is an evolutionarily ancient, ligand-activated transcription factor 86 

(Beischlag, et al. 2008). It regulates the activity of various genes in different cell types across all 87 

vertebrates, and is well known and extensively studied as the mediator of toxicity induced by a class 88 

of environmental contaminants called dioxins [polychlorinated dibenzo-para-dioxins (PCDDs), 89 

polychlorinated dibenzofurans (PCDFs) and dioxin-like polychlorinated biphenyls (PCBs); reviewed, for 90 

example, in (Hahn and Karchner 2011, Mandal 2005)]. More recently, evidence about the importance 91 

of the AHR in numerous physiological phenomena has started to emerge, thus revealing its potential 92 

as a target for novel pharmacological therapies in several fields. Known endogenous functions of the 93 

AHR so far include, for instance, participation in the metabolism of xenobiotics; regulation of 94 

reproduction, development, cell growth and differentiation; and modulation of autoimmunity 95 

[reviewed for example in (Esser, et al. 2009, Fujii-Kuriyama and Kawajiri 2010, McMillan and Bradfield 96 

2007)]. Furthermore, recent studies have revealed a role for the AHR in the control of intestinal 97 

microbiota and innate immunity (Kiss, et al. 2011, Lee, et al. 2012, Moura-Alves, et al. 2014). 98 

 99 

The molecular mechanism of AHR action has been revealed in detail for transcriptional induction of a 100 

drug-metabolising enzyme, CYP1A1, which is believed to represent a more general pattern, known as 101 

the canonical pathway of AHR signalling. In its inactive state, the AHR is located in the cytosol in 102 

association with the chaperone proteins HSP90, XAP2 and p23. Binding of a ligand such as 2,3, 7,8-103 

tetrachlorodibenzo-p-dioxin (TCDD) triggers transformation in the protein structure causing the AHR 104 

to translocate into the nucleus. There it sheds the cytosolic protein partners and dimerizes with a 105 

structurally related protein, ARNT. The AHR-ARNT dimer then binds to the DNA at specific enhancer 106 

sites called dioxin response elements (DREs) in the promoter region of the Cyp1a1 gene, eventually 107 

leading to induced transcription of CYP1A1 mRNA (Ma 2011). This is a fairly rapid and highly sensitive 108 

marker for AHR activation (Abraham, et al. 1988). CYP1A1 activity in vivo can result in metabolic 109 

activation of potentially genotoxic compounds such as polycyclic aromatic hydrocarbons (Shimada and 110 
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Fujii-Kuriyama 2004), but the predominant consequence of its enhanced activity seems to be 111 

protective due to augmented detoxification capacity (Nebert, et al. 2004). Additional consequences of 112 

elevated CYP1A1 activity include changes in the metabolism of a variety of endogenous molecules with 113 

signalling properties, e.g. retinoids (Lampen, et al. 2000, Shmarakov 2015), steroid hormones (Spink, 114 

et al. 1992) and, apparently, polyunsaturated fatty acids (Hankinson 2016). Further, unlike previously 115 

presumed, Cyp1a1 induction does not automatically indicate dioxin-like toxicity (Hu, et al. 2007, 116 

Pohjanvirta, et al. 2011). 117 

 118 

TCDD is the most toxic dioxin and has, as such, been widely employed in research as a classical 119 

compound for activation of the AHR (Van Den Berg, et al. 1998). As dioxins in general, it is chemically 120 

highly persistent and hydrophobic, which leads to its accumulation in the food chain (Travis and 121 

Hattemer-Frey 1991). TCDD causes a multitude of adverse effects in laboratory animals including 122 

hypophagia, wasting syndrome, developmental toxicity, endocrine disruption, carcinogenicity and 123 

immunotoxicity (Pohjanvirta and Tuomisto 1994). The current consensus is that these ultimately result 124 

from inappropriate and untimely activation of the AHR (Bock and Köhle 2006, Denison, et al. 2011). 125 

However, some of the biological impacts of TCDD are such that they could be potentially beneficial in 126 

the treatment of certain diseases, if they could be separated from the toxicity. These impacts are 127 

particularly related to immunomodulation (Zhu, et al. 2014). Appropriate activation of AHR, devoid of 128 

TCDD-like toxicity, could thus lead to novel therapeutics for treatment of, for instance, cancer, multiple 129 

sclerosis (MS), inflammatory skin diseases, Crohn’s disease and colitis (Arsenescu, et al. 2011, Benson 130 

and Shepherd 2011, Díaz-Díaz, et al. 2016, Furumatsu, et al. 2011, Haas, et al. 2016, Jin, et al. 2014, 131 

Quintana, et al. 2008, Van Den Bogaard, et al. 2013). 132 

 133 

Selective AHR modulators, which elicit some desired effects imparted by AHR without causing the 134 

marked toxicity of dioxins, are presently under intense scrutiny (Safe, et al. 2013). This is in part due 135 

to their potential as novel pharmacological compounds, but also because they could be useful tools in 136 
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the quest of further elucidating the molecular mechanisms at play in the biological and toxicological 137 

roles of the AHR. Two recently introduced such molecules are IMA-08401 (later referred to as C2; 138 

Fig. 2) and IMA-07101 (later C4). They represent novel diacetyl prodrugs of AHR-active N-hydrogen 139 

metabolites of the immunomodulatory drug compounds laquinimod and tasquinimod, which are 140 

intended for treatment of MS and prostate cancer, respectively (Isaacs, et al. 2006, Polman, et al. 141 

2005). In vivo, the prodrugs C2 and C4 readily hydrolyse to provide the deacetylated active compounds 142 

IMA-06201 (C1) and IMA-06504 (C3; unpublished data). The chemical relationships between the 143 

prodrug C2, laquinimod and the AHR-active form C1 are depicted in Fig. 1. C1 and C3 have previously 144 

been shown to be effective AHR activators in vitro [(Pettersson 2012) and unpublished data], but they 145 

are unsuitable for in vivo formulations due to their low aqueous solubility. Therefore, little information 146 

exists on the activity and toxicity of these compounds in vivo thus far. Here, the short-term toxicity of 147 

C2 and C4 was assessed in Sprague-Dawley (S-D) rats and compared with properties earlier established 148 

in the literature for TCDD. Both acute (single exposure) and subacute (daily dosing on five consecutive 149 

days) toxicities were studied. In addition, the AHR activation potential of the active compounds C1 and 150 

C3 relative to TCDD was screened in vitro by measuring CYP1A1 enzyme activity in the rat hepatoma 151 

cell line H4IIE. 152 

 153 

---------- Fig. 1 approximately here ---------- 154 

 155 

156 
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2. Materials and Methods 157 

2.1. Chemicals 158 

The test compounds C1 (IMA-06201; N-ethyl-N-phenyl-5-chloro-1,2-dihydro-4-hydroxy-1-methyl-2-159 

oxo-quinoline-3-carboxamide,; CAS Registry Number: 879410-94-3; Fig. 2), C2 (IMA-08401; N-acetyl-160 

N-phenyl-4-acetoxy-5-chloro-1,2-dihydro-1-methyl-2-oxo-quinoline-3-carboxamide; CAS: 1373260-17-161 

3), C3 (IMA-06504; N-(4-trifluoromethylphenyl)-1,2-dihydro-4-hydroxy-5-methoxy-1-methyl-2-oxo-162 

quinoline-3-carboxamide; CAS: 1373259-57-4) and C4 (IMA-07101; N-acetyl-N-(4-163 

trifluoromethylphenyl)-4-acetoxy-1,2-dihydro-5-methoxy-1-methyl-2-oxo-quinoline-3-carboxamide; 164 

CAS: 1373259-76-7) were synthetized as described by Pettersson (2012). C2 and C4 stock solutions for 165 

the in vivo studies were prepared by mixing the compounds with PEG-400 (Ph. Eur. grade, Sigma-166 

Aldrich, St. Louis, MO, USA) and heating them in +80°C water bath for 1 h, with intermittent vortexing. 167 

Dilutions were prepared from the stocks with PEG-400. For in vitro study stock solutions, C1, C3 and 168 

TCDD were dissolved in DMSO (Sigma-Aldrich). C3 in DMSO was heated in +65°C water bath for 45 min 169 

to dissolve. TCDD was purchased from Ufa-Institute (Ufa, Russia) and was over 98% pure as assessed 170 

by gas chromatography–mass spectrometry. The stock solutions were further diluted with cell culture 171 

medium before application to cells. 172 

 173 

---------- Fig. 2 approximately here ---------- 174 

 175 

2.2. Animals and their husbandry 176 

S-D rats (males, ~9 weeks of age at exposures) were purchased from Harlan Netherlands. The rats were 177 

acclimatised to study conditions and handling for a minimum of one week after arrival, and were 178 

housed in groups of two or three in individually ventilated cages (Sealsafe IVC Blue Line, Techniplast, 179 

