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An international meta-analysis 
confirms the association of BNC2 
with adolescent idiopathic scoliosis
Yoji Ogura1,2, Kazuki Takeda1,2, Ikuyo Kou1, Anas Khanshour3, Anna Grauers4,5, Hang Zhou6, 
Gang Liu   7, Yan-Hui Fan   8, Taifeng Zhou6, Zhihong Wu9,10,11, Yohei Takahashi1,2,  
Morio Matsumoto2, Japan Scoliosis Clinical Research Group (JSCRG)*, Texas Scottish Rite 
Hospital for Children Clinical Group (TSRHCCG)*, Elisabet Einarsdottir   12,13, Juha Kere   12,13,14, 
Dongsheng Huang15, Guixing Qiu7,10,11, Leilei Xu16, Yong Qiu16, Carol A. Wise3,17, You-Qiang 
Song8, Nan Wu7,10,11, Peiqiang Su6, Paul Gerdhem5,18, Kota Watanabe2 & Shiro Ikegawa1

Adolescent idiopathic scoliosis (AIS) is a common spinal deformity with the prevalence of approximately 
3%. We previously conducted a genome-wide association study (GWAS) using a Japanese cohort and 
identified a novel locus on chromosome 9p22.2. However, a replication study using multi-population 
cohorts has not been conducted. To confirm the association of 9p22.2 locus with AIS in multi-ethnic 
populations, we conducted international meta-analysis using eight cohorts. In total, we analyzed 
8,756 cases and 27,822 controls. The analysis showed a convincing evidence of association between 
rs3904778 and AIS. Seven out of eight cohorts had significant P value, and remaining one cohort also 
had the same trend as the seven. The combined P was 3.28 × 10−18 (odds ratio = 1.19, 95% confidence 
interval = 1.14–1.24). In silico analyses suggested that BNC2 is the AIS susceptibility gene in this locus.

Adolescent idiopathic scoliosis (AIS) is a complex, three-dimensional spinal deformity. AIS occurs in otherwise 
healthy children from the age of 10 to the end of growth1. AIS is a common disease, affecting 2–3% of children, 
predominantly girls1. Its pathogenesis has been unknown; however twin studies and heritability, in which esti-
mated penetrance in at-risk males is approximately 9% and estimated penetrance in at-risk females is approxi-
mately 29%, suggest that genetic components play an important role in the onset of AIS2,3. In fact, genome-wide 
association studies (GWASs) have identified eight loci associated with AIS4–9.
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Confirming the association of previously identified loci in other populations is quite important to identify 
susceptibility genes. For AIS loci, however, sufficient multi-population studies have not been conducted except 
for the LBX1 locus on chromosome 10q24.3110–12. We previously identified that an AIS locus on chromosome 
9p22.2 represented by rs3904778 and reported BNC2 as a candidate susceptibility gene in the locus based on in 
vitro and in vivo functional analyses for its causality6. To confirm the association of the 9p22.2 locus and examine 
its significance in different ethnic populations, we recruited multi-ethnic populations, including Japanese, Han 
Chinese and Caucasian and conducted a meta-analysis of rs3904778. The results showed that the BNC2 locus is 
related to risk of AIS globally.

Results
Association of rs3904778 and AIS susceptibility.  We conducted the meta-analysis of rs3904778 using 
eight cohorts (Table 1). The data used for the analysis are presented in Supplementary Tables 1 and 2. They 
conformed to the Hardy-Weinberg disequilibrium (P > 1 × 10−6) and call rate of >99% as previously described 
quality control criteria9. We evaluated the association in each cohort using the Cochrane-Armitage trend test 
and and logistic regression. We combined the data using the inverse-variance method assuming a fixed-effects 
model. Three cohorts were previously reported4,6, and the other five were recruited for this study that included 
cohorts from Guangzhou, Hong Kong, Beijing, USA, and Scandinavia. For the GWAS cohorts, the possibility of 
population stratification has been evaluated and is unlikely (λs are all < 1.1)4,6,9. In total, 8,756 cases and 27,822 
controls were included in the analysis, which showed a significant association: combined P = 3.28 × 10−18; odds 
ratio (OR) = 1.19; 95% confidence interval (CI) = 1.14–1.24 (Table 1). ORs were >1 in all eight cohorts, with little 
difference between ethnic groups according to the Forrest plot (Fig. 1). The analysis did not show any significant 
heterogeneity (Table 1), suggesting no statistical difference between studies.

