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A B S T R A C T

Developing reliable mouse models for social behaviour is challenging. Different tests have been proposed, but
most of them consist of rather artificial confrontations of unfamiliar mice in novel arenas or are relying on social
stress induced by aggressive conspecifics. Natural social interaction in home cage in laboratory has not been
investigated well. IntelliCage is a fully automated home-cage system, where activity of the group-housed mice
can be monitored along with various cognitive tasks. Here we report the behavioural profile of C57BL/6N (B6)
and BALB/c (BALB) female mice in IntelliCage when separated by strain, followed by monitoring of activity and
formation of ‘home-base’ after mixing two strains. For that purpose, 3 cages were connected. Significant dif-
ferences between the strains were established in baseline behaviour in conventional tests and in IntelliCage. The
B6 mice showed reduced anxiety-like behaviour in open field and light-dark box, slightly enhanced exploratory
activity in IntelliCage during initial adaptation and clearly distinct circadian activity. Mixing of two strains
resulted in reduction of body weight and anhedonia in B6 mice. In addition, the B6 mice showed clear preference
to previous home-cage, and formed a new home-base faster than BALB mice. In contrast, BALB mice showed
enhanced activity and moving between the cages without showing any preference to previous home-cage. It
could be argued that social challenge caused changes in both strains and different coping styles are responsible
for behavioural manifestations. Altogether, this approach could be useful in modelling and validating mouse
models for disorders with disturbed social behaviour.

1. Introduction

Home-cage can serve as a comfortable quarter for animals where
spontaneous, undisturbed behaviour is monitored and recorded.
However, it can contain additional features allowing some specific tests
to be conducted without removal of the animals. Novel, automated
approaches are needed for behavioural phenotyping of increasing
number of mutant mouse models and for enhancing the translational
value of biomedical research [1–3]. It has been argued that testing in
home-cage will add potential benefits to translational research and it is
also compatible with 3R principle of animal experiments [4,5]. Despite
the increasing number of studies applying the home-cage technology
there is a clear need for advancing the field regarding the basic
knowledge of mouse behaviour, but also for development and valida-
tion of novel methods based on ethological perspective [6].

Most of the currently available home-cage systems for behavioural

monitoring require single housing. However, social separation is known
to affect the behaviour of mice in various aspects [7,8]. IntelliCage is a
special platform as compared to many other systems designed for home-
cage testing. Namely, it allows social housing along with implementa-
tion of wide range of behavioural and cognitive tasks [9,10]. Testing of
mice in social home cage offers several advantages as compared to
conventional testing of individual animals. Most importantly, handling
by experimenter is reduced to minimum. The effects of the experi-
menter on mouse behaviour have been well documented [11–13].
Moreover, handling and placement of the animal in novel arenas and
mazes causes acute stress and changes in behavioural and physiological
parameters [14]. Therefore, monitoring the mice in home-cage en-
vironment provides ethologically valid profile of behaviour with high
between-laboratory consistency [15].

The role of social factors, especially social stress, in modulating
behaviour is well known [16,17]. Most of the methods applied concern
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social isolation or separation, social instability or social defeat, situa-
tions specifically designed for stressful social experience. However,
group-housing of laboratory rodents is a mandatory requirement by
legislation, whereas little is known about the effects of mixing the an-
imals with different genotypes and phenotypes. The latter is standard
for maintenance of mutant strains where knockout and wild-type lit-
termates are kept together. It has been shown that housing of transgenic
mice with impaired memory function together with wild type animals
can improve their performance [18]. Moreover, social deficits in BTBR
mouse strain are alleviated by rearing together with C57BL/6 mice
[19]. On the other hand, co-housing of C57BL/6 mice with DBA/2
strain can be stressful and anxiogenic for C57BL/6 mice [20]. There-
fore, mixing of strains with different or even opposite phenotypes can
open novel ways for modelling social environment and its effects on
behaviour and physiology. Importantly, such information can be valu-
able for characterizing the mouse models of disorders where social
behaviour is affected (e.g. mood disorders, schizophrenia, autism).

