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Abstract
1.	 Spatial	prioritization,	based	on	the	biogeographical	identification	of	priority	areas	
for	conservation	actions,	is	an	important	aspect	of	conservation	planning.	Although	
the influence of factors such as costs, threats or use of surrogates on the resulting 
priorities	has	been	studied	extensively,	relatively	little	is	known	about	how	the	spa-
tial	characteristics	of	species	distributions	drive	the	spatial	pattern	of	priorities	in	
multi-species	conservation	plans.

2.	 Using	datasets	from	Australia	and	Finland,	we	explore	how	excluding	or	including	a	
given	species	changes	spatial	priorities	in	a	multi-species	prioritization.	We	develop	
three	metrics	to	quantify	changes	in	priorities,	and	explore	how	these	changes	de-
pend	on	the	total	number	of	species	used	in	the	prioritization,	the	spatial	character-
istics	of	the	given	species	distribution,	and	how	species	share	their	space	with	other	
species	used	in	the	prioritization.	We	randomly	selected	12	set	of	10	species	from	
each	dataset,	and	explore	the	influence	of	each	of	these	species	in	prioritizations	
done	for	a	total	of	10,	20,	50	or	100	species.

3.	 We	show	that	spatial	priorities	become	increasingly	stable	as	the	number	of	species	
is	increased,	and	that	the	stability	of	highest	and	lowest	priority	areas	behave	dif-
ferently.	When	 less	than	50	species	were	used	 in	a	prioritization,	 intermediately	
rare	species	 that	occupy	mostly	species-poor	habitats	 tend	to	have	the	greatest	
influence	on	priorities,	whereas	very	rare	and	common	species	that	co-occur	with	
many	other	species	tend	to	have	a	small	influence.

4.	 Our	results	present	a	systematic	method	to	explore	the	stability	of	spatial	priorities	
to	changes	in	the	species	pool	used	for	a	conservation	plan.	Although	the	analysed	
two	datasets	differed	 in	data	type,	 location,	scale	and	species	composition,	 they	
both	showed	how	using	a	small	number	of	species	leads	to	unstable	spatial	solu-
tions,	where	the	choice	to	include	or	exclude	an	individual	species	can	strongly	in-
fluence	 the	 conservation	 outcome.	 Our	 results	 also	 show	 that	 conservation	
planners	 should	 carefully	 assess	 the	 use	 of	 spatial	 prioritizations	 for	 identifying	
least	important	areas	(e.g.	for	development)	as	these	can	be	particularly	unstable	
when	the	prioritization	is	based	on	a	small	number	of	species.
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1  | INTRODUCTION

The	aim	of	conservation	is	to	preserve	all	biodiversity	as	efficiently	as	
possible,	given	limited	resources.	Part	of	this	challenge	requires	deter-
mining	where	and	when	to	apply	different	types	of	conservation	inter-
ventions	in	the	land-		or	seascape.	Recent	decades	have	seen	a	rapid	
development	 in	 a	 range	 of	methods	 to	 support	 decision-	making	 on	
efficiently allocating conservation interventions, loosely formulated 
under	the	framework	referred	to	as	“systematic	conservation	planning”	
(Kukkala	&	Moilanen,	2013;	Margules	&	Pressey,	2000).	Initially	prior-
itizing	areas	for	protection	based	only	on	data	capturing	biodiversity	
features	(Kirkpatrick,	1983),	these	methods	were	further	developed	to	
incorporate,	costs	(Bode	et	al.,	2008),	threats	(Wilson,	Cabeza,	&	Klein,	
2009),	 socio-	political	 factors	 (Knight,	 Cowling,	Difford,	&	Campbell,	
2010;	Whitehead	et	al.,	2014),	and	most	recently	a	broader	range	of	
conservation	actions	such	as	restoration	or	mitigating	threats	(Watts	
et al., 2009).

A	fundamental	step	in	this	framework	is	the	biogeographical	iden-
tification	of	 areas	 important	 for	 conservation,	 commonly	 referred	as	
“spatial	prioritization”	(Kukkala	&	Moilanen,	2013).	The	utility	of	spa-
tial	prioritization	is	in	balancing	or	trading-	off	the	multiple	factors	that	
determine	 the	 importance	of	an	area	 for	conservation	 interventions.	
These	include	ecological	factors	(such	as	habitat	or	species	distribution	
maps,	 or	 habitat	 condition),	 ecological	 processes	 (e.g.	 connectivity),	
and	socio-	political	factors	(costs,	threats,	existing	reserves	or	adminis-
trative boundaries). Related to these are factors aggregated across sets 
of	 features	such	as	species	 richness	and	rarity,	and	the	complemen-
tarity	or	irreplaceability	of	given	locations	(Margules	&	Pressey,	2000).

In	reality,	all	biodiversity	features	are	rarely	thought	to	be	equally	
important	and	the	choice	of	which	to	include	in	a	prioritization	is	of	
critical significance, as these decisions may change areas identified as 
important	by	the	analysis.	 In	many	cases,	data	 limitations	determine	
which features can even be considered for inclusion, and often data 
on	species	of	conservation	concern	comprise	 the	only	 features	 that	
are	used	(or	surrogate	species	when	data	are	lacking)	(Arponen,	2012;	
Margules	&	Pressey,	2000).	 It	 is	 also	common	 to	give	 some	species	
or	 features	 more	 importance	 in	 the	 prioritization	 by	 giving	 them	 a	
higher weight or conservation target, according to characteristics such 
as threat category, endemism, evolutionary uniqueness or economic 
value. Decisions about how to weight some features relative to others 
are	by	their	nature	subjective	(De	Grammont	&	Cuarón,	2006;	Miller	
et	al.,	 2006),	 and	 the	 consequences	 of	 applying	 different	weighting	
schemes	are	often	poorly	explored	 (Arponen,	Heikkinen,	Thomas,	&	
Moilanen,	2005).	Concerns	have	 also	been	 raised	 about	 the	 lack	of	
justification	behind	arbitrarily	set	species	weights	and/or	targets	and	
their influence on the effectiveness of conservation outcomes (Di 
Minin	&	Moilanen,	2012;	Marsh	et	al.,	2007;	Possingham	et	al.,	2002).

