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ABSTRACT 

Endometrial and ovarian cancers are among the most prevalent malignancies in females all 

around the world. Carcinomas belonging to the type I subset exhibit many similarities in 

their genetic and epigenetic profiles. Lynch syndrome (LS) is one of the most prevalent 

hereditary cancer susceptibility syndromes in the world. LS is a result of defective mismatch 

repair (MMR) caused by a germline mutation in MMR genes, which combined with other 

molecular alterations, is known to accelerate tumorigenesis. In addition to a high 

prevalence in colon cancer, type I endometrial and ovarian cancers predominate in women 

with LS. Apart from the MMR abnormalities, the molecular profile of LS-associated ovarian 

cancer remains unknown. Moreover, the developmental changes occurring in LS patients 

and in the general population prior to endometrial and ovarian cancer are poorly 

understood. Type I endometrial and ovarian non-serous carcinomas are believed to 

originate from the endometrial lining of the uterus, termed the endometrium. Women with 

LS have been offered regular gynecological surveillance in Finland since 1996. This 

surveillance program provides invaluable consecutive endometrial samples before cancer 

diagnosis and represents an excellent model with which to investigate the molecular 

changes resulting in the development of endometrial and ovarian tumors. The aims of this 

thesis were to identify and compare the molecular alterations in LS-associated and sporadic 

ovarian cancer, and to determine genetic, epigenetic and gene expression alterations in 

consecutive specimens prior to the appearance of endometrial and ovarian cancer. 

In total, 213 endometrial and ovarian carcinomas, as well as endometrial biopsy specimens 

from 66 LS mutation carriers were compared to 197 sporadic specimens of the 

corresponding histological types and profiled with established genetic and partly novel 

epigenetic markers. Immunohistochemistry (IHC) was used to analyze the expression of 

MMR, ARID1A, and L1CAM genes, whereas epigenetic DNA methylation alterations of 37 

tumor suppressor genes (TSGs) were evaluated using both commercial and custom-

designed methylation-specific multiplex ligation-dependent probe amplification (MS-

MLPA) assays. Additionally, ovarian carcinomas were investigated by IHC for p53 protein, 
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hypomethylation of LINE-1 marker (a retrotransposon) was detected by MS-MLPA and we 

also conducted a mutational analysis of hotspot sites in KRAS, BRAF, and PIK3CA by PCR, 

followed by sequencing.  

Novel molecular characteristics of LS-associated ovarian cancer were identified: An 

extremely high frequency of loss of ARID1A protein expression, MMR deficiency, no BRAF 

and KRAS mutations, normal p53 protein expression, a unique hypermethylation of 

selected TSGs, and an absence of LINE-1 hypomethylation in endometrioid and clear cell 

ovarian carcinomas, and frequent L1CAM overexpression specifically in clear cell ovarian 

cancer. Molecular analyses of LS surveillance specimens revealed closely related pathways 

in endometrial and ovarian type I tumorigenesis. For example, both MMR deficiency and 

TSG promoter methylation of specific genes appeared in histologically normal endometrial 

tissue preceding endometrial and ovarian cancer and there was ARID1A loss in complex 

hyperplasia with or without atypia prior to the appearance of the endometrial cancer. 

Additionally, we identified a high degree of similarity in the molecular alterations present 

in the hyperplastic lesions that occurred prior to or concurrently with the detection of 

endometrial or ovarian carcinoma collected from the same patient. This discovery suggests 

that endometrial hyperplasia may contribute to the development of ovarian tumors in 

addition to its well-established role in endometrial tumorigenesis. 

Our findings provide novel and valuable information about the gynecological tumorigenesis 

of LS as well as the corresponding tumor with a sporadic origin. Further investigations are 

warranted with larger patient series. Our results may facilitate the prediction of the 

malignant potential of pre-neoplastic specimens, guide treatment decisions and identify 

those women who could benefit from prophylactic surgery. 
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INTRODUCTION 

Cancer is an extensive global cause of death regardless of the endless time and money 

spent on attempts to learn how to control the disease or destroy metastatic cells. Cancer 

is a genetic and epigenetic disease — this means that genetic and epigenetic alterations in 

genes allow cells to function abnormally, especially to grow and divide without control, 

which can ultimately lead to tumor development. Genetics refers to information based on 

the structure of the DNA sequence, whereas epigenetics means the inherited information 

restored in gene expression patterns (1). In fact, genetic and epigenetic events together 

with lifestyle and other environmental influences are closely intertwined in cancer 

development and progression; epigenetic alterations can introduce mutations into genes, 

whereas mutations often occur in genes involved in epigenome modifications (2).  

 

Changes that contribute to tumorigenesis can be inherited from the parents or they can be 

acquired during an individual´s life e.g. from endogenous sources (such as hormones and 

free radicals from cellular metabolism) or external mutagens (such as chemical carcinogens 

from cigarette smoke, physical risk from radiation, and pathogenic bacterial and viral 

infections) as well as errors in DNA replication. In normal cells, these errors are quickly 

repaired by several layers of effective DNA repair mechanisms. Therefore, a damaged DNA 

repair system, such as mismatch repair (MMR) mechanism, may promote tumorigenesis by 

the accumulation of mutations with a growth advantage in the cell´s genome (3).  

 

Lynch syndrome (LS) is a hereditary cancer syndrome, associated with inherited autosomal 

dominant alterations in MMR genes and rare cases in EPCAM gene (4-6). In addition to its 

high prevalence of colorectal carcinomas, as many as 57% and females with LS develop 

endometrial carcinoma and this is also the case in 24% of ovarian carcinomas (7, 8). In 

addition to being common cancers as part of LS, in general, endometrial and ovarian 

carcinomas are some of the most prevalent cancers among women (4th and 8th place, 

respectively), in the United States (9, 10). Survival from ovarian cancer is poor, and 

Introduction 



  

10 
 

regardless of the fact that there are major histological and molecular differences within 

ovarian cancer, the different diseases are currently treated as a single entity. Endometrial 

cancer is the most common but ovarian cancer is the most lethal of gynecological cancers, 

but for both, the molecular changes that precede cancer development are currently 

unknown. Interestingly, epidemiological findings suggest that pathways leading to 

endometrial and ovarian tumorigenesis may intertwine in the early steps of tumor 

development, even before malignant progression. 

 

The unsatisfactory management of most of the ovarian and part of the endometrial 

carcinomas reflects the poor knowledge of what molecular alterations actually lead to 

malignant development, starting from an uncertainty of the cell type of origin. An increased 

understanding of the molecular pathogenesis of ovarian and endometrial carcinoma will 

be required before we can expect improvements in the diagnosis and management of both 

hereditary and sporadic cases. MMR alterations are known to accelerate tumorigenesis in 

LS and sporadic cases (11, 12), but other mechanisms, such as mutations or epigenetic 

hypermethylation of specific genes may be important in the initiation of tumorigenesis but 

also in determining in which tissue and how fast tumor development progresses.  

 

LS offers an excellent model with which to study epigenetic factors that facilitate 

tumorigenesis, since both the genotype and phenotype of a patient with LS often display a 

poor correlation. In addition, LS is an invaluable model for investigating the molecular 

changes preceding endometrial and ovarian cancer, as the basic tumorigenesis in LS 

significantly resembles that in corresponding sporadic cases but is accelerated. 

Furthermore, invaluable consecutive endometrial biopsy specimens from surveillance 

against gynecological cancer are available from these patients (13). Since the risk for 

gynecological carcinomas among LS mutation carriers increases after 40 years of age (7, 

14), prophylactic surgery is recommended around that age, but its exact optimal timing 

remains an open question. Molecular findings from biopsy specimens could help to resolve 

this question. 
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REVIEW OF THE LITERATURE 

1 Cancer – Overview 

Cancer is a diverse disease of multiple organs as a result of genetic and epigenetic 

alterations in specific genes, which disrupt the cells’ abilities to maintain normal growth 

and division. Although the start of cancer development is monoclonal, the high rate of new 

mutations and the different forms of genomic instability soon divide cancer cells into new 

populations (15). In 2000, Hanahan and Weinberg (16) proposed six hallmarks that all 

cancers have in common and which explain the properties that permit cancer cells to live, 

divide and spread. Every cancer is a unique combination of these hallmarks and aberrations 

that may occur in changing orders or simultaneously. The hallmarks include (1) the ability 

of cancer cells to stimulate their own proliferation, (2) the cancer cells are resistant to 

signals that inhibit their growth, (3) they have the capacity to avoid cell death, (4) they have 

an endless potential to replicate, (5) they possess a capability to grow and maintain blood 

vessels, and (6) cancer cells display a potential to move from the original site to invade 

distal organs (16). In 2011, the same scientists added two emerging hallmarks, the ability 

of cancer cells to modify cellular metabolism and to escape from immune destruction, as 

well as two facilitating hallmarks known as genome instability and inflammation which 

facilitate cancer cells to receive the main core and emerging hallmarks (17). In addition to 

these well-known hallmarks, another important hallmark exists; global alterations in the 

epigenetic landscape (18). Moreover, epigenetic mechanisms may be involved in each of 

the hallmarks proposed.  

 

In the United States, it is predicted that around 1 735 350 new cancer cases will be 

diagnosed in 2018 (19). The most prevalent cancers in the Finnish population are shown in 

Table 1. On the positive side, the cancer death rate is declining (especially the death rates 

of the most common cancers of lung, colorectal, breast, and prostate), due to a reduction 

in smoking, early diagnosis and improvements in treatment.  
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Table 1. The five most common cancers in Finland and cancers included in the study (in 2015). 

 
*relative to world standard population by age adjusted, 1/100 000 people (20). 
 

2 Tumorigenic pathways 

Genetic and epigenetic alterations that contribute to cancer mainly affect two major types 

of genes: Tumor suppressor genes (TSGs) and proto-oncogenes, which are involved in the 

growth and division of normal cells. DNA repair genes are an important subclass of TSGs, 

tightly implicated in normal cellular functions (21). In cancer, proto-oncogenes become 

activated to become oncogenes that drive cell division or prevent cells from apoptosis 

(programmed cell death) whereas TSGs become silenced so that they cannot resist these 

oncogenic processes to happen (22). Moreover, DNA repair genes become faulty and lead 

to permanent DNA damage, thus causing the accumulation of mutations. Although 

thousands of alterations in different genes take place in a neoplastic cell, only 

approximately 140 of those are so-called driver genes which have the ability to promote 

tumorigenesis. Usually, 2 to 8 driver gene mutations are found in a tumor and all the rest 

(more than 99.9% of the alterations) are passenger mutations which do not enhance nor 

impair the tumor growth (21). The driver genes are involved in key processes of a cell, 

including specific cell fate, cell survival, and genome maintenance (21).  

 

 

 

Primary 
cancer

Order of prevalance New cases Deaths Incidence*

Breast 1. 5161 841 96.9
Colon 2. 1014 394 14.13
Skin, non-melanoma 3. 789 30 7.9
Lung and trachea 4. 936 779 13.27
Endometrium 5. 846 203 12.55
Ovarian 10. 436 349 7.12

Prostate 1. 4855 921 78.77
Lung and trachea 2. 1690 1456 27.36
Bladder and urinary tract 3. 991 217 15.42
Colon 4. 981 378 16.09
Skin, non-melanoma 5. 896 32 12.68

Female

Male

Review of the Literature  



  

13 
 

2.1 Altered tumor suppressor genes and proto-oncogenes in cancer 

Mutations affecting proto-oncogenes are typically dominant and speed up tumorigenesis 

by a gain of function in gene expression, leading to enhanced cell division or prevention of 

cell death. KRAS is the most commonly altered proto-oncogene in cancer (23); it encodes a 

GTPase, a key component of the P13K/AKT pathway, and this proto-oncogene plays an 

important but stringently regulated role in normal cell signaling growth. However, 

mutations in KRAS can transform it into a constitutively active oncogene, causing over-

production of its gene product further promoting uncontrolled growth (24, 25).  

 

In contrast to proto-oncogenes, mutations and epigenetic alterations that occur in TSGs 

are frequently recessive, meaning that both of their parental alleles need to be inactivated 

(by Knudson´s “two- or multiple hit” hypothesis) to achieve complete expression of the 

modified phenotype (26, 27).  TSGs can be silenced by different kinds of “hits”, such as 

mutational inactivation, loss of heterozygosity (partial or complete loss of gene) or the gene 

can be turned off by epigenetic mechanisms (2). Occasionally, inactivation of only one allele 

of a TSG may predispose to a change in gene expression; in haplo-insufficiency, one allele 

alone is unable to produce a wild-type phenotype (28). This can also be achieved by a 

situation in which one mutated allele can disturb the function of the other allele by 

dominant-negative manner. p53 is a good example of a crucial TSG often associated with 

different cancers; it is also known as “the guardian of the genome”, which in normal cell 

becomes active in response to DNA damage (29, 30). Loss of expression of p53 increases 

cell proliferation (31) and interrupts p53-dependent cell death promoting tumorigenesis 

(32).  

 

2.1.1 An epigenetic tumor suppressor, ARID1A   

A recent intriguing finding in cancer research, discovered through whole genome 

sequencing, has been the realization that nearly all cancers harbor alterations in genes 

involved in creating the epigenetic machinery. These modified genes may therefore alter 
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the epigenome, resulting in changed gene expression and evoking genomic instability. 

Moreover, the frequency of many of these mutations is sufficiently high to suggest that 

they are “driver” mutations, meaning that a disturbance of the epigenome may be an early 

event in the initiation of cancer (2, 33).  ARID1A, a gene involved in chromatin/nucleosome 

remodeling, is one of these genes often altered in several different types of cancer (34). 

 

ARID1A (AT-rich interaction domain 1A) is a TSG which is often mutated in human cancers 

and believed to play a role both in tumor initiation and progression (35). ARID1A encodes 

a large protein, BAF250a, a key component of the ATP-dependent chromatin remodeling 

complex SWI/SNF (switch/sucrose non-fermentable). This complex regulates the 

transcription of specific genes by changing the accessibility of the chromatin around gene 

promoters; it is involved in several cellular processes such as DNA synthesis, DNA repair 

and genomic stability (36). As part of the chromatin remodeling complex, ARID1A is able to 

inhibit cell growth in normal cells (37). Disrupted ARID1A may cause distinct problems in 

SWI/SNF complexes, including a disturbance of nucleosome sliding, targeting to certain 

genomic sites and the assembly of coactivators or corepressors (38). Mutations in ARID1A 

are expected to lead to direct epigenetic modifications in cancer cells by changing the 

chromatin structure. Therefore, mutated ARID1A in cancer can partly explain why DNA 

methylation and chromatin differ between cancer and normal cells (39).  

 

2.2 DNA repair 
Despite the massive amount of errors that occur in a cell’s genome, only a very low number 

(10-7-10-11bp/cell generation) of mutations remain in the genome due to the multilevel 

repair mechanisms that proofread DNA and correct most of the genomic alterations (40). 

Most mutations that are left in the genome are harmless to the cell, but on rare occasions 

the cell acquires a growth promoting mutation that will confer on the cell ability to achieve 

the hallmarks of cancer and eventually become neoplastic (16, 17, 41). If a defence 

mechanism such as MMR becomes defective, mutations start to build up high rate in a 
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cell´s genome, causing hypermutability and an increased risk for additional destructive 

mutations that often lead to tumor development. 

There are a variety of DNA repair strategies, each repairing specific types of damage and 

restoring lost information. For instance, base excision (42), nucleotide excision (43) and 

mismatch repair (44) are needed to repair single-strand breaks on DNA, whereas double-

strand breaks are often repaired by non-homologous end joining or by homologous 

recombination (45). 

 

2.2.1 DNA mismatch repair (MMR) 

The mismatch repair (MMR) machinery plays a critical role in the protection of genome 

stability by recognizing and stimulating repair of base pair mismatches and 

insertion/deletion loops in DNA caused by environmental factors and cellular processes as 

well as replication errors that escape DNA proofreading (46). Figure 1 illustrates the MMR 

repair of single base pair mismatches. Defects in MMR cause an accumulation of small 

mono- and dinucleotide deletions and insertions, which lead to a variable number of these 

repeats causing microsatellite instability (MSI) (see Chapter 2.3.2 below). MSI can be used 

as a marker to detect MMR deficiencies (47). Defective MMR promotes tumorigenesis in 

two alternative ways: First, defective MMR causes increase in the number of replication 

errors leading to hypermutability, which may increase tumor heterogeneity and generate 

mutations, which are advantageous for neoplastic cells (3). Second, the absence of sensors 

for DNA damage, may lead to accelerated cell divisions and evading apoptosis (48). 