West Chester, PA, USA) throughout the studies. The rats were maintained on a 12-h light/dark cycle. 180 

The lights came on at 6 a.m., and during the night the room was lit with a dim red light. The cage floor 181 
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was covered with aspen wood bedding (Tapvei, Estonia), and each cage enriched with a transparent 182 

red plastic hiding tube, nesting material and chew blocks (both aspen wood, Tapvei, Estonia). 183 

Commercial pelleted rat chow [RM1 (E) SQC Expanded; SDS Diets, Witham, Essex, England; 8554.27 184 

International units vitamin A/kg diet] and filtered, UV-irradiated tap water were available ad libitum. 185 

The animal room was air-conditioned, the temperature kept at 22 ± 1°C and relative humidity at 38–186 

75% (typically 50%). 187 

 188 

All studies were authorized by the National Animal Experiment Board in Finland (Eläinkoelautakunta, 189 

ELLA; project licence code: ESAVI/6882/04.10.03/2012). All procedures were conducted in accordance 190 

with the Directive 2010/63/EU of the European Parliament and of the Council. 191 

 192 

2.3. Experimental design 193 

Within the experiments, rats were randomly allocated into groups, which were matched for body 194 

weight (BW). In both experiments, the rats were weighed immediately before exposures and dosed 195 

intragastrically by oral gavage according to BW. The compounds were administered after a 3-h fast, 196 

for which rats were moved into identical but clean cages, where only water was available for the 197 

duration of the fast. After exposures, the fast was further continued for 3 h. At the end of the studies, 198 

carbon dioxide was used for euthanasia. 199 

 200 

An acute toxicity study was carried out as a pilot experiment to make sure that the novel compounds 201 

C2 and C4 would not cause marked acute toxicity before their repeated administration to larger groups 202 

of rats. The study principle was loosely based on the OECD test guideline for acute oral toxicity [Up-203 

and-Down-Procedure (OECD 2008)] to reduce the number of animals required. Estimation of LD50 204 

values proved impossible because of the low toxicity and poor solubility of the compounds (see 205 

Results). Three different dose levels were tested for both compounds, the high doses being limited by 206 
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the maximum solubility of the compounds achieved (~18.5 mg/ml for C2 and ~15 mg/ml for C4). For 207 

C2, the dose levels tested were 8.75 (n=1), 17.5 (n=1), 30 (n=2) and 92.5 mg/kg (n=3). For C4, the dose 208 

levels were 8.75 (n=2), 27.5 (n=2) and 75 mg/kg (n=3). In addition, there was a control group (n=6) that  209 

received the vehicle (PEG-400). 210 

 211 

The single exposures were started by administering the low dose of 17.5 mg/kg of C2 to a single rat at 212 

a volume of 10 ml/kg (day 0). As at 24 h after the exposure the rat seemed otherwise healthy but its 213 

faeces were runny [a known possible side effect of PEG-400 (Hermansky, et al. 1995, Ueda, et al. 214 

2011)], the volume administered for the rest of the rats was lowered to 5 ml/kg, which ameliorated 215 

the diarrhoea. Three days later (day 3), the exposures were continued with 8.75 mg/kg of C2 (n=1), 30 216 

mg/kg of C2 (n=2), 8.75 mg/kg of C4 (n=2), and the vehicle for the control group (n=4). After 48 h (day 217 

5), a further two control rats received the vehicle and rats of the experimental groups the test 218 

compounds as follows: 27.5 mg/kg C4 (n=2), 75 mg/kg C4 (n=3) and 92.5 mg/kg C2 (n=3). All rats were 219 

observed individually at least once during the first 30 min after dosing, and periodically thereafter 220 

during the first 24 h, with special attention given in the first 4 h. Each rat was also weighed and 221 

monitored daily for any clinical signs of toxicity, before being euthanised (on day 7–13 after exposure). 222 

After euthanasia, the thymus and liver were excised and weighed. 223 

 224 

A subacute toxicity study explored the properties and toxicities of C2 and C4 after repeated 225 

administrations on five consecutive days. Five to six males were used per group. On the first day of 226 

exposures, the rats weighed 277 ± 12 g (n=17; mean ± SD). The substances were dosed at the highest 227 

concentrations attainable (which had proven to be not acutely toxic in the pilot experiment): 100 228 

mg/kg/day for C2 and 75 mg/kg/day for C4. The volume administered was 5 ml/kg. The control group 229 

was treated with the same volume of the vehicle (PEG-400). After dosing, the rats were observed 230 

individually at least once during the first 30 min and periodically thereafter during the first 24 h, with 231 

special attention given during the first 4 h. They were weighed daily starting from the first day of 232 



 

9 
 

exposure (day 0), and after the last exposure they were further monitored for five days (until day 9) 233 

for any clinical signs. The rats were fasted for 5–10 h prior to euthanasia, which started at ~12.30 p.m. 234 

and finished within 6 h (animals of the three groups were euthanised in a rotating order). The thymus, 235 

liver, kidneys, testes and spleen were weighed. Serum, liver, duodenum, kidney, lung and testis 236 

samples were frozen in liquid nitrogen for further processing, and in addition samples from liver, 237 

spleen, kidney, lung and both testes were collected for histopathology.  238 

 239 

2.4. Histopathology 240 

Histological samples from the subacute toxicity study (liver, spleen, kidney, lung and testis) were fixed 241 

in 4% buffered formalin, embedded in paraffin and sectioned at 4 μm thickness. Slides were stained 242 

with hematoxylin-eosin for histopathological analysis. Microscopic findings were classified with 243 

standard pathological nomenclature and the severities of findings were graded on a scale of 1 to 4 as 244 

minimal, mild, moderate or marked, respectively. The grades of severity for microscopic findings were 245 

subjective; minimal was the least extent discernible. Microscopic findings that are not usually graded 246 

were listed as present. 247 

 248 

2.5. Clinical chemistry 249 

Clinical chemistry analyses following the subacute study were carried out at the Central Laboratory of 250 

the Department of Equine and Small Animal Medicine Helsinki, Finland. Enzymatic methods were used 251 

for the determination of serum free fatty acids (FFA; a.k.a. long-chain fatty acids [LCFA] or non-252 

esterified fatty acids [NEFA]) (NEFA-C, Waco Chemicals GmbH, Neuss, Germany) and D-3-253 

hydroxybutyrate (3-HB; RANBUT, Randox Laboratories Ltd. Crumlin, UK). The analyses were performed 254 

with an automatic chemistry analyser (KONE Pro Selective Chemistry Analyser, Thermo Fisher 255 

Scientific, Vantaa, Finland). 256 

 257 
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The rest of the serum analytes were analysed using the reagents and adaptations recommended by 258 

the manufacturer of the automatic chemistry analyser (Konelab 30i, Thermo Fisher Scientific, Vantaa, 259 

Finland). The activities of alanine aminotransferase [ALAT; (Schumann, et al. 2002a)] and aspartate 260 

aminotransferase [ASAT; (Schumann, et al. 2002b)] were measured according to the reference method 261 

of International Federation of Clinical Chemistry and Laboratory Medicine (IFCC 2002/5 and IFCC 262 

2002/6). Total bilirubin was measured by a modified acid diazo coupling method [Malloy-Evelyn;  263 

(Parviainen 1997)], creatinine by a kinetic, colorimetric method with alkaline picrate [method of Jaffe; 264 

(Fabiny and Ertingshausen 1971)], and glucose enzymatically with glucose oxidase and a modified 265 

Trinder colour reaction (Trinder 1969). Triglyceride, cholesterol and urea concentrations were 266 

determined by enzymatic methods (Allain, et al. 1974, Gutmann and Bergmeyer 1974, Wahlefeld 267 

1974). 268 

 269 

2.6. RNA isolation and RT-qPCR 270 

Total RNA was extracted from the liver, duodenum, kidney, lung and testes in the subacute study. For 271 

the isolation, Sigma GenElute™ Mammalian Total RNA Miniprep Kit was used according to the 272 

manufacturer’s protocol (Sigma-Aldrich, St. Louis, MO, USA). RNA was then treated with Ambion® 273 

TURBO DNA-free™ DNase treatment and removal reagent (Life Technologies, Carlsbad, CA, USA). The 274 

concentration of total RNA was measured with a Nanodrop UV Spectrophotometer (Thermo Fisher 275 

Scientific, Waltham, MA, USA) and RNA purity verified by 260/280 and 260/230 nm ratios. Total RNA 276 

was reverse transcribed to cDNA at 50°C for 1 h using M-MLV RT RNase H- Point Mutant (Promega, 277 