Another	poorly	explored	aspect	of	spatial	prioritization	is	how	the	
spatial	 characteristics	 of	 an	 individual	 species	 distribution,	 and	 the	
spatial	correlations	between	species	distributions,	influence	the	allo-
cation	of	conservation	actions	in	space.	When	balancing	conservation	
options	 across	multiple	 species	 and	 locations,	 these	 spatial	 charac-
teristics,	 including	 the	rarity	of	 individual	species	and	nestedness	of	
species	distributions	 (Wright	&	Reeves,	1992)	will	 influence	prioriti-
zation	outcomes,	with	different	 species	having	differing	amounts	of	
influence	 in	 the	 spatial	 prioritization	outcome.	 It	 is	 likely	 that	 these	
factors	will	also	interact	with	the	total	number	of	species	used	in	the	
analysis,	given	that	the	characteristics	of	any	individual	species	distri-
bution	may	influence	the	prioritization	differently	as	trade-	offs	need	
to	be	settled	between	a	greater	number	of	 species.	However,	 there	
has	been	little	work	to	explore	this	in	a	systematic	way.

Here,	we	quantify	the	relative	impact	of	individual	species	on	the	
stability	of	a	spatial	prioritization,	and	how	this	interacts	with	the	spa-
tial	 relationships	 between	 the	 species	 involved	 in	 the	 prioritization.	
Although	conservation	practitioners	often	need	to	compare	solutions	
that	differ	by	multiple	species,	mapping	the	impact	of	a	single	species	
is	the	key	for	understanding	the	link	between	species	attributes	and	
the	extent	to	which	they	influence	spatial	priorities.	This,	in	turn,	can	
be used to reveal information about: (1) how the influence of an indi-
vidual	species	changes	with	the	number	of	species	used	in	the	prior-
itization;	(2)	the	stability	of	a	prioritization	result	and	how	this	might	
change	with	 additional	 species,	 and;	 (3)	 the	 impact	on	prioritization	
results	of	giving	some	species	additional	weight	in	the	analysis.	We	ex-
plore	these	issues	using	datasets	from	Australia	and	Finland	and	draw	
a	number	of	conclusions,	with	potential	implications	for	real-	life	con-
servation	problems	and	making	spatial	prioritization	more	transparent.

2  | MATERIALS AND METHODS

2.1 | Data

We	used	two	independent	datasets:	(1)	a	multi-	taxa	group	of	modelled	
species	 distributions	 in	 the	 region	 of	Greater	Hunter	 on	 east	 coast	
Australia,	and	(2)	a	single-	taxon	atlas	data	on	observed	occurrences	of	
birds	at	the	national	scale	in	Finland,	Europe.	The	two	datasets	differ	
in	their	geographical	extent,	data	type	and	spatial	resolution	(Figure	1).

The	Greater	Hunter	 (GH)	 data	 includes	modelled	 distributions	 at	
1-	ha	resolution	for	504	threatened	species	(35	amphibians,	258	birds,	
58	mammals,	106	plants	and	47	reptiles).	The	models	have	been	built	
using	 MaxEnt	 (Phillips	 &	 Dudík,	 2008)	 and	 presence-	only	 point	 oc-
currences	 obtained	 from	 online	 public	 databases	 for	 species	 with	 a	
minimum	of	20	occurrence	records	within	the	region.	The	species	distri-
bution	modelling	is	described	in	Kujala,	Whitehead,	Morris,	and	Wintle	
(2015).	 Here,	 we	 used	 the	 MaxEnt	 logistic	 outputs	 of	 the	 species	
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distribution	models,	which	scale	between	0	and	1.	Each	species	distri-
bution	map	constitutes	of	approximately	6.7	million	pixels	with	data.

The second dataset is the combined first and second atlas of 
breeding	birds	of	Finland	(FIN).	It	comprises	breeding	observations	for	
248	bird	species,	as	recorded	during	surveys	in	the	1970s	and	1980s	
(Hyytiä,	Kellomäki,	&	Koistinen,	1983;	Väisänen,	Lammi,	&	Koskimies,	
1998),	and	is	publicly	available	under	Creative	Commons	Attribute	3.0	
licence	 (http://atlas3.lintuatlas.fi/background/copyrights).	 The	 data	
have	a	uniform	grid	of	100	km2	cells,	with	each	species	distribution	
map	containing	3,813	data	pixels.	These	data	therefore	have	a	larger	
geographical	extent,	but	notably	lower	resolution,	and	is	of	a	different	
data	type	than	the	Greater	Hunter	data.	The	atlas	provides	a	breeding	
index	value	for	each	species	in	each	atlas	cell,	ranging	from	0	=	“not	
observed”	 to	 4	=	“confirmed	 breeding.”	 Following	 recommendations	
from	data	coordinators	(Väisänen,	pers.	comm.),	we	rescaled	the	raw	
data	 to	 values	 between	 0	 and	 1,	 so	 that	 cells	with	 4	=	“confirmed	
breeding”	were	given	the	value	of	1,	cells	with	3	=	“likely”	or	2	=	“pos-
sible”	breeding	the	values	of	0.67	and	0.33,	respectively,	and	cells	with	
1	=	“unlikely”	and	0	=	“not	observed”	combined	and	given	a	value	of	0.

2.1.1 | Data resampling

To	 test	how	 the	 spatial	 characteristics	of	 species	distributions	 affect	
prioritization	patterns	and	how	this	might	depend	on	the	total	number	
of	target	species,	we	created	several	species	sets,	m,	of	varying	sizes.	
From	both	datasets,	we	first	randomly	selected	12	sets	of	10	species	
with	replacement.	Each	10-	species	set	was	then	increased	to	comprise	
a	 total	 of	20,	50	and	100	 species,	 by	 adding	new	species	 that	were	
randomly	selected	from	the	remaining	respective	species	datasets.	We	
therefore	ended	up	with	96	species	sets	m,	constituting	of	24	replicates	
(12	for	each	dataset)	of	four	nested	groups	of	species	(10,	20,	50,	and	
100	species),	where	each	smaller	group	was	a	subset	of	a	larger	group.