 

Both genetic and epigenetic silencing of many genes have been implicated in the MMR 

pathway (4). A defective MMR system may be the starting point for tumorigenesis and 

inherited aberrations in the MMR machinery are well known to underlie a hereditary 

cancer syndrome called Lynch syndrome.  
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Figure 1. Simplified outline of the MMR pathway. Three main steps are involved in MMR repair: (1) 
Recognition of damaged DNA and initiation of repair, (2) excision of mismatched DNA and (3) 
resynthesis. (1) The DNA damage is recognized by the hMutSα complex, consisting of a MSH2 and 
MSH6 heterodimer, which binds to single base pair mismatches (as shown in the figure). The MSH2 
and MSH3 heterodimer, called hMutSβ complex, detects longer insertions or deletions (not shown). 
Proliferating cell nuclear antigen (PCNA) is also involved in the recognition of mismatches. (2) After 
the recognition of DNA damage, the hMutLα complex, consisting of MLH1-PMS2 heterodimer, is 
recruited to the site and starts dissembling the mismatched DNA by exonuclease EXO1. (3) Finally, a 
new complementary strand of DNA is synthesized by DNA polymerase δ and further ligated to the 
old, undamaged strand by DNA ligase I. 
 

2.3 Genomic Instability  

Genomic instability in cancer is the driving force that leads to genetic heterogeneity inside 

a tumor, generating the genetic diversity for cancer cells to survive through natural 

selection, and providing extensive variety in patient phenotypes (49, 50). Genomic 

instability is a feature of nearly all human cancers, but the molecular basis and the time 

point when it arises in carcinogenesis remains still largely unknown. In hereditary cancer, 

this phenomenon has been linked to defective DNA repair mechanisms causing a high 

Review of the Literature  



  

17 
 

spontaneous mutation rate (mutator hypothesis) (51) which is present already in 

precancerous lesions and confers on the neoplastic cell an ability to undergo favorable 

genetic changes and to achieve the hallmarks of cancer (17, 52). On the other hand, the 

molecular background of genomic instability in sporadic cancer is still not fully understood. 

It has been proposed that oncogene-induced errors in DNA replication as well as telomere 

erosion could be at least partly responsible for the genomic instability encountered in 

sporadic tumors (53, 54). Chromosomal instability (CIN) and MSI are two distinct forms of 

genomic instability (55, 56).  

 

2.3.1 Chromosomal instability (CIN) 

The amount of chromosomal alterations is highly increased in cancer, and it is the major 

form of genomic instability in cancer occurring in more than 90% of solid tumors (57). 

Alterations that contribute to CIN are large-scale rearrangements of the chromosome 

structure and number, involving aneuploidy (changes in numbers of chromosomes) as well 

as intrachromosomal inversions, deletions, translocations and amplifications (55, 58). 

Aneuploidy is a consequence of unequal division of chromosomes to daughter cells in 

mitosis and this feature of CIN is unique to neoplastic cells as the accurate arrangement 

and the number of chromosomes is strictly regulated in normal cells (55). CIN provides 

cancer cells with the possibility to obtain heterogeneity, allows them to rapidly collect 

mutations and modify tumor genomes, which further drives tumor progression (59).  

 

2.3.2 Microsatellite instability (MSI) 

Microsatellite DNA refers to short repeated sequences of DNA (typically dinucleotides) 

scattered throughout the human genome. The lengths of the repeats vary among the 

population, but are unique in an individual (60, 61). A defective MMR system can lead to 

an accumulation of base pair mismatches in microsatellites causing MSI; this can be 

observed as deletions or insertions of only a few nucleotides at repeat sequences (47, 62). 

MSI is a characteristic of almost all LS-associated tumors (over 90% of colorectal and 
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endometrial carcinomas (63, 64) but additionally, acquired aberrations in the MMR system 

are estimated of being the causal factor in 15 to 20% of colon and up to 30% of endometrial 

cancers of sporadic origin (63, 65-67). These sporadic carcinomas develop as a result of a 

defective MMR machinery caused by a somatic mutation or by DNA methylation (68). 

Tumors displaying MSI show a major acceleration of the mutations rate by between 100 to 

1000 fold in comparison with normal cells (69).  

 

3 Epigenetics and Cancer 

The initiation and progression of cancer by silencing of TSGs, activation of oncogenes and 

the acquisition of genomic instability is achieved by genetic and epigenetic dysregulation.  

Epigenetics refers to all of the mechanisms involved in the regulation of gene expression 

not involving changes in the primary DNA sequence (70). Thus, in contrast to genetic 

mutations, epigenetic alterations (epimutations) do not alter the genetic code of the DNA 

itself but are able to regulate gene expression by other, potentially reversible, mechanisms. 

Furthermore, epigenetic regulation is affected by genetic factors and the environment. 

Epigenetic mechanisms consist of DNA methylation, histone modifications, non-coding 

RNAs (mainly miRNA expression) and modifications of chromatin remodeling systems 

(demonstrated in Figure 2). These epigenetic mechanisms which carefully regulate normal 

homeostasis of expressed genes in a cell, become completely disrupted in the neoplastic 

cell (1). Additionally, recent findings from next-generation sequencing (NGS) of whole 

cancer genomes have shown that epigenetic genes, for instance those encoding parts for 

chromatin remodeling machinery as well as enzymes that modify histones, are frequently 

mutated in cancer, transforming them to behave like TSGs or oncogenes (71, 72). 

 

The reversible but heritable nature of epigenetic aberrations has led to the emergence of 

the promising field of epigenetic therapy, which is already making progress with the recent 

FDA approval of four epigenetic drugs for use in the cancer treatment of T-cell lymphomas 

and myeloma (73). 
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Figure 2. Epigenetic alterations in cancer, including DNA methylation (A), histone modifications (B), 
miRNAs (C) and chromatin modifiers (D). A (top), in cancer, TSG promoters become methylated 
(black balls) and silenced (bent arrow indicates the transcription starting point); A (bottom), 
oncogene promoters become hypomethylated and activated (open arrow indicates low and solid 
arrow high expression). B, The number of inactivating histone marks increases in cancer cells 
resulting in compact chromatin and silencing of TSGs. C (top), inactivation of a TSG by increased 
oncogenic miRNA expression; C (bottom), oncogene activation by decreased expression of tumor 
suppressive miRNA. D, chromatin remodeling complex SWI/SNF modifies chromatin accessibility. In 
normal cells (left), SWI/SNF-complex activates genes normally silenced by packed chromatin 
structure established by HDACs. SWI/SNF complex represses expression of HDACs leading to active 
chromatin and expression of genes regulated by HDACs. In cancer (right), the loss of ARID1A, 
expression leads to a dysfunction in the SWI/SNF-complex resulting in expression of HDACs, 
subsequent repressive chromatin state and inactivation of genes targeted by HDACs. Modified from 
Peltomäki et al. (74) 
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3.1 DNA hypermethylation and cancer 

DNA methylation is an epigenetic change in DNA sequence that typically occurs at a 

5´cytosine located next to guanine forming CpG dinucleotides (2). Patterns of DNA 

methylation are established in the early stages of development and maintained 

respectively stable throughout life. Furthermore, methylation patterns are frequently 

inherited to daughter cells in cell division (75) and even aberrant hypermethylation 

(epimutations) of specific TSGs has been shown to be inherited in the germline from 

parents to progeny (76, 77). Particularly stable form of DNA methylation is involved in 

genomic imprinting which is a way of silencing gene expression of one parental allele by 

DNA methylation (78). DNA methylation in humans is produced and maintained by DNA 

methyltransferase (DNMT) enzymes, which add a methyl group (CH3) into the 5´ position 

of a cytosine adjacent to a guanine (by DNMT1) and maintain (by DNMT3A and DNMT3B) 

the methylation through cell divisions. On the contrary, 10–11-translocation proteins (TET) 

can remove methyl groups and further demethylate DNA (79).  

 

In human genome, approximately 60% of gene promoters contain a high number of CpG 

dinucleotides, called CpG islands (80). The DNA methylation patterns of these islands are 

tissue specific (81). Hypermethylation of CpG islands around gene promoters is associated 

with inactivation of the gene. In normal cells, most of the CpG islands around gene 

promoters are unmethylated, as it allows open and active chromatin and expression of 

genes when equivalent transcription factors are accessible. In contrast to 

hypermethylation and consequent inactivation associated with promoters, 

hypermethylation that occurs in a gene body either enhances or has no effect on gene 

expression (2). In cancer, usually 5 to 10% of CpG sites located in gene promoters become 

heritably hypermethylated (33). This may cause transcriptional inactivation of the TSGs, 

which in normal conditions would suppress tumor formation (18, 33, 82). These alterations 

in methylation are believed to drive the cancer formation as they appear already in early 

stages of cancer development (83). Genes known to be hypermethylated in cancer are 
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involved in all of the key cellular pathways, such as the cell cycle (CDKN2B), DNA repair 

(MLH1), metabolic reprogramming (VHL) and cell death (DAPK) (1, 79).  

 

Abnormal hypermethylation of gene promoters is a main mechanism associated with 

tumor suppressor gene inactivation in carcinogenesis (See Figure 2A) (84). In nearly all 

cancer types, hundreds of genes may be silenced by promoter hypermethylation. However, 

only a small fraction of these hypermethylated genes are “drivers” and hence affect cancer 

initiation and progression (2, 85). Three main routes involving DNA methylation are known 

to promote tumorigenesis. These changes often occur concurrently and include genome-

wide hypomethylation, specific hypermethylation of TSG promoters, and direct mutational 

processing of sites containing methylated cytosines by ultraviolet radiation, deamination 

or by other carcinogenic mutagens (2, 86). 

 

DNA methylation has been utilized as a biomarker in diagnosis, prognosis, and in response 

to treatment (79). At the present, clinical treatments with demethylating agents have been 

limited by their non-specific nature. This may change in the future, as the CRISPR-mediated 

system holds the promise of site-specific epigenetic editing of the genome (87).   

 

3.2 Hypomethylation, LINE-1 and cancer  

Hypomethylation, the genome-wide decrease in 5-methylcytosine, was the first epigenetic 

alterations identified in human tumors (88). Global hypomethylation is often a 

characteristic of tumor progression but sometimes it can be also observed in the early 

stages of tumor development (89, 90). Hypomethylation is a frequent feature of cancer 

cells and in contrast to hypermethylation of CpG sites in gene promoters, hypomethylation 

is often present in the remainder of the genome and can be detected in vast areas of the 

genome. Hypomethylation stimulates carcinogenesis in diverse ways such as activating 

oncogenes (91), generating CIN by disruption of genes via retrotransposition of long 

interspersed element 1 (LINE-1), and by loss of imprinting (LOI) (92, 93). LOI activates an 
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allele that has been imprinted and therefore silenced by DNA methylation and this 

activation will result in an overabundance of the gene product expressed now by both 

alleles (94). 

 

Highly repeated DNA sequences, such as the interspersed Alu and LINEs comprise nearly 

half of the human genome, and are the typical place for hypomethylation to take place. 

LINE-1 retrotransposon, up to 6 kb in length and the only active and abundant LINE-element 

still in human, provides a useful marker to measure global hypomethylation of the cancer 

cell genome (95, 96). DNA hypomethylation activates LINE-1 transcription and enables the 

retrotransposition of these elements into new sites in the genome. In tumor development, 

these elements can disrupt gene function by insertion and can also act as surrogate splice 

sites or as alternative promoters (93). Alterations in DNMTs and TET2 have been detected 

in some cancers which may cause global hypomethylation (79).  

 

3.3 Histone modifications  

DNA in the human nucleus is tightly wrapped around histone proteins. Histones have an 

unfolded domain, called the histone tail, which is bound by different epigenetic marks (see 

Figure 2B). These epigenetic signatures on histone tails contribute to packing of the 

chromatin and influence the binding of proteins to chromatin. The histone tails can be 

modified with many different chemical bounds, such as methylation, acetylation, 

phosphorylation and ubiquitination (97, 98). The chemical modification together with its 

position of the histone tail, specify influence the chromatin. For example, trimethylation of 

lysine 4 in histone 3 (H3K4Me3) is an activating signal, whereas the same modification in 

lysine 9 in histone 3 (H3K9Me3) mediates a repressive function. Furthermore, the 

modification with a different chemical of the same position may produce an opposite event 

such as acetylation of lysine 9 in histone 3 (H3K9ac) may cause an activation of transcription 

(79). In cancer, these covalent histone marks around promoter regions often become 

altered together with DNA methylation changes (2, 82, 99).  
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3.4 MicroRNAs 

MicroRNAs (miRNAs) are another set of crucial factors involved in epigenetic regulation. 

MiRNAs belong to small non-coding RNAs, which regulate the expression of selected genes 

at the post-transcriptional level (100). MiRNAs regulate the translational processing of 

genes by specific targeting of 3´-untranslated region of messenger RNA (mRNA) followed 

either by target mRNA degradation or by blocking mRNA translation into protein. MiRNAs 

may be important players in tumor development, because they target and consequently 

regulate specific proto-oncogenes (tumor suppressive miRNAs such as miRNA let-7a which 

inhibits MYC oncogene) (101) and TSGs (oncogenic miRNAs such as MIR34B) as shown in 

Figure 2C, and furthermore, miRNAs may mediate regulatory communication between 

oncogenes and TSGs in carcinogenesis (102). In addition, MiRNAs directly target 

components of the epigenetic machinery, such as DNMTs (103) and histone deacetylases 

(HDACs) (104), resulting in indirect modulation of genes regulated by epigenetic 

modifications (105). 

 

On the contrary and making this network even more complex, miRNA themselves can be 

regulated at the transcriptional level by binding of specific proto-oncogenes and TSGs to 

miRNA host gene promoter which encode miRNA (106), as well as through genetic 

alterations of the host gene promoter (107). Moreover, recent breakthrough findings have 

shown that the genes encoding for miRNAs can also be epigenetically regulated by 

promoter methylation, acetylation and methylation of histones as well as chromatin 

modifications (105, 108). This ability of a cancer cell to epigenetically regulate specific 

miRNAS may help the cell to transform its transcriptome to an oncogenic phenotype.  

 

3.5 Chromatin modifiers in cancer 

Defective epigenetic machinery may often underlie the epigenetic alterations in a cancer 

cell´s genome as demonstrated in Figure 2D (2). During cancer progression, the 

maintenance of transcriptionally repressed and active chromatin states becomes altered. 
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Therefore, chromatin modifiers and their alterations may play a major part in 

carcinogenesis. Several candidates have been acknowledged: HDACs are proteins that 

remove acetylation from histones as well as from other proteins and establish a tightly 

packed and silenced chromatin structure (109). Other candidates are histone 

acetyltransferases (HATs), which function as transcriptional activators by adding acetyl-

groups to histone tails, as well as the SWI/SNF protein complex, together with its subunit 

ARID1A, which actively modifies the chromatin around promoter regions as well as 

changing the localization of nucleosomes to promote gene expression (1, 38). 

 
3.6 Technology to identify DNA methylation changes 

There are many different techniques available for analyzing gene-specific or genome-wide 

DNA methylation patterns. The determination of the DNA methylation patterns and their 

distribution in the genome is essential in understanding their function in normal cellular 

functions as well as in disease, such as cancer. These techniques are primarily divided into 

three categories depending on the pre-treatment step applied: (1) Restriction enzyme 

based assays, (2) affinity enrichment based assays, and (3) sodium bisulfite based assays 

(110, 111). The optimal choice for DNA methylation assay depends on several aspects such 

as the scientific question, the amount and quality of the sample to be analyzed, the 

information available of the sequence under analysis, the required sensitivity of the assay, 

the bioinformatics knowledge available, as well as economic issues.  