Fitchburg, WI, USA). For each reaction (25 µl), 100 U of the enzyme and 800 ng of RNA were used. Real-278 

time quantitative PCR (HOT FIREPol® EvaGreen® qPCR Mix Plus (no ROX), Solis Biodyne, Tartu, Estonia) 279 

was performed on the RotorGene 3000 instrument (Qiagen, Hilden, Germany) to determine the mRNA 280 

levels of the AHR-battery xenobiotic metabolising enzyme genes: Cyp1a1, Cyp1a2, Cyp1b1, Ahrr, Nqo1, 281 

Tiparp, Ugt1a and Cyp2b1. This was carried out by absolute quantification using total RNA amount (20 282 

ng/reaction) for normalization (see Supplementary Table 1 for information on primers) (Bustin 2002, 283 
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Tichopad, et al. 2009). If the qRT-PCR result was below the detection limit, a conservative approach 284 

was taken and the sample given the value of the limit. 285 

 286 

For comparison of gene expression with TCDD-treated Long-Evans (Turku/AB; L-E; n=5 per group) and 287 

Han-Wistar rats (Kuopio; H/W; n=5 per group), existing cDNA samples from a previous study were used 288 

(Lindén, et al. 2014). RT-qPCR on these samples was performed with the same primers and in the same 289 

conditions, but for statistical analysis, the data were treated separately.  This comparison with the S-D 290 

rats used in the current study was deemed justified, as both L-E and S-D rats represent TCDD-sensitive 291 

rat strains with little difference in their overt responses to TCDD as regards adult exposures [the 292 

respective LD50 values are 18 and 43 µg/kg, while for TCDD-resistant H/W rats the LD50 is > 9600 293 

µg/kg (Pohjanvirta, et al. 1993, Stahl, et al. 1992, Unkila, et al. 1994)]. Further, the AHR-mediated 294 

induction of xenobiotic-metabolising enzymes is exhibited by all rat strains in the same fashion,  295 

including H/W rats (Franc, et al. 2008). 296 

 297 

2.7. Thyroxine (T4) detection by ELISA 298 

Thyroxine (T4) levels were measured in sera from the subacute study according to manufacturer’s 299 

instructions using the Rat Thyroxine T4 ELISA Kit (Cusabio Biotech Co. Ltd, Wuhan, China). 300 

 301 

2.8. Retinoid analysis by HPLC 302 

Concentrations of all-trans-retinoic acid, 9-cis-4-oxo-13,14-dihydro-retinoic acid (9-cis-4-oxo-13,14-303 

dh-retinoic acid), 13-cis-retinoic acid, 4-hydroxy-all-trans-retinoic acid (4-OH-all-trans-retinoic acid), 304 

retinol and retinyl palmitate were measured in liver, kidney, and serum samples from the subacute 305 

study. The different retinoid forms, extracted from tissue homogenates or serum, were separated on 306 

HPLC, and detected by UV at 340 nm for retinoic acid derivatives (Schmidt, et al. 2003a), and at 325 307 
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nm for retinol and retinyl palmitate (van der Ven, et al. 2009), i.e. the polar and apolar retinoid forms 308 

respectively. Briefly, and as reported previously (Schmidt, et al. 2003a), 300 mg of tissue was 309 

homogenised with 300 µL of water, and liquid-liquid extraction of retinoids in 400 µL of tissue 310 

homogenate or serum was performed with isopropanol. Separation of polar from apolar phase 311 

retinoid forms was achieved by solid-phase-extraction using an aminopropyl-phase cartridge (Agilent 312 

SampliQ amino, Agilent, Santa Clara, CA, USA). Analytes were separated on a Poroshell 120 EC-C18 313 

column (Agilent) using a binary HPLC system (Agilent 1100 series, Agilent). Retinoid standards 314 

included 13-cis- and all-trans-retinoic acid from Sigma-Aldrich (Madrid, Spain), and 4-OH-all-trans-315 

retinoic acid from Toronto Research Chemicals (Toronto, ON, Canada), while acitretin and retinyl 316 

acetate (Sigma-Aldrich) were used as internal standards. The limit of detection (LOD) for liver and 317 

kidney retinoid concentrations were 0.5 pmol/g for 13-cis-retinoic acid, 0.6 pmol/g for all-trans- 318 

retinoic acid, 1 pmol/g for 9-cis-4-oxo-13,14-dh-retinoic acid, and 4-OH-all-trans-retinoic acid, and 319 

5.6 pmol/g for retinol and retinyl palmitate (Schmidt, et al. 2003a). LOD for serum retinoid 320 

concentrations were 0.3 pmol/ml for all-trans-retinoic acid, 0.4 pmol/ml for 13-cis-retinoic acid, 0.6 321 

pmol/ml for 9-cis-4-oxo-13,14-dh-retinoic acid, and 4.2 pmol/ml for retinol and retinyl palmitate 322 

(Schmidt, et al. 2003a). 323 

 324 

2.9. Screening of CYP1A1 enzyme activity in H4IIE cells 325 

CYP1A1 enzyme induction potential was screened in vitro in the H4IIE rat hepatoma cell line to 326 

estimate the efficacy of the novel compounds compared with that of TCDD. The cells were acquired 327 

from ATCC (H-4-II-E ATCC® CRL1548™). They were cultured at 37°C and 5% CO2 in Eagle’s Minimum 328 

Essential Medium (ATCC, Manassas VA, USA) supplemented with 10% FBS (Sigma-Aldrich, St. Louis, 329 

MO, USA). The experiment was performed in a 96-well plate (Greiner Bio-One GmbH, Kremsmünster, 330 

Austria). Cells were seeded at 10,000 cells/well and allowed to equilibrate for about 40 h prior to 331 

exposures. The outer and corner wells were left without cells and filled with PBS in order to avoid the 332 

edge effect. The cells were then exposed for 24 h to 1, 5, 10 or 50 nM of C1, C3 or TCDD in culture 333 
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medium, or the vehicle (0.1% of DMSO in culture medium). All exposures were performed in triplicates. 334 

CYP1A1 activity was detected with P450-Glo™ CYP1A1 Assay (Promega, Madison, WI, USA) according 335 

to manufacturer’s instructions. Subsequently, CellTiter-Glo® Luminescent Cell Viability Assay 336 

(Promega) was used to confirm that there were no significant differences between the numbers of 337 

viable cells in the wells at the time of detection. MycoAlert™ Mycoplasma Detection Kit (Lonza Group 338 

Ltd, Basel, Switzerland) was used for parallel cells to ensure that the cells used in the experiment were 339 

not infected. 340 

 341 

2.10. Data analysis and statistics 342 

In the single-dose study, BW change and relative organ weights (liver, thymus) were statistically 343 

assessed only among control and the highest dosage groups of H2 and H4 because of the low number 344 

of animals in the middle dose groups. To this end, one-way ANOVA followed by Duncan’s new multiple 345 

range test were used applying the SPSS Statistics software (IBM Corp. Released 2013. IBM SPSS 346 

Statistics for Windows, Version 22.0/24.0. Armonk, NY, USA). 347 

 348 

For the subacute toxicity study data of organ weights, clinical chemistry parameters and mRNA 349 

abundance, statistical analysis was carried out by one-way ANOVA and Student-Newman-Keuls post-350 

hoc test. If variances were non-homogeneous in ANOVA (as assessed by Levene’s test), those values 351 

were log-transformed (which restored homogeneity) and then re-analysed by one-way ANOVA. The 352 

level of significance in all statistical analyses was set at p<0.05, unless specified otherwise.  353 

 354 

Statistical analysis of the mRNA abundance data from the TCDD-treated L-E and H/W rats used for 355 

comparison was carried out by Student’s t-test for independent samples. The results were verified by 356 

Mann-Whitney U test due to small group sizes and some of the data not being normally distributed (as 357 

assessed by Shapiro-Wilk’s test). 358 
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 359 

BW development in the subacute study was statistically analysed using mixed between/within subject  360 

two-way ANOVAs. For this purpose, the data were verified for normal distribution by Shapiro-Wilk’s 361 

test, equality of error variances and covariance matrices was assessed by Levene’s and Box’s tests,  362 

respectively, and the homogeneity of the variances of the differences between all combinations of 363 

levels of the within-subjects factor (sphericity) by Mauchly’s test. Simple main effects were analysed 364 

by univariate ANOVA and the Tukey HSD post-hoc test. The level of significance was set at p<0.05 in 365 

all other cases except for Box’s test where only values p<0.001 were considered significant.  366 

 367 

Serum thyroxine levels were statistically assessed using Kruskal-Wallis non-parametric ANOVA. As 368 

mentioned above, they were determined with an ELISA kit. A scrutiny of the standard curve revealed 369 

that the lowest standard yielded absorbances that were incompatible with those of the other ones. 370 