2.2 | Methods

2.2.1 | Spatial prioritization analyses

For	 spatial	prioritizations,	we	used	a	maximum-	utility	 type	algorithm	
(Camm,	Polasky,	Solow,	&	Csuti,	1996),	which	is	one	of	the	most	com-
monly	used	spatial	prioritization	algorithm	types	(Kukkala	&	Moilanen,	
2013).	These	algorithms	aim	to	maximize	the	representation	value	of	all	
included	species	within	an	area	or	budgetary	constraint.	Here	we	used	
an	heuristic,	non-	target-	based,	maximum-	utility	type	algorithm	in	the	
widely	used	conservation	prioritization	software,	Zonation (Moilanen 
et	al.,	2012).	It	is	a	backward	algorithm	that	starts	by	assuming	that	the	
entire	study	area	is	protected	and	then	proceeds	to	iteratively	rank	and	
remove all sites (grid cells), always removing the site with the lowest 
conservation value. After each iteration, the distribution remaining for 
each feature is recalculated, and the conservation values of remaining 
grid	cells	updated.	Zonation includes several alternatives for aggregat-
ing	conservation	value	across	features.	Here	we	used	a	method	called	
‘Core Area Zonation’, in which the conservation value δ,	across	all	spe-
cies, is recalculated for each site i	at	each	removal	step	as:

where pij	is	the	value	of	species	j in cell i, and 
∑

s∈S

psj is the sum of values 
of	species	 j in cells s included in the remaining set of cells S at each 
removal	step.	The	removal	order	creates	a	hierarchical	ranking	of	grid	
cells,	where	increasing	rank	values	from	0	to	1	indicate	increasing	prior-
ity	for	conservation.	The	maximum	structure	of	the	function	increases	
the	likelihood	that	the	highest	value	cells	for	all	species	are	maintained	
in	the	solution	as	long	as	possible,	and	the	proportional	structure	means	
that	the	rarer	a	species	becomes	during	the	cell	removal	process,	the	
more difficult it is to remove any of its remaining values.

(1)δi = max j

pij
∑

s∈S psj
,

F IGURE  1 The	two	study	regions	and	examples	of	the	data	used.	(a)	The	Greater	Hunter	region	and	the	modelled	distribution	of	Dasyurus 
maculatus.	(b)	An	example	of	breeding	distribution	of	Anas acuta	in	Finnish	atlas	data

http://atlas3.lintuatlas.fi/background/copyrights
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We	 used	 Jackknife	 resampling	 to	 analyse	 how	 the	 spatial	 char-
acteristics	of	 individual	species	drive	the	spatial	priorities	 in	a	multi-	
species	analysis	and	the	potential	trade-	offs	in	conservation	outcomes	
between	 species.	 For	 each	 of	 the	 96	 species	 sets	m, we first ran a 
full	prioritization,	 including	all	species	in	the	set.	We	then	iteratively	
dropped	out	one	of	the	original	10	species	at	a	time,	re-	ran	the	prioriti-
zation	with	the	remaining	species	and	compared	the	results	to	the	full	
prioritization.	This	resulted	in	total	of	960	spatial	prioritizations	across	
the	 two	 datasets	 (96	 species	 sets	×	10	 runs	 missing	 one	 species),	
which	could	each	be	used	to	measure	the	impact	of	dropping	out	one	
species	 and	how	 this	varies	with	 the	 characteristics	of	 the	dropped	
species.	Within	each	of	the	24	replicates	(12	from	both	datasets),	we	
also	measured	the	differences	between	the	full	runs	(produced	using	
10,	20,	50	or	100	species),	to	understand	how	the	influence	of	a	single	
species	compares	to	adding	multiple	species	in	the	prioritization.

2.2.2 | Measuring impact

We	used	three	metrics	to	measure	the	 impact	of	 leaving	out	 (or	 in-
cluding)	 any	 single	 species	 j	 from	 a	 spatial	 prioritization	 (Figure	2).	
First,	we	calculated	the	summed absolute difference	in	the	priority	rank-
ing of all grid cells, given by

where S is the total number of grid cells, prin
i
	is	the	priority	ranking	of	

cell i	with	all	species	included	and	prin−ji 	is	the	ranking	of	cell	i	with	spe-
cies j	removed	from	the	prioritization.	The	denominator	is	a	normal-
izing	factor	and	represents	the	maximum	possible	average	difference	
in	ranks,	which	results	when	two	priority	rankings	are	the	exact	mirror	

images	of	 each	other.	Hence	 the	 final	 values	 are	 scaled	between	0	
and	1,	where	0	means	that	the	results	are	identical	(species	j	makes	no	
change	to	the	spatial	priorities)	and	1	means	they	are	mirror	images.

Second,	as	conservation	planning	typically	focuses	only	on	a	propor-
tion	of	the	entire	study	area,	typically	the	highest	priority	locations,	we	
explored	how	the	inclusion	or	exclusion	of	a	single	species	j might change 
the	geographical	distribution	of	the	top-	ranked	grid	cells.	For	each	solu-
tion,	we	identified	the	top	areal	proportions,	ranging	from	the	top	1%	
ranked	cells	to	the	top	50%	ranked	cells	in	5%	increments,	and	recorded	
the	spatial	overlap	between	solutions	that	include	or	exclude	species	 j 
(Figure	2).	We	also	repeated	this	for	the	bottom	1%–50%	ranked	cells,	as	
spatial	prioritizations	are	increasingly	used	to	identify	not	only	the	most	
important	conservation	areas,	but	also	the	least	important	areas,	for	ex-
ample	to	guide	regional	development	(e.g.	Gordon,	Simondson,	White,	
Moilanen,	&	Bekessy,	 2009;	Whitehead,	 Kujala,	 &	Wintle,	 2017).	We	
refer to this metric as overlap of top and bottom priority areas.

Finally,	 we	 measured	 how	 the	 inclusion/exclusion	 of	 species	 j 
changes	the	conservation	outcome	for	other	included	species.	As	multi-	
species	 prioritizations	 necessarily	 involve	 trade-	offs	 between	 species	
that	 have	 different	 geographical	 distributions,	 removing	 one	 species	
can,	in	theory,	relax	some	of	these	trade-	offs	and	increase	the	represen-
tation	of	the	remaining	species	under	constant	areal	constraints.	Hence,	
for	all	other	species	k	in	a	species	set,	we	measured	the	change in area 
under the curve (AUC) between the two solutions, where the AUC gives 
the	proportion	of	the	distribution	captured	for	species	k as a function of 
proportion	of	study	area	protected	per	the	cells	rankings	(Figure	2).	By	
averaging	the	AUC	values	across	all	other	species	k, we can quantify the 
average	change	in	conservation	outcomes	for	all	other	species	k in the 
species	set,	when	species	j	is	included/excluded	from	the	prioritization,	
irrespective	of	the	area	of	the	top	priorities	that	is	being	investigated.