 

For many methods, the limiting factor is the high quality and/or large quantities of DNA 

required and therefore only a few assays are suitable for formalin-fixed paraffin embedded 

(FFPE) samples. Many assays, such as restriction landmark genomic scanning (RLGS) and 

the methylated-CpG island recovery assay (MIRA) require high quality DNA, but for 

instance, Illumina Infinium 450K assay can be used to analyze low quality, FFPE samples 

(110, 112, 113). As the whole-genome methylation assays have developed becoming more 

sensitive and cheaper, they are replacing the methods used to analyze gene-specific 

methylation. Still today, gene-specific methods are pivotal due to their low cost, their 
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ability to generate quantitative data, the possibility to detect methylation changes from 

low quality FFPE DNA (such as MS-MLPA), and in cases where the interest in detecting DNA 

methylation only requires a low number of specific genes, such as MLH1 methylation in 

colorectal and endometrial cancer (5). In addition, the plethora of data produced by whole-

genome methylation assays, require time and bioinformatics knowledge to sort out the 

data, whereas analyzing gene-specific methylation is often fast and requires less 

bioinformatics skills.   

   

New platforms using NGS and/or genome-wide hybridization to investigate genome-wide 

DNA methylation patterns have enabled the identification of large sets of genes 

methylated in cancer (67, 114). The widely used, Illumina Infinium 450K microarray 

platform detects around 450,000 candidate CpG sites throughout the genome giving a 

broad perspective of the methylation changes in the human genome. Although, the 

coverage of this platform is broad, it is not very specific in a given region of the genome 

and thus it is mainly used as a first screening method and subsequently followed by 

methods that carry a higher number of probes for a specific region (115). In addition, direct 

sequencing of all CpG sites after bisulfite modification of DNA (for instance, whole genome 

bisulfite sequencing, WGBS) (116) is currently available and allows extensive information 

of nearly all CpGs throughout the genome (117).  

 

4 Hereditary cancer 

Most cancers are caused by somatic mutations in driver genes, but around 10% of cases 

are a consequence of a germline mutation that may be inherited from parents to offspring. 

More than 110 genes are known to be associated with hereditary cancer syndromes (118). 

The most common inherited alterations involved in hereditary cancer are due to defects in 

DNA repair genes (119).  

 

Most hereditary cancer syndromes are passed on to the children in an autosomal dominant 

manner and in most cases, a carrier is heterozygous for the inherited germline mutation. 
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This means that the carrier inherits one defective allele of a specific TSG (the so-called first 

hit in Knudson´s two hit hypothesis) (26, 27) which increases the risk for developing cancer, 

but only after the second somatic hit has been acquired in a cell of a target tissue, may 

tumor development be initiated. In sporadic cancer however, two hits affecting both alleles 

of a TSG need to occur somatically before tumor development can begin. Either one or 

both of these inactivating hits can occur genetically or epigenetically. Examples of 

hereditary autosomal dominant cancer syndromes include Lynch syndrome (described 

below), hereditary breast and ovarian cancer syndrome (described below), and Peutz-

Jeghers syndrome (germline mutation in STK11 gene) (120) which predispose to several 

cancers, whereas familial adenomatous polyposis (germline mutation in APC gene) mainly 

predisposes to colon cancer (121). 

 

4.1 Lynch syndrome  

Lynch syndrome (LS, OMIM #120435, #120436), earlier referred to as hereditary non-

polyposis colorectal cancer syndrome (HNPCC), was first reported by Doctor Aldred Scott 

Warthin in 1913 (122). Patients with LS were defined according to clinical and family history 

alone until the year 1993, when Peltomäki et al. (123) identified the first susceptibility locus 

for this syndrome. LS is a severe hereditary cancer susceptibility syndrome caused by 

autosomal dominant mutation or epimutation in one of the genes belonging to the MMR 

system (5). LS mutation carriers have a high risk of developing early onset colon or 

gynecological cancer (endometrial and ovarian) and most tumors present with a MSI 

phenotype due to aberrant MMR (124). Most women with LS become affected with 

endometrial and/or ovarian cancer at some stage of life and the latest analysis of cancer 

risk in LS patients has shown that the risk of gynecological cancer in women with LS 

outweighs the risk for colon cancer (7). Other cancer types such as stomach, urinary tract, 

bladder, breast, brain (glioblastoma) and cancer of the kidney are less common in LS 

patients but nonetheless, the incidence exceeds that of average population (see Figure 3) 

(125, 126). MMR genes are expressed in all tissues, but the cancer risk varies according to 
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the tissue. This may be a consequence of the amount of MMR product produced in the 

tissue, the proliferation rate of cells, the power of immune defense, and the way in which 

the tissue has been exposed to endogenous or exogenous carcinogenic agents (127). It is 

typical that an LS mutation carrier may be diagnosed with different cancers in their life but 

fortunately, the survival is higher for most cancers compared to sporadic cancers (8). The 

incidence of an individual with Lynch syndrome developing any type of cancer before the 

age of 70 is 75% in women and 58% in men (8).  

 
Figure 3. Cumulative cancer risk of LS-associated cancers from age 25 up to 75 years of age in general 
population and in LS germline mutation carriers. Cumulative risk values in general population are 
shown for females only (pink color). The cancer risk in Lynch syndrome for endometrial, ovarian, 
and breast cancer is shown in females only; for all other cancers, the risk values are shown for 
combined genders. In LS-associated cancers, the cumulative risk is shown separately in MLH1, MSH2 
and MSH6 mutation carriers, respectively (green color). The data for general population is collected 
from the NORDCAN-database (128, 129) and for Lynch syndrome from Møller et al. (2017) (130). 
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The incidence of LS in the population can be as high as 1 in every 370 individuals and even 

this value may be an underestimation (124). It has been estimated that there are more than 

10 000 LS mutation carriers in Finland and over a million in Europe, moreover, LS has been 

evaluated as being the causal factor in 3% of the newly diagnosed colorectal carcinomas 

(5). In Finland, there are currently approximately 280 known families with a verified 

mutation causing LS (131). Because of the dominant characteristic of the LS causing 

mutation, the risk for passing on a defective allele to a child is 50%. In a rare condition, 

constitutional MMR deficiency (CMMRD), the child inherits defective MMR alleles from 

both parents causing a severe form of cancer syndrome and in which cancers (mainly 

hematological malignancies, colorectal cancer, and brain tumors) occur already in 

childhood (132).    

 

LS is a consequence of germline mutation in one of the MMR genes (MLH1, MSH2, MSH6 

and PMS2), or by a large deletion in EPCAM gene. EPCAM germline mutation is a rare event, 

but it can also cause LS by epigenetic inactivation of its adjacent MSH2 promoter by DNA 

hypermethylation followed by silencing of MSH2 gene (6, 133). Almost 3500 unique LS-

associated variants have been discovered in MLH1, MSH2, MSH6, PMS2 and EPCAM, and 

the shares of the variants among MMR genes are approximately 38%, 33%, 19%, and 10% 

respectively (134). On rare occasions, Lynch syndrome may be inherited via a constitutional 

epimutation (135). This means that hypermethylation of a specific allele (non-imprinted), 

such as MLH1 in LS, occurs in a germline and is therefore spread throughout the normal 

tissues in the body. This constitutive epimutation of MLH1 is typically the first hit and LOI 

frequently the second hit that inactivates the gene and drives tumor formation in a tissue 

(76). Clinically, this resembles the MLH1 mutation or methylation of MLH1 in sporadic cases 

(136). On the contrary, an MSH2 epimutation is secondary and caused by a deletion of the 

EPCAM gene (6, 77). In LS-associated cancers both two hits, hereditary and later acquired 

somatic, are frequently genetic (MMR or EPCAM) (137, 138).  
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4.1.1 Diagnostics and screening pathways  

The identification of colorectal and gynecological carcinoma patients with LS is important 

in order to save lives by guiding these patients and their affected relatives to surveillance 

programs and to start prevention interventions. It has been estimated that colonoscopy 

surveillance for colorectal carcinoma in verified LS patients decreases the overall death 

incidence from colorectal carcinoma by 65% (139). The estimates with gynecological 

surveillance have not shown a similar effect (140). However, Auranen and Joutsiniemi 

(2011) performed a systematic review of gynecological surveillance in women with LS and   

revealed a 5% to 6.5% detection rate of pathological endometrial findings in surveillance 

visits that involved endometrial biopsies (141). 

 

Different guidelines (Amsterdam Criteria and Bethesda Guidelines) have been developed 

for clinicians to identify colorectal and endometrial carcinoma patients that have a high risk 

of being LS mutation carriers and who should be guided to further analysis of MMR defects 

(142-145). The problem with these guidelines is that they are either not sensitive 

(Amsterdam Criteria) or specific (Bethesda Guidelines) enough and hence most Lynch 

mutation carriers remain undetected. The currently used guidelines Amsterdam criteria II 

(145) and Bethesda (revised in 1999) (143) for LS diagnosis are shown in Table 2. 

Table 2. Amsterdam Criteria II and revised Bethesda guidelines for diagnosis of LS. 

 
aLS-spectrum tumors include CRC, endometrial, ovarian, stomach, urinary tract, bladder, breast, 
brain (glioblastoma), skin, pancreas, and cancer of the small bowel. bMSI-high histology is 
determined as the presence of tumor-infiltrating lymphocytes, mucinous/signet-ring differentiation 
or medullary pattern of growth. Abbreviations: LS, Lynch syndrome; CRC, colorectal cancer. 

Amsterdam Criteria II

2. Affected individuals detected in two generations
3. At least one of the LS-associated cancersa, diagnosed under 50 years of age
4. Familial adenomtous polyposis (FAP) excluded in CRC cases
Revised Bethesda guidelines
1. CRC diagnosed in an individual under 50 years of age
2. Synchronous or metachorous LS-associated tumorsa detected regardless of age
3. CRC tumor with MSI-high histologyb diagnosed in an individual under 60 years of age

5. Diagnosis of CRC in at least two first- or second-degree relatives with LS-associated tumors, at any age.

4. Diagnosis of CRC in at least one first-degree relative with LS-associated tumor, with one of the tumors
 diagnosed under 50 years of age

1. At least three relatives with LS-associated cancera, of whom one affected individual is a first-degree 
relative of the other two. 
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If patient is suspected of being LS, at present immunohistochemical (IHC) analysis of MMR 

genes is recommended. This analysis is able to detect an absent MMR protein and thus 

identifies which MMR gene to test by mutational analysis in order to find out the exact 

mutation causing the syndrome (146). If the absence of MLH1 is detected by IHC, an 

additional methylation analysis of MLH1 promoter is needed before mutational testing to 

exclude common sporadic cases caused by methylation of MLH1 gene promoter (5).  

 

The final identification of LS mutation carriers is based on the detection of MMR or EPCAM 

germline mutations which can be found by sequencing. At present, a tumor sample is 

needed in the characterization of a mutation, but a functional assay is being developed that 

would detect a MMR deficiency from a healthy relative by using fibroblasts (147). Until the 

present time, sequencing has been expensive and time-consuming and the analysis and 

interpretation of sequencing data of MMR genes have required substantial effort due to 

their large size and high number of variants known in these genes. Therefore, only patients 

showing convincing proof by fulfilling clinical criteria of LS and having a defective MMR by 

IHC are at present guided to undertake final genetic testing. All verified mutation carriers 

should be provided with genetic counseling and enrolled into surveillance programs to 

prevent cancer development (5). Families meeting the clinical criteria of LS but showing 

negative for tested predisposing mutations should be considered for further epigenetic 

testing to exclude constitutional epimutation that also predisposes to LS (76, 148). 

 

Currently, immunohistochemistry (IHC) analysis of four MMR proteins is recommended for 

all colorectal cancer cases and it can also be considered for the detection of Lynch 

syndrome among endometrial carcinomas (at least when diagnosed at an age of less than 

70 years) internationally (5, 149). Despite these recommendations, it is very clinic- and 

clinician-dependent, deciding which patients will be selected for genetic counseling and 

further IHC testing of the samples.  

 

 

Review of the Literature  



  

31 
 

4.2 Hereditary Breast and Ovarian Cancer Syndrome 

Tumor suppressor genes, BRCA1 and BRCA2, involved in the repair of a damaged DNA are 

the genes most often involved in hereditary ovarian cancer causing Hereditary Breast and 

Ovarian Cancer Syndrome (HBOC, OMIM #604370, #612555) and account for 

approximately 14% of the epithelial ovarian carcinomas, and 65 to 85% of all hereditary 

ovarian carcinomas (150-152). Mutations in BRCA1/2 predispose carriers to a high risk of 

breast and ovarian cancer but also other cancers such as prostate cancer in males. The 

cumulative risk for developing ovarian cancer before the age of 80 was recently estimated 

by Kuchenbaeker et al. (153) and found to be 44% in BRCA1 mutation carriers and 17% in 

carriers of BRCA2 germline mutation. Ovarian carcinomas diagnosed in these BRCA1/2 

mutation carriers are generally of the high-grade serous histological type, often an 

aggressive form of ovarian cancer which predominates in the general population as well 

(154).  

 

5 Ovarian and endometrial cancer 

5.1 Closely intertwined epidemiology of endometrial and ovarian carcinoma 

The epidemiology of endometrial and ovarian carcinoma is tightly entangled, including 

highly comparable risk factors as well as age and geography which are correlated with the 

incidence of cancer rates. Many factors, such as a late onset of first menstruation, giving 

birth, breastfeeding and healthy weight reduce the risk for both cancers. On the contrary, 

obesity, late onset of menopause, nulliparity, and heredity increase the risk for endometrial 

and ovarian carcinomas. All these factors contribute to hormonal levels (especially the 

estrogen and progesterone involved in these cancers) and to number of ovulatory cycles 

(155). 
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5. 2 Type I and type II ovarian and endometrial cancer  

Histopathological and epidemiological characteristics underlie the clinical outcome and 

divide both ovarian and endometrial cancer into two major types, designated as type I and 

type II. Tumors of both endometrial and ovarian origin belonging to the type I category as 

being highly similar to each other (156, 157). The differences in genetic, epigenetic and 

gene expression profiles between type I and type II highlight the distinct origin and 

molecular pathways involved and may provide new ways to improve the prognosis due to 

the development of subtype specific treatments (157). The hypotheses of the endometrial 

and ovarian tumorigenesis of type I and II are demonstrated in Figure 4.  

 

Approximately 80 to 85% of all endometrial carcinomas belong to type I category, which 

consists of tumors with low-grade endometrioid histology, that are associated with an 

intense estrogen expression (158), often have a good prognosis, and generally develop 

through hyperplastic endometrial lesions (159). Type II tumors, on the other hand, mainly 

display a serous and clear cell histology, are likely to originate from atrophic endometrium 

and typically have a poor prognosis after their diagnosis (160).  

 

Type I ovarian cancers mainly comprise low-grade serous, low-grade endometrioid, clear 

cell and mucinous carcinomas, whereas high-grade serous is the main histology of type II 

tumors. Type I ovarian tumors typically grow slowly and are thought to originate from 

endometriosis or borderline tumors (157, 161) whereas type II tumors are often aggressive 

and are likely to originate from precursor lesions in fallopian tubes or endosalpingiosis 

(162). In comparison to endometrial type I tumors, which account for the majority of all 

endometrial carcinomas, high-grade serous are the most common histological type and are 

responsible for approximately 70% of all epithelial ovarian tumors (163).  

 

Endometrial and ovarian type I tumors often have mutations in ARID1A, KRAS/BRAF, 

PIK3CA, PTEN, and CTNNB1 (67, 114, 164-166). MSI is a rare feature in normal endometrial 

tissue, but a common finding (13 to 30%) in endometrial carcinoma as well as in preceding 
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hyperplastic tissues, as well as in ovarian type I carcinomas (10%) of sporadic origin (67, 

167-170). Type II endometrial and ovarian tumors frequently harbor mutations in p53 and 

are chromosomally unstable (67, 114, 157, 166). 

 

Figure 4. Hypothesis of endometrial and ovarian tumorigenesis.  
 

5.3 Ovarian cancer 

In the United States, there were 22 440 new ovarian carcinoma cases and 14 080 deaths 

expected in 2017 (171). The early signs of ovarian carcinoma are typically mild and at the 

time of diagnosis, already around 75% of ovarian carcinomas have spread out of the ovaries 

leading to the high fatality rate. Most of the women diagnosed with ovarian cancer die of 

this disease (163).  

