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Abstract

Much of the variation among insects is derived from the different ways that

chitin has been moulded to form rigid structures, both internal and external.

In this study, we identify a highly conserved expression pattern in an

insect-only gene family, the Osiris genes, that is essential for development,

but also plays a significant role in phenotypic plasticity and in immunity/

toxicity responses. The majority of Osiris genes exist in a highly syntenic

cluster, and the cluster itself appears to have arisen very early in the evolu-

tion of insects. We used developmental gene expression in the fruit fly, Dro-

sophila melanogaster, the bumble bee, Bombus terrestris, the harvester ant,

Pogonomyrmex barbatus, and the wood ant, Formica exsecta, to compare pat-

terns of Osiris gene expression both during development and between alter-

nate caste phenotypes in the polymorphic social insects. Developmental

gene expression of Osiris genes is highly conserved across species and corre-

lated with gene location and evolutionary history. The social insect castes

are highly divergent in pupal Osiris gene expression. Sets of co-expressed

genes that include Osiris genes are enriched in gene ontology terms related

to chitin/cuticle and peptidase activity. Osiris genes are essential for cuticle

formation in both embryos and pupae, and genes co-expressed with Osiris

genes affect wing development. Additionally, Osiris genes and those co-

expressed seem to play a conserved role in insect toxicology defences and

digestion. Given their role in development, plasticity, and protection, we

propose that the Osiris genes play a central role in insect adaptive evolution.

Introduction

The chitin-based insect cuticle is a key ingredient in the

spectacular ecological and evolutionary success of the

insects. Chitin forms parts of both the external and

internal anatomy of an insect, forming a hard skeleton

that has been modified in nearly endless ways and

facilitated anatomical, physiological and functional

divergence in insect form (Emlen & Nijhout, 2000). On

the outside, chitin is a barrier to the external environ-

ment, but also light and flexible enough to form the

skeletal basis of locomotary appendages (legs and

wings). On the inside, rigid invaginations of the

exoskeleton (apodemes) are muscle attachment points

that have allowed insects to evolve amazing strength

and speed (Larabee & Suarez, 2014), but also form the

respiratory tracheal system and the fore and hindgut

(Terra, 1990). Chitin is also secreted in the midgut of

insects as part of digestion and immunity – the per-

itrophic matrix/membrane is a chitinaceous structure

that surrounds ingested material and is a barrier

between the digestive tract and surrounding tissues

(Lehane, 1997). The peritrophic matrix thus enables

the encapsulation and isolation of toxins and infectious

agents.

Where as a great deal is known about the structure

and development of insect cuticle (Wigglesworth, 1957;

Andersen, 1979; Hopkins & Kramer, 1992; Merzendor-

fer, 2011; Tomoyasu & Fujiwara, 2017), some studies

using next-generation transcriptomic techniques, such

as RNA sequencing (RNAseq), find genes of unknown
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function coincident with the timing of cuticle deposi-

tion (Ren et al., 2005; Sobala & Adler, 2016). Some of

these genes are the most highly expressed genes during

particular developmental stages, such as several Osiris

family genes during stages of pupal development (Grav-

eley et al., 2011; Gelbart & Emmert, 2013). Intriguingly,

very little is known about many of these highly

expressed genes, including those in the Osiris family.

The Osiris genes are a family of genes that have a

high degree of synteny across all studied insects and

appear to have radiated via gene duplications near the

origin of the Insecta, approximately 400MYA (Shah

et al., 2012; Misof et al., 2014). The majority of Osiris

genes, ~20, lie in an 160-kbp region (on chromosome

3R in D. melanogaster). The locus containing these genes

has been known for several decades in D. melanogaster

due to its embryonic lethality when present in haploid

or triploid copy (the triplo-lethal locus, Tpl; Lindsley

et al., 1972; Dorer et al., 1995, 2003). Although this

result clearly suggests dosage-dependent lethality, it is

unclear how or why the lethality occurs. Previous work

established that embryos with an abnormal copy num-

ber of tpl fail to form midgut and die as late embryos or

upon hatching from the egg (Smoyer et al., 2003). The

function of only one Osiris gene is known, Osi21, and

this particular gene is not in the main cluster. Osi21 in

D. melanogaster, also known as diehard4, inhibits the

recycling of rhodopsin in the retina as part of the endo-

cytic pathway (Lee et al., 2013).

Despite a longstanding knowledge of their existence,

their precise role remains unclear. These genes are pri-

marily characterized by a protein domain of unknown

function (DUF1676) and have no gene ontology (GO)

terms associated with their molecular function. In addi-

tion to DUF1676, Osiris genes contain a putative signal

peptide, a hydrophobic region that is likely a trans-

membrane region, and an AQXLAY motif at their 30

end (Shah et al., 2012). This structure is compatible

with the known role of Osi21 in endosomal trafficking

(Lee et al., 2013).