C57BL/6 and Balb/c mice are well characterized inbred strains and
widely used in biomedical research. These strains exhibit differences in
anxiety-like behaviour, motor performance, learning and memory,
sociability [21–25]. In general, BALB/c mice are suggested to be more
anxious and less social as compared to C57BL/6. Also, BALB/c mice are
more vulnerable to social defeat stress [26,27]. In the present study we
aimed at measuring the behavioural outcome of mixing C57BL/6 and
BALB/c female mice in automated home-cage, IntelliCage. Only female
mice were used in order to avoid aggression and fighting that may
occur in large group of unfamiliar male mice.

2. Material and methods

The animal experiments were performed according to the EU leg-
islation harmonized with Finnish legislation and have been approved
by the National Animal Experiment board of Finland (License: ESAVI/
7548/04.10.07/2013).

Thirty female mice (15 C57BL/6NHsd and 15 BALB/cOlaHsd, ab-
breviated as B6 and BALB in the following sections) were purchased
from the commercial breeder (Harlan, The Netherlands) and arrived in
the laboratory at the age of 8 weeks. At arrival the mice were allocated
to the individually ventilated cage (IVC) system (Tecniplast, Italy) in
groups of five animals of the same strain per cage. Ambient room
temperature was 22 ± 2 °C and relative humidity at 50 ± 15%. The
bedding (aspen chips 5× 5×1mm, Tapvei Oy, Finland) was changed
weekly. Nesting material (aspen strips, PM9 0 L/R, 3mm×20 cm,
Tapvei Oy, Finland) and wooden block (100×20×20mm, Tapvei Oy,
Finland) were provided as environmental enrichment. Food and water
was available ad libitum. The lights were on between 6:00 and 18:00.
One week after arrival the RFID transponders (Planet ID GmbH, Essen,
Germany) were injected subcutaneously in the dorso-cervical region
under isoflurane inhalation anaesthesia. One week after implantation of
the transponders behavioural testing began (schedule shown in
Fig. 1A).

2.1. Open field

The mice were released in the corner of novel open field arena
(30× 30 cm, Med Associates) with white floor and transparent walls
(light intensity ~150 lx). Horizontal and vertical activity was recorded
for 30min. Peripheral zone was defined as a 6 cm wide corridor along
the wall, corner zones were defined as 6 cm squares.

2.2. Light-dark box

The test was carried out in the open field arena (30×30 cm, Med
Associates, St. Albans, VT) equipped with infrared light sensors de-
tecting horizontal and vertical activity. The dark insert (non-trans-
parent for visible light) was used to divide the arena into two halves, an

opening (a door with a width of 5.5 cm and height of 7 cm) in the wall
of the insert allowed animal's free movement from one compartment to
another. Illumination in the centre of the light compartment was
~550 lx. Animal was placed in the light compartment and allowed to
explore the arena for 10min. Distance travelled, number of rearings,
and time spent in different compartments were recorded by the pro-
gram. The number of faecal boli was counted by experimenter after the
end of trial. Testing in light-dark box was repeated 15 days later (after
first day of mixed housing, see below).

2.3. Tube test of social dominance

Tube test is commonly used to measure social dominance in mice.
Two unfamiliar mice of the same sex but different genotypes were
placed in the opposite ends of a 30×3.8 cm (inner diameter) trans-
parent plastic tube and released simultaneously. The match ended when
one mouse completely retreated from the tube. The mouse remaining in
tube was designated as the winner, and the retreated mouse was the
loser, respectively. Each animal was tested against six unfamiliar ani-
mals from the opposed group. The percent of retreated matches as well
as aggressive postures were scored for each animal. Matches
lasting>2min or in which animals crossed over each other were not
scored.