 

Ovarian cancer is a highly diverse disease comprising of variable tumors and histological 

cell types within the tumors, which complicates the treatment of ovarian cancer. More than 

95% of ovarian tumors are epithelial, but there are also germ cell and sex cord stromal cell 

tumors. Epithelial ovarian carcinomas are principally classified by the cell type in the tumor 
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into serous (high-grade 70%, low-grade 5%), endometrioid (10%), clear cell (10%) and 

mucinous (3%). The main four histological types of ovarian cancer are shown in Figure 5. In 

addition, undifferentiated and non-malignant borderline ovarian tumors exist (163). It is 

acknowledged that the different histological subtypes are separate entities and should be 

considered as distinct diseases, since they have different clinical presentations, responses 

to treatment, and overall outcome. However, at present, epithelial ovarian cancer is 

treated as a single disease. This is partially attributable to the lack of knowledge of the 

driver molecular events behind each disease. Nonetheless, it is vital to learn more about 

the molecular mechanisms and detect drivers if we are to establish novel and individual 

treatments against all types of ovarian cancer. Other obstacles in the treatment of ovarian 

cancer are the absence of reliable markers for early detection and the acquisition of 

chemoresistance as  treatment progresses (172).  

 

 
Figure 5. The main four histological types of epithelial ovarian cancer. 
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Histology and tumor grade can be used to divide ovarian carcinomas into two different 

categories, namely Type I and Type II (as described above in Chapter 5.2) (157). 

Additionally, ovarian carcinomas are classified into four stages according to the 

International Federation of Gynecology and Obstetrics (FIGO) staging system. The stage 

depends on the invasiveness of the cancer. Accordingly, in stage I, the tumor is confined to 

ovaries or fallopian tube(s), in stage II, the tumor involves one or both ovaries/fallopian 

tube with some pelvic peritoneal extension, in stage III, it has spread to the peritoneum 

outside the pelvis or metastasis to retro-peritoneal lymph nodes has occurred, and by stage 

IV, the metastasis is found in distal organs (173).  

 

5.3.1 Origin of ovarian cancer 

In 1872, Sir Spencer Wells claimed that epithelial ovarian cancer arises from ovarian surface 

epithelial cells and for more than a century, it was believed that the origin of ovarian cancer 

was in the ovary itself (174). But with the latest evidence, it has appeared that the origin 

and early steps of epithelial ovarian carcinoma development take place outside the ovaries. 

There is recent data suggesting that serous ovarian cancer originates from the fallopian 

tubes and endosalpingiosis whereas endometrioid and clear cell ovarian carcinomas 

originate from endometrioid epithelial cells through a process involving atypical 

endometriosis and/or borderline tumors (see Figure 4) (162, 175, 176). It still remains a 

mystery how endometriosis contributes to the development of endometrioid and clear cell 

types of ovarian cancer, but it has been speculated that repetitive damage and repair of 

endometriotic epithelial cells in their microenvironment abundant with free iron which 

induces the production of free radicals and leads to the abnormal growth of these cells 

(177, 178). Although, it has been acknowledged that endometrioid and clear cell ovarian 

carcinomas originate from atypical endometriosis, the importance of alterations in 

endometrial epithelia that contributes to endometriosis has been largely uninvestigated.  
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5. 3.2 Lynch syndrome associated ovarian cancer 

Lynch syndrome is the second most common cause of hereditary ovarian cancer after 

BRCA1/2 (causing HBOC syndrome) and is responsible for 8% to 13% of all hereditary 

ovarian cancers and up to 2 % of all ovarian carcinomas (179, 180). The lifetime risk of 

ovarian cancer in women with LS varies according to the mutation carried by the carrier 

and is 10% in MLH1, 17% in MSH2 and 1% in MSH6 carriers (181) and it occurs typically 

before menopause (7). LS-associated ovarian cancer differs from sporadic ovarian cancer 

in several ways both clinically and histologically. The mean age at diagnosis of ovarian 

cancer in female LS mutation carriers is 45 which is 15 to 20 years earlier than in patients 

with sporadic cases (182).  The histology of ovarian carcinomas is mainly non-serous 

(typically endometrioid or clear cell) and presents as well-differentiated and early stage 

tumors at the time of diagnosis compared to sporadic cases which are typically of serous 

histological type and displayed in advanced tumor stages (182). In addition, more than 20% 

of women with LS have a synchronous endometrial cancer at the time of ovarian cancer 

diagnosis in comparison to sporadic ovarian carcinomas where the frequency of 

synchronous tumors is less than 10% (183, 184). 

 

5.4 Endometrial cancer 

In the United States, it has been estimated that 61 380 new endometrial carcinoma cases 

and 10 920 deaths would occur in 2017 (171). Endometrial cancer is a heterogeneous 

disease from a histopathological standpoint. The vast majority of endometrial carcinomas 

have their origin in the endometrial lining called the endometrium and these cancers are 

referred to as adenocarcinomas. Furthermore, sarcomas exist, which arise mainly from the 

smooth muscle tissue or stromal cells of the uterus (160).  

 

5.4.1 Precursor lesions of type I endometrial cancer and its tumorigenesis 

Tumors of (low-grade) endometrioid histology and categorized as type I are believed to 

develop through hyperplastic lesions likely as a consequence of excessive estrogen 
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stimulation combined with inadequate progesterone levels (185). Endometrial hyperplasia 

means thickening of the endometrium, the lining of the uterus, caused by cellular 

overgrowth. Molecular alterations in KRAS, BRAF and PTEN, a high frequency of MSI, and 

hypermethylation of specific TSGs have been detected in endometrial hyperplastic lesions 

and seem to be early developments in endometrioid endometrial carcinogenesis (186-191).  

 

For 20 years, according to the World Health Organization 1994 (WHO94) and the revised 

WHO2003 schema, the differences in histological complexity of the glandular architecture 

(either simple or complex), the presence or absence of nuclear atypia (atypical and non-

atypical), and the risk of precursor progression into cancer, have been used to divide 

hyperplasias into four categories, namely simple and complex non-atypical as well as 

simple and complex atypical hyperplasia (159, 192-194). Based on several publications, the 

risk of atypical endometrial hyperplasia to progress into carcinoma has been estimated as 

being up to 30%, and therefore these are currently seen as precursor lesions of endometrial 

carcinoma (190, 192). According to these results, in 2014 the WHO decided to classify 

tumors into two categories, namely non-atypical and atypical hyperplasia, and this 

classification is based only on nuclear atypia (WHO2014) (195). This WHO2014 schema is 

currently recommended to be used on categorizing of hyperplasias in Finland. 

 

The categorization of endometrial hyperplasia is not universal and in addition to the 

WHO2014, another schema for endometrial atypical hyperplasia classification exists, 

referred to as endometrial intraepithelial neoplasia (EIN) (196). This schema, developed by 

the International Endometrial Collaborative group, takes into account the clonal origin of 

the lesions as well as all of the criteria and terminology that clearly divide atypical 

hyperplastic lesions into different categories that can be managed differently with a 

specific management protocol recommended for each category. This system classifies the 

precursor lesions into benign (non-atypical hyperplasias which are hormone-dependent 

and these changes are reversible), premalignant (atypical hyperplasias) and malignant 
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(carcinoma) according to the data emerging from histological, genetic, and clinical analyses 

(159, 185, 196, 197).  

 

At present, total hysterectomy (removal of uterus and cervix) is the standard method of 

treating atypical hyperplasia whereas hyperplasia without atypia is treated with 

medication in the majority of the cases (185). Too little is still known about the efficacy of 

the nonsurgical methods, such as progestin-based therapy of atypical hyperplasia, which is 

a desirable alternative in patients who wish to retain fertility and when surgery is not an 

applicable option for the patient (185). 

 

5.4.2 Lynch syndrome associated endometrial cancer 

Around 3 to 5 % of endometrial carcinomas are likely caused by inherited predisposition 

with LS being responsible for most of these cases (198, 199). Moreover, around 10% of all 

early-onset (under age 40) endometrial carcinomas are diagnosed with a deleterious LS 

causing mutation (200). The cumulative incidence of endometrial carcinoma in female LS 

mutation carriers ranges from 43% to 57% depending on the type of mutation (181). 

Compared to the general population, LS-associated endometrial cancer occurs in younger 

women (mean 50 years vs. 68 years), typically before menopause, most (~90%) LS-

associated endometrial carcinomas have an endometrioid histology belonging to type I 

carcinomas (201), and a lower uterine segment involvement is detected in up to 29% of the 

cases compared to less than 5 % in sporadic cases (202). In addition, over 90% of the LS-

associated cases show MSI (203).  There are conflicting results whether the Lynch-

associated endometrial cancer has a worse prognosis compared to the respective sporadic 

cases (204). 

 

The identification of defective MMR system among endometrial carcinoma patients is 

important, because it may enhance prognostication, it can help in guidance of targeted 

therapy and it improves the identification of LS patients (205). It is still a matter of debate, 

whether all endometrial carcinomas should be tested with IHC of MMR proteins. 
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Eventually, as the cost and feasibility of sequencing will become reasonable, all 

endometrial carcinoma cases will be sequenced to detect mutations in the MMR genes. 

Until that day, if resources permit, IHC will become the primary method to detect abnormal 

MMR protein expression in laboratories and hospitals (140). 
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AIMS OF THE STUDY 

In addition to the MMR defects, little is known about the molecular background of LS-

associated ovarian carcinoma. Moreover, molecular changes prior to endometrial and 

ovarian cancer and the sequence of events leading to their appearance remain unsolved. 

The aim of the thesis projects was to identify genetic and epigenetic alterations involved in 

LS-associated and sporadic ovarian and endometrial tumorigenesis. 

The specific aims were: 

 

1. To identify epigenetic, genetic and gene expression alterations in LS-associated and 

sporadic ovarian cancer (I-III) 

2. To investigate epigenetic mechanisms in ovarian tumorigenesis and in particular,  

to discern differences and reveal similarities between LS-associated and sporadic 

ovarian cancer as well as between different histological types of ovarian cancer (II) 

3. To determine the molecular changes that precede endometrial and ovarian cancer 

(III) 
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MATERIALS AND METHODS  

1 Cell lines (II-III) 

Commercial cell lines (endometrial and colorectal cancer cell lines purchased from 

American Type Culture Collection, ATCC, Rockville, USA and ovarian cancer cell lines 

provided by R. Bützow who was involved in all thesis projects) were used in optimization 

and validation of custom MS-MLPA test (specified in section 6.2) as well as in the epigenetic 

drug treatments to detect methylation consequences (specified in section 6.3.1). The DNA 

from cell lines was extracted using the method described by Lahiri and Nurnberg (1991) 

(206). 

 

2 Patient samples (I-III) 

For the studies I and II, all available LS-associated ovarian carcinomas and their respective 

normal samples were identified from the nationwide Hereditary Colorectal Cancer Registry 

of Finland, followed by collection of all available archival FFPE samples. In the third study, 

we took advantage of a surveillance program against gynecological carcinoma which has 

been offered to women with LS in Finland since 1996. Thus, additional newly diagnosed 

cases of LS-associated ovarian cancer as well as all patients diagnosed with endometrial 

carcinoma and/or endometrial hyperplasia and their consecutive aspiration biopsies from 

this surveillance program were identified from the registry and collected. Sporadic samples 

of ovarian (207) and endometrial carcinoma (208), endometrial hyperplasias (189)(and 

original Publication III), reference normal endometria (189, 209) and fallopian tubes (n=22) 

(used in thesis studies I and II) representing histological types common in LS carriers were 

collected from larger sporadic cohorts and studied for comparison. The number of 

specimens included in studies are given in Table 3. For more information of the tumor 

characteristics, please see original publications I-III. A four category system for the 

classification of hyperplasias (simple hyperplasia, SH; simple atypical hyperplasia, SAH; 

complex hyperplasia without atypia, CH; and complex hyperplasia with atypia, CAH) 
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according to WHO2003 (194) was applied for interpretation of hyperplasias because that 

same categorization was being used at the time of diagnosis.  

Table 3. Number of specimens of Lynch and sporadic used in studies.  

 
 
All patient material consisted of FFPE tissue archived in blocks, which had been cut into 4 

μm sections with a microtome, stained with hematoxylin and eosin for visual inspection. 

Areas with over 60% tumor cell coverage were chosen and manually microdissected for 

DNA extraction which was performed according to the customized protocol devised by 

Isola et al. (210). All ovarian and endometrial tissue material was reviewed by a 

gynecological pathologist at the time of diagnosis, and the diagnosis was further re-

evaluated by a collaborator (Bützow R.) when samples were collected.  

 

The studies were approved by the Institutional Review Boards of the Departments of 

Surgery (466/E6/01) and the Obstetrics and Gynecology (040/95) of the Helsinki University 

Central Hospital (Helsinki, Finland) and the Jyväskylä Central Hospital (Jyväskylä, Finland) 

(Dnro 5/2007). The archival specimen collection was approved by the National Authority 

for Medicolegal Affairs (Dnro 1272/04/044/07, original publications I and II) and the 

National Supervisory Authority for Welfare and Health (Valvira/Dnro 

10741/06.01.03.01/2015, original publication III). 

 

A detailed description of patient materials and cell lines as well as methodology used in 

thesis, including information primers and probes, can be found in the original publications 

I-III. A summary of the methods included in the publications see Table 4. 

Ovarian 
cancer

Endometrial 
cancer

Endometrial 
hyperplasias

Normal 
endometrium

Lynch
I 20 − − 49

II 19 − − 7
III 23 35 56 99

Sporadic
I 87 − − 18
II 84 − − 18
III 87 36 76 38
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Table 4. Summary of methods included in thesis.  

 
 

3 Protein expression by immunohistochemistry (I, III) 

Immunohistochemistry (IHC) was used to analyze the protein expression status of the 

specimen. At the beginning of IHC of each protein analyzed, the 4μm FFPE tissue sections 

were deparaffinized with xylene and dehydrated with graded alcohols. After antigen 

retrieval, tissue slides were counterstained with hematoxylin (Mayers HTX, Histolab), 

dehydrated, cleared in xylene, and mounted. IHC was carried out on individual whole-slide 

sections from LS-associated cases and on tissue microarray (TMA) slides containing 

sporadic ovarian and endometrial carcinomas. The slides were scored by two investigators 

and pathologists specialized in gynecology (Bützow R. and Pasanen A.). 

 

3.1 p53 protein (I) 

Expression of p53 protein was analyzed using ultraView Universal DAB Detection Kit with 

Cell Conditioning Solution (CC1, Ventana Medical Systems INC, Tucson, AZ). Anti-p53 

(1:200; clone DO-7, Dako, Glostrup, Denmark) was used as the primary antibody. The 

expression of p53 was regarded as abnormal by two distinct expression profiles; (1) if over 

50% of tumor nuclei were strongly stained indicating overexpression and (2) if expression 

was completely lost but stromal cells stained positive indicating silencing of p53.  

Method Publication
Processing of FFPE samples for DNA extraction and IHC I-III
DNA extraction and quantification I-III
RNA extraction and quantification I
Primer design and DNA sequencing I-III
Mutational analyses I
Single-strand conformation poymorphism analysis (SSCP) I
RNA profil ing by microarray I
Identification of patients with OvCa, EnCa and endometrial hyperplasia from hereditary CRC 
registry of Finland and collection of samples nation-wide

III

Microsatellite instability (MSI) analysis I-III
Immunohistochemistry (IHC) I, III
DNA bisulphite conversion II-III

DNA bisulphite sequencing II-III

Methylation-specific multiplex l igation-dependent probe amplification (MS-MLPA) I-III
Statistical analyses I-III
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3.2 ARID1A and L1CAM proteins (III) 

PT-Module (Lab Vision, CA, USA) was performed for antigen retrieval at 98C°/20 minutes 

using Envision TM Flex Target Retrieval solution, pH 6.1 for ARID1A and pH 9 for L1CAM 

(Agilent technologies, USA). The following antibodies were used: Covance SIG-39110-200 

produced in mouse for L1CAM (1:40 for 20 minutes, CD171, clone 1E11, Covance) and anti-

ARID1A antibody produced in rabbit for ARID1A (1:200 for 20 minutes, HPA005456, 

polyclonal, Lot D104841, Sigma-Aldrich, USA). Autostainer 480 automated immunostainer 

(Lab Vision, CA, USA) was used for staining. Examples of expression and scoring are shown 

in Figure 6.  