2.2.3 | Species characteristics

We	 examined	 four	 spatial	 characteristics	 of	 the	 included/excluded	
species	 j	 and	 compared	 these	 to	 their	 impact	 on	 the	 prioritization	
(Table 1). Relative regional coverage was calculated as the distribution 
size	(sum	of	cell	values	within	distribution)	divided	by	the	number	of	
grid	cells	in	the	study	region.	We	also	explored	how	each	species	j	co-	
occurs	with	all	other	species	k	in	each	species	set	m, by estimating the 
average relative species richness within distribution	of	species	j and the 
mean Jaccard similarity	index	(calculated	using	the	R	package	“Picante”	
v.1.6.-	2,	Kembel	et	al.,	2010)	between	species	j	and	species	k (Table 1). 
Finally,	 we	 calculated	 the	 Spearman	 rank	 correlation coefficient be-
tween	the	spatial	distribution	of	species	j	and	the	priority	ranks	of	the	
solution	without	species	j	(Table	1).	Species	with	high	a	correlation	are	
assumed	to	have	a	lesser	impact	than	those	with	low	or	negative	corre-
lation,	though	this	relationship	is	not	well	understood	in	multi-	species	
optimizations.	We	note	that	by	comparing	the	correlation	coefficient	
to	the	observed	changes	in	priorities,	which	both	share	data	elements	
(species	j),	we	aim	to	explore	how	this	assumed	relationship	plays	out	
in	real	data,	rather	than	to	draw	formal	statistical	inferences.	We	also	
acknowledge	that	the	relative	likelihood	values	produced	by	presence-	
background	models	such	as	MaxEnt	do	not	correctly	indicate	species	

∑S

i=1
�prin

i
−pri

n−j
i �

0.5×S
.

F IGURE  2  Illustration	of	how	impact	measures	are	derived.	For	
each	measure	(rows)	the	first	two	panels	(columns)	give	example	
results	when	species	j	is	excluded	from	or	included	in,	respectively,	to	
the	prioritization.	The	third	panel	shows	how	the	information	is	used	
to calculate the differences between the two results
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prevalence	nor	are	they	comparable	between	species	(Guillera-	Arroita	
et	al.,	2015).	However,	for	this	study	we	assumed	that	they	provide	a	
reasonable	representation	of	the	biodiversity	patterns	in	the	Greater	
Hunter	and	treat	them	as	if	they	were	probabilities	of	occurrence.

3  | RESULTS

3.1 | Species spatial characteristics

All	species	in	both	datasets	occupied	the	landscape	partially,	with	only	
a	 few	 species	 occupying	 >50%	 of	 their	 study	 area	 (Supplementary	
Information,	 Figure	 S1).	 The	 spatially	 most	 common	 species	 in	 the	
Finnish	data	tended	to	occupy	larger	proportional	areas	(up	to	c.	90%	
of	the	area)	than	those	in	the	Greater	Hunter	data	(up	to	c.	45%),	where	
species	seemed	to	have	slightly	higher	average	similarity	across	distri-
butions	 (max.	 Jaccard	 index:	GH	=	0.4;	 FIN	=	0.3).	Despite	 comprising	
different	types	of	data,	the	relationships	between	the	spatial	character-
istic	of	 species	showed	very	similar	patterns	across	 the	 two	datasets:	
The	Jaccard	similarity	 index	of	a	 species	 increased	exponentially	with	
increasing	 regional	 coverage.	 The	 within	 distribution	 average	 species	
richness	showed	a	nonlinear	relationship	with	the	other	metrics,	both	
regional	coverage	and	mean	Jaccard	index	peaking	at	intermediate	lev-
els	of	richness.	Hence,	in	both	datasets,	the	rarest,	and	most	dissimilar	

species	 dominated	 both	 the	most	 species-	rich	 and	 species-	poor	 sites	
(Figure	S1).

3.2 | Influence of species in the spatial 
allocation of priorities

3.2.1 | Absolute difference in ranks

The	 impact	 of	 excluding/including	 a	 single	 species	 from/in	 a	 spatial	
prioritization	 depended	 on	 both	 the	 characteristics	 of	 the	 included/
excluded	species	and	the	total	number	of	species	 included	 in	 the	pri-
oritization.	As	the	number	of	species	included	to	the	prioritization	was	
increased,	 the	 solutions	 across	 species	 sets	 became	 visibly	 similar	 in	
both	datasets	(Figure	3).	Increasing	the	species	pool	also	effectively	de-
creased	the	change	incurred	by	any	single	species	(Figures	4,	S2a,b	and	
S4).	When	prioritization	was	done	for	10	species,	the	change	in	priority	
rankings	incurred	by	any	single	species	varied	between	<1%–26%	in	the	
Greater	Hunter	and	1.2%–34%	in	the	Finnish	dataset	(Figure	S2a,b).	As	
the	species	pool	was	increased	to	20,	50	and	100	species,	the	maximum	
observed	 change	 in	 priority	 ranks	 dropped	 to	 19.5%,	 11.5%,	 7.2%	 in	
Greater	Hunter	and	21.4%,	9.7%,	7.5%	in	Finland,	respectively	(Figures	4	
and	S2a,b),	with	the	average	changes	being	clearly	lower.	Indeed,	com-
parisons	between	full	prioritizations	within	a	set	m confirmed that the 
greater	the	relative	change	in	the	number	of	included/excluded	species,	

TABLE  1 List	of	variables	measured	to	characterize	species	distributions

Variable Equation Description

Regional coverage S
∑

i=1

pij∕S

pij	=	value	of	species	j in cell i
S =	number	of	data	cells	i

Proportion	of	study	area	covered	by	species	
distribution,	reflecting	spatial	rarity	or	
commonality	of	species.	Scaling	against	total	
number	of	data	cells	makes	the	values	
comparable	between	the	two	study	regions

Within	distribution	 
richness

pij
∑

k rik
∑

i pij

�

nm 

rik	=	value	of	species	k in cell i 
nm	=	total	number	of	species	in	a	species	set	m 
k	≠	j