2.4. IntelliCage

The IntelliCage apparatus (TSE Systems, Bad Homburg, Germany) is
placed in a polycarbonate cage (20.5 cm high, 58× 40 cm top,
55× 37.5 cm bottom, Tecniplast, 2000P, Buguggiate, Italy) and ac-
commodates up to 16 mice. Its aluminium top contains a freely acces-
sible food rack filled with standard mouse chow (Teklad 2016, Harlan).
The floor is covered with bedding (aspen chips 5x5x1 mm, Tapvei Oy,
Finland) and provides 4 central red shelters (Tecniplast, Buguggiate,
Italy). Four triangular conditioning chambers (15×15×21 cm) are
fitted in the cage corners and provide room for one mouse at a time.
Each chamber contains two drinking bottles, accessible via round
openings (13mm diameter) on the side walls and which can be closed
by motorized doors. Three multicolour LEDs are mounted above each
door and the chamber ceiling contains a motorized valve for delivery of
air puffs. Mice entering a chamber are identified by a circular RIFD
antenna at its entrance (30mm inner diameter) and the duration of
their visit is determined by both the antenna reading and a temperature
sensor that detects the presence of the animal inside the corner. During
a visit, number and duration of individual nosepokes at each door are
recorded using IR-beam sensors. Licking episodes at each bottle are
monitored using lickometers (duration of the episode, number of licks,
total contact time). IntelliCages have individual controllers and are
connected to a central PC running the software that permits to design
and run experiments, as well as to analyse the recorded data
(IntelliCage Plus, NewBehavior AG). The following experimental de-
signs were applied in the IntelliCage (shown also on Fig. 1A). Switching
of the protocols occurred around 10:00 in the morning, and initial
period until beginning of the dark phase (at 18:00) was defined as a
Day-0 for respective protocol (subsequent full days were counted as
24 h periods, 12 h dark +12 h light).

• Novelty induced exploration and habituation (Free Adaptation – FA,
6 days): Mice were released in two separate IntelliCages (15 B6 in
one, and 15 Balb/c in another); all corners in the IntelliCage had
doors open for unrestricted access to water. Exploratory activity –
visits to corners, nosepokes, lick number, circadian activity.

• Extended adaptation (EA, 5 days): The mice were removed from the
cages for measuring the body weight, and then they were returned
to the cleaned cages. The doors in the corners were closed, both
doors opened for 7 s after start of the visit to given corner. For
further drinking the animals had to re-enter any corner. The corners
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and doors operated in a similar manner in all subsequent phases of
the experiment.

• Saccharin preference (SP, 1 day) – each corner contained one bottle
with plain water and one bottle with 0.5% saccharin (sides coun-
terbalanced).

• Social competition and interaction (SM1, 6 days): The mice were
removed from the cages. Three IntelliCages were connected by
transparent tubes (diameter 3.8 cm, length 46 cm, equipped by
RFID-antennas, see also in [28]) to each other and all mice were
released in the central (clean, neutral) cage (setup shown on
Fig. 1B), from where they had access through tunnels to the
neighbouring cages (previous home cages, not cleaned). The entries
through the tunnels into different cages were recorded in addition to
activity (visits, nosepokes, licks) in three cages. On the second day,
the mice were removed from the IntelliCages for second Light-Dark
test. Thereafter, they were returned to the IntelliCages and saccharin
preference was measured again (all corners in three cages contained
bottles with water and saccharin).

• After 6 days the mice were removed from the IntelliCages and se-
parated by strain in standard cages for 2 days. Thereafter, the mice
were returned to the IntelliCage system with three cages inter-
connected by tubes. However, all cages and corners were thoroughly
cleaned before start of this phase (SM2). The mice were released in
the central cage and their activity was recorded as during previous
phase (visits to the cages, visits, nosepokes and licks in the corners).
Monitoring lasted for 5 days and during last day, the preference to
saccharin was measured again.

2.5. Statistics

Analysis of variance (ANOVA) model with strain (B6 and BALB) as
between-subjects factor, repeated measures ANOVA for analysis of the
effect of time in open field, effect of repeated testing in light-dark box
and effect of time in IntelliCage (initial exploration, circadian activity).
Newman-Keuls post-hoc analysis was used after significant ANOVA
results. Significance was set at p < 0.05. Programs STATISTICA v. 12
(StatSoft, Inc.) and Prism 7 for Windows (GraphPad Software, Inc.)
were used to analyse and present the data.