Sex-stratified association.  AIS has an ample clinical evidence of sexual dimorphism13. In our previous 
study, we investigated BNC2 expression in a variety of human tissues and found that BNC2 expression is highest 
in uterus, suggesting its sex-related biological function6. Therefore, we performed sex-stratified analyses to deter-
mine whether a genetic difference existed between male and female. We could obtain sex information for both 
cases and controls in five cohorts. We could obtain 6,266 cases and 15,292 controls in the female-only analysis, 
and 485 cases and 10,490 controls in the male-only analysis (Supplementary Tables 1 and 2). In both sexes, we 
could not find genome-wide level significant association (P = 5 × 10−8); particularly in male, the P value did 
not even reach to the nominal association level (P = 5 × 10−2) (Tables 2 and 3). However, the ORs were similar 
between male and female, which were similar to that in the analysis disregarding the sex (Table 1).

Fine mapping.  The landmark SNP rs3904778 is located in intron 3 of BNC2, and BNC2 is the only gene 
contained within the linkage disequilibrium (LD) block (r2 > 0.8) represented by rs3904778. The topologically 
associated domain (TAD) is the partition of the genome that represents a regulatory unit within which enhancers 
and promoters can interact14. To identify the candidate susceptibility gene in the locus, we evaluated the TAD 
around the associated SNPs using H1-mesenchymal stem cell. Hi-C data15 (http://promoter.bx.psu.edu/hi-c/view.
php) revealed that BNC2 was the only gene included in the TAD that contained the LD block of the associated 
SNPs (Fig. 2). The data strongly suggested that BNC2 is the most plausible AIS susceptibility gene at this locus.

Discussion
In the present study, we have performed a meta-analysis for the genetic association of rs3904778 with AIS using 
more than 36,000 subjects from eight independent multi-ethnic cohorts. To date, no large-scale replication study 
for the association of the AIS locus has been conducted. Previously, we demonstrated that rs3904778 had sig-
nificant association with AIS in Japanese and Chinese6; however, no evidence has been reported regarding its 

Population Study

Number of samples RAF

P value Odds ratio (95% CI) PhetCase Control Case Control

Japanese

Japanese 1 2,109 11,140 0.459 0.413 2.10 × 10−7 1.20 (1.12–1.28)

Japanese 2 955 3,551 0.476 0.424 4.46 × 10−5 1.23 (1.12–1.37)

Japanese combined 3,064 14,691 5.08 × 10−11 1.21 (1.15–1.28) 0.68

Chinese

Nanjing 1,268 1,173 0.429 0.384 1.14 × 10−3 1.20 (1.07–1.35)

Guangzhou 659 1,063 0.354 0.340 3.77 × 10−1 1.06 (0.92–1.23)

Hong Kong 193 294 0.380 0.306 1.90 × 10−2 1.39 (1.06–1.83)

Beijing 480 861 0.457 0.397 2.50 × 10−3 1.28 (1.09–1.50)

Chinese combined 2,600 3,391 6.07 × 10−6 1.19 (1.10–1.28) 0.20

East Asian combined 5,664 18,082 5.16 × 10−16 1.20 (1.15–1.26) 0.42

Caucasian

USA 1,360 7,952 0.806 0.780 5.71 × 10−3 1.19 (1.05–1.34)

Scandinavia 1,732 1,788 0.801 0.782 5.44 × 10−2 1.12 (1.00–1.26)

Caucasian combined 3,092 9,740 1.00 × 10−3 1.15 (1.06–1.25) 0.49

All combined 8,756 27,822 3.28 × 10−18 1.19 (1.14–1.24) 0.51

Table 1.  Association of rs3904778 with adolescent idiopathic scoliosis. RAF: risk allele frequency, CI: 
confidence interval.
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association in non-East Asian populations. The present study not only gave solid evidence of association of the 
locus in additional Chinese cohorts, but also revealed that it had significant association in Caucasian, suggesting 
the global significance of this AIS locus. Previous lack of association in Caucasian may be due to lack of power 
because the OR of this locus is about 1.2, suggesting relatively large sample size is optimal for identification.

The most significantly associated SNPs are clustered in intron 3 of BNC2. BNC2 is the only gene contained 
in the LD block of the associated SNPs. TAD containing the LD block only contained BNC2 (Fig. 2). These 
genome data strongly suggest that BNC2 is the AIS susceptibility gene in the locus. rs10738445 in the locus is in 
high LD (r2 = 0.9) with rs3904778. Genevar (Gene Expression Variation) data revealed that the risk allele of the 
functional SNP in this locus, rs10738445, increased BNC2 expression (p = 0.048)6. Our previous in vitro analyses 

Figure 1.  Forest plots for the association of rs3904778 with AIS susceptibility. The odds ratios and 95% 
confidence intervals were estimated based on the fixed-effect model. The contributing effect from each study 
is shown by a square with its confidence interval indicated by a horizontal line. Summary: the combined meta-
analysis estimate.