We used comparative transcriptomics to shed light on

this enigmatic family of genes. We predicted that the

conservation of synteny in the Osiris cluster has a func-

tional basis through gene regulation and that genes

with physical proximity would share similar expression

patterns across species. Due to their high degree of

sequence conservation, we also hypothesized that the

timing of expression of these genes would be consistent

even across clades that diverged hundreds of millions of

years ago and that their expression would coincide with

suites of other genes, forming coregulated expression

modules. By leveraging species producing multiple

divergent phenotypes, the social insect castes (queen,

worker, and male), we were also able to test for differ-

ences in Osiris gene expression responsiveness to the

developmental environment (Anderson et al., 2008). In

the context of studies on insect chemical protection,

our data suggest that Osiris genes may be involved in

the regulation of insect cuticle, both in the generation

of external morphology as well as in forming a defen-

sive barrier.

Materials and methods

Ortholog detection

The D. melanogaster set of Osiris genes is the most

curated set and was used as a basis for detection of

orthologs and paralogs. The methods used in this

research was similar to that of Shah et al. (2012), but

for consistency was repeated for all genomes included

in this paper. A combination of approaches was used to

detect Osiris genes. First, reciprocal best hit BLAST

(rbhBLAST), with an e-value threshold of e < 0.0001,

was performed between each genome and that of

D. melanogaster (using the 24 D. melanogaster protein

models as queries). To widen this search to paralogs, all

identified Osiris genes from rbhBLAST were used as

BLAST queries into their own genome, and hits with

e < 1E-5 were then used as reciprocal queries into

D. melanogaster (kept if their best hit was an Osiris

gene). As an independent, and complementary,

approach, hidden Markov models were used to search

proteins. A model was built, function hmmbuild, using

all 24 D. melanogaster Osiris proteins and used as a tem-

plate to search all other genomes using the function

hmmsearch in HMMER3.1b2 (Wheeler & Eddy, 2013).

Evidence from all of these approaches was combined to

determine likely Osiris genes.

Phylogeny

Using orthologs as determined from the above methods,

evolutionary relationships were determined using

BEAST2 (Drummond et al., 2012; Bouckaert et al.,

2014) on the CIPRES Science Gateway server (Miller

et al., 2015). Protein evolution models were tested

using ProtTest (Abascal et al., 2005; Darriba et al.,

2011).

First, a phylogeny including all orthologs from the

following taxa was made: centipede (Strigamia maritima;

Chipman et al., 2014), dipluran (Catajapyx aquilonaris;

Baylor College of Medicine Human Genome Sequenc-

ing Center, BCM-HGSC), mayfly (Ephemera danica;

BCM-HGSC), dragonfly (Ladona fulva; BCM-HGSC),

German cockroach (Blatella germanica; BCM-HGSC), ter-

mite (Zootermopsis nevadensis; Terrapon et al., 2014), pea

aphid (Acyrthosiphon pisum; The International Aphid

Genomics Consortium 2010), jewel wasp (Nasonia

vitripennis; Werren et al., 2010), bumble bee (Bombus

terrestris; Sadd et al., 2015), honeybee (Apis mellifera;

Weinstock et al., 2006), jumping ant (Harpegnathos saltator;

Bonasio et al., 2010), carpenter ant (Camponotus floridanus;

Bonasio et al., 2010), harvester ant (Pogonomyrmex

2
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barbatus; Smith et al., 2011), fruit fly (Drosophila melano-

gaster; Adams et al., 2000), flour beetle (Tribolium casta-

neum; Richards et al., 2008), tobacco hornworm moth

(Manduca sexta; Kanost et al., 2016) and silkworm moth

(Bombyx mori; Xia et al., 2004). The parameters for the

best model for ProtTest were as follows: a gamma site

model with a category count of 4 and a shape parame-

ter of 2.677, using the WAG substitution matrix. Addi-

tionally, we used a relaxed log-normal clock model, a

coalescent constant population tree prior and an

MCMC chain length of 10 million; a burn-in of 10%

was chosen to maximize ESS values and the consis-

tency of likelihood values. The outgroup was chosen as

the top BLAST hit, other than an Osiris gene, in a

search of the D. melanogaster genome using D. me-

lanogaster annotated Osiris genes – the 1:1 orthologs of

this gene was located in several other insect genomes.

The resulting tree is Fig. S1.

For a simplified tree, we used a subset of the above

taxa, but still representative of major insect clades, only

1:1:1 orthologs, and the same parameters as above. To

help resolve internal nodes, we forced monophyly of

Osiris ortholog groups based on the results of the larger

tree. The resulting tree is Fig. 1.

DNA and RNA source and processing

RNA-sequencing data from D. melanogaster were from

Graveley et al. (2011, Table S9) for 12 embryonic stages,

six larval stages, six pupal stages and six adult stages.