Average	species	richness	within	species	j’s 
distribution,	weighted	by	species	j’s values in 
each grid cell i and scaled against total number 
of	species	in	each	species	set	m.	Indicates	
whether	species	occupies	species-	rich	or	
species-	poor	areas	within	the	study	region.	
Scaling	against	total	number	of	species	in	a	set	
makes	the	values	comparable	between	sets	
and study regions

Mean	Jaccard	similarity
∑

k

�

1−
2djk

1+djk

�

�

nm−1
 

 
where 

djk =
∑

i�pij−rik�
∑

i pij+
∑

i rik

Index	describing	how	species	co-	occur	with	
other	species	in	a	species	set	m. Varies 
between	0	and	1,	with	0	indicating	a	complete	
absence	of	[spatial]	relationship	between	
species,	and	1	indicating	identical	distribu-
tions.	The	index	is	calculated	for	each	species	
pair	j and k	in	a	species	set	m, and then 
averaged	across	species	k

Spatial	correlation	with	priority	
(Spearman’s	ρ)

cov(rgj ,prin−j)
σrgj

σprin−j
  

rgj	=	rank	converted	values	of	species	j 
prin−j	=	priority	ranks	in	a	solution	without	species	j
cov(rgj,prin−j)	=	covariance	of	rgj and prin−j
σrgj, σprin−j	=	standard	deviations	of	rgj and prin−j

Spatial	correlation	between	species	j and the 
spatial	prioritization	produced	without	species	
j. Measures how well the distribution of 
species	j	is	already	covered	by	a	priority	
solution	produced	without	it
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the	larger	the	change	in	priorities,	however,	the	impact	does	not	increase	
linearly	with	increasing	number	of	new	species	(Figure	S2c,d).

Two	of	the	tested	species	characteristics,	the	average	species	rich-
ness	within	distribution	and	the	Spearman	correlation	between	the	dis-
tribution	of	species	j	and	a	prioritization	done	without	species	j, had a 
negative	linear	or	exponential	relationships	with	the	observed	changes	
in	 priority	 ranks	 (Figure	4).	 Hence,	 species	 which	 tended	 to	 occupy	
species-	poor	 locations	 and	which	had	distinct	or	 even	opposing	dis-
tribution	patterns	from	a	priority	solution	done	without	them,	caused	
largest	changes	in	the	priority	ranking	when	included	to	the	analyses.

Regional	 coverage	 and	 the	 average	 similarity	with	 other	 species	
distributions	(as	measured	by	Jaccard	index)	showed	similar	patterns,	
where	impact	on	priority	rankings	peaked	at	intermediately	low	cov-
erage	and/or	similarity	(Figure	4).	Hence,	both	the	rarest	and/or	most	
dissimilar	species,	as	well	as	the	most	common	and/or	similar	species	
tended	to	have	less	of	an	impact	on	priority	patterns	when	included	
to	the	species	pool.	In	the	case	of	the	Finnish	birds,	the	impact	on	pri-
orities	did	tend	to	increase	again	at	very	high	levels	(>70%)	of	regional	
coverage,	although	this	pattern	emerged	only	when	prioritization	was	
based	on	a	small	number	of	species	(n	=	10).	Interestingly,	species	with	

F IGURE  3 Examples	of	spatial	prioritization	results	for	two	species	sets	from	the	two	datasets:	Finland	(upper	two	rows)	and	Greater	Hunter	
(lower	two	rows).	For	each	set,	the	prioritization	was	initially	done	with	just	10	species	(first	column)	after	which	the	species	pool	is	increased	to	
20,	50	and	100	(remaining	columns),	respectively,	by	adding	new	species	from	the	remaining	dataset
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greatest	 impact	changed	together	with	 increasing	species	pool,	with	
the	peak	impact	shifting	towards	rarer	and	more	dissimilar	species	as	
species	 number	was	 increased.	We	 note	 that	whereas	 the	 regional	
coverage	of	 species	 j	 is	 constant	 through	different	 species	 sets,	 the	
Jaccard	 index	of	species	 j	depends	on	the	other	species	 in	the	pool,	
and	thus	changes	as	the	species	pool	is	changed.

All	four	characteristics	showed	considerable	variation	across	spe-
cies,	suggesting	that	species	influence	is	likely	driven	by	the	interaction	
of	several	attributes.	For	example	species	with	very	similar	correlation	
with	existing	priorities	still	had	very	different	impact	when	included	in/
excluded	from	an	analysis.

3.2.2 | Spatial overlap of top and bottom 
priority areas

The	overlap	of	top	and	bottom	ranked	priority	areas	varied	depend-
ing	on	the	species	characteristics,	the	species	pool	size	and	the	size	
of	the	top/bottom	proportion	considered	(Figure	5).	In	general,	the	
smallest	top/bottom	proportions,	that	is,	the	very	highest	and	low-
est	priority	areas,	tended	to	have	the	lowest	overlap	between	solu-
tions	where	species	 j	 is	either	 included	or	excluded.	As	the	size	of	
the	top/bottom	proportion	was	increased,	the	two	solutions	became	
increasingly	 similar:	 average	 overlap	 for	 the	 top	 and	 bottom	 50%	
fractions	was	95.1%,	 respectively,	across	 the	 two	study	areas	and	
10-	species	sets,	and	99.4%	for	100-	species	sets.	When	the	prioriti-
zation	was	done	only	for	a	small	number	of	species,	the	very	lowest	

priority	areas	(e.g.	bottom	1%)	had	notably	lower	overlap	between	
the	two	solutions	than	did	the	very	highest	priority	areas	(top	1%).	
This	pattern	tended	to	reverse	as	the	number	of	species	increased	
to	50	or	100	species,	although	in	the	Greater	Hunter	dataset	some	
individual	species	still	affected	the	distribution	of	the	lowest	ranking	
cells much more than the distribution of the equivalently highest 
ranking	cells.	The	overlap	of	 the	highest	and	 lowest	priority	areas	
was	 also	 lower	 in	 the	 Finnish	 dataset	 than	 in	 the	Greater	Hunter	
dataset,	 likely	driven	at	 least	partly	by	 the	 smaller	number	of	grid	
cells	in	the	Finnish	data.