Population Study

Number of samples RAF

P value Odds ratio (95% CI) PhetCase Control Case Control

Japanese
Japanese 1 2,004 4,757 0.460 0.426 3.75 × 10−5 1.18 (1.09–1.27)

Japanese 2 905 3,135 0.476 0.417 6.30 × 10−6 1.27 (1.15–1.41)

Chinese

Guangzhou 561 594 0.352 0.356 8.40 × 10−1 0.98 (0.83–1.17)

Hong Kong 152 192 0.378 0.315 8.30 × 10−2 1.32 (0.96–1.81)

East Asian combined 3,622 8,678 4.78 × 10−5 1.20 (1.10–1.30) 0.08

Caucasian

USA 1,159 4,826 0.807 0.780 5.50 × 10−3 1.21 (1.06–1.38)

Scandinavia 1,485 1,788 0.800 0.782 7.31 × 10−2 1.12 (0.99–1.26)

Caucasian combined 2,644 6,614 1.50 × 10−4 1.16 (1.06–1.26)

All combined 6,266 15,292 2.93 × 10−7 1.18 (1.11–1.25) 0.16

Table 2.  Association of rs3904778 with adolescent idiopathic scoliosis in female. RAF: risk allele frequency, CI: 
confidence interval.

Population Study

Number of samples RAF

P value Odds ratio (95% CI) PhetCase Control Case Control

Japanese
Japanese 1 105 6,383 0.447 0.405 2.42 × 10−1 1.18 (0.89–1.19)

Japanese 2 50 412 0.480 0.482 9.73 × 10−1 0.99 (0.66–1.50)

Chinese

Guangzhou 98 469 0.367 0.319 1.87 × 10−1 1.24 (0.90–1.71)

Hong Kong 31 102 0.387 0.289 1.45 × 10−1 1.55 (0.86–2.81)

East Asian combined 284 7,366 5.62 × 10−2 1.19 (1.00–1.43) 0.67

Caucasian USA 201 3,124 0.798 0.780 5.96 × 10−1 1.08 (0.81–1.45)

All combined 485 10,490 5.72 × 10−2 1.16 (1.00–1.35) 0.76

Table 3.  Association of rs3904778 with adolescent idiopathic scoliosis in male. RAF: risk allele frequency, CI: 
confidence interval.
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revealed that the risk allele of rs10738445 functioned as an enhancer element and caused increased BNC2 expres-
sion through the increased binding of a transcription factor, YY1 (Ying-Yang 1)6. BNC2 was highly expressed in 
musculoskeletal tissues such as spinal cord, bone and cartilage6. GTEx database also showed similar expression 
pattern; BNC2 expression was the highest in uterus followed by ovary and nerve. We hypothesized that increased 
BNC2 expression in these tissues lead to susceptibility of AIS. Actually, the over-expression of Bnc2 in zebrafish 
caused scoliosis-like deformity6.

To gain insight into the sex difference in AIS susceptibility, we examined sex-stratified association of 
rs3904778. While the association was almost genome-wide significant level in the female-only analysis (6,266 
cases and 15,292 controls), no significant association was obtained in the male-only analysis (485 cases and 10,490 
controls) (Tables 2, 3). This is most probably due to be lack of power in the male analysis; in the analysis, sample 
size was small, especially in the case group, which reflected the female prevalence in all ethnic populations6,7,16. 
It is of note that the ORs were similar in both sex-stratified analysis. Further analysis with a sufficient sample size 
will be necessary for the male AIS study, which would inevitably be an international, mutli-center study.

Methods
Subjects and genotyping.  We obtained informed consent from all subjects and/or their parents. The ethics 
committee of RIKEN approved this study. All experiments were performed in accordance with relevant guidelines 
and regulations. The datasets generated during the current study are available from the corresponding authors on 
reasonable request. AIS subjects were diagnosed through clinical and radiological examinations according to the 
previously described criteria4,6,9. The subjects in the Japanese and Nanjing-Chinese cohorts were recruited and 
genotyped as previously described4,6,9. The detail of beadchip information, quality control and statistical analysis 
were also previously described4,6,9. The details of additional studies (Guangzhou, Hong Kong, Beijing, USA, and 
Scandinavia studies) were described as below.

Guangzhou study.  We recruited AIS subjects from the First Affiliated Hospital and Sun Yat-sen Memorial 
Hospital of Sun Yat-sen University as previously described12. We recruited control subjects from individuals who 
received scoliosis screening at middle and primary schools in Guangzhou and fracture patients selected from 
the First Affiliated Hospital and Sun Yat-sen Memorial Hospital of Sun Yat-sen University. Orthopedic surgeons 
evaluated these subjects with Adam’s forward bending test and scoliometers to screen scoliosis. We extracted 
genomic DNA from blood using DNA Blood Mini-kit (Tiangen Biotech, Beijing, China). The primer extension 
sequencing (SNaPshot) assay (Applied Biosystems, CA, USA) was used for genotyping and the results were ana-
lyzed by GeneMarker software (SoftGenetics LLC, PA, USA) at Beijing Genomics Institute (Shenzhen, China) 
and checked by visual inspection of I.K. and H.D.