Because of this and the fact that we were more interested in possible differences among the groups 371 

than actual thyroxine levels per se, we decided to utilize the absorbances themselves in the statistical 372 

analysis instead of their converted thyroxine concentrations. This approach was statistically justified 373 

as we used a non-parametric approach (Kruskal-Wallis ANOVA) based on rank orders of the values in 374 

the experimental and control groups. We further verified the methodology with sera from TCDD-375 

sensitive L-E rats collected at 10 days after exposure to 100 µg/kg TCDD or the vehicle (corn oil) (Lindén, 376 

et al. 2014). The control samples were run on the same ELISA plate and handled identically to the 377 

actual samples, except that the non-parametric test in this case was Mann-Whitney U since only two 378 

groups were compared. Based on the absorbance analysis, there was a statistically significant decrease 379 

in thyroxine levels caused by TCDD in L-E, which is in line with previous findings (Pohjanvirta, et al. 380 

1989). 381 

 382 
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Retinoid concentrations were expressed as mean ± SD. Pairwise multiple comparisons between 383 

exposed and control means were performed by using analysis of variance (ANOVA) and linear contrast 384 

tests. Significance was considered for values of p < 0.05, and tendency for p < 0.1 in R software version 385 

3.2.3, (R Development Core Team, R Foundation for Statistical Computing, Vienna, Austria). Each 386 

retinoid was assessed individually. In addition, Box plots were used for verification of normal 387 

distribution. 388 

 389 

The luminescence data from the in vitro CYP1A1 activity assay were analysed in two different ways. 390 

First, the concentrations were individually and compound-wise compared with the control by Kruskal-391 

Wallis non-parametric ANOVA, considering the significances asymptotic. Therefore, the significances 392 

of the pairwise comparisons were not adjusted. Second, the fold-changes were subjected to two-way 393 

ANOVA. Because the original data as well as the transformations attempted (log10, natural logarithm, 394 

square root and square) all yielded non-homogeneous variances (Levene’s test: p<0.001) and there 395 

was slight deviation from normal distribution in one of the datasets (C1, 50 nM; Shapiro-Wilk’s test: 396 

p=0.015), the significance level for the interaction term was set at p<0.001. Simple main effects were 397 

assessed by multiple pairwise comparisons with Bonferroni’s adjustment.   398 



 

16 
 

3. Results 399 

3.1. Acute toxicity 400 

Acute toxicity was screened by administering single doses of both C2 and C4 at three different dose 401 

levels, the highest of which (92.5 mg/ml and 75 mg/ml, respectively) were determined by the solubility 402 

of the compounds. The only conspicuous clinical sign of toxicity was watery faeces in one individual rat 403 

that received the first low dose (17.5 mg/kg of C2) in the volume of 10 ml/kg, a common side effect of 404 

PEG-400 (Hermansky, et al. 1995, Ueda, et al. 2011). Subsequently, the volume administered was 405 

lowered to 5 ml/kg for the other rats, which ameliorated the diarrhoea. There were no further clinical 406 

signs of toxicity seen during the experiment at any dose levels tested, which is why the highest doses 407 

were selected to be used in the repeated dosing experiment. As the number of rats in each group was 408 

low in this experiment (n=1–3, except for controls where n=6), data from it should be considered with 409 

caution, and statistical evaluation was only performed among control and the highest doses of C2 and 410 

C4. However, BW gain at 7 days after exposures appeared to show a slightly delayed trend, reaching 411 

statistical significance (p<0.05) for 75 mg/ml C4. The dose of 92.5 mg/ml C2 did not differ from either 412 

control or 75 mg/ml C4 (Supplementary Table 2). Also, both relative and absolute thymus weights 413 

exhibited a decreasing trend, with a statistically significant (p<0.05) relative weight loss of 30 % in both 414 

high dose groups compared with controls (Supplementary Table 2). Liver weights showed a slight (10 415 

%) decrease in the C4 mid- and both high dose groups when compared with controls, but statistical 416 

significance was not attained (Supplementary Table 2). 417 

 418 

3.2. Clinical signs of subacute toxicity 419 

For the evaluation of subacute toxicity, C2 and C4 were administered once a day for 5 consecutive days 420 

at 100 mg/kg/day and 75 mg/kg/day, respectively. After exposures, the rats were monitored for 421 

further 5 days before euthanasia and collection of samples. Contrary to the characteristic wasting 422 

syndrome of TCDD, BW gain tended to be only marginally decelerated (Fig. 3). Two-way mixed ANOVA 423 

revealed a statistically significant interaction in BW gain between treatment and time (F[4,28]=3.647; 424 
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p=0.016; partial η2=0.343), and subsequent univariate ANOVAs (followed by the Tukey HSD tests) at 425 

the three time-points showed that the BW gain of C2 at 9 days (4.7%) was lower than that of control 426 

(10.1%; p = 0.049). Further, at repeated exposures, slightly soft faeces were seen in many rats in all 427 

groups (including controls) also at 5 ml/kg of PEG-400. Other than those, there were no conspicuous 428 

clinical signs of toxicity in either group, apart from peculiar, transient hyperaemia of the ear pinnae 429 

(Supplementary Fig. 1). This change appeared on the first day after the end of the 5-day dosing regimen 430 

and persisted for 3–4 days. There were 3/5 rats in C2 group and 5/6 rats in C4 group to display this 431 

effect. The severity of the hyperaemia varied among individuals, and mostly both ears were affected 432 

(6–7/8). 433 

 434 

---------- Fig. 3 approximately here ---------- 435 

 436 

3.3. Changes in AHR-battery gene expression 437 

In the repeated exposure experiment, Cyp1a1 gene expression was determined in liver, duodenum, 438 

kidney, testis and lung, and in addition Cyp1a2, Cyp1b1, Cyp2b1, Ahrr, Nqo1, Tiparp, and Ugt1a mRNA 439 

abundances were determined in liver. For comparison of C2 and C4 with TCDD, liver cDNA originating 440 

from a previous study (Lindén, et al. 2014) was analysed with the same primers and in the same 441 

conditions as the samples from the current study. In the Lindén study, TCDD-sensitive L-E and TCDD-442 

resistant H/W rats were exposed to a single ig dose of 100 µg/kg TCDD and euthanised on day 10.  This 443 

comparison was considered justified, as there is little difference in TCDD-sensitivity between adult S-D 444 

and L-E rats [the respective LD50 values are 43 and 18 µg/kg, while for H/W rats the LD50 is > 9600 445 

µg/kg (Pohjanvirta, et al. 1993, Stahl, et al. 1992, Unkila, et al. 1994)]. Further, induction of xenobiotic-446 

metabolising enzymes is similarly manifested in both sensitive and resistant rat strains (Franc, et al. 447 

2008). 448 

 449 
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Cyp1a1 gene expression, a sensitive marker for AHR activation, was substantially increased in all 450 

examined tissues by C2, and, apart from testis, also by C4 (p<0.05; Fig. 4). Increased gene expression 451 

by C2 in the liver was additionally measured for the AHR-battery genes Cyp1a2, Cyp1b1, Ahrr, Nqo1 452 

and Ugt1a, but by C4 only for Cyp1a2 and Ahrr (p<0.05; Table 1). However, all of the changes were 453 

much less pronounced than after a single dose of 100 µg/kg of TCDD. The most conspicuous differences 454 

in the induction profiles of TCDD and C2/C4 were discernible in Cyp1b1, Ahrr, Nqo1 and Tiparp, all of 455 

which were markedly induced by TCDD but feebly, if at all, by C2/C4 (Table 1). 456 

 457 

---------- Fig. 4 approximately here ---------- 458 

 459 

---------- Table 1 approximately here ---------- 460 

 461 

3.4. Organ weights 462 

After the subacute toxicity experiment, the thymus, liver, kidneys, spleen and testes of each animal 463 

were weighed, and liver, spleen, kidneys, testes and lung were examined histologically. Thymus was 464 

the only studied organ where statisticaly significant changes in weight were seen: both the absolute 465 

and relative weights were decreased by C2 and C4 alike. In both groups, the relative weights were 466 

about 40% lower than in the control group (40% for C2, and 36% for the C4 group; one-way ANOVA 467 

p<0.001; Fig. 5). The slight increases in relative testis weights (11% for C2, and 6 % for C4) evaded 468 

statistical significance (one-way ANOVA p=0.068). 469 

 470 

---------- Fig. 5 approximately here ---------- 471 

 472 
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3.5. Histopathology 473 