When	a	species	j	was	either	included	or	excluded,	the	overlap	of	
the	top	and	bottom	priority	areas	changed	to	a	similar	degree	as	ob-
served	with	all	cell	ranks	(Figure	S5):	the	overlap	between	the	two	solu-
tions	tended	to	be	smaller	for	those	species	for	which	large	changes	
across	all	cell	ranks	were	observed,	and	vice versa, although towards 
the	most	 top	 and	bottom	proportions	 (<5%	of	 the	 study	 areas)	 the	
correlation	became	weaker	or	disappeared,	particularly	in	the	coarser	
grained	Finnish	data.

3.3 | Influence of a single species on the 
conservation outcomes for all other species

On	 average,	 the	 inclusion/exclusion	 of	 any	 single	 species	 j tended 
to	have	a	 relatively	 small	 impact	 to	 the	potential	 conservation	out-
comes	for	the	remaining	species,	particularly	when	prioritizing	areas	
for	many	species	(Figure	S6).	In	the	majority	of	the	cases,	including	a	

F IGURE  4 Changes	in	the	influence	of	an	individual	species	on	priority	ranks	as	the	total	species	pool	is	increased,	shown	for	120	species	
(12	×	10-	species	sets),	as	part	of	different	sized	collections	of	species	(green	=	10,	blue	=	20,	red	=	100	species).	The	Y-	axis	gives	the	absolute	
difference	in	the	priority	ranks	across	all	grid	cells	when	species	j	is	excluded,	plotted	against	the	characteristics	of	the	excluded	species.	Lines	
give	the	locally	weighted	smoothing	(LOESS)	with	approximated	95%	confidence	intervals	across	all	12	sets	and	for	each	species	pool	size.	For	
clarity,	the	group	size	of	50	species	has	been	omitted,	for	results	with	this	group	size	see	Figure	S3.	Data	is	shown	for	both	Greater	Hunter	(GH)	
and	Finland	(FIN)
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new	species	j	to	the	prioritization	did	reduce	the	proportion	of	distri-
bution	protected	for	other	species	k, but the average reduction was 
small	and	decreased	in	both	datasets	with	increasing	species	pool	size:	
the	average	reduction	for	groups	of	10,	20,	50	and	100	species	was	
0.4%,	0.12%,	0.03%	and	0.007%	less	for	species	k distributions cov-
ered	at	any	level	of	protection	in	the	Greater	Hunter	data,	and	0.5%,	
0.23%,	0.06%	and	0.015%	in	the	Finnish	data	respectively.	However,	
the	 level	 of	 impact	 varied	 greatly,	 not	only	 across	 the	 included/ex-
cluded	species	j,	but	also	across	the	impacted	species	k, and the level 
of	protection	considered.	Figure	6	shows	the	most	extreme	observed	
case	across	all	prioritizations,	where	the	 inclusion	of	single	species	 j 
(the	Whimbrel,	Numenius phaeopus)	 in	one	of	the	10-	species	groups	
in	the	Finnish	dataset	reduced	the	AUC	values	of	all	other	species	on	
average	by	0.045.	Across	 species	k this translates to an average of 
4.5%	less	distribution	protected	at	any	level	of	protection,	the	most	
impacted	species	(the	Black	bird,	Turdus merula)	experiencing	an	aver-
age	 reduction	 of	 9.8%	 (Figure	6,	 shaded	 area)	when	 species	 j is in-
cluded.	The	greatest	single	trade-	off	occurred	when	15%	of	the	area	
was	protected,	where	the	inclusion	of	the	Whimbrel	resulted	in	32%	
less	 distribution	 protected	 for	 the	 Reed	 bunting	 (Arenaria interpres) 

(Figure	6,	orange	arrow).	Nevertheless,	the	majority	of	single-	species	
alterations	 in	 both	datasets	 had	notably	 smaller	 impact,	 some	even	
marginally	 improving	 the	 average	 outcome	 for	 other	 species,	when	
included	to	the	prioritization	(Figure	S6).

The	change	 in	the	conservation	outcomes	for	other	species	cor-
related	positively	with	the	observed	spatial	changes	 in	priority	rank-
ings:	species	with	the	greatest	 impact	on	the	distribution	of	priority	
ranks	 also	 reduced	 the	 conservation	 outcomes	 for	 all	 other	 species	
the	most	(Figure	S7).	The	relationships	between	species	spatial	char-
acteristics and the mean change in AUC values were nearly identical to 
those	observed	with	priority	rank	changes	(Figure	S8).

4  | DISCUSSION

Our	 results	 provide	 some	 of	 the	 first	 steps	 towards	 understanding	
how	 the	 spatial	 allocation	 of	 conservation	 priorities	 across	multiple	
species	is	driven	by	the	interaction	between	the	number	and	type	of	
species	included	to	the	prioritization.	For	both	datasets,	the	stability	of	
priority	areas	increased	rapidly	as	the	total	number	of	species	included	

F IGURE  5 The	spatial	overlap	between	the	top	and	bottom	priority	areas	when	a	species	j	is	included/excluded	from	the	prioritizations.	Each	
panel	shows	results	for	a	different	total	number	of	species	in	the	prioritization.	The	boxplots	show	the	distribution	of	the	observed	proportional	
overlaps	when	comparing	both	top	and	bottom	ranked	1%,	15%	and	30%	of	the	study	area
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in	the	prioritization	was	increased	(Figure	3)	and	after	50	species,	the	
impact	on	adding	a	new	species	to	the	solution	tended	to	be	marginal	
(Figures	3	 and	 S2-	S4).	We	 found	 that	 when	 increasing	 the	 species	
pool	 size	 to	 250	 species	 in	 the	 larger	Greater	Hunter	 data,	 further	
stability	 in	priority	rankings	could	be	achieved,	but	with	diminishing	
returns	(Figure	S2).	Comparisons	between	the	full	runs	in	each	species	
set m	(Figure	S2c,d)	confirm	that	not	only	the	starting	group	size	and	
species	characteristics	but	also	the	relative	change	in	the	number	of	
added	or	 removed	 species	dictate	 the	extent	of	 changes	 in	priority	
ranks.	Hence,	changing	multiple	species	will	incur	larger	changes	over	
single-	species	 alterations,	 but	 the	magnitude	 of	 the	 impact	will	 de-
pend	on	the	starting	size,	number	of	species	added	and	the	aggregate	
spatial	characteristics	of	the	species.