Data from P. barbatus were from Smith et al. (2015)

(NCBI project PRJDB3493), and consisted of 16 libraries

spread across four developmental stages. These were as

follows: early last (4th-instar) instar larvae (prior to dif-

ferences in mass), late last instar larvae (queens and

workers are distinguishable by mass), pupae and adults.

In each developmental stage, there were two worker and

two queen libraries. The raw RNA-sequencing reads

were mapped to the newer NCBI annotation (Thibaud-

Nissen et al., 2013) of the P. barbatus genome, Pbar_-

UMD_V03, at NCBI (annotation release 100), using

tophat2 (Kim et al., 2013), and bowtie2 for genome

indexing (Langmead & Salzberg, 2012). Feature counting

was performed using HTseq (Anders et al., 2015). B. ter-

restris RNA-sequencing data were from Harrison et al.

(2015; NCBI project PRJEB9366), and remapped as

above to the assembly Bter_1.0 and annotation release

102 performed at NCBI (Thibaud-Nissen et al., 2013).

The B. terrestris libraries consisted of larval, pupal and

adult stages spread over queen, male and worker castes.

We only used nonreproductive adult workers when

comparing adults. Each stage by caste library set had

three biological replicates, except for queens, where

there was only a single library per stage. See the supple-

ment for sample code used in RNA mapping.

RNA-sequencing data from Formica exsecta were from

Morandin et al. (2015) (GenBank Biosample

SAMN02046301–SAMN02046306) and consisted of 12

libraries spread across three developmental stages (pu-

pae, emerging adult and old adult). In each develop-

mental stage, there were two biological replicates of

queen and worker. The raw RNA-sequencing reads

were mapped to the Formica exsecta genome (NCBI pro-

ject) using tophat2 (Kim et al., 2013) and Cufflinks

(Trapnell et al., 2010); RSEM was used for transcript

quantification (Li & Dewey, 2011). Gene expression

data, as RPKM, are included in Data S1.

Gene expression correlation over space and time

Osiris gene expression data in each species, including

all stages and castes, was used to calculate expression

similarity. A correlation matrix of Osiris gene expres-

sion was performed in R using the cor function in the

base package (R Core Team 2017). Visualization of cor-

relation was performed with the corrplot package (Wei

et al., 2016), using AOE clustering. Gene expression

over space and evolutionary history was examined only

in D. melanogaster. To examine correlation over space,

the distance between pairwise gene starting positions

was calculated and was correlated with correlation coef-

ficients of Osiris developmental gene expression. Simi-

larly, pairwise branch length distances between all

genes in D. melanogaster were calculated using the

cophenetic.phylo function from the ape package (Par-

adis et al., 2004) using a tree with all other species

omitted. These pairwise distances were then correlated

with Osiris developmental gene expression correlation

coefficients.

Similarity in Osiris gene expression among species

was calculated for each species using all libraries – as

above, (dis)similarity distance matrices were calculated

using Bray–Curtis distance. Pairwise Mantel tests com-

pared the similarity of Osiris gene expression between

species pairs.

Analysis of expression and co-expression

Only features with at least one count per million

(CPM) in at least four or three libraries (i.e. the number

of developmental stages in each data set), for P. barba-

tus and B. terrestris, respectively, were kept for down-

stream analysis. Downstream analysis and graphing

were performed using the R statistical environment (R

Core Team 2017), with graphics produced in ggplot2

(Wickham, 2016). Differential expression analysis

between castes, within developmental stages, was per-

formed using edgeR (Robinson et al., 2010), using SVA

(Leek & Storey, 2007; Leek et al., 2017) first to remove

possible unwanted variation; caste was used as a factor

in the model using the function svseq. Differences

among libraries were adjusted using TMM normaliza-

tion (Robinson & Oshlack, 2010), and comparisons

between groups were performed using a linear model
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using the sveq result as a covariate and caste 9 devel-

opmental stage as a factor.

Co-expression modules were calculated using

WGCNA on CPM expression count (Langfelder & Hor-

vath, 2008) with one-step network construction and

module detection. All modules were correlated against

developmental stages (in the case of D. melanogaster) or

developmental stage 9 caste (for the social insects).

The input data set was filtered using WGCNA cleaning

step that removes genes with too many missing values

or zero variance. Due to the interest of this study, we

mapped Osiris genes to modules and looked most clo-

sely at modules loaded with Osiris genes, which were

also positively correlated with pupae of the worker

caste. Gene overlap lists and Venn diagrams were calcu-

lated with gplots (Warnes et al., 2009) and VennDia-

gram (Chen & Boutros, 2011).