In the subacute toxicity study, C2 and C4 administration induced minimal hepatic extramedullary 474 

myeloid haematopoiesis (EMH; Fig. 6) (Thoolen, et al. 2010). This was observed in 3/5 C2-treated and 475 

in 4/5 C4-treated animals; none was present in controls. The very lenient reaction consisted of some 476 

tiny (<10 cells) sinusoidal foci and of small portal or perivascular infiltrates in selected animals. In 477 

general, the most prevalent were deeply basophilic nucleated erythrocytes and undifferentiated 478 

progenitor cells with lesser numbers of immature granulocytes. In addition to EMH, no other significant 479 

lesions were noted; some animals amongst both treatment groups and controls exhibited few mixed 480 

or lymphocytic cell infiltrates or parenchymal inflammatory foci (Thoolen, et al. 2010). One C4-treated 481 

animal showed a mild (micro- and macrovesicular) fatty change without extramedullary 482 

haematopoiesis and one C2-treated animal a focal minimal fatty change with minimal EMH. All spleen 483 

samples exhibited minimal to moderate EMH of all three lineages (Cesta 2006). In contrast to the liver, 484 

the intensity of EMH in the spleen did not, however, correlate with the treatments (Supplementary 485 

Table 3). No significant histopathological alterations were detected in the lungs or in the testes.  486 

 487 

---------- Fig. 6 approximately here ---------- 488 

 489 

3.6. Clinical chemistry 490 

In the subacute toxicity study, the only marked alteration in serum clinical chemistry variables was a 491 

reduction of triglycerides by C2 (44%, one-way ANOVA, p=0.02; Fig. 7). C4 had a similar effect, but the 492 

30% decrease caused by it did not reach statistical significance. In addition, there was a statistically 493 

significant increase of 86% in the level of 3-HB by C4 (ANOVA p=0,045). A similar increase of 58% by 494 

C2 was not statistically significant. 495 

 496 
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---------- Fig. 7 approximately here ---------- 497 

 498 

3.7. Thyroxine (T4) levels 499 

Thyroxine levels were measured in sera collected upon termination of the subacute toxicity test. There 500 

were no statistically significant differences among the groups (ANOVA p=0,426; Supplementary 501 

Table 4). 502 

 503 

3.8. Retinoid analysis 504 

Analysis of polar and apolar retinoid concentrations in the liver, kidney and serum was performed for 505 

the control, C2 and C4 groups after the subacute toxicity experiment. In the liver, statistically significant 506 

decreases in concentrations of 4-OH-all-trans-retinoic acid, 9-cis-4-oxo-13,14-dihydro-retinoic acid, 507 

and retinyl palmitate were found in both the C2 and C4 groups, while the concentrations of 13-cis 508 

retinoic acid and retinol were not significantly affected in either group (Table 2). The observed increase 509 

in hepatic all-trans retinoic acid concentration was significant in group C2 only.  In serum, significant 510 

decreases occurred in concentrations of 13-cis-retinoic acid, 9-cis-4-oxo-13,14-dihydro-retinoic acid 511 

and retinyl palmitate in both C2 and C4 groups, while retinol concentration was increased by both 512 

compounds, and all-trans retinoic acid levels were not affected (Table 2). In the kidney, significant 513 

increases were detected in retinol and retinyl palmitate concentrations in both the C2 and C4 groups, 514 

while the observed increase in renal all-trans retinoic acid level was significant in C2 group only (Table 515 

2). Renal concentrations of 9-cis-4-oxo-13,14-dihydro-retinoic acid were not influenced by the 516 

treatments. 517 

 518 

The magnitudes of effects caused by C2 and C4 in retinoid concentrations were largely comparable. 519 

For most retinoid forms analysed, the changes recorded were slightly more pronounced in C2 vs C4 520 
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group, in line with the higher dose given of this compound. Two exceptions to this rule were provided 521 

by renal retinyl palmitate and serum 13-cis-retinoic acid concentrations which were affected clearly 522 

more by C4 than C2.  523 

 524 

---------- Table 2 approximately here ---------- 525 

 526 

3.9. Screening of CYP1A1 enzyme activity in vitro in H4IIE cells 527 

The compounds C1 and C3 were screened in vitro in the H4IIE rat hepatoma cell line for their CYP1A1 528 

enzyme induction potential, and compared with that of TCDD. The cells were exposed to 1, 5, 10 or 50 529 

nM of either compound or TCDD for 24 h, after which CYP1A1 activity was assessed by a luminescent 530 

method. All of the compounds showed a statistically significant induction of CYP1A1 (ANOVA p<0.005), 531 

which increased in a dose-dependent fashion (Fig. 8). Apart from the dose level of 1 nM, each 532 

concentration of the compounds increased CYP1A1 induction in a statistically significant manner when 533 

compared with the control group (Fig. 8). In two-way (compound x concentration) ANOVA on the fold-534 

change data, the interaction term proved significant [F(6,57)=7.883, p=3E-6, partial ŋ2=0.454]. 535 

Subsequent analysis of simple main effects showed that at all concentrations but the lowest one (1 536 

nM), TCDD differed from both C1 and C3 in a statistically significant manner (p<0.05).  537 

 538 

---------- Fig. 8 approximately here ---------- 539 

540 
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4. Discussion 541 

The AHR is notorious for mediating the toxic effects of TCDD and other related environmentally 542 

persistent organic pollutants, both in laboratory animals and humans. Based on epidemiological data, 543 

exposure to high levels of dioxins is in humans associated with an overall elevation in cancer risk and 544 

chloracne, while much lower exposure levels within sensitive time-windows may cause endocrine 545 

disruption, altered sex ratios of offspring and lowered quality of sperm (White, et al. 2011). Less 546 

evident but still possible adverse health effects include type 2 diabetes and reproductive effects such 547 

as increased risk for infertility. In laboratory animals, characteristic adverse effects also include 548 

alterations in blood lipids and thyroid function, and immunological effects, but the epidemiological 549 

data for these effects in humans remain conflicting (Bastomsky 1977, Fletcher, et al. 2005, Gorski and 550 

Rozman 1987, Kerkvliet 2011, Pohjanvirta, et al. 1989, White, et al. 2011). The current consensus is 551 

that the adverse effects of dioxins are a consequence of untimely and protracted activation of the AHR, 552 

while its appropriate activation is in fact fundamental for normal development and function of all 553 

vertebrates, especially for the balanced action of immune system (Bock and Köhle 2006, Denison, et 554 

al. 2011, Fernandez-Salguero, et al. 1995, Harrill, et al. 2013). Thus, compounds that could activate the 555 

AHR without causing toxicity could have great potential as pharmaceuticals, which could form a basis 556 

for novel treatments of diseases in several fields. Here, we characterised toxicological properties of 557 

two such candidate compounds, abridged C2 and C4, which are intended as novel selective modulators 558 

of the AHR. Their properties were studied in S-D rats, both after a single and 5-day repeated dosing, 559 

and in H4IIE cells. 560 

 561 

The aim of the single dose experiment was to verify that the acute toxicity of the compounds was so 562 

low that they could be administered repeatedly. The experiment confirmed that, as during its 563 

performance there were no apparent clinical signs of toxicity. However, at the highest dose of both 564 

compounds (n=3), thymus size was significantly diminished and a tendency towards dampened growth 565 

was evident. Yet, because the numbers of animals used at each dose level in this experiment were low 566 
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in accordance with the modified Up-and-Down procedure applied (OECD 2008), the conclusions drawn 567 

from it were regarded as indicative. Therefore, all of the results discussed below are from the 5-day 568 

repeated dosing experiment, unless otherwise specified. 569 

 570 

Although the exposure period to the compounds in the subacute toxicity experiment was short (5 571 

days), the animals were administered the highest doses practically achievable, and therefore it can be 572 

expected to have revealed the short-term toxic potential of the test compounds, in particular as to any 573 

sensitive endpoints. While the rats overall tolerated the treatments well, the compounds were not 574 

without effect. As assessed by their ability to induce hepatic Cyp1a1 gene expression, a fairly rapid and 575 

highly sensitive marker for AHR activation (Abraham, et al. 1988), both C2 and C4 appeared to be 576 

effective compounds, although apparently either not as much so as TCDD, or the effect was not equally 577 

long-lasting. A single dose of 0.1 mg/kg TCDD used previously in the study by Lindén et al. (2014) 578 

brought about, even 10 days after the exposure, more prominent hepatic induction of Cyp1a1: 1100-579 

fold in the TCDD-sensitive L-E strain and 860-fold in the TCDD-resistant H/W strain. Here, doses of 100 580 

mg/kg/day and 75 mg/kg/day for C2 and C4, respectively, administered daily on days 0–4, resulted in 581 

370- and 140-fold inductions, when similarly measured in samples taken on day 9 (the molecular 582 

weights of C2 and C4 are 30–50% higher than that of TCDD). However, the true in vivo induction 583 

potencies of C2 and C4 may be greater than suggested by the findings of the present study, since the 584 