Understanding	 the	 relative	 impact	 any	 single	 species	 is	 likely	 to	
have	on	a	conservation	plan	is	nevertheless	advantageous	for	conser-
vation	scientists	and	practitioners	for	several	reasons.	Firstly,	it	helps	
to	 disentangle	 the	 different	 drivers	 that	 dictate	 how	 priorities	 for	
multiple	species	become	distributed	in	space,	making	the	process	and	
outputs	more	transparent	and	easier	to	communicate,	and	providing	a	
starting	point	from	which	to	explore	impacts	of	changing	multiple	spe-
cies.	Second,	understanding	the	 link	between	species	 influence	and	

its	spatial	attributes	helps	to	anticipate	potential	changes	(or	the	lack	
of)	when	considering	including	new	data	into	analyses.	Third,	mapping	
the	 relative	 influence	 of	 individual	 species	may	 help	 to	 clarify	 how	
additional	weights	 given	 to	 species	 shape	 the	 prioritization	 results:	
for	example	giving	a	high	weight	to	already	highly	influential	species	
may	not	result	in	greatly	improved	outcomes	for	that	species.	Finally,	
understanding	 which	 species	 most	 drive	 spatial	 priorities	 is	 highly	
relevant	from	the	perspective	of	input	data	uncertainty	and	value	of	
information:	uncertainties,	 gaps	 in	 the	distribution	data	and	 the	as-
sumptions	made	 in	 the	modelling	of	 a	highly	 influential	 species	 are	
most	likely	to	be	of	greater	interest	than	those	of	less	influential	ones.

An	 important	finding	from	our	results	 is	that,	when	the	number	
of	 species	 included	 to	 a	 prioritization	 is	 low,	 the	 least	 important	
areas	are	even	more	 sensitive	 to	 just	 single-	species	changes	 in	 the	
species	 pool	 than	 the	 top	 priority	 areas	 (Figure	5).	As	 the	 number	
of	 species	was	 increased,	 the	 stability	 of	 the	 least	 important	 areas	
also	increased,	but	individual	species	could	still	cause	larger	changes	
in	 the	 least	 important	areas	compared	to	the	most	 important	areas	
(Figure	5).	Our	explanation	for	this	is	as	follows:	Given	that	many	spe-
cies,	particularly	the	relatively	rare	ones,	co-	occur	with	other	species	
in	local	clusters	of	diversity	(Figure	S1),	many	species	in	a	randomly	

F IGURE  6 An	example	of	how	the	inclusion/exclusion	of	a	species	(illustrated	here	with	Whimbrel	Numenius phaeopus)	in	a	spatial	
prioritization	can	impact	the	distribution	protected	for	all	other	species,	shown	for	one	of	the	10-	species	sets	from	the	Finnish	dataset.	The	
line	plots	(c)	show	the	proportion	of	distribution	captured	at	increasing	levels	of	protection	(based	on	the	priority	ranking)	for	each	of	the	other	
9	species	k,	when	species	j	(Whimbrel)	(a)	is	either	included	(grey	line)	or	excluded	(black	line)	in	the	prioritization	(b).	Maps	of	the	distributions	
of	each	species	k	are	shown	in	dark	grey	inside	each	line	plot.	The	Whimbrel	has	a	spatially	different	distribution	in	comparison	to	the	other	9	
species	and,	when	included	in	the	prioritization,	creates	trade-	offs	at	each	point	of	the	ranking	process,	resulting	in	less	area	available	to	protect	
the	other	9	species.	The	largest	trade-	off	across	all	levels	of	protection	(shaded	area)	and	at	any	single	level	of	protection	(arrow)	are	shown
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selected	set	tend	to	result	in	the	same	top-	priority	areas.	In	this	case	
adding	or	removing	one	species	does	not	necessarily	make	much	of	a	
difference	to	the	top-	ranked	grid	cells.	In	contrast,	the	core	habitat	of	
species	that	tend	to	occur	in	isolation	are	not	likely	to	be	captured	in	
high	priority	areas	unless	explicitly	included	in	the	analysis.	As	these	
same	areas	are	of	low	value	to	other	species,	adding	such	species	to	
a	prioritization	can	make	a	proportionally	large	change	to	the	previ-
ously	low	priority	areas.

These	findings	have	important	implications	to	some	of	the	current	
practices	in	local	and	regional	planning	where	both	environmental	im-
pacts	and	conservation	plans	are	commonly	based	on	just	a	handful	
of	key	species,	conservation	flagships	or	surrogates	(Gontier,	Balfors,	
&	Mörtberg,	2006;	Hawke,	2009;	Whitehead	et	al.,	2017).	Our	results	
suggest	that	undertaking	a	prioritization	with	less	than	50	species	(or	
biodiversity	features	in	general)	is	likely	to	be	an	undesirable	practice	
as	the	resulting	prioritization	will	be	more	sensitive	to	the	set	of	spe-
cies	 chosen	 for	 the	 analysis.	 Particularly,	 when	 exploring	 potential	
development	impacts,	using	only	a	small	number	of	species	runs	the	
risk	that	impacts	on	non-	included	species	are	not	correctly	captured.	
With	 a	 larger	 number	 of	 species,	 the	 prioritization	 is	more	 likely	 to	
better	 represent	 the	overall	 biodiversity	patterns	of	 the	 region,	 and	
to	increase	the	robustness	of	the	proposed	conservation	plan,	assum-
ing	that	the	included	species	are	not	environmentally	biased	towards	
specific	habitats.	However,	further	investigation	is	needed	to	fully	un-
derstand	 the	 stability	of	 spatial	 prioritization	 to	 adding	or	 removing	
multiple	species	to	the	species	pool.