WGCNA recommend the use of filtered normalized

expression count or FPKM, RPKM, without it altering

the final results. To verify this assumption, the above
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WGCNA analysis was repeated with RPKM values as

input data set, and similar results were obtained. Gene–
module associations are available in Data S2, and for

Osiris genes (with their Osiris ortholog names) in Data

S3.

Gene ontology (GO) analysis

InterProScan5 (Jones et al., 2014) was used to search

all proteins in each annotation for matching protein

domains Pfam database, (Finn et al., 2016) and GO

terms. The package topGO (Alexa et al., 2006; Alexa &

Rahnenfuhrer, 2016) was used to detect enrichment of

terms in co-expression modules using the weight01

algorithm to take into account GO term relatedness.

Quantitative real-time PCR

Colonies of German cockroaches, Blatella germanica,

were housed in plastic containers and fed ad-lib com-

mercial cat food and water. Individuals were anaes-

thetized with wet ice, and heads were measured using

a calibrated stereo-microscope camera to assign instars

(Tanaka & Hasegawa, 1979). After head measurements,

the samples were immediately deep-frozen. RNA was

extracted by homogenizing whole bodies in TRIzol (Life

Technologies) using a pestel, and then, we followed the

manufacturer’s protocol for the Direct-zolTM RNA Mini-

prep kit (Zymo Research). Purified RNA (0.25–1 lg)
was reverse-transcribed using the QuantiTect RT kit

(Qiagen). Quantitative real-time PCR (qrtPCR) was per-

formed using the QuantiTect SYBR Green PCR Kit

(Qiagen) with a total volume of 10 lL with 10 lM each

forward and reverse primer and 1 ng cDNA. Primers

were designed using NCBI primer designing tool (Ye

et al., 2012) for four Osiris genes (Osi7, two paralogs of

Osi9 – a and b, and Osi20) as well as two control genes,

GAPDH and Actin. Protein sequences were obtained

from Baylor College of Medicine Human Genome

Sequencing Center (NCBI project PRJNA203136). The

primers used were (50–30, forward then reverse):

GAPDH (BGER005687-RA, F: TGGCCGTATTGGTCGTC-

TTG, R: TGCCTTTACTTCGCCCTTGA), Actin (BGER004

121-RA, F: GATGATGCACCCAGAGCAGT, R: AGTTTGT

CACAATGCCGTGC), Osi 7 (BGER018074-RA and BGE

R018075-RA, these two gene models were merged, F:

GACTTGGTGGCGTGTATTGC, R: ATGAGGTCGTCGCT

GTTCTG), Osi9a (BGER014472-RA, F: GCTCTTCTGTTG

GCTGGTCT, R: GTTCTCGGAGTCAGGAAGGG), Osi9b

(BGER018072-RA, F: AGCTGTGGCGAGAAAGACAT, R:

CTCTGCCGTTGAGTTCCCTG), Osi20 (BGER026568-RA,

F: CGCTATCTCAAGACGCACCA, R: CATCCCACGGG

CTTCAGAAA). All PCRs were carried out in a Master-

cycler� ep realplex (Eppendorf) with the following

cycle parameters: 95 °C for 15 min, then 40 cycles of

95 °C for 15 s, 59 °C for 30 s and 72 °C for 30 s fol-

lowed by a measurement each cycle; after cycling, melt

curves were run to confirm the appropriate product. All

primer pairs had efficiency ~0.95, and it was verified

that GAPDH and Actin transcript abundance did not

vary predictably with development. All reactions were

performed in triplicate. The difference in cycle thresh-

old (DCt) between each gene and each control gene

was calculated and averaged. Results were graphed in

ggplot2 (Wickham, 2016).

Results and discussion

Ortholog identification and phylogeny

We used methods similar to Shah et al. (2012) to find

putative orthologs and establish orthology among Osiris

genes across divergent insect species. We used a combi-

nation of protein BLAST (Altschul et al., 1990) and hid-

den Markov model searches with HMMER 3.1.2b

(Eddy & Wheeler, 2015) using all 24 annotated D. me-

lanogaster Osiris genes. Once putative Osiris genes were

found, we performed BLAST searches for additional

paralogs within each genome. To establish orthology

relationships, we used reciprocal best hit BLAST

(rbhBLAST) between putative Osiris genes and D. me-

lanogaster. Finally, once lists were compiled for each

species, we constructed phylogenies of both all poten-

tial orthologs and 1:1:1 orthologs across insect taxa

using BEAST2 (Drummond et al., 2012; Bouckaert

et al., 2014); to help resolve internal nodes, we forced

monophyly of groups with posterior probability support

> 0.9.