 
Figure 6. Examples of normal and abnormal IHC results of ARDI1A and L1CAM proteins. A, ARID1A 
is positive/normal in all nuclei and B, negative/abnormal when there is no nuclear staining of the 
tumor cells but stromal cells show positive expression functioning as an internal control. C, 
Membranous L1CAM staining of cells is scored as negative/normal when less than 10% of tumor 
cells express L1CAM and D, positive/abnormal when more than 10% of tumor cells express L1CAM. 
 

3.3 MMR genes (I, III) 

Whole-slide and TMA sections were immunohistochemically stained with mouse primary 

antibodies detecting MLH1 (anti-MLH1, 1:40, clone G168-15, BD Biosciences/Pharmingen, 

Erembodegem, Belgium), MSH2 (anti-MSH2, 1:60, clone FE11, Calbiochem/Oncogene 
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Research, Darmstadt, Germany), MSH6 (anti-MSH6, 1:60, clone 44/MSH6, BD Biosciences) 

and PMS2 (anti-PMS2, 1:400, clone A16-4, BD Biosciences). MMR expression was regarded 

as negative/abnormal when there was no nuclear staining of tumor cells and the internal 

control (typically stromal cells, tumor infiltrating lymphocytes or endothelium) displayed a 

positive expression. Negative immunostaining of the tumor tissue was interpreted to 

indicate the inactivation of the particular MMR gene. 

 

4 Microsatellite instability (MSI) analysis (I, III) 

MSI was analyzed by DNA fragment analysis using polymerase chain reaction (PCR) with 

mononucleotide repeat markers BAT25 and BAT26. These MSI-markers are sensitive and 

specific and have been shown to define the MSI-status with high accuracy (211, 212). 

Products labeled with fluorescent dyes were sequenced with ABI 3730 Automatic DNA 

Sequencer and GeneMapper 4.0 and 5.0 softwares (Applied Biosystems) were obtained for 

visual interpretation of results. Samples with stable repeat markers were interpreted as 

microsatellite stable (MSS), whereas those with at least one unstable repeat marker was 

considered as MSI.  

 

5 Mutation analysis 

5.1 KRAS, BRAF and PIK3CA (I, III) 

Known hotspot mutations in KRAS, BRAF and PIK3CA were analyzed by exon-specific DNA 

sequencing. Before sequencing, all gene products were amplified by PCR. The primer 

sequences and PCR protocol are described in original Publication I. The PCR products were 

sequenced with ABI 3730 Automatic DNA Sequencer (Applied Biosystems) using BigDye 

Terminator v.3.1 chemistry.    

5. 2 Single strand conformation polymorphism (SSCP) analysis (I) 

SSCP analysis allows two sequences of identical length to be distinguished from each other 

on the basis of their distinct conformations in gel electrophoresis (213). Thus, all the 
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samples identified as positive for the KRAS mutation by sequencing were further 

investigated by SSCP analysis to verify the mutational status against positive reference 

samples carrying known KRAS mutations. Sample DNA amplified in PCR was separated on 

a polyacrylamide gel accompanied with 1 x MDE Gel Solution (Cambrex BioScience 

Rockland Inc., ME, USA) at 3W for 20 hours followed by silver staining of the gel for visual 

detection of DNA. 

 

6 DNA methylation analysis (I-III) 

6.1 Bisulfite modification, direct bisulfite sequencing, and sequencing after 

cloning (II, III) 

Bisulfite modification and direct bisulfite sequencing was used as a method to select a 

representative region for the MS-MLPA probe design and to validate the methylation data 

obtained from a custom designed MS-MLPA test (original publications II and III). In brief, 

600ng of DNA from 13 cancer cell lines, normal colon and endometrial DNA (purchased 

from AMS Biotechnology, UK) as well as blood from a so-called healthy donor were bisulfite 

modified by using EZ DNA methylation Direct™ Kit (Zymo research, CA, USA) following the 

manufacturer´s instructions (version 1.0.7). Bisulfite modification refers to treating of DNA 

with sodium bisulfite (NaHSO3) which deaminates unmethylated cytosine nucleotides 

converting them into a uracil nucleotide, whereas methylation protects cytosine from 

conversion and leaves it intact (214). The MethPrimer-program (215) and manual designing 

when appropriate were used to build bisulfite primers for selected ovarian and endometrial 

cancer related gene promoters. The detailed characteristics of primers and PCR protocol 

can be found in original Publication II. The PCR products were sequenced with Applied 

Biosystems ABI3730 Automatic DNA Sequencer. 

 

Bisulfite sequencing was additionally used after cloning of bisulfite-converted and PCR 

amplified fragment (SFRP2 was used as an example) to prove the quantitative nature of 

MS-MLPA test (see original publication II). PCR amplification products of SFRP2 gene from 
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five cancer cell lines and normal colon and endometrial samples representing distinct types 

of methylation statuses were cloned into Escherichia coli bacterial cells in pCR2.1 TOPO 

vector by utilizing the TOPO TA Cloning System (Invitrogen, USA). After cloning, all 

produced white bacterial colonies were collected, DNA was extracted and sequenced with 

bisulfite sequencing primers. The methylation status of the HhaI restriction site (GCGC) 

chosen to be included in MS-MLPA probe was analyzed for each clone and interpreted as 

either methylated or unmethylated to determine the proportion of methylated DNA. 

Methylation dosage ratio (Dm) values between clones and the MS-MLPA result of SFRP2 

were concordant.   

 

6.2 MS-MLPA (I-III) 

All methylation data produced from patient samples was conducted by methylation-

specific multiplex ligation-dependent probe amplification (MS-MLPA) test (Figure 7), first 

introduced by Nygren et al. in 2005 (216).  MS-MLPA test is based on probes that contain a 

restriction site (GCGC) for the methylation-sensitive endonuclease HhaI (Promega, USA), 

which binds to the unmethylated CpG dinucleotide of a GCGC site and subsequently digests 

the site. If the GCGC is methylated, then the site stays undigested and will generate a signal 

peak in PCR. All MS-MLPA analyses involving TSGs were conducted according to the 

manufacturer´s protocol (217) using 100 to 250ng of DNA extracted from FFPE samples. 

The PCR products were separated by capillary electrophoresis performed with ABI 3730 

Automatic DNA sequencer (Applied Biosystems, USA) and analyzed by GeneMapper 4.0 

and 5.0 genotyping software (Applied Biosystems). For each sample analyzed, the MS-

MLPA method produces a Dm-value which is calculated as described in Gylling et al. (218). 

The Dm-value varies between 0 and 1 corresponding to the frequency of methylated DNA 

in the specific GCGC site analyzed.  
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Figure 7. General outline of the MS-MLPA method. The probe targeting a specific gene promoter 
consists of two oligonucleotides (left and right oligo probes, LPO and RPO), each probe containing a 
universal primer sequence (black), a hybridizing sequence (blue), and a stuffer sequence (green) 
when needed. A, the method starts with denaturation of DNA and hybridization of the probes to 
their target sequences. B, ligation and digestion are performed in two tubes: The first tube both 
ligation and digestion take place whereas in the second tube only ligation reaction is carried out (not 
shown in the figure). In the first tube, only the probe pairs that target a methylated GCGC site will 
ligate, since the HhaI restriction enzyme does not recognize and digest the site. If the target site is 
unmethylated, HhaI enzyme will digest the site and the LPO and RPO will not be ligated. C, only 
ligated probes are exponentially amplified in subsequent PCR and show as peaks in the 
electropherogram. Black dots indicate the reference probes, that do not contain HhaI restriction site 
and will be amplified and generate a peak in ligated and digested reactions. A star indicates the 
target DNA sequence and shows a peak in the digested sample only when the target DNA is 
methylated. 
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Commercial MS-MLPA test (SALSA ME001-C2 Tumour suppressor 1, MRC Holland, The 

Netherlands) was applied to analyze methylation patterns of 24 general tumor suppressor 

genes (TSGs) (219) often known to be methylated in several cancer types. The threshold 

Dm-value of 0.15 or above was considered to represent methylation as previously 

described (218) for all commercial TSGs except for CDKN2B (Dm cut-off = 0.34), which was 

noticed by MRC-Holland to give higher values than expected.  

 

A custom MS-MLPA test was designed to detect abnormal methylation of 11 TSGs and two 

miRNA genes (genes specified in original publication II) often methylated in endometrial 

and ovarian cancer. The methylation patterns of CpG islands in promoters of selected genes 

containing a GCGC site were first investigated by bisulfite sequencing of cancer cell line and 

normal sample DNA followed by designing of custom MS-MLPA probes that were optimized 

according to the results obtained from bisulfite sequencing to target representative HhaI 

restriction sequences (GCGC) and by bacterial cloning of SFRP2 gene as described briefly 

above and more detailed in original publication II. The custom MS-MLPA probes were 

designed following the instructions from MRC Holland (217). CpG islands of selected genes 

were detected using EMBOSS CpG Plot software (220). Custom probes were combined with 

SALSA MLPA kit P-300-B1 human DNA reference-2 (221) to carry out MS-MLPA reactions. 

Since the baseline level for methylation that distinguishes tumor from normal depends on 

the normal tissue as well as probe analyzed, the thresholds for methylation were calculated 

individually for each endometrial and ovarian cancer related gene (see original Publications 

I and III). In brief, the thresholds for each gene were calculated separately for LS-associated 

and sporadic case according to average methylation levels in normal endometrium (for 

comparison of non-serous samples) and in fallopian tubes (for comparison of serous 

samples) plus 1 standard deviation. 

 

6.2.1 LINE-1 hypomethylation analysis (I) 

A custom-made MS-MLPA test designed by Pavicic et al. (222) was used to measure 

hypomethylation from LS-associated ovarian carcinomas and their respective normal 
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samples when available as well as from sporadic ovarian carcinomas by using 50 to 100 ng 

of FFPE DNA. This custom MS-MLPA test contains three LINE-1-specific probes with HhaI 

restriction site and is combined with the SALSA MLPA kit P300-A1 Human DNA Reference-

2 (221). The test was carried out following the customized standard MS-MLPA protocol, 

defined by Pavicic et al. (222).  

 

6.3 Expression based methods 

6.3.1 Cell culturing and epigenetic drug treatments 

Gene expression can be regulated by epigenetic modifications, such as DNA methylation 

and histone acetylation. Chemical agents, 5-aza-2'-deoxycytidine (5-aza-dC) and 

trichostatin A (TSA) can be used to modify these epigenetic alterations and change the 

regulative stage of a protein. 5-aAza-dC functions as a strong inhibitor of methyltransferase 

causing demethylation and reactivation of epigenetically inactivated genes (223). TSA, on 

the other hand, inhibits HDAC activity and leads to an opening of the chromatin structure 

(224, 225). 5-Aza-dC and TSA have been reported to exert a synergistic effect in the re-

activation of expression of genes epigenetically silenced by methylation (226, 227). 

Therefore, both chemical agents were used in order to achieve the highest possible 

reactivation state of genes silenced by promoter methylation and further to confirm the 

methylation consequences of selected genes.  

 

Different cell lines were chosen for treatments to serve as models for different types of 

carcinomas and MMR status. The cell lines were cultured as described in the supplier´s 

instructions (ATCC, Rockville, MD, USA) and then treated according to protocol by Derks et 

al. (228) with 5-aza-dC (1μM, Sigma, A3656) and TSA (300nM, Sigma, T1952) for 96h and 

18h, respectively. All drug treatments were done in duplicate to verify the effect of the 

treatment on the cell line. After treatments, the cell line DNA was extracted using the 

standard protocol by Isola et al. and total RNA was isolated with miRNeasy mini kit (Qiagen, 

CA, USA). The performance of drug treatments was verified by comparing the results before 
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and after treatment by investigating the promoter methylation of selected TSGs using 

SALSA MS-MLPA ME001-C1 (219) test.  

6.3.2 Genome-wide RNA expression profiling of cell lines (I)  

Genome-wide mRNA gene expression analysis was accomplished using Affymetrix Human 

Genome U133 plus 2.0 GeneChip® microarrays (Affymetrix, Santa Clara, CA) whereas 

miRNA expression was analyzed using Agilent´s human miRNA microarrays (8 x 15 K, Agilent 

Technologies, G4470B). RNA isolated from treated and untreated cell lines as well as 

respective normal samples (Amsbio, Abingdon, UK or extracted from fresh-frozen tissues 

obtained from national hospitals) were amplified, labeled and hybridized as characterized 

in Nymark et al. (229). Array image and fluorescent signals were analyzed using GeneChip 

operating software (from Affymetrix) for mRNA data whereas fluorescent signal intensities 

from miRNA expression array were calculated according to the Feature Extraction software 

(version 10.7.3.1, Agilent). 

Microarray data analysis was carried out by GeneSpring GX software, version 12 (Agilent 

Technologies, Santa Clara, CA) for both mRNA and miRNA expression. The following 

parameters were established to evaluate distinct mRNA and miRNA expression patterns 

between treated and untreated cell lines and normal samples: (1) mRNA expression was 

RMA normalized whereas quantile normalization was used for miRNA data, (2) the 

statistical significance of gene expression changes was identified by moderated t-test 

integrated with Benjamini and Hochberg correction for multiple testing and (3) filters based 

on p-value cut-off of 0.05 and fold change cut-off +/-1.5 were chosen to identify distinct 

expression. 

 

7 Statistical analyses (I-III) 

Statistical evaluations were performed using SPSS software, versions 20.0 and 22.0 (IBM® 

SPSS® Statistics, Inc. Chicago, IL, USA) as well as using Vassarstats programs (230). Fisher´s 

exact test was applied to calculate frequency data in pairwise comparisons of gene 
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expression status as well as MMR status (two-tailed P-values) and adjusted for multiple 

comparisons by Bonferroni correction when appropriate. Comparisons between two 

groups involving Dm-values of specific genes or numbers of methylated genes, Shapiro-

Wilk test was implemented first to test if the data were normally distributed. Student´s T-

test was applied for normally distributed samples and Mann-Whitney U test for samples 

not normally distributed. The non-parametric Kruskal-Wallis test with pairwise 

comparisons was applied when analyzing statistical significance of methylation changes 

between multiple categories of endometrial specimens. Kruskal-Wallis was chosen because 

either all groups did not reach the homogeneity of variances studied by Levene´s test or 

were not normally distributed. P values < 0.05 (2-tailed) were considered significant. 

Pearson product-moment correlation coefficient for normally distributed (tested by 

Shapiro-Wilkins test) data and Spearman rank correlation coefficient for data not normally 

distributed was applied to test statistical significance between methylation and expression 

correlation.  The detailed description of statistical analyses used for gene expression data 

are depicted above in section 6.3.2. 
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RESULTS 

1 Novel molecular profile of Lynch syndrome associated ovarian cancer (I-III) 

At the beginning of this thesis project in 2011, rather little was known about the exact 

molecular background of LS-associated ovarian cancer and in general, the origin of ovarian 

cancer was just starting to be revealed. The clinical and histological differences between 

LS-associated and sporadic ovarian cancer had been acknowledged but the underlying 

genetic and epigenetic causes of these differences other than MMR defects remained a 

mystery. It was particularly interesting to examine whether there are molecular differences 

that can explain the better survival of ovarian cancer in LS-associated versus sporadic 

ovarian cancer (183). Prompted by this lack of knowledge, we decided to investigate 

established genetic and new epigenetic markers involved in ovarian cancer from LS-

associated ovarian carcinomas and compare results to cases from sporadic cohorts with 

corresponding histological types. Among the genetic markers studied, there were the 

known hotspot mutation sites from KRAS, BRAF, and PIK3CA which were identified by exon 

specific sequencing, whereas immunohistochemistry (IHC) was used to detect aberrant 

protein expression of the MMR, p53, ARID1A, and L1CAM genes. Additionally, MSI analysis 

was carried out to verify the MMR status and to detect MMR deficient cases missed by 

MMR IHC. Epigenetic analysis was carried out by investigating promoter methylation of 37 

TSGs shown to be involved in tumorigenesis. 