5-day recovery period included may have markedly influenced the resultant gene expression levels 585 

measured. In support of this notion, 1–50 nM concentrations of C1 and especially C3 (the respective, 586 

active metabolites of C2 and C4, intended for in vitro assays) induced responses closer to the same 587 

fold-range as TCDD in the 24h CYP1A1 enzyme activity screening assay in the H4IIE rat hepatoma cell 588 

line in vitro (Fig. 8). Moreover, in our previous in vivo study, even a single dose of 4 mg/kg C2 induced 589 

hepatic Cyp1a1 expression 1700-fold compared with controls, when liver was sampled already at 28 h 590 

after exposure (Mahiout and Pohjanvirta 2016). Collectively, these findings imply a rapid and probably 591 

inducible elimination of C2 and C4 in S-D rats, with an elimination half-life within a range of hours to a 592 
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couple of days for repeated exposure. This may also account for the variability seen in Cyp1a1  593 

induction data (Fig. 4), reflecting inter-individual differences in elimination rates of the compounds. 594 

 595 

In addition to Cyp1a1, both compounds also induced here several other AHR-battery genes of 596 

xenobiotic metabolism, but the induction profiles were distinct for TCDD and C2/C4 (Table 1).  In this 597 

regard, especially Ahrr and Cyp1b1 clearly stood out. Of special interest is also the lack of Ugt1 598 

induction by C2/C4, because the reduction in serum thyroxine caused by TCDD chiefly emanates from 599 

accelerated thyroxine catabolism by liver UGT1A6 (Nishimura, et al. 2005), and C2/C4 failed to 600 

influence circulating thyroxine concentrations (see below). Overall, the results resembled those of 601 

Cyp1a1 activation in the sense that C2 appeared somewhat more effective than C4, and TCDD clearly 602 

more so than the two novel compounds. The difference between C2 and C4 is likely, at least partly, 603 

due to the dissimilarity of the doses used, which were dictated by the solubility of the compounds.  604 

This view is reinforced by the in vitro CYP1A1 induction results presented here, as well as by our yet 605 

unpublished in vitro data on these compounds (manuscript in preparation), which revealed that in fact 606 

C3 consistently appeared somewhat more effective than C1. As for the differences between C2/C4 and 607 

TCDD, a likely explanation lies in pharmacokinetics. After all, TCDD is well-known for its very low 608 

biodegradability, also in rats (Pohjanvirta, et al. 1990), which in turn leads to persistent activation of 609 

the AHR, enabling major toxicities to emerge. Hence, for pharmaceutical use, C2 and C4 appear to be 610 

much better-suited in this respect. 611 

 612 

The likelihood that C2 and C4 are metabolised and excreted much more efficiently than TCDD should 613 

not lead to the assumption that they would be without other discernible effects than activation of 614 

metabolic pathways. Indeed, there were also other characteristic effects that appear to be quite similar 615 

between both C2/C4 and TCDD, even if somewhat less pronounced by the novel compounds: thymic 616 

atrophy, changes in tissue retinoid (vitamin A) concentrations and, as we previously reported for C2, 617 

novel food avoidance (Fletcher, et al. 2001, Gupta, et al. 1973, Harris, et al. 1973, Lensu, et al. 2011a, 618 
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Mahiout and Pohjanvirta 2016, Tuomisto, et al. 2000). Thymic atrophy is one of the most consistent 619 

and uniform effects of TCDD across mammalian species (Pohjanvirta and Tuomisto 1994). It mainly 620 

stems from depletion of small immature cortical thymocytes (Vos, et al. 1974) by a mechanism which 621 

may involve impeded maturation of T-lymphocyte precursors (Greenlee, et al. 1985, Holladay, et al. 622 

1991), enhanced apoptosis (McConkey, et al. 1988), and impaired thymic seeding by prothymocytes 623 

(Fine, et al. 1990). TCDD also weakens both cell-mediated and humoral-mediated immunity, increasing 624 

susceptibility to infectious diseases and transplanted tumours (Luebke, et al. 2006, Pohjanvirta and 625 

Tuomisto 1994). 626 

 627 

As to retinoid homeostasis, retinol and retinyl palmitate concentrations in the liver, kidney and serum 628 

were affected in the same manner by C2 and C4. Of these, the hepatic and renal changes, along with 629 

the substantial diminution in 9-cis-4-oxo-13,14-dihydro-retinoic acid levels in the liver, were also 630 

reminiscent of those seen after short-term TCDD exposure in male rats (Hoegberg, et al. 2003, Nilsson, 631 

et al. 2000, Schmidt, et al. 2003b). However, the decrease detected in serum retinyl palmitate 632 

concentration in C2- and C4-treated rats is not a typical effect of TCDD, and high TCDD doses have 633 

been reported to elevate serum all-trans-retinoic acid levels (Hoegberg, et al. 2003, Nilsson, et al. 2000, 634 

Schmidt, et al. 2003b), while this retinoid species remained unaltered following C2 or C4 exposure. It 635 

should also be noted that there are not enough data in the literature on the effect of TCDD on several 636 

of the retinoic acid derivatives in the tissues that were analysed in the present study. In particular, data 637 

are lacking on the effect of TCDD on 4-OH-all-trans- or 13-cis-retinoic acid in rat tissues. Therefore, no 638 

firm conclusions can be drawn yet on the full extent to which the alterations induced by C2 and C4 639 

resemble those of TCDD. 640 

 641 

All of the effects mentioned above are classified as type I, and are thus responses that are similar in 642 

both TCDD-sensitive L-E and TCDD-resistant H/W rat strains (Pohjanvirta, et al. 2011). In this rat strain 643 

model of TCDD toxicity, TCDD resistance is based on an altered transactivation domain structure in the 644 
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AHR of the resistant H/W strain. This change results in an at least 100-fold difference in TCDD doses 645 

required to elicit certain responses in L-E vs. H/W rats (type II effects). As a corollary, it means that 646 

type I effects, which emerge at the same doses in both strains, are robust to structural variations in 647 

AHR transactivation domain and thereby represent more generic AHR-mediated impacts. As a rule, 648 

type II effects occur at higher doses of TCDD than type I effects, although exceptions exist. In this light, 649 

it is interesting that there are also several typical toxic effects of TCDD that are lacking altogether with 650 

C2 and C4, at least at the doses used here: hypercholesterolemia and reduced plasma thyroxine levels 651 

(both type I effects); acute lethality, wasting syndrome, grave liver and testis lesions, hypoglycaemia, 652 

and elevated plasma FFA levels (all type II effects) (Pohjanvirta, et al. 2011, Viluksela, et al. 1999). 653 

Hence, these novel AHR activators bring about only a subset of the response spectrum previously 654 

reported to TCDD, and all those effects belong to type I category.  Whether any of type II responses 655 

would manifest if higher doses of C2 or C4 could be administered is a matter of speculation. However, 656 

the slight downward tendency recorded in BWs in the present study might suggest that the existence 657 

of early alterations in the adverse outcome pathway that ultimately culminates to the wasting 658 

syndrome cannot be totally ruled out. 659 

 660 

On the other hand, it is noteworthy that C2 and C4 also induced effects that have not been reported 661 

with TCDD. These included a conspicuous ear hyperaemia, minimal EMH in the liver, a reduction of 662 

serum triglycerides and an increase of serum 3-HB. The ear hyperaemia appears perplexing, as it has 663 

not been reported previously as a clinical response to AHR activators. There was no visible injury to 664 

the skin, nor any clinical sign of infection. The hyperaemia might suggest a transient disturbance of 665 

either systemic or local thermoregulation, or be due to changes in blood pressure or vasodilatation. 666 

Further studies are needed to resolve its pathogenesis.  EMH has been reported on post-natal day 14 667 

in the livers of mice exposed to TCDD in utero (Weinstein, et al. 2008), but to the best of our knowledge, 668 

not in animals exposed to TCDD at adult age.  However, a multitude of factors (including xenobiotics) 669 

which cause e.g. local hypoxia, bone marrow failure or myelotoxicity can elicit it in laboratory animals, 670 
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most frequently in spleen but also in liver (Chiu, et al. 2015). In the present case, it is tempting to link 671 

it with the auricular hyperaemia, because both could represent a response to tissue hypoxia.  In serum, 672 

the concomitant decrease of triglycerides and elevation of 3-HB point to enhanced β-oxidation at the 673 

expense of lowered de novo fatty acid biosynthesis in the liver. The interference of TCDD with hepatic 674 

lipid metabolism is unclear at present, because there is evidence in favour of accelerated (Muzi, et al. 675 

1989, Potter, et al. 1986), decelerated (Christian, et al. 1986), and unaltered (Tomaszewski, et al. 1988) 676 