The phylogeny of representative orthologs across

insects (Fig. S1) supports monophyly of nearly all Osiris

ortholog groups found in D. melanogaster, in agreement

with the results of Shah et al. (2012). Figure 1 shows

the relationships of a subset of 1:1:1 orthologs across

the major insect clades. The major radiation of Osiris

genes dates at least to the origin of insects, ~400 MYA

(Misof et al., 2014). Many internal nodes in the phy-

logeny lack robust support. There appear to be two

major ancient lineages of Osiris genes, the red cluster

and the blue-green cluster of Fig. 1. As the noninsect

Osiris orthologs group with Osi 17/24, this group is the

putative ancestral Osiris gene. The green cluster (Osi

18-20) resulted from an internal duplication within the

blue cluster. The duplications in the blue-green group

likely gave rise to the genes at the beginning and end

of the current cluster (Figs 1 and S2). The red group is

duplications that filled in the middle of the cluster

(Fig. 1).

Spatial/phylogenetic regulation of osiris genes

To explore the dynamics of Osiris gene expression, we

used three primary gene expression data sets, the

D. melanogaster modENCODE developmental transcrip-

tome that spans 12 embryonic, six larval, six pupal and

ª 2 0 1 8 T H E A U T HO R S . J . E V O L . B I O L . d o i : 1 0 . 1 1 1 1 / j e b . 1 3 2 3 8

5J O U RN A L O F E V O L U T I O N A R Y B I O L OG Y PU B L I S H E D B Y J O HN W I L E Y & S ON S L T D ON B E H A L F O F E U RO P E A N SOC I E T Y F O R E V O L U T I O N AR Y B I O L OG Y

Conserved roles of Osiris genes in insects 5



six adult developmental stages (Graveley et al., 2011), a

data set from the bumble bee, Bombus terrestris, with

larvae, pupae and adults of each males, workers and

queens (Harrison et al., 2015) and a data set from the

red harvester ant, Pogonomyrmex barbatus, with two lar-

val, pupal and adult stages of both workers and queens

(Smith et al., 2015). A fourth data set on the wood ant,

Formica exsecta (Morandin et al., 2015), was included for

comparative purposes, but only includes pupae and

adult stages of queens and workers. Downstream analy-

sis was conducted on normalized gene expression after

filtering out genes with low transcript abundance; all

analyses were performed using the R statistical frame-

work version 3.3.3 (R Core Team 2017).

Transcript abundances of Osiris genes tend to be posi-

tively correlated within each species, though there are

clear ‘blocks’ (Figs 2–3, Figs S3–S6, Data S1–S3) where

expression among genes of a block is very highly corre-

lated (r = 0.8–1). Among pairwise correlations of Osiris

genes in D. melanogaster, 82% were positive and 51%

were statistically significant (P < 0.05, Fig. S6). To

assess similarity of expression among species, a similar-

ity matrix of expression was made for each species

using the vegan package in R (Oksanen et al., 2013).

Genes had similar patterns of developmental expression

across species. The gene expression matrices were all

highly correlated (Mantel test, P < 0.05 in all compar-

isons, Fig. S7). Despite these species diverging

> 300 MYA (Misof et al., 2014), the Osiris genes have

maintained similar within-cluster patterns of gene

expression, suggesting that they are coregulated. Precise

temporal regulation of these genes is likely necessary

given their putative function in the regulation of chitin

because chitin deposition is periodic during the devel-

opment of insects.

We calculated both pairwise linear chromosomal dis-

tances and pairwise phylogenetic distances for D. me-

lanogaster to examine potential mechanisms of

regulation. Osiris gene expression similarity (pairwise

gene correlations) was correlated with physical gene

distance (P < 0.0001, Fig. 3), and phylogenetic distance

(P = 0.004, Figs S8–S11), suggesting either co-expres-

sion due to locality or related ancestral regulatory

mechanisms. Co-regulation of neighbouring genes is a

pervasive pattern in genomes (Boutanaev et al., 2002;

Spellman & Rubin, 2002; Michalak, 2008). Intriguingly,

there are Hymenoptera-specific ultraconserved ele-

ments (UCEs) in the 50 UTR of six Osiris genes

(Osi7,8,9,16,20; Davies et al., 2015). These elements do

not appear to have a conserved RNA secondary struc-

ture, but may play a role in translational regulation.

Because we detect both a pattern of phylogenetic con-

servation of expression, as well as spatial co-expression,

it is unclear whether the observed co-regulation of

genes in this cluster is due to neighbourhood effects,

inherited sequence patterns or a combination of the

two. A previous analysis (Morandin et al., 2016) exam-

ining signatures of selection in ants found that all of
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the ten Osiris genes examined have a ratio of nonsyn-

onymous to synonymous nucleotide changes less than

one, suggesting that they have likely evolved (at least

in the ants) under purifying selection. In summary,

Osiris genes are highly conserved at the coding and

noncoding sequence level, and conservation extends to

both synteny and developmental gene expression –
over hundreds of millions of years.