 

All available cases with ovarian cancer were identified from the nationwide Hereditary 

Colorectal Cancer Registry of Finland and collected as part of the project. Overall, 14 cases 

of endometrioid and 9 cases of clear cell ovarian carcinomas were collected from 22 MMR 

mutation carriers and the results were compared to 39 and 28 cases of clear cell and 

endometrioid type of ovarian cancer, respectively, from sporadic cases. Additionally, LS-

associated cases included two serous cases (one low- and one high-grade). For comparison 

of the results from carcinomas, 18 normal unrelated endometrial samples (the expected 

origin of endometrioid and clear cell ovarian carcinomas) were analyzed. The sporadic high-
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grade serous category was included in the analysis in original Publications I and II. The next 

sections will concentrate on the findings from non-serous (endometrioid and clear cell) 

histological types of ovarian cancer, which are the prevalent histological types among LS 

mutation carriers.  

 

1.2 Genetic profile of Lynch syndrome associated ovarian cancer (I, III) 

1.2.1 Deficient MMR status is a key feature of ovarian carcinomas from Lynch mutation 

carriers (I-III) 

Lynch patients inherit one inactive allele of a MMR gene (or EPCAM gene in rare cases). 

One inactive gene copy in all of the cells of an individual´s body predisposes the individual 

to a high risk of cancer. However, in order for tumor development to start, a second 

somatic alteration of the other parental allele needs to occur in the target tissue (140). 

Deficient MMR status of a sample marks inactivation of the wild type allele by somatic 

alteration. Accordingly, we regarded MMR status deficient if MSI was found by 

microsatellite analysis, or a loss of MMR protein expression detected by IHC, or both. 

Deficient MMR is a key feature of LS-associated ovarian carcinomas but also a common 

characteristic of type 1 ovarian cancer of sporadic origin (231). All (23/23, 100%) LS-

associated type I ovarian carcinomas were MMR deficient (see Figure 8 and 9). In sporadic 

ovarian carcinomas, MMR-deficiency was detected in 14% (4/28) of endometrioid and 15% 

(6/39%) of clear cell ovarian carcinomas. The difference was statistically significant 

(P<0.001) between LS and sporadic cases of corresponding histological types. 
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Figure 8. Frequencies of abnormal status of p53, MMR, ARID1A, and L1CAM expression in LS-
associated versus sporadic type I ovarian cancer. Abbreviations: OvE, endometrioid ovarian cancer; 
OvCC, clear cell ovarian cancer. 

 
1.2.2 p53, ARID1A and L1CAM expression profiles in LS-associated ovarian cancer (I, III) 

A TSG p53 is often abnormally expressed in several cancer types and is a typical feature of 

type II (mainly high-grade serous) ovarian carcinomas (114). Normal expression of p53 was 

detected in all LS-associated endometrioid (12/12) and clear cell (7/7) ovarian carcinomas 

whereas abnormal expression was present in 30% (8/27) of endometrioid and 18% (7/39) 

of clear cell ovarian carcinomas of sporadic origin as demonstrated in Figures 8 and 9. 

When endometrioid and clear cell histological types were combined and the results were 

compared between LS (0%, 0/19) and sporadic cases (23%, 15/66), sporadic cases showed 

a significantly higher frequency of aberrant p53 expression (P=0.035) in non-serous tumors. 
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ARID1A, a tumor suppressor and a subunit of SWI/SNF chromatin remodeling complex, is 

often mutated in type 1 ovarian tumors, irrespective of MMR-status (114, 232). 

Surprisingly, LS-associated ovarian carcinomas revealed an exceptionally high frequency of 

aberrant ARID1A expression. All LS-associated clear cell (9/9) and 86% (12/14) of the 

endometrioid ovarian carcinomas had lost their ARID1A expression which was in striking 

contrast to sporadic cases where ARID1A expression was absent in none of the clear cell 

(0/39) and in only 11% (3/28) of the endometrioid ovarian carcinomas. The differences 

between different histological types of LS and sporadic ovarian tumors of corresponding 

histological types were significant (P<0.001) as shown in Figure 8. 

 

Overexpression of L1CAM is connected to invasion and metastatic potential in cancer and 

aberrant expression of L1CAM has been detected in endometrial and ovarian cancer by 

several studies (233-237). Compared to the high prevalence (86% – 100%) of aberrant 

ARID1A expression and MMR defects in LS-associated ovarian carcinomas, L1CAM 

aberrations were less frequent. L1CAM overexpression showed the highest frequencies in 

ovarian clear cell carcinomas: 43% (3/7) in LS-associated and 26% (10/39) in sporadic clear 

cell ovarian carcinoma compared to 15% (2/13) and 18% (5/28) of endometrioid ovarian 

carcinomas in LS-associated and sporadic cases, respectively (A.N. et al. unpublished data). 

The differences between LS and sporadic cases were not statistically significant which in 

part may reflect the small sample series (Figure 8). Although, overexpression of L1CAM has 

been associated with a dismal prognosis in ovarian cancer (235) in a recent publication by 

Soovares et al. (207) the dismal prognosis was shown to be associated only with 

endometrioid but not in clear cell type of ovarian cancer. According to results from 

Soovares et al. (207) our finding of frequent L1CAM overexpression in LS-associated clear 

cell ovarian cancer is in agreement with the high survival  among LS-associated ovarian 

carcinomas (8, 183). Moreover, the only two endometrioid ovarian carcinomas that were 

detected with aberrant L1CAM expression were characterized as grade 2 carcinomas, thus 

showing a higher grade (A.N. et al. unpublished data). 
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Figure 9. Genetic profile of LS-associated vs. sporadic non-serous ovarian carcinomas. 
 

1.2.3 KRAS, BRAF and PIK3CA mutations in LS-associated ovarian carcinomas (I) 

Type I ovarian carcinomas often show mutations in KRAS, BRAF and PIK3CA genes (157, 

238). As a unique feature of LS-associated ovarian carcinomas, these completely lacked 

mutations in KRAS exon 2 and BRAF V600E. The BRAF mutations were also absent in 

sporadic endometrioid and clear cell ovarian carcinomas, instead KRAS mutations were 

detected in 11% (3/27) of endometrioid and 8% (3/37) of clear cell ovarian carcinomas as 

shown in Figure 9. The observed differences between LS and sporadic ovarian carcinomas 

did not reach statistical significance.  

 

PIK3CA mutations are detected in 20 to 40% of sporadic endometrioid and clear cell (non-

serous) but are rare in serous ovarian carcinomas according to the literature (239, 240). 

Our results were in agreement with previous findings from sporadic tumors: PIK3CA 

mutations were present in similar frequencies in LS-associated (6/19, 32%) and sporadic 

(24/67, 36%) non-serous ovarian cancer, but only in 5% (1/20) of sporadic serous ovarian 

carcinoma. Thus, hotspot mutations of PIK3CA seem to be a characteristic of non-serous 

histological type and common regardless of hereditary or sporadic background (Figure 9).  
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The lack of p53 expression aberrations and KRAS mutations but frequent detection of 

PIK3CA alterations agree with the good prognosis in LS ovarian carcinoma patients, since 

p53 abnormalities and KRAS mutations have been shown to associate with advanced stages 

and poor prognosis, whereas PIK3CA mutations which activate P13K/AKT/mTOR pathway 

are connected to a propitious prognosis in ovarian cancer (25, 239-241). In addition, our 

data resembled the genetic background of LS-associated colorectal carcinomas, which also 

have fewer p53 expression aberrations (242), BRAF mutations (243), better stage-specific 

survival compared to sporadic cases and also harbor PIK3CA mutations in approximately 

20% of the cases (137).  

 

1.3 Epigenetic profile of LS-associated ovarian cancer (I-III) 

In addition to genetic alterations, DNA methylation analyses (by MS-MLPA) were motivated 

as epigenetic changes provide fingerprints of cancer cell origins (244), are histology-specific 

(67), and likely to promote tumorigenesis in MMR deficient cells. Hypermethylation of TSG 

promoters and genome-wide hypomethylation are likely to drive tumorigenesis, since they 

arise in early steps of tumor development (83). Therefore, it is important to look deeper 

into the epigenetic changes and differences between different backgrounds and 

histological subtypes of ovarian carcinoma in order to enhance diagnosis, treatments and 

survival of the patients. 

 

1.3.1 Hypermethylation of specific gene promoters is a frequent event in LS ovarian 

tumorigenesis (I-III) 

A panel of epigenetic markers to study hypermethylation (13 endometrial and ovarian 

cancer related and 24 general TSGs often methylated in cancer) was chosen for sample 

profiling. In addition to commercial MS-MLPA assay including 24 TSGs often methylated in 

several cancer, we wanted to design a custom test including genes that would be more 

specific for endometrial and ovarian cancer. Briefly, gene candidates that would be highly 

informative epigenetic markers specifically for endometrial and ovarian carcinomas were 
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identified from the literature and by expression profiling of cancer cell lines treated with 

demethylating chemicals. After evaluation for the most informative markers, a custom MS-

MLPA test was designed to include 13 genes. The selected gene candidates fulfilled two 

key prerequisites: (1) Abnormal methylation at the gene promoter can be used as a marker 

of a malignant process based on literature and (2) methylation was shown to correlate with 

expression by expression profiling or by literature. MS-MLPA was chosen as a method to 

investigate promoter methylation, because it can be used to analyze low quality and 

fragmented DNA extracted from FFPE tissue blocks. Normal endometrial tissue specimens 

(18 non-related cases) were used as a reference. All promoters of genes included in the 

studies except the promoters of WT1 and CABLES1 (showing low levels of methylation in 

tumor and normal samples) as well as let-7-3a (oncogenic miRNA showing high methylation 

levels in tumor and normal samples) displayed a low degree of methylation in normal 

endometrial tissue and increased methylation levels in non-serous (endometrioid and clear 

cell) ovarian tumors. 

 

The highest hypermethylation frequencies were detected in genes RSK4, PROM1, and 

MIR34B in LS-associated clear cell ovarian carcinomas among all histological types and LS 

and sporadic origin. Moreover, LS-associated endometrioid ovarian carcinomas resembled 

those found in sporadic cases. RSK4, SPARC, PROM1, HOXA10, HOXA9, WT1-AS, SFRP2, 

OPCML, and MIR34B were frequently hypermethylated in LS-associated and sporadic 

ovarian non-serous tumors compared to normal endometrial tissue.  

 

LS-associated and sporadic endometrioid and clear cell ovarian carcinomas were combined 

for analysis of clinical correlations. One interesting finding was made according to grade 

analysis with endometrioid ovarian carcinomas, where Dm values of RSK4, SPARC and 

HOXA9 were shown to decrease together with increasing grade of tumors, showing a shift 

towards the characteristics of high-grade serous tumors (see original publication II for more 

information). Therefore, lower methylation levels among these three genes may predict a 
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more aggressive (high-grade) phenotype within endometrioid carcinomas which generally 

have a favorable prognosis (245). 

 

The same trend of high hypermethylation frequencies of selected genes in non-serous 

tumors of LS and sporadic background were observed when analyzing the methylation of 

24 general TSGs using commercial MS-MLPA test. Figure 10 demonstrates the methylation 

profiles of the TSGs most frequently methylated among Lynch-associated ovarian tumors 

compared to normal endometrium.  

 

Promoter methylation of TSGs has previously been shown to be a common feature of LS-

associated endometrial, colorectal, gastric, urinary tract, brain and breast tumors using the 

same commercial MS-MLPA assay (189, 218, 246-249). The former studies have highlighted 

that TSG promoter methylation levels and the average number of methylated genes are 

tissue specific, and additionally, hereditary background affects the methylation profile 

(246-248). Agreeing with results from other LS-associated tumors, methylation profiles of 

TSGs in ovarian carcinomas varied depending of the histological type of tumor and 

hereditary vs. sporadic origin. The most frequently methylated TSGs among 24 were APC, 

RASSF1, TP73, and CDH13 and hypermethylation of these genes appears to be a common 

feature of LS-associated and sporadic non-serous ovarian carcinomas. All these genes, 

except TP73 were also frequently methylated in LS-tumors of different types from other 

studies (189, 218, 246-249). Moreover, Strathdee et al. (250) detected hypermethylation 

of TP73 in sporadic ovarian carcinomas, but the frequencies were rather low (13%). 

Although the frequencies of hypermethylated promoters of TP73 and CDH13 were high in 

tumors, the frequencies were high in normal endometrial tissue of Lynch and sporadic 

origin as well, and therefore no significant differences were detected between tumor and 

normal tissue (see Figure 10). Since TP73 and CDH13 were often methylated already in 

normal endometrium from LS-associated cases, it may indicate that the promoters of these 

genes become hypermethylated and silenced early in ovarian (and endometrial) tumor 

development.  
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An interesting observation among LS-associated ovarian tumors, was the finding that LS-

associated ovarian carcinomas displayed the highest number of hypermethylated genes 

(4.2/24) and the lowest levels of LINE-1 hypomethylation (Dm=0.91) as compared to the 

results from all other LS-associated tumors collected from 8 different organs and analyzed 

using the same techniques (218, 222, 247, 248). These findings suggest that TSG 

hypermethylation is an important part of ovarian tumorigenesis, especially in LS. 

 

BRCA1 and BRCA2 are among the most investigated genes in ovarian cancer due to their 

important role in hereditary and sporadic types of the disease (150-152). Promoter 

methylation of BRCA1 is thought to be the cause for the loss of BRCA1 expression in 

sporadic ovarian cancer (251). Complete or partial silencing of the BRCA1 gene due to 

promoter methylation has been observed in 15% of ovarian tumors with a sporadic 

background and the methylation has been shown to be more frequent among advanced 

stages (II and III) and serous histological type of ovarian cancer than in stage I and non-

serous tumors (250, 252, 253). In contrast to BRCA1 methylation profile in ovarian cancer, 

BRCA2 does not seem to be differentially methylated in ovarian cancer compared to normal 

tissue (254). BRCA1 and BRCA2 were included in the 24 TSG panel, but no methylation in 

either of the gene promoters were detected among LS-associated or sporadic ovarian 

carcinomas of different histological types. Our sporadic series included a serous set of 

ovarian carcinomas (n=20) but no signs of methylation were detected in these carcinomas. 
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Figure 10. TSG methylation profiles of the most interesting methylation markers in LS-associated 
endometrioid and clear cell tumors vs. normal reference endometrial tissue. Cut-off Dm-values are 
gene-specific and can be found in original publications I and III. Only TSGs that showed methylation 
above its cut-off level in at least 35% of tumors of any histological group were included in this 
comparison. Asterisks denote significantly elevated methylation in tumor vs. normal endometrium 
by t-test for independent samples. 

 
1.3.2 Hypomethylation is not a feature of LS ovarian tumors (I) 

Decrease in methylation (hypomethylation) of highly repetitive sequences, such as LINE-1, 

may activate oncogenes and oncogenic microRNAs (98). Moreover, several studies have 

linked LINE-1 hypomethylation in hereditary and familial cancer (222, 255, 256), the level 

of LINE-1 hypomethylation can distinguish colorectal carcinoma subgroups (256), and it has 

been shown to arise early in ovarian carcinoma development (90). Motivated by these 

Results 



  

63 
 

findings, we wanted to investigate LINE-1 methylation levels in normal and tumor tissues 

from LS-associated and sporadic ovarian carcinoma patients by using custom MS-MLPA 

method designed by Pavicic et al. (222). LINE-1 is highly methylated in normal cells and 

often hypomethylated in tumor cells (96) and hypomethylation of this elements has been 

shown to increase in all histological types of ovarian cancer from normal tissue towards 

cancer (235, 257). However, in contrast to hypermethylation profiles, hypomethylation 

does not seem to differ among different histological types of sporadic ovarian cancer (258). 