Our	results	show	how	the	spatial	characteristics	of	species	can	dic-
tate	the	influence	they	have	on	the	spatial	allocation	of	priority	areas	
(Figure	4),	particularly	when	the	prioritization	is	done	with	only	10–20	
species.	We	found	the	distribution	of	priorities	to	be	most	influenced	
by	 intermediately	 rare	 species	 that	 have	 somewhat	dissimilar	 distri-
bution	patterns	with	other	species,	and	which	occupy	comparatively	
species-	poor	areas.	Hence,	conservation	priorities	are	 less	driven	by	
species	that	are	very	rare	and	dissimilar	or,	widespread	and	very	similar	
with	other	species.	As	very	rare	species	occur	in	only	a	small	number	
of	locations,	their	inclusion	leads	to	priority	changes	in	very	few	grid	
cells	and	hence	to	only	marginal	changes	to	the	overall	priority	pat-
terns.	Therefore,	priority	areas	in	a	multi-	species	prioritization	are	typ-
ically	not	greatly	influenced	by	very	rare	species,	particularly	if	these	
species	occupy	areas	of	high	species	richness.	Similarly,	if	a	species	is	
widespread,	then	almost	any	configuration	of	priority	areas	is	likely	to	
capture	parts	of	its	distribution,	resulting	in	it	having	a	minor	influence	
on	the	distribution	of	priority	areas.	A	species’	influence	on	spatial	pri-
orities	 is	 also	 dependent	 on	 the	 number	 of	 species	 included	 to	 the	
prioritization.	For	example	with	an	increasing	number	of	species,	the	
importance	of	rarity	tends	to	peak	at	lower	levels	(Figure	4):	with	large	
datasets	 (>50	 species)	 species	 that	occur	within	<10%	of	 the	 study	
area	 are	most	 influential,	whereas	with	 small	 datasets	 (<20	 species)	
most	influential	species	occupy	approximately	20%	of	the	study	area.

Of	the	metrics	used	to	measure	species’	impact	on	spatial	priori-
ties	 (Table	1),	 the	summed	absolute	difference	 in	ranks	 is	somewhat	
specific	 to	our	chosen	prioritization	algorithm,	requiring	a	conserva-
tion	priority	ranking	for	all	 locations	 in	the	study	area.	On	the	other	

hand,	 the	 overlap	 of	 priority	 areas	with	 and	without	 a	 species,	 and	
its	 implication	for	the	conservation	outcome	of	all	other	species	are	
widely	generalizable	metrics	across	all	types	of	spatial	prioritizations.	
In	general,	the	impact	of	the	number	and	type	of	species	included	to	a	
prioritization	was	very	similar	across	all	three	metrics	(Figures	S4	and	
S6).	We	note	that	although	our	work	includes	only	two	case	studies,	
it	combines	two	datasets	that	differ	vastly	 in	data	type,	area	extent,	
resolution	and	taxonomic	composition	(Figure	1).	Despite	these	differ-
ences,	our	findings	across	both	datasets	are	strikingly	similar,	implying	
that	the	outcomes	may	be	generalizable	to	other	 locations	and	data	
types	when	the	same	or	a	similar	prioritization	algorithm	is	used.

In	this	work,	we	used	an	algorithm	that	maximizes	the	remaining	
locally	high	quality	areas	for	all	species	at	each	step	of	the	prioritiza-
tion	process	(Moilanen	et	al.,	2012).	We	chose	this	option	as,	beyond	
the	 individual	 species	 distributions	 and	 the	 underlining	 philosophy	
that	the	important	areas	of	all	species	need	to	be	protected,	the	solu-
tions	are	not	influenced	by	other	factors,	such	as	species	richness	of	
candidate	 sites	 or	 pre-	defined	 conservation	 targets.	 It	 is	 therefore	
well-	suited	for	exploring	the	influence	of	species	characteristics	and	
the	 trade-	offs	 that	 arise	 in	 a	multi-	species	 prioritization.	 How	 gen-
eralizable	 our	 findings	 are	 to	 results	 created	with	 other	 approaches	
depends	 on	 their	 similarities	 and	 differences	 to	 the	 algorithm	 used	
here.	For	example	algorithms	that	sum	values	across	species	in	a	cell	
(e.g.	the	Additive	Benefit	Function	option	in	Zonation, Moilanen et al., 
2012)	typically	give	higher	priority	to	areas	of	high	species	richness,	
potentially	 resulting	 in	 solutions	 that	are	 less	 sensitive	 to	additional	
species	(Moilanen,	Anderson,	Arponen,	Pouzols,	&	Thomas,	2013).

Similarly,	using	conservation	targets	(e.g.	target-	based	algorithms	
such	as	Marxan,	Ball,	Possingham,	&	Watts,	2009)	may	further	influ-
ence,	in	interaction	with	the	species	distributions,	how	priorities	are	
distributed	(Di	Minin	&	Moilanen,	2012).	Expanding	the	prioritization	
to	 include	 costs,	 threats,	 actions	 and/or	 socio-	political	 factors	will	
introduce	additional	drivers	 that	will	 interact	with	 those	presented	
here.	 All	 these	 drivers	 may	 influence	 not	 only	 how	 priorities	 are	
distributed across locations but also their stability (e.g. Bode et al., 
2008).

Our	work	provides	clarity	in	how	spatial	conservation	priorities	are	
formed	in	multi-	species	prioritizations	and	which	factors	might	drive	
trade-	offs	 when	 dividing	 conservation	 resources	 between	 spatially	
non-	overlapping	 species.	As	 rule	of	 thumb,	our	 results	 indicate	 that	
including	at	least	50–100	species	in	regional	biodiversity	mappings	is	
a	good	starting	point,	as	prioritization	with	less	species	seem	sensitive	
to	 just	single-	species	alterations.	This	 is	particularly	 important	when	
using	spatial	prioritization	to	identify	least	important	areas.	Examining	
factors	such	as	 regional	coverage,	spatial	correlation	with	any	exist-
ing	protected	area	networks,	or	even	richness	within	distribution	may	
reveal	information	on	the	drivers	behind	identified	priority	areas,	and	
how	additional	species	might	change	them.	In	general,	improved	data	
for	very	common	or	very	rare	species,	particularly	those	that	occur	in	
species-	rich	areas,	is	unlikely	to	cause	large	changes	in	spatial	priori-
ties,	whereas	improving	mapping	of	the	distributions	of	intermediately	
rare	species	that	share	their	space	with	comparatively	few	other	spe-
cies	will	likely	be	more	important.
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The	methods	developed	here	can	be	extended	to	biodiversity	data	
from	 other	 regions,	 scales,	 and	 approaches	 to	 spatial	 prioritization.	
Having	a	greater	understanding	of	the	generality	of	the	findings	pre-
sented	here	will	be	 important	for	most	effectively	 implementing	the	
results	of	conservation	prioritizations	around	the	world.
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