Temporal expression patterns

There are three clearly distinct times of Osiris upregula-

tion in D. melanogaster development, 14- to 18-h

embryos, second-instar larvae and 48-h-old pupae

(Fig. 4). During these times, some Osiris genes are

among the most expressed genes in the transcriptome.

Osi6 is the sixth highest in 14- to 16-h embryos and

Osi3, 7, 9 and 12 are first, third, ninth and second dur-

ing 48-h-old pupae, at well over 1009 mean gene

expression in those developmental stages. Similarly,

Osiris gene expression peaks in pupal development in

both B. terrestris and P. barbatus. There is a global pat-

tern across data sets, ubiquitously higher expression in

workers (and males) compared to queens – Osiris gene

expression in worker pupae was > 1000-fold higher

than in queens for some genes (e.g. Osi3, 5, 6). Due to

low power to detect significant differences in expression

between castes, only a few of the Osiris genes (Osi 3, 6,

and 9) were statistically different after correction for

false discovery rate (FDR < 0.05, Table S1). The pattern

of greater expression in workers relative to queens sug-

gests a possible role of these genes in generating, or

regulating, caste differences. Differences in dispersal

and reproduction are among the most defining differ-

ences among social insect castes. In B. terrestris and both

ant species, there are differences in the reproductive

capacities of queens and workers, as well as body size

differences. There are also wing polymorphisms in all

three species. In B. terrestris, in which all castes have

functional wings, worker and male wings are more sim-

ilar to each other than either are to queen wings in

both shape and size (Medler, 1962; Gerard et al., 2015).

Worker castes in both ant species lack wings. Interest-

ingly, Osiris genes are among the most highly expressed

genes in the early stages of D. melanogaster wing devel-

opment (Sobala & Adler, 2016), when their expression

coincides with the timing of cuticle envelope formation.

Whereas temporal peaks of most Osiris genes are rel-

atively consistent, Osi18-20 (the green group, Fig. 1)

are temporally different relative to the others, peaking

later in both embryonic and pupal development in

D. melanogaster (Fig. 4, Figs S8–S11), and peaking in lar-

vae of male and worker B. terrestris (Fig. 4). This differ-

ence in developmental timing, coupled with their

physically tight linkage, suggests differential regulation.

Interestingly, despite both minor and major inversions

in the Osiris cluster of some insects, Osi18-20 remained

physically proximate. The largest rearrangement of the

Osiris cluster can be seen in the flour beetle, Tribolium

castaneum, where the entire middle of the cluster was

inverted and translocated to the 50 of Osi1 – the tail

end of this inversion, Osi14-16, was further translo-

cated over 2Mbp away (Fig. S2).

Co-expression modules

To gain insight into the function of the Osiris genes, we

examined which other genes have correlated expression

using weighted gene co-expression analysis using the

WGCNA package in R (Langfelder & Horvath, 2008).

This analysis was performed for all four species, and in

each, we correlated module eigengenes with pooled

developmental stages, or caste 9 development for the

social insects. There were five co-expression modules

that were positively correlated with the pupal stage of

D. melanogaster, two of these had Osiris genes and one

had the majority of the cluster (11 Osiris genes of 220

total genes) and included those with the highest levels

of expression (Fig. S12). There was only a single co-

expression module significantly correlated with worker

pupae in both B. terrestris (Fig. S13) and P. barbatus

(Fig. S14). Osiris genes were abundant in each of these

worker-pupa-correlated modules; there were 11 Osiris

genes of 88 total genes in the B. terrestris worker-pupa

module, and seven Osiris genes of 182 total, with

another seven Osiris genes (of 243 total) in a second

module weakly correlated with worker pupae in P. bar-

batus. No modules were significantly correlated with

worker pupae in F. exsecta (Fig. S15), likely due to lim-

ited power with few distinct developmental stages, and

fewer samples. Nonetheless, F. exsecta Osiris genes were

divided into two modules (seven and 11 genes in each)

with both modules having a weak association with

worker pupae.

We annotated gene ontology (GO) terms for all genes

in the above modules, concentrating on those modules

enriched with Osiris genes. The ‘structural constituent

of cuticle’ gene ontology term was enriched in both

ants and D. melanogaster, but was not statistically signifi-

cant in B. terrestris (P = 0.17; Fig. 5). Gene ontology

terms that were enriched in at least two species were

‘chitin binding’ and ‘serine endopeptidase activity.’ The

Osiris genes do not have annotated molecular function

GO terms, and thus did not bias this analysis. Overall,

the enriched GO terms strongly suggest that these mod-

ules play a role in chitin and cuticle formation. The

term for serine endopeptidase activity is also consistent

with a role in chitin processes as these enzymes are

known to cleave chitin synthases, which are secreted as

zymogens, and increase the rate of chitin synthesis

(Merzendorfer & Zimoch, 2003; Broehan et al., 2007,

2010).