Our findings of sporadic ovarian carcinomas are in line with the previous reports, since 

decreased methylation of LINE-1 compared to normal corresponding tissue was a 

characteristic of all histological types of sporadic ovarian cancer, and the differences 

between tumors of all histological types compared to the respective normal tissue were 

statistically significant. On the other hand, no decrease in the average level of methylation 

was detected between LS-associated ovarian endometrioid carcinomas (n=12, Dm=0.90) 

and corresponding normal endometrial tissue (n=49, Dm=0.90) and LINE-1 

hypomethylation was even increased in clear cell carcinomas (n=7, Dm=0.94) compared to 

normal tissue from LS mutation carriers. Thus, our results emphasize that genome-wide 

hypomethylation is a characteristic of sporadic ovarian cancers, whereas the absence of 

prominent hypomethylation of LINE-1 may be a feature of LS-associated ovarian 

carcinoma. The same observation was made later by Sahnane et al. (256).  
2 Molecular alterations in progressive endometrial specimens prior to 

endometrial and ovarian cancer (III) 

The molecular aberrations and the sequence of events that lead to endometrial and ovarian 

tumorigenesis are unknown. In order to investigate early steps in these cancers, we took 

advantage of a lifelong surveillance program against gynecological cancer provided since 

1996 in Finland (13) for women with LS. We collected all consecutive endometrial 

aspiration biopsy specimens, tumor tissue and respective (pre-malignant) hyperplastic and 

normal endometrial tissue from hysterectomy and salpingo-oophorectomy from patients 

identified with endometrial and/or ovarian cancer or endometrial hyperplasia as endpoint. 
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Altogether 213 samples were obtained from 66 LS mutation carriers and were 

supplemented with 197 histology-matched specimens from sporadic cohorts. The samples 

were examined using markers known to be involved in endometrial and ovarian 

tumorigenesis, including protein expression of ARID1A, L1CAM and MMR proteins, MSI 

analysis and TSG hypermethylation of the 24 general TSGs often methylated in cancer using 

commercial MS-MLPA tests (ME-001-C2) and additional 7 markers (RSK4, SPARC, PROM1, 

WT1, CABLES1, HOXA10 and HOXA9) often methylated in endometrial and ovarian cancer 

using custom designed MS-MLPA assay. 

 

Both LS and sporadic series of endometrial specimens revealed accumulation of genetic 

and epigenetic changes along with the increasing level of histological abnormality of 

hyperplastic lesions. Figure 11 demonstrates that loss of ARID1A expression and MMR-

deficiency were the most prominent genetic alterations, whereas increasing levels of TSG 

hypermethylation from low malignant potential to high malignant potential lesions 

illustrated epigenetic aberrations. Loss of ARID1A expression, deficient MMR and TSG 

hypermethylation were characteristics of early tumorigenesis, whereas L1CAM was not a 

particularly informative marker. The loss of ARID1A was detected already in one case of LS-

associated complex hyperplasia without atypia (CH) 25% (1/4), and appeared in 20% of 

cases with complex atypical hyperplasia (CAH) of LS (6/30) and sporadic (4/20) origin. Even 

earlier changes were MMR-deficiency and TSG promoter methylation which were detected 

already in histologically normal endometrium of LS-associated cases (Figure 11). The 

presence of MMR-deficiency in histologically normal endometrium in 12% (12/99) of LS 

specimens compared to 0% (0/38) of sporadic cases was a remarkable feature of LS (the 

difference was statistically significant between LS and sporadic, P=0.037). An analysis of 

consecutive endometrial samples showed that in a few cases, MSI was detectable several 

years before endometrial cancer (see LEC1, original publication III), ovarian cancer (LOC20, 

original publication III) or endometrial hyperplasia (LCAH5, original publication III). All the 

cases in which CAH was detected 1 to 9 years before ovarian or endometrial carcinoma 

diagnosis were MMR deficient (7/7 = 100%). Interestingly, also one case with CH (1/1) and 
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67% (2/3) of the patients with simple hyperplasia (SH) diagnosis 1-2 years before 

carcinoma, were shown to be MMR deficient. Thus, MMR deficiency in hyperplastic 

endometrial specimens may predict endometrial or ovarian tumor development in LS 

patients.  

 

 
 
Figure 11. Occurrence of ARID1A, L1CAM and MMR aberrations (upper panel) and average numbers 
of methylated endometrial and ovarian cancer related TSGs and 24 general TSGs (lower panel) in LS-
associated and sporadic endometrial specimens as part of progressive endometrial and ovarian 
tumorigenesis. Alterations in ARID1A, L1CAM and MMR in ovarian cancer are demonstrated in 
Figure 8. The number of samples studied in each category is given below the bar graphs. P-values by 
Fisher´s exact test for LS vs. sporadic comparisons test are indicated on the right. Only significant 
values are shown. Abbreviations: N/A, result not available; EnCa, endometrial carcinoma; OvCa, 
ovarian carcinoma. 
 
Another intriguing finding made by investigating endometrial progressive specimens from 

LS-associated and sporadic cases was that they could be divided into three categories 
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according to increasing abnormalities in ARID1A expression, MMR deficiency, and TSG 

promoter methylation, based on the significant differences between combined groups 

(detailed categorization explained in original publication III). The categories comprised of 

normal endometrium (NE) and simple hyperplasia (SH) (I), complex hyperplasia with (CAH) 

or without atypia (CH) (II), and endometrial cancer (III). The current classification devised 

by WHO2014 combines non-atypical SH and CH and treats them as non-neoplastic forms 

for endometrial cancer and only considers CAH (and SAH) as potential premalignant forms 

of endometrial cancer. In contrast to WHO classification, our analysis with different genetic 

and epigenetic markers, CH and CAH were molecularly indistinguishable.   

 

2.1 Molecular comparison of synchronous LS-associated endometrial and 

ovarian carcinoma specimens (III) 

In approximately 20% (201, 259) of LS-associated and 5 to 10% of sporadic cases (260, 261), 

endometrial and ovarian carcinomas are diagnosed concurrently, raising the question of 

whether the two carcinomas arise independently as primary carcinomas or one is a 

metastasis of the other.  

 

Among the samples collected from LS mutation carriers with endometrial and/or ovarian 

carcinoma, 13 cases with synchronous carcinomas were identified. We utilized this unique 

synchronous sample set to investigate the relationship between ovarian and endometrial 

carcinogenesis in LS. In total, nine pairs of synchronous endometrial and ovarian 

carcinomas, 3 cases with bilateral (and synchronous) ovarian carcinomas and one 

synchronous case of endometrial and endocervical adenocarcinoma were identified. Figure 

12 illustrates the molecular findings case by case of the synchronous tumors. Synchronous 

carcinomas always shared identical MMR-status (13/13) and ARID1A expression when the 

result was available from both cases (11/11). Moreover, TSG hypermethylation profiles 

showed a high intra-pair concordance and an average of 4.4 (57/13) TSGs per synchronous 

tumor pair were concordantly methylated among 31 TSGs investigated. The most 
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frequently concordantly methylated TSGs among synchronous tumor pairs were CDH13 

(75%, 9/12), RSK4 (54%, 7/13), SPARC (46%, 6/13), HOXA10 (46%, 6/13), and RASSF1 (42%, 

5/12). Interestingly, the expression of L1CAM, an adhesion molecule involved in metastasis 

(235, 262), was abnormal in 6/14 (43%) of the carcinomas included in synchronous ovarian 

and endometrial tumor pairs, compared to 3/25 (12%) of independently arisen ovarian and 

endometrial tumors (P=0.047) (A.N. et al. unpublished data). Our molecular findings from 

synchronous gynecological tumors in LS mutation carriers strongly suggest that each pair 

has a shared origin with one tumor likely to arise as the metastasis of some other tumor.  
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2.2 Closely entangled pathways of endometrial and ovarian tumorigenesis (III) 

Molecular characteristics of endometrial hyperplasias preceding or coinciding with ovarian 

carcinoma from LS patients are shown case by case in Figure 13. In patients with 

endometrioid ovarian cancer CAH was diagnosed prior or concurrently with ovarian cancer 

in 50% (7/14) of the cases and in 22% (2/9) of the cases with clear cell ovarian cancer. The 

high extent of similarity of molecular markers (mainly MMR status and hypermethylation 

of specific genes) was detected between ovarian cancer and hyperplastic lesions, 

suggesting that ovarian cancer may also develop in a stepwise manner from endometrial 

hyperplasia. Only 38% (3/8) of the cases with ovarian cancer and concurrent CAH were 

diagnosed with endometrial carcinoma as well. Cases LOC1 (CAH detected three years 

before ovarian cancer) and LOC13 (CAH detected concurrent with ovarian cancer) highlight 

molecular similarity between CAH and ovarian cancer. These findings together with the 

common background of synchronous endometrial and ovarian cancer in LS mutation 

carriers as described above suggest that type I endometrial and ovarian tumorigenesis may 

be molecularly even more entangled than previously appreciated.  
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DISCUSSION 

1 Developmental model of ovarian and endometrial tumorigenesis in Lynch 

syndrome and sporadic cases 

1.1 Overview based on currently available data 

The epidemiologies of ovarian and endometrial cancer are closely entangled which is 

probably attributable to similarities in the hormonal, immune system-related, and 

inflammation mechanisms influencing the reproductive tract (155). LS offers a good model 

with which to study the molecular background of these gynecological cancers for three 

important reasons: (1) the prevalence of these cancers is significantly increased in LS 

mutation carriers compared to the general population, thus providing reasonable numbers 

of tumors and other specimens for analysis (7, 8), (2) several lesions (benign and malignant) 

from the same patient are common (263), and (3) consecutive specimens are available from 

individuals taking part in a surveillance program to detect gynecological cancers which 

permits an investigation of the types of changes occurring before a carcinoma is detected.  

 

Beyond the known defects in MMR genes, LS-associated ovarian carcinomas have not been 

molecularly analyzed before. More is known about the endometrial carcinomas in women 

with LS, but there is very limited information about the molecular changes preceding 

endometrial cancer. Our findings revealed a novel and distinct genetic and epigenetic 

background of LS-associated ovarian and endometrial cancer as compared to sporadic 

corresponding cases, including MMR deficiency and TSG hypermethylation of specific 

genes appearing already in histologically normal endometrium, a high frequency of ARID1A 

expression alterations, and L1CAM overexpression, specifically in clear cell ovarian cancer. 

The novel findings of LS-associated ovarian and endometrial tumorigenesis are illustrated 

in Figures 14 and 15, respectively.
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1. 2 The role of deficient MMR 

Lynch mutation carriers have one defective allele in an MMR gene in every cell of their 

body. An acquired second hit in a particular MMR gene in a tissue of an LS mutation carrier 

compromises the MMR machinery and eventually leads to inactivation of MMR protein 

expression in the cell, conferring a growth advantage on the cell and the possibility to 

transform into a neoplastic cell. Thus, MMR deficiency in a pre-malignant specimen 

indicates an increased risk for tumor development. In fact, LS-associated ovarian and 

endometrial carcinomas displayed MMR deficiency already at histologically normal 

endometrium in 12% (12/99) of the cases compared to 0% (0/38) in sporadic cases 

(P=0.037), suggesting that this is a very early change in LS-associated tumorigenesis.  

 

Gynecological cancers could be almost completely prevented with prophylactic total 

hysterectomy and bilateral salpingo-oophorectomy (THBSO), and it has been shown to 

effectively decrease the risk of these cancers in LS women (264, 265). Women with LS are 

recommended to take part in regular endometrial surveillance against gynecological cancer 

every 2 to 3 years, starting at 30 to 40 years of age, but currently there are no further 

official guidelines to screen for gynecological cancer. Moreover, the optimal timing of 

prophylactic THBSO is debated (5, 266). It is intriguing to speculate whether analysis of 

MMR deficiency of endometrial specimens from LS patients taking part in gynecological 

screening might be beneficial in determining the timing of prophylactic THBSO and other 

treatment decisions (see below).  

 

The frequency of MMR deficiency in endometrial specimens increased with increasing 

histological abnormality of lesions in LS and sporadic series. The frequencies were 

exceptionally high in LS mutation carriers, 42% (5/12) in SH, 83% (5/6) in CH and 87% 

(33/38) in CAH. Moreover, an MMR deficiency was detected in all of the cases of CAH and 

appeared 1 to 9 years before the diagnosis of either ovarian or endometrial carcinoma (7/7 

= 100%). These patients with CAH did not have THBSO at the time of diagnosis either 

because the patient preferred not to undergo the surgery or CAH was not originally 
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diagnosed at the time of biopsy. Interestingly, also 67% (2/3) of the patients with SH and 

one case with a CH (1/1) diagnosis 1-2 years before carcinoma diagnosis, were shown to be 

MMR deficient. Similar to our findings, Faquin et al. (169) detected MMR deficiency by 

microsatellite analysis in one non-neoplastic endometrial specimen 7 years before the 

development of sporadic endometrioid endometrial carcinoma and argued that MSI 

diagnosis in endometrial tissues could predate the carcinoma diagnosis by years. 

Moreover, the diagnosis of aspiration biopsy specimens may be unreliable for pathologic 

inspection due to the fragmented nature of specimens, especially with postmenopausal 

women who often have an atrophic endometrium. Accordingly, pre-malignant (CAH) and 

even carcinoma cases may be diagnosed as benign (SH) and therefore, molecular analysis 

of hyperplasias could assist in treatment decisions, especially in borderline cases. 

 

1.3 ARID1A alterations and relationship with MMR 

Mutations of ARID1A are known to be common in sporadic clear cell (43-57%) and 

endometrioid (30%) ovarian carcinomas and endometrioid endometrial (40%) carcinoma 

(34, 39, 267), and many studies have shown a high correlation between ARID1A mutation 

by genetic analysis and deficient ARID1A expression by IHC (34, 267). In our study, the 

frequency of aberrant ARID1A expression was exceptionally high in LS-associated ovarian 

carcinomas (100%, 9/9 in clear cell and 86%, 12/14 in endometrioid ovarian carcinomas) 

compared to sporadic cases (0/39 in clear cell and 11%, 3/28 in endometrioid ovarian 

carcinomas) (P<0.001 in both histological types). Only 10% (1/10) of sporadic non-serous 

ovarian carcinomas with deficient MMR and showing MSI had lost their ARID1A expression. 

The loss of ARID1A expression was also high in endometrioid endometrial carcinoma, 

accounting for 61% (14/23) of the cases in comparison to 17% (6/35) in sporadic cases 

(P<0.001). In contrast to the low frequency of concurrent MSI and ARID1A aberrations in 

sporadic ovarian carcinomas (10%, 1/10), these alterations were frequent in endometrial 

carcinomas (67%, 4/6) (P=0.036). Bosse et al. (268) also detected a high frequency of 

aberrant ARID1A expression in sporadic MSI-high endometrial carcinomas (75%, 24/32), 
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but in contrast to our findings, they detected inactivation of ARID1A in only 14% (5/36) of 

their LS-associated cases. 

 

Mutations of ARID1A and consequent loss of protein expression have been detected in 

atypical endometriotic lesions adjacent to ovarian cancer, suggesting that this is an early 

event in ovarian tumorigenesis (267). No aberrant ARID1A expression was detected in 

progressive endometrial specimens (0/17, including NE, SH, CH, and CAH) from LS patients 

with ovarian carcinoma as the endpoint diagnosis, suggesting that ARID1A loss is a late 

event in LS-associated ovarian tumorigenesis or it possibly occurs only in atypical 

endometriosis preceding and/or adjacent to ovarian carcinoma which was not analyzed. 

On the other hand, a loss of ARID1A expression was detected in 15% (5/33) of complex 

hyperplasias (including one CH and 4 CAH) prior to or concurrent with LS-associated 

endometrial carcinoma. Similar findings were detected in sporadic cases of endometrial 

carcinoma by Werner et al. (269), who detected inactivation of ARID1A in complex atypical 

hyperplasia (16%) but no signs of this alteration in non-atypical hyperplasias. Our findings 

together with Werner et al. (269) propose that the loss of ARID1A expression is an early 

event in endometrial carcinoma regardless of origin (hereditary or sporadic) and could 

potentially be used as a biomarker in endometrial complex hyperplasia to evaluate the 

malignant potential of the lesion, and further to guide treatment decisions.  

 

Our findings raise a question about the relationship between MMR deficiency and the loss 

of ARID1A expression, since both were always present in clear cell carcinoma of the ovary 

and they are very common in endometrioid ovarian and endometrial carcinomas from LS 

mutation carriers and also frequent in sporadic MSI-high endometrial carcinomas. Bosse et 

al. (268) speculated that the loss of ARID1A expression was attributable to epigenetic 

inactivation of the MLH1 gene instead of being inactivated by mutations resulting from 

MSI. Our findings from consecutive specimens preceding cancer showed that MMR 

deficiency arises already in histologically normal endometrium and ARID1A later in complex 

hyperplasia. This discovery argues against the theory of Bosse et al. (268) and proposes 
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that ARID1A inactivation follows MSI and not vice versa. Arguments of MMR deficiency 

leading to aberrant ARID1A have also been hypothesized in gastric (270) and colorectal 

cancer (271, 272). In the study of Wang et al. (270), the somatic ARID1A mutation rate was 

found to be 12-61 fold higher compared to the general background mutation rate in MSI 

associated gastric carcinomas. Although mutations affecting ARID1A are typically nonsense 

and frameshift (34), Wang et al. (270) detected mainly insertions/deletions of short 

mononucleotide repeats in ARID1A in MMR-deficient cases suggesting that for some 

unknown reason, ARID1A is specifically targeted by MSI. A similar trend of high incidence 

of ARID1A insertions/deletions mutations associated with MMR deficiency in colorectal 

cancer was detected by Jones et al. (271) and Chou et al. (272) indicating that MMR-

deficiency often leads to aberrant ARID1A gene as the result of MSI. 