β-oxidation rate in rats treated with TCDD at doses capable of causing the wasting syndrome. In any 677 

case, serum ketone bodies typically remain unaffected (Pohjanvirta and Tuomisto, 1994), and thus 678 

these novel AHR activators stand out from the dioxin-like toxicity pattern in this respect. 679 

 680 

Moreover, there are some characteristic adverse effects common to TCDD exposure that we did not 681 

look into in these experiments due to technical reasons, and thus information about the effects of C2 682 

and C4 on these is, for the time being, lacking completely. These include further effects on the 683 

endocrine system, such as changes in testosterone, insulin or melatonin levels; changes in the degree 684 

of oxidative stress in various tissues; bone and tooth lesions; immuno- and developmental toxicity; and 685 

carcinogenicity. In adult rats, reduction of serum thyroxine appears to be one of the most sensitive 686 

endocrine indicators of exposure to TCDD with an ED50 between 1 and 5 µg/kg in S-D rats (Viluksela, et 687 

al. 2004). Hence, the fact that its levels appear to be unaffected by C2 and C4 could predict that there 688 

would be few if any effects on other hormone levels either, but this should naturally be tested in the 689 

future, as well as the possible existence of the other effects that were missing here. 690 

 691 

In addition to the AHR mediating immunotoxic effects, it has also been identified as part of a molecular 692 

pathway of physiological immune responses, and thus as a target for immunomodulatory therapies 693 

[reviewed in (Zhu, et al. 2014)]. Disease models in which AHR modulation has been suggested as a 694 

possible target include, for instance, cancer, Crohn’s disease, ulcerative colitis, diabetes, MS and 695 

inflammatory skin conditions such as atopic dermatitis (Benson and Shepherd 2011, Díaz-Díaz, et al. 696 
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2016, Furumatsu, et al. 2011, Haas, et al. 2016, Jin, et al. 2014, Kerkvliet, et al. 2009, Quintana, et al. 697 

2010, Singh, et al. 2007, Van Den Bogaard, et al. 2013). Although the mechanisms of action of the 698 

parent compounds of C1 and C3, laquinimod and tasquinimod, are not yet fully elucidated, they are 699 

recognised as immunomodulatory compounds (Raymond, et al. 2014, Varrin-Doyer, et al. 2014). 700 

Moreover, the immunomodulatory mode of action of laquinimod, which produces low but persistent 701 

levels of C1, has been shown to be AHR dependent in the mouse Experimental Autoimmune 702 

Encephalomyelitis (EAE) MS model (Berg, et al. 2016, European Medicines Agency 2014, Kaye, et al. 703 

2016). Further, C1 is a more potent inhibitor of disease development in the EAE model than laquinimod 704 

(European Medicines Agency 2014). Finally, substantially higher levels of C1 are generated in vivo from 705 

C2 than from laquinimod (unpublished results). Therefore, it would be of high interest to study the 706 

likely effects that C2 and C4 have on the immune system in the future. So far, the only information is 707 

from the EAE model in rats, where C2 (total dose 4 mg/kg, sc) efficiently prevented EAE development 708 

(Pettersson 2012) and from unpublished data on its ameliorating effects in the dextran sulfate sodium 709 

-induced colitis model in mice (1 mg/kg, po). 710 

 711 

In conclusion, it appears clear that these novel compounds are potent activators of the AHR, but lack 712 

some major characteristic toxic effects of TCDD. In addition, overall their observed effect profiles seem 713 

distinct from that of TCDD, and pharmacokinetics is likely to play a role in this. It is also possible that 714 

they have lower binding affinities to the AHR, or occupy a different position in the ligand-binding 715 

domain of the protein (Denison, et al. 2011); these would be interesting to explore in the future. 716 

Whether these compounds are capable of causing type II effects of TCDD at all would also be worth 717 

studying further. Nevertheless, based on our findings, both C2 and C4 appear to represent promising 718 

new selective AHR modulators. 719 

720 
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Supplementary Table 2 Body weight gain and relative thymus and liver weights in the acute toxicity 723 
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Tables 1030 

 1031 

Table 1 Expression of AHR-battery genes related to xenobiotic metabolism and Cyp2b1 in S-D rat liver 1032 
triggered by C2 (100/mg/kg/day) and C4 (75 mg/kg/day; 5-day dosing regimen followed by 5-day 1033 
monitoring period before euthanasia) vs. controls. For comparison, data from TCDD-treateda (100 1034 
µg/kg single dose) L-E and H/W rats vs. controls are shown. (+)=Statistically significant induction, 1035 

()=no statistical significance (p<0.05, one-way ANOVA/Student-Newman-Keuls or Student’s t-test). 1036 
Fold changeb in brackets 1037 
Gene C2 C4 TCDD 

(L-E) 
TCDD 
(H/W) 

Cyp1a1 + (370) + (140) + (1100) + (860) 
Cyp1a2 + (5) + (2) + (8) + (20) 
Cyp1b1 + (5)  (1) + (1600) + (500) 
Cyp2b1  (3)  (1) + (5)  (1) 
Ahrr + (6) + (3) + (230) + (160) 
Nqo1 + (3)  (2) + (50) + (15) 
Tiparp  (1)  (1) + (25) + (9) 

Ugt1a + (1.4)  (1.2) + (7) + (6) 

n=5-6 in each group. 1038 
a The data for the TCDD groups are from a previous study (Lindén, et al. 2014), where TCDD-sensitive 1039 
L-E  and TCDD-resistant H/W rats were exposed to a single ig dose of 100 µg/kg TCDD and euthanised 1040 
at 10 days. The cDNA for these samples had been reverse-transcribed previously, but qPCR was 1041 
performed with the same primers and in the same conditions as for C2 and C4.  1042 
b Fold change = the ratio between the mean values for exposed and control rats 1043 
 1044 

 1045 
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Table 2 Concentrations of retinoids in liver, kidney and serum samples from the subacute study, in 1046 
which vehicle, C2 (100 mg/kg/day) or C4 (75 mg/kg/day) was administered on 5 consecutive days 1047 

 Control  C2   C4   
p-valuea 

Liver Mean±SD Mean±SD   Mean±SD   

All-trans-retinoic acid (pmol/g) 11.8±1.8 15.9±1.9 ** 14.1±2.6  0.020 

13-cis-retinoic acid (pmol/g) 3.76±0.67 7.70±5.11  4.32±0.89  0.080 

4-hydroxy-all-trans-retinoic acid (pmol/g) 1.65±0.64 0.52b±0.25 *** 0.55b±0.25 *** 0.001 

9-cis-4-oxo-13,14-dh-retinoic acid (pmol/g) 58.6±9.3 4.68±2.25 *** 3.86±1.62 *** 0.001 

Retinol (nmol/g) 12.7±1.9 15.9±3.8  16.9±3.6  0.094 

Retinyl palmitate (µmol/g) 0.74±0.09 0.41±0.11 *** 0.52±0.11 ** 0.001 

 
Serum                       

    

All-trans-retinoic acid (pmol/g) 1.02±0.28 1.14±0.34  1.15±0.24  0.687 

13-cis-retinoic acid (pmol/g) 1.36±0.30 0.74±0.16 *** 0.50±0.14 *** 0.001 

9-cis-4-oxo-13,14-dh-retinoic acid (pmol/g) 3.52±0.84 1.58±0.56 ** 2.15±0.75 ** 0.003 

Retinol (nmol/g) 2.50±0.19 3.21±0.24 *** 3.12±0.15 *** 0.001 

Retinyl palmitate (nmol/g) 0.06±0.01 0.03±0.01 *** 0.03±0.01 *** 0.001 

 
Kidney                       

    

All-trans-retinoic acid (pmol/g) 7.88±0.60 9.92±0.94 ** 8.41±1.03  0.005 

9-cis-4-oxo-13,14-dh-retinoic acid (pmol/g) 1.15±0.44 1.80±1.00  1.45±0.88  0.423 

Retinol (nmol/g) 7.01±0.69 9.32±0.75 *** 9.10±0.62 *** 0.001 

Retinyl palmitate (nmol/g) 6.08±5.80 14.50±6.12 * 20.02±7.25 ** 0.007 

For control and C4 groups, n = 6. For liver C2 and kidney C2, n = 5. For serum C2, n = 4. 1048 
9-cis-4-oxo-13,14-dihydro-retinoic acid (9-cis-4-oxo-13,14-dh-RA). 1049 
a Comparison between groups was performed using one-way analysis of variance (ANOVA).  1050 
* Group significantly different vs control group according to linear contrast tests, after significant 1051 
ANOVA. 1052 
b Some concentrations were close to or below the limit of detection, but were regardless calculated to 1053 

allow statistical analysis. 1054 

 1055 

  1056 



 