Among the primary co-expression modules for all

species, there was a four-species overlap of three genes,
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Osi8-9 and CG6055 (Fig. 5). Three-species overlaps

included Osi3, 6, 7, as well as five genes of unknown

function (CG7031, CG12964, CG14237, CG14636 and

CG32816), and multiple genes implicated in cuticle/

chitin formation and assembly (Fig. 4). The function of

dyl has been established as the deposition of chitin,

both around bristles (Nagaraj & Adler, 2012) and in the

expansion of wings (Ren et al., 2005). The relevance of

St2 sulfotransferase is not clear, although sulfotrans-

ferase activity is required for proper epidermis forma-

tion in nematodes (Kim et al., 2005). Genes CG6055

and CG14866 encode C-type lectin-like proteins, which

in other species are known to bind chitin as part of

antifungal immune responses (Bueter et al., 2013). The

genes dusky (dy), Mind-the-Gap (mtg), Gasp and

obstructor A (obst-A) all bind chitin, with the latter

two known to effect epidermal cuticle integrity (Tiklov�a
et al., 2013).

Interestingly, a butterfly with a seasonal wing colour

polymorphism upregulates several Osiris genes under

long-day conditions (Vilcinskas & Vogel, 2016). Upregu-

lated along with the Osiris genes is dyl, but upregulated

under the alternative short-day condition are multiple

cuticle proteins, C-type lectins, a carboxypeptidase and

Gasp. This result (and see Osiris gene expression in tox-

icology and immunity, below) suggests that genes

within these modules can be decoupled for different

purposes, though acting on the same phenotypes (in

this case, wings).

Osiris gene expression in the hemimetabola

The only currently available nonholometabolous

insect gene expression developmental series is in the

termite, Zootermopsis nevadensis (Terrapon et al., 2014).

Osiris gene expression is high in the egg sample, but

is otherwise very low. To gain a better understanding

of the evolution of gene expression in Osiris genes,

we conducted quantitative real-time PCR (qrtPCR) on

the hemimetabolous cockroach, Blatella germanica. We

designed primers to amplify Osi7, Osi20 and two

copies of Osi9 (named a and b), along with control

genes Actin and GAPDH. We sampled 56 individuals

representing all nymphal instars from a laboratory

colony. Osiris gene expression was undetectable, or

nearly so, in all but the last larval instar, along with

some Osi9a expression in one adult sample (Fig. 6).

When Osiris gene expression peaked, it had very high

abundance relative to GAPDH and Actin, ubiquitously

expressed genes. These data suggest a conserved tim-

ing of expression for Osiris genes in the penultimate

instar – the last nymphal instar for the hemimeta-

bola, and the pupa for the holometabola. In both

insect groups, the penultimate stage coincides with
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the final transition to adulthood – the maturation/ac-

quisition of traits associated with dispersal and repro-

duction.

Osiris gene knock-down

Despite their unknown function, Osiris genes are

known to be essential for proper development. Abnor-

mal copy number of the tpl locus (encompassing the

Osiris cluster) in D. melanogaster results in embryonic

or post-hatching lethality. The iBeetle knock-down

screen (Schmitt-Engel et al., 2015) has embryonic and

pupal phenotypes for ten Osiris genes. Most of these

phenotypes are lethal in late-larval injections, with

lethality up to 100% for Osi7, 17 and 24. The larval

knock-down of Osi7 fails to metamorphose and arrests

as a prepupa, while others have increased lethality in

pupae or early adults. Embryonic knock-down pheno-

types indicate major developmental errors, from seg-

ment loss to appendage malformation, and of course

death (Schmitt-Engel et al., 2015). Larval knock-down

of Osi6 and Osi7 produced adults with visible wing

phenotypes that impaired flight (Andrade L�opez et al.,

2017).
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Osiris gene expression in toxicology and immunity

Given the chitinous nature of the peritrophic matrix

and its role as an infection barrier by isolating food and

toxins, and the possible role of Osiris genes in chitin

regulation, it is not surprising that the Osiris genes are

upregulated in response to immune challenge. When

fed supernatant from cultured Bacillus thuringiensis (Bt),

the flour beetle, T. castaneum, upregulated seven Osiris

genes (Greenwood et al., 2017). Interestingly, these

same genes were down-regulated when challenged

with Bt (regardless of whether they were immune

primed). Also of interest from this study is a decoupling

of molecular function, as noted from GO term enrich-

ment, in Bt primed and Bt challenged individuals. The

structural constituent of cuticle GO term is enriched

with Bt priming, and the serine endopeptidase activity

term is under-represented with priming, although these

terms reverse upon Bt challenge. This is in contrast to

our study where these terms were enriched in pupae/

worker pupae, again suggesting a possible decoupling of

developmental gene co-expression modules in immu-

nity.