Hong Kong study.  We recruited AIS subjects from the Duchess of Kent Children’s Hospital in Hong Kong with 
previously described inclusion criteria11. We randomly selected control subjects from the subjects recruited for 
the Genetic Study of Degenerative Disc Disease project17. We confirmed control subjects did not have scoliosis by 
MRI examination of the spine. We extracted genomic DNA from peripheral blood lymphocytes using standard 
procedures. We used the PCR-based invader assay (Third Wave Technologies, WI, USA) for genotyping.

Beijing Study.  We recruited AIS subjects from Peking Union Medical College Hospital. All subjects under-
went clinical and radiologic examination and expert spinal surgeons evaluated scoliosis. We extracted genomic 
DNA from peripheral blood using QIAamp DNA Blood Mini Kit (Qiagen, Hilden, Germany). We used the 
MassARRAY system (Agena Bioscience, San Diego, CA, USA) for genotyping.

Figure 2.  Topologically associated domain around the AIS associated region on chromosome 9p22.2. The Hi-C 
interaction in H1-mesenchymal stem cell generated by using Interactive Hi-C Data Browser. Only BNC2 lies 
within the topologically associated domain (black triangle) that contains the linkage disequilibrium (LD) block 
of the AIS associated SNPs (bold line). The LD block is contained in BNC2.
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USA study.  We recruited AIS subjects at Texas Scottish Rite Hospital for Children as previously described7 and 
used the Illumina HumanCoreExome Beadchip array for genotyping. For controls, we utilized a single dataset 
of individuals downloaded from the dbGaP web site (http://www.ncbi.nlm.nih.gov/sites/entrez?db = gap) from 
Geisinger Health System-MyCode, eMERGE III Exome Chip Study under phs000957.v1.p1 (https://www.ncbi.
nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id = phs000957.v1.p1). The dbGaP controls were previously 
genotyped on the same microarray platform used for cases. Only subjects of self-reported Non-Hispanic White 
were included in the present study. Phenotypes of all controls were reviewed to exclude subjects having musculo-
skeletal or neurological disorders. We applied initial per sample quality control measures and excluded sex incon-
sistencies and any with missing genotype rate per person more than 0.03. Remaining samples were merged using 
the default mode in PLINK.1.9 (ref.15). Duplicated or related individuals were removed as previously described18. 
We used principal component analysis (PCA)19 on the merged data projected onto HapMap3 samples to cor-
rect possible stratification20. After quality controls, 9,312 subjects (1,360 AIS patients and 7,952 controls) were 
included for the current study. We applied initial per-SNPs quality control measures using PLINK including gen-
otyping call-rate per marker (>95%), minor allele frequency (>0.01) and deviation from Hardy-Weinberg equi-
librium (cutoff p-value = 10−4). We imputed genotypes for the region around rs3904778 using minimac321 with 
the 1000G-Phase3.V.5 reference panel accoding to the instructions of the software (http://genome.sph.umich.
edu/wiki/Minimac3_Imputation_Cookbook).

Scandinavia study.  We recruited AIS subjects from six hospitals in Sweden and one in Denmark as with pre-
viously described inclusion criteria22–25. We recruited control subjects from the Osteoporosis Prospective Risk 
Assessment cohort and PEAK-25 cohort26,27. Dual-energy X-ray absorptiometry (DXA) scan was performed in 
both cohorts and subjects with any sign of scoliosis on DXA were excluded. We extracted genomic DNA from 
blood or saliva using the QIAamp 96 DNA Blood Kit and Autopure LS system (Qiagen, Hilden, Germany). We 
used iPLEX Gold chemistry and MassARRAY system (Agena Bioscience, CA, USA) for genotyping. Two persons 
checked genotype calls using the MassARRAY Typer v4.0 Software (Agena Bioscience).

Statistical analysis.  The association between rs3904778 and AIS in each study was evaluated by the 
Cochrane-Armitage trend test aside from the Japanese 1 and USA studies since rs3904778 was an imputated SNP 
in the two studies. The Japanese 1 study was analyzed as previously described6. For the USA study, Mach2dat soft-
ware28 was used to test the imputed allele dosages of rs3904778 by logistic regression with gender and principal 
components as covariates. Data from the eight studies were combined using the inverse-variance method assum-
ing a fixed-effects model in the METAL software package (http://csg.sph.umich.edu//abecasis/Metal/)29. The het-
erogeneity among studies was tested using Cochran’s Q test based upon inverse variance weights using METAL.
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