 

1.4 Epigenetic changes as early events 

Genetic modifications alone cannot explain the complex nature of LS-associated and 

sporadic ovarian and endometrial cancer. Epigenetics, including hypermethylation, is 

expected to play a major role in the LS-associated tumors, since deficient MMR machinery 

causes hypermutability and increases the possibility of alterations in other genes involved 

in cancer development (273). Some of the affected genes may be involved in epigenetic 

regulation which can cause hypermethylation of TSGs (274). Similar to MMR deficiency, 

hypermethylation of specific TSGs (frequently including RSK4, SPARC, HOXA10, HOXA9, 

RASSF1 and CDH13) was detected even in normal endometrium several years prior to the 

development of ovarian or endometrial carcinoma in LS cases, suggesting that these are 

early alterations in tumorigenesis. Our findings, together with published reports, support 

the concept that detection of specific epigenetic gene profiles in premalignant lesions and 

in cancer tissue may facilitate early detection, classification and treatment of ovarian and 

endometrial cancer (see also the next Chapter) (275, 276) .  
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2 Three-tiered categorization system proposed for endometrial specimens 

The main view at present is that type I endometrial carcinomas mainly originate from 

atypical hyperplasia (192). Therefore, the WHO2014 schema categorizes hyperplasias into 

two types, non-atypical (including SH and CH) or atypical (including SAH and CAH) (195). A 

correct classification of hyperplasia is highly important, since it guides treatment decisions. 

These decisions can be quite dramatic: Atypical hyperplasia is mainly treated with 

hysterectomy whereas medication is the standard treatment for hyperplasia without 

atypia (185).  

 

In contrast to the WHO2014 classification, our findings of MMR-deficiency, the loss of 

ARID1A expression, and the methylation status of TSG promoters divided progressive 

endometrial samples into three categories of combined histological types: NE plus SH 

(category I), CH plus CAH (category II), and endometrial carcinoma as its own entity 

(category III). Importantly, our results suggested that in addition to CAH, CH should be 

considered as a pre-neoplastic form of endometrial carcinoma. In particular, the average 

numbers of methylated TSGs in both panels (the panel of 24 general TSGs and the panel 

comprising of 7 endometrial and ovarian cancer related TSGs) and regardless of origin (LS 

or sporadic) were able to discriminate between categories I (NE + SH) and II (CH+CAH) and 

III (endometrial cancer). Our results are compatible with the idea of classes with low (I) and 

high (II, III) malignant potential. 

 

Similar to our observations, van der Putten et al. (190) found that the genetic profile for 

complex hyperplasias (both CH and CAH) differed from simple hyperplasias of both non-

atypical (SH) and atypical (SAH) type and stated that complex hyperplasia, regardless of 

atypia, seems to be the most important precursor for endometrial carcinoma. The 

categorizations of hyperplasia are still largely based on the original findings of Kurman et 

al. in 1985 (192), who reported that only 3% of complex hyperplasia without atypia (CH) 

progressed to cancer and partly because of this statement, CH has not been considered as 

a pre-neoplastic form of endometrial cancer. However, the study of Kurman et al. (192) 
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included only 29 cases of CH. A recent publication by Matsuo and colleagues (277) 

estimated a 21% risk of concurrent endometrial cancer with CH. In addition, one may also 

speculate whether the transition from CH to CAH is so fast that it is often not recognized, 

suggesting that CH should be regarded as pre-neoplastic lesion as well.  

 

Several biomarkers have been proposed to detect and predict the cancer risk in 

hyperplasias, but so far, these have not proven effective enough for application in a clinical 

setting (185). It is tempting to postulate that the methylation analysis of specific TSGs (and 

MMR status in cases of LS mutation carriers) could improve diagnostics and help to predict 

the malignant potential of hyperplastic lesion, either atypical or non-atypical. 

 

3 Is endometrial hyperplasia a component of ovarian tumorigenesis? 

Only a few studies have investigated the prevalence of endometrial hyperplasia occurring 

concurrently with ovarian cancer and the knowledge of this subject is poor (184, 278). 

Nonetheless, surprisingly high frequencies of atypical hyperplasia concurrent with ovarian 

carcinoma have been detected. Mingels et al. (184) reported that approximately half of the 

endometrioid and 29% of clear cell ovarian carcinomas present with concurrent atypical 

hyperplasia. These results were nearly identical to our findings of concurrent CAH with 

endometrioid (7/14, 50%) and clear cell ovarian cancer (2/9, 22%) from LS patients (Figure 

13). It is well known that endometrial hyperplasias are significant steps in endometrial 

tumorigenesis (185), but our findings together with those of Mingels et al. (184), raise the 

question of whether endometrial hyperplasias are also connected to ovarian 

tumorigenesis. Moreover, the correspondence of the molecular markers between complex 

hyperplasias and concurrent ovarian cancer (Figure 13) included in our studies, indicate 

that endometrial hyperplasias may have a role in the development of ovarian carcinoma. 

These findings should act as a springboard for additional research. In particular, the 

epigenetic findings may help to reveal relationships within samples reflecting the common 

origins (279). Indeed, hypermethylation of the same loci was often detected in hyperplasia 
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prior to or concurrent with ovarian cancer frequently in the HOXA10, HOXA9, RASSF1 and 

CDH13 genes.  

 

Mingels et al. (184) speculated that atypical hyperplasia could be caused by increased 

production of estrogen by the ovarian cancer, i.e. especially the endometrioid type ovarian 

cancer has been shown to increase estrogen levels. But since Mingels et al. (184) only 

investigated concurrently occurring samples, it is not known which abnormality occurred 

first, i.e. was it atypical hyperplasia or ovarian cancer? In our consecutive sample series, 

two LS patients, LOC1 and LOC22, were diagnosed with CAH but treated with hysterectomy 

only instead of THBSO. The patients ended up developing endometrioid and clear cell 

ovarian cancer three and seven years later, respectively.  Thus, our observations of CAH 

arising several years before the identification of ovarian carcinoma, are compatible with 

the possibility of CAH being an early step in ovarian tumorigenesis.  

 

Mingels et al. (184) hypothesized that concurrent atypical hyperplasia is a premalignant 

form of synchronous endometrial carcinoma. This is likely to be true, but additionally, our 

findings raise the question of whether a hyperplastic lesion in the endometrium could also 

metastasize to the ovary and thus be the precursor for ovarian cancer as well, since 

endometrial epithelial cells are the putative origins of endometrioid and clear cell ovarian 

tumors (280). Kelemen et al. (260) studied the risk factors of synchronous endometrial and 

ovarian tumors by multivariable models and observed that endometriosis in the ovary was 

associated with a decreased risk of synchronous tumors relative to clear cell and 

endometrioid ovarian-only tumors. Kelemen et al. (260) suggested that endometriosis is 

not a likely step in the development of synchronous endometrial and ovarian carcinomas, 

leaving room for the scenario that endometrial hyperplasia might represent this step in 

synchronous cases. 
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CONCLUDING REMARKS AND FUTURE PROSPECTS 

LS-associated ovarian cancer differs from its sporadic counterpart in several ways, but the 

molecular alterations behind these differences remain unanswered. This thesis work 

describes a novel genetic and epigenetic profile of LS-associated ovarian carcinomas: There 

was the virtually inevitable loss of ARID1A expression, a mismatch repair deficiency, a lack 

of KRAS and BRAF mutations, normal p53 expression, the unique hypermethylation profile 

of selected tumor suppressor genes and a lack of LINE-1 hypomethylation. Additionally, the 

frequency of PIK3CA mutations and L1CAM overexpression were common and comparable 

to that encountered in sporadic tumors of the same histological types. Moreover, we 

identified different hypermethylation profiles of selected genes in non-serous histological 

types of Lynch and sporadic ovarian carcinomas, as compared to sporadic serous ovarian 

tumors. The prominent differences discovered between ovarian tumors of Lynch and 

sporadic origin as well as between histological types help to explain the distinct behavior 

of these carcinomas and emphasize the need for individualized clinical management.  

 

Møller et al. (8) described the excellent survival in endometrial (98%) and ovarian (89%) 

cancer, but speculated that further investigation would be needed to determine the factors 

behind this favorable prognosis. Our results from genetic and epigenetic analysis indicate 

that LS-associated ovarian carcinomas have more favorable molecular characteristics 

compared to sporadic ovarian carcinomas. In addition to the novel molecular 

characteristics of LS-associated ovarian carcinomas, other possible explanations to account 

for the better prognosis need to be addressed; these will include surveillance and the 

consequent early detection of pre-neoplastic lesions of endometrial carcinoma and the 

subsequent detection of synchronous ovarian carcinoma, as well as clarifying the role of 

immunogenic factors and explaining the lack of metastatic features (like in colorectal 

cancer) (13, 183, 281).  

 

Concluding Remarks and Future Prospects 



  

82 
 

Survival of ovarian cancer is poor, and regardless of major histological and molecular 

differences within different histological types of ovarian cancer, the therapy is similar in all 

patients. Indeed, the detection of driver mutations and epimutations between ovarian 

cancer subtypes may offer new opportunities in ovarian cancer management through 

subtype-specific care. At present, only two biomarkers, CA125 and HE4 (Human epididymis 

protein 4) for ovarian cancer monitoring have been approved by FDA (282-284), but more 

specific markers, especially biomarkers for early detection are urgently needed. In 

particular, epigenetic biomarkers involving DNA methylation would be ideal because of its 

reversible nature and the possibility of targeting a specific gene region (172). Our findings, 

together with other reports, suggest that alterations in DNA methylation profile are able 

to discriminate between non-serous and serous types of ovarian cancer. By selecting the 

most prominent markers, DNA methylation could be used as a biomarker to distinguish 

between different subtypes of ovarian cancer especially in borderline cases in which the 

diagnosis may be difficult by pathological inspection only.  

 

Molecular alterations that predict ovarian and endometrial cancer risk and progression 

identified in this thesis project may have valuable clinical significance. As discussed earlier, 

information obtained from hyperplastic lesions guides treatment decisions. Although the 

risk-reducing effect of gynecological surveillance or early detection of these has not been 

proven scientifically yet, for now women with LS are recommended to take part in 

endometrial biopsy screening every 2 to 3 years starting at 30-40 years of age (5, 266). 

Endometrial biopsies obtained from this kind of surveillance program could be most 

beneficial when analyzed with specific markers during the interval between the diagnosis 

of LS and possible prophylactic surgery.  Molecular changes detected in endometrial 

aspiration biopsies could identify those patients who would benefit from intensive 

screening and cancer prevention, including oral contraceptives, progestin therapy and 

aspirin-based chemoprevention that may be effective against LS-associated gynecological 

carcinomas (266, 285). Furthermore, molecular alterations could help to predict the 

optimal time point for prophylactic surgery. 
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Currently, nuclear atypia detected by histopathological inspection of endometrial 

hyperplasias, is the only characteristic that confers an elevated risk for endometrial 

carcinoma in the general population and an additional risk of ovarian cancer in Lynch 

mutation carriers. Important information of the histologically normal endometrial tissue of 

hyperplastic biopsy specimen may remain undetected if investigated by histopathological 

inspection alone. This warrants further investigation but already now the results strongly 

emphasize that molecular testing of specific markers from aspiration biopsies, such as 

detection of MMR-deficiency status or hypermethylation profiles of specific gene 

promoters can provide more information of the malignant potential of pre-neoplastic 

specimens and clinical behaviour of tumor specimens. The results would allow more 

efficient counselling, help to select cases more suitable for non-surgical treatment of 

endometrial hyperplasia, guide treatment options in hereditary and sporadic cases and 

facilitate in the selection of the optimal timing of THBSO in women with Lynch syndrome. 

Indeed, our findings from the consecutive sample series prior to the appearance of ovarian 

and endometrial cancer, suggest that the precursor for endometrial cancer (or possibly 

even ovarian cancer) can be detected from aspiration biopsies taken from histologically 

normal endometrium several years before any carcinoma diagnosis.  

 

Our findings, together with findings from others, suggest that complex hyperplasia with 

and without atypia of LS and sporadic origin should be considered as equally important 

precursors for endometrial carcinoma progression and these findings should be included 

in considerations of treatment decisions. In addition, in the future, it could be investigated 

whether the histological classification should be combined with information from 

molecular markers (such as MSI status, ARID1A expression, KRAS) in order to predict the 

risk for endometrial carcinoma progression. 

 

Our molecular analyses emphasize the shared background of LS-associated synchronous 

endometrial and ovarian carcinomas and the possibility of metastatic disease. Moreover, 

molecular analysis of endometrial hyperplasias collected as a part of long-term surveillance 
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program before or concomitant with endometrial and/or ovarian cancer revealed 

concordance in alterations (MMR-status and hypermethylation profile of selected TSGs 

appearing already in histologically normal endometrium and the loss of ARID1A expression 

being evident in endometrial hyperplasias), pointing to an early convergence of 

endometrial and ovarian tumor development. If one wishes to obtain a broader 

perspective, it would be important to supplement our findings from LS specimens with 

results from synchronous sporadic gynecological carcinomas. 

 

Interestingly, the examination of consecutive specimens revealed that endometrial 

hyperplasias prior to or concurrent with ovarian carcinoma exhibit similar degrees of 

molecular alterations as compared to endometrial carcinoma. This discovery reveals that 

in addition to endometrial tumorigenesis, endometrial hyperplasia may also be connected 

to ovarian carcinogenesis. Overall, our observations of multilevel ties between endometrial 

and ovarian tumor development suggest that always when a pre-malignant or malignant 

endometrial lesion is detected, the possibility of ovarian cancer should be kept in mind and 

vice versa. 

 

In the future, it would be interesting to design a more comprehensive MS-MLPA based 

assay to detect methylation of the most prominent epigenetic biomarkers (including RSK4, 

SPARC, PROM1, HOXA10, HOXA9, WT1-AS, SFRP2, OPCML, MIR34B, APC, RASSF1, TP73 and 

CDH13) in a single assay and to investigate the markers in larger sample cohorts. A digital 

MLPA assay (286) has been recently developed to detect copy number alterations in up to 

a thousand target sequences, and a similar digital solution could be designed for MS-MLPA. 

This digital MS-MLPA test would be perfect for our purposes. In fact, if we were able to 

identify reliable and common epigenetic alterations preceding endometrial and ovarian 

cancer, these alterations could be used as epigenetic biomarkers which would not only 

further assist in the early detection but also help to predict prognosis and monitor the 

treatment response.  
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Genetic and epigenetic analysis of LS-associated ovarian and endometrial carcinomas on a 

genome-wide scale will be an obvious next step. Our truly interesting findings of the 

possible endometrial hyperplasia step involved in the development of ovarian carcinoma 

in women with LS is a springboard for additional research. For now, it remains to be 

resolved whether endometrial hyperplasia serves as a precursor lesion for endometrial 

carcinoma alone or could it also be relevant for ovarian tumorigenesis. Therefore, it would 

be especially important to find a suitable method to examine the whole methylome and 

genome of consecutive endometrial samples prior to endometrial and ovarian carcinoma. 

This genome-wide analysis could help to reveal the epigenetic relationships between 

specimens as well as identifying more specific and early genetic changes contributing to 

these carcinomas, and hopefully resolving whether endometrial hyperplasia is a precursor 

of ovarian tumorigenesis. At present, the problem is that most genome-wide methods 

require high quality and/or large quantities of DNA to produce reliable data and are 

therefore not suitable for FFPE samples. In particular, the amount and quality of DNA 

extracted from endometrial aspiration biopsies are mainly poor and inadequate and cannot 

be used to perform these whole genome analyses. Fortunately, methods are developing at 

a high speed and hopefully soon there will be an assay available to fulfill our needs. 
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