Several studies in honeybees, Apis mellifera, have

made associations with Osiris genes and immunity.

When challenged with chalkbrood fungus, Ascosphaera

apis, Osi6 was down-regulated (Aronstein et al., 2010).

On the other hand, a study infecting A. mellifera larvae

with foulbrood bacteria, Paenibacillus, led to upregula-

tion of 17 Osiris genes (Cornman et al., 2013). The

authors of this last study suggested that this effect could

be confounded by development, as other genes like

dusky (dy) and dusky-like (dyl) were also upregulated.

However, in the light of the frequency with which

Osiris genes are associated with infection protection, at

different life stages, it is likely that the observed pattern

is biologically relevant. Interestingly, this effect of Osiris

genes may not be localized to the midgut, as much of

their expression is in other tissues, especially in the

pupal fat body (Gelbart & Emmert, 2013). A proteomic

study of the sexually transmitted honeybee fungal

pathogen, Nosema apis, found Osi7 protein upregulated

in drone sperm infected with the pathogen (Grassl

et al., 2017). Also among the upregulated proteins were

chitinases, which act to break down chitin in fungi,

suggesting a logical connection to the upregulation of

Osi7 in this study.

The Osiris genes are also upregulated upon challenge

with plant secondary chemical defences. In response to

feeding on plants producing glucosinolates, the

76

9

166

7

2

3

2

3

19

4
5 5

9

59

5

Bumble bee

Fruit fly Wood ant

Harvester ant

CG7031
mtg

CG32816
CG42237

Osi6
Osi7
Obst-A
CG12964
CG14636

Osi3
dyl
St2
CG14257
CG14866

Osi8
Osi9
CG6055

GO ID Term # Species Species
GO:0004252 Serine-type endopeptidase activity 3 Bter, Dmel, Pbar
GO:0042302 Structural constituent of cuticle 3 Dmel, Fexe, Pbar
GO:0008061 Chitin binding 2 Bter, Pbar
GO:0005509 Calcium ion binding 2 Dmel, Fexe

Fig. 5 Four-species overlap of genes in

gene co-expression modules correlated

with pupae/worker pupae, and

enriched in Osiris genes. Below are

gene ontology (GO) terms enriched in

these modules for at least two species,

with the species column indicating

which species module was enriched for

the term. Dmel = Drosophila

melanogaster, Bter = Bombus terrestris,

Pbar = Pogonomyrmex barbatus,

Fexe = Formica exsecta.

10
ª 2 0 1 8 T H E A U T HO R S . J . E V O L . B I O L . d o i : 1 0 . 1 1 1 1 / j e b . 1 3 2 3 8

J O U RN A L O F E V O L U T I O N AR Y B I O L OG Y P U B L I S H E D B Y J O HN W I L E Y & S ONS L T D ON B E H A L F O F E U RO P E A N SOC I E T Y F O R E V O L U T I O N A R Y B I O L OG Y

10 C. R. SMITH ET AL.



leaf-rolling fly, Scaptomyza flava, upregulated eight Osiris

genes along with various genes involved in chitin bind-

ing and that are structural constituents of cuticle

(Whiteman et al., 2012). Both D. sechellia and some

populations of D. yakuba have independently evolved

host specificity for the noni fruit, Morinda citrifolia,

which produces a potent insecticide, octanoic acid. Both

species show evidence of strong selection on the Osiris

cluster (Yassin et al., 2016). Moreover, several Osiris

knock-downs (Osi6-8) lose resistance to octanoic acid

(Andrade L�opez et al., 2017). Interestingly, the opposite

effect was found in adult tissue-specific knock-downs of

these same genes, particularly in fat body and salivary

gland.

Additionally, D. melanogaster upregulated several

Osiris genes upon chemical challenges, including at sev-

eral life stages. For example, Osi6 has high to very high

expression when exposed to heavy metals, caffeine and

the Sindbis virus (Gelbart & Emmert, 2013).

Conclusions

With this study, we aim to address a major knowledge

gap regarding the importance of Osiris genes for insect

development, ecology and evolution. Osiris genes have

seemingly contrary function. They are upregulated in

social insect castes that have no wings (or smaller

wings), yet are also upregulated in wing development

of nonsocial species. They are upregulated and down-

regulated in immune responses, and similarly in the

presence of a toxin. However, the essential nature of

these genes in insect development is apparent, with

lethality at multiple developmental time-points in their

absence/knock-down. Furthermore, their role in toxin

resistance is also becoming clear, as is their role in the

generation of alternative phenotypes. Given the

breadth of their action, these genes could have very

important roles in insect adaptation and success, from

host–parasite and herbivore–plant coevolution to mor-

phological novelty and phenotypic plasticity. The

expansion of these genes at the root of the insect tree is

further suggestive that they may have played an impor-

tant role in wing evolution and/or the radiation of early

insects.
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