40 
 

Figures 1057 

 1058 

 1059 
Fig. 1 The AHR activator C1 is formed in vivo by hydrolysis of the diacetate prodrug C2, but also in small 1060 
amounts from laquinimod by N-dealkylation. C3 is similarly formed in vivo from the prodrug C4 and 1061 
tasquinimod. 1062 

 1063 

 1064 

 1065 

 1066 
Fig. 2 Chemical structures of TCDD, C2 and C4, and those of the respective deacetylated metabolites 1067 
C1 and C3 (used in in vitro assays) 1068 

 1069 

 1070 

 1071 
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 1072 
Fig. 3 Left panel. The effect of C2 and C4 on BW (S-D rats; n=5–6, mean  SD) on days 1, 5 and 9 after 1073 
the beginning of exposures (day 0). C2 (100 mg/kg/day) and C4 (75 mg/kg/day) were administered ig 1074 
on five consecutive days (days 0–4). The data in columns with different letters differ significantly from 1075 
one another (p<0.05, one-way ANOVA/Tukey HSD). Right panel. Typical pattern of body weight loss in 1076 
TCDD-induced wasting syndrome for comparison with the changes caused by C2 and C4. These data 1077 
originate from a previous study (Lindén, et al. 2014), where TCDD-sensitive L-E rats were exposed to a 1078 
single ig dose of 100 µg/kg TCDD (no statistical analysis was conducted) 1079 
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 1083 
Fig. 4 The expression of Cyp1a1 induced by C2 (100 mg/kg/day) and C4 (75 mg/kg/day) vs. controls in 1084 
liver, duodenum, kidney, lung and testis in S-D rats (n=5-6, mean ± SD). The rats were exposed to the 1085 
study compounds for 5 consecutive days, and monitored for further 5 days before euthanasia and 1086 
sample collection. Columns with unidentical letters differ significantly from one another (p<0.05, one-1087 
way ANOVA/Student-Newman-Keuls) 1088 
 1089 
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 1090 
Fig. 5 Relative mean (± SD) organ weights (percent of BW) of C2 (100 mg/kg/day), C4 (75 mg/kg/day) 1091 
and control groups in S-D rats (n=5-6). Both compounds were administered ig daily on days 0–4, and 1092 
the rats were euthanised on day 9. The groups with unidentical letters differ significantly from one 1093 
another (p<0.05, one-way ANOVA/Student-Newman-Keuls) 1094 

 1095 

 1096 

 1097 

      1098 
Fig. 6 Typical minimal hepatic EMH reaction with a lobular sinusoidal aggregate of deeply basophilic 1099 
hematopoietic cells in C2/C4 group rats in the subacute toxicity experiment (left panel), and a 1100 
corresponding area with no alterations in the control group for comparison (right panel). Central vein 1101 
in the left lower corner and portal triad in the right upper corner in both pictures.  1102 

 1103 

 1104 
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1105 
Fig. 7 Effects of C2 (100 mg/kg/day) and C4 (75 mg/kg/day) on biochemistry variables in S-D rats (n=5-6, 1106 
mean ± SD). Both compounds were administered ig daily on days 0–4, and the rats were euthanised 1107 
on day 9. The groups with unidentical letters differ significantly from one another (p<0.05, one-way 1108 
ANOVA/Student-Newman-Keuls). FFA=free fatty acids, 3-HB=D-3-hydroxybutyrate, 1109 
Trigly=triglycerides, TotChol=total cholesterol, ALAT= alanine aminotransferase, ASAT= aspartate 1110 
aminotransferase 1111 
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 1115 
Fig. 8 In vitro CYP1A1 activity induced by 1, 5, 10 or 50 nM of C1, C3 or TCDD in the H4IIE hepatoma 1116 
cell line, measured by a luminescent method. The data are portrayed as fold changes over controls 1117 
(n=3; mean ± SD). *=p<0.05, **=p<0.01, ***=p<0.001, Kruskal-Wallis non-parametric ANOVA followed 1118 
by pairwise comparisons only with controls, therefore the p-values have not been adjusted. Two-way 1119 
ANOVA showed a significant compound x concentration interaction term, and at the 3 highest 1120 
concentrations, TCDD differed significantly from C1 and C3 (see text for further details) 1121 
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Supplementary Table 1 Primer sequences used in RT-qPCR runs. The primers were designed to span exon-
exon junctions to further eliminate amplification of genomic DNA 

Target 
gene 

Forward primer-5’ Reverse-primer-3’ Amplicon (bp) Amplification 
efficiency  

Cyp1a1 gtcaggacaggaggctggac gattgtgtcaaacccagctc 101 0.89–1.04 
Cyp1a2 
Cyp1b1 
Cyp2b1 
Ahrr 
Nqo1 
Tiparp 
Ugt1 

tcaaccatgatgagaagcagtg 
gctggatttggaggatgtgc 
ttgaccacccagacagcttc 
ctggcttcctgactatgcag 
agggtcctttccagaataagaag 
caactctcggggtctgaaag 
aacgatctgcttggtcatcc 

actcagggtcttgtcgatgg 
gcaggtaggctggtaaagagg 
acaaatgcgctttcctgtgg 
cgccacaatgcaaaacaagg 
tgaattggccagagaatgacg 
cccaccaagtgtctgtaaatatgg 
gcgttgtccatctgatcacc 

95 
111 
104 
116 
115 
148 
131 

0.94–0.96 
0.97 
0.98–1 
0.91–0.97 
1 
0.95 
0.96–0.97 

 

 

 

Supplementary Table 2 Body weight (BW) gain (%, mean ± SD) and relative (% of terminal BW) thymus and 
liver weights (mean ± SD) in the acute toxicity study. The rats received a single dose of vehicle, C2 or C4 (3 
dose levels), and were euthanised 7–13 days later. BW gain at 7 days after exposure is shown relative to 
the weight (%) on the day of exposure. Due to a low number of rats in the middle groups , only the highest 
dosage groups of C2 and C4 were statistically compared with the control (in bold). The groups with non-
identical letters differ significantly from one another (p < 0.05). Statistical analysis was performed by one-
way ANOVA followed by Duncan’s new multiple range test 

 Control C2 (mg/kg) C4 (mg/kg) 

  8.75 30.0 92.5 8.75 27.5 75.0 
 n=6 n=1 n=2 n=3 n=2 n=2 n=3 

BW gain 
(% ± SD) 

11.8 ± 2.6a 12.6  12.0 ± 0.1 7.8 ± 3.2ab 11.9 ± 0.1 7.7 ± 0.3 6.1 ± 1.8b 
 

Thymus 
(% BW ± SD) 

0.18 ± 0.02a 0.12 0.17 ± 0.01 0.12 ± 0.01b 0.16 ± 0.0 0.15 ± 0.02 0.13 ± 0.03b 
 

Liver 
(% BW ± SD) 

4.2 ± 0.51 4.3 4.2 ± 0.04 3.8 ± 0.18 4.3 ± 0.08 3.9 ± 0.16 3.8 ± 0.19 
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Supplementary Fig. 1 Transient hyperaemia of the ear pinnae inflicted by C2 (100 mg/kg/day, 5 day 
repeated dosing) and C4 (75 mg/kg/day, 5 day repeated dosing), bilateral in the left panel and unilateral 
(right ear) in the right panel. The effect appeared on the first day after the repeated dosing regimen and 
persisted for 3-4 days. The pictures here were taken on the 3rd day the effect was observed 
 

 

 

Supplementary Table 3 Observed EMH in the spleen across groups (n=5–6) in the subacute toxicity study. 
The severities of findings were graded on a scale of 1 to 4 as minimal, mild, moderate or marked, 
respectively. The grades of severity for microscopic findings were subjective; minimal was the least extent 
discernible 

Grade Controls C2 (100 mg/kg/day) C4 (75 mg/kg/day) 

None (0) 1/6 – – 
Minimal (1) 1/6 1/5 1/6 
Mild (2) 2/6 3/5 2/6 
Moderate (3) 2/6 1/5 3/6 
Marked (4) – – – 

 
 

 
 
Supplementary Table 4 Thyroxine absorbances (mean ± SD; n=5–6) in sera collected upon termination of 
the subacute toxicity test in S-D rats, determined with an ELISA kit. For comparison and verification of the 
method, as a positive control, sera from TCDD sensitive L-E rats collected at 10 days after exposure to 100 
µg/kg TCDD or the vehicle (Lindén et al. 2014) were run on the same ELISA plate and handled identically to 
the actual samples. Statistical analysis was performed using Kruskal-Wallis non-parametric ANOVA or 
Mann-Witney U test 

Strain Control C2 C4 TCDD p-value  

S-D 0.81 ± 0.11 0.80 ± 0.21 0.75 ± 0.13 – 0.426 
L-E 0.99 ± 0.09 – – 2.16  ± 0.13 0.008 
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