3. Results

3.1. Open field

The B6 mice displayed increased locomotor activity, especially
during first 5 min (Fig. 2A, effect of strain F(1,28)= 7.5, p=0.01; time
F(5,140)= 33.0, p < 0.0001; interaction F(5,140)= 5.3, p < 0.001).
In addition, proportion of distance in centre (Fig. 2B, effect of strain F
(1,28)= 58.6, p < 0.0001) and time in centre (Fig. 2C, effect of strain
F(1,28)= 40.0, p < 0.0001) was significantly increased in B6 mice,
whereas BALB mice spent more time in the corners. Number of rearings
was reduced in BALB mice, especially during the first 10min of the test
(Fig. 2D, interaction of strain and time F(5,140)= 3.0, p=0.01).
Moreover, significantly less rearings were shown by BALB mice in the
centre of open field (Fig. 2D, effect of strain F(1,28)= 23.0,
p < 0.0001).

3.2. Light-dark box

The test was performed twice, before introducing the animals to the
IntelliCage and after first day of social mixing in the IntelliCage (in-
terval between two tests was 2 weeks). Therefore, repeated measures
ANOVA was used for analysing the data. Time spent in the light com-
partment was not different between the strains and increased on the
second exposure (Fig. 2E, effect of repetition F(1,28)= 12.5,
p < 0.01). However, activity (total distance moved in 10min) was
higher in B6 mice (Fig. 2F, effect of strain F(1,28)= 29.2, p < 0.0001)
on both days and did not change in either group on the second ex-
posure. In contrast, proportion (%) of distance in light compartment
(Fig. 2G) increased was in the second test (effect of repetition F
(1,28)= 68.7, p < 0.0001) and when it was significantly lower for
BALB mice in the first day, the difference disappeared in the second test
(interaction of strain and repetition F(1,28)= 7.7, p < 0.01). More-
over, the B6 mice defecated significantly less (Fig. 2H, effect of strain F
(1,28)= 69.0, p < 0.0001), but the number of defecations was re-
duced in BALB mice on the second exposure as compared to the first test
(interaction of strain and repetition F(1,28)= 10.9, p < 0.01). The
number of rearings was higher in B6 mice (Fig. 2I, effect of strain F

Fig. 1. A. Workflow of the experiment: total duration, procedures on specific days (TP – transpondering, OF – open field, LD – light-dark test, SP – saccharin preference), timing and
duration of IntelliCage (IC) sessions – free adaptation (FA), extended adaptation (EA), social mixing (SM). B. Setup of three IntelliCages connected by tubes into one system.
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Fig. 2. Exploratory and anxiety-like behaviour in B6 and BALB mice assessed by open field and light-dark box. A. Distance travelled in the open field during 30min session. B. Percent of
distance in the centre of open field arena. C. time spent in the centre of the open field. D. Number of rearings during 30min session and percentage of rearings in the centre of the arena. E.
The percentage of time spent in the light compartment during 10min test. F. Distance travelled in the light-dark box. G. Percentage of distance travelled in the light compartment. H.
Number of faecal boli left in the light-dark box. I. Number of rearings in the light-dark box. J. Percentage of rearings in the light compartment. *p < 0.05 between B6 and Balb/c,
#p < 0.05 between test 1 and test 2 (LD).
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(1,28)= 7.6, p= 0.01) and although the interaction between strain
and exposure was not significant, the post hoc analysis indicated that
difference between groups was highly significant in first test, but not on
the second exposure, and that rearings in BALB were significantly in-
creased in the second test. Moreover, proportion of rearings made in
light compartment was increased in second test and especially in BALB
mice (Fig. 2J, effect of repetition F(1,28)= 48.9, p < 0.0001, inter-
action between strain and repetition F(1,28)= 7.2, p= 0.012).
Overall, these results suggest that anxiety-like behaviour was sub-
stantially reduced in BALB mice after environmental and social en-
richment in the IntelliCage.

3.3. Tube test

BALB mice displayed clearly more dominant behaviour when faced
to unfamiliar B6 mice in tube and won>90% of trials (data not
shown). It has to be noted that the body weight of BALB mice was
significantly higher and could have an effect in this test (Fig. 6B).
However, our aim was to test animals at the same age and therefore,
matching by body weight was not feasible.

3.4. IntelliCage

Free adaptation, strains separated. Initial exploration (number of
corner visits) during the first 8 h in novel environment was not different
between the groups with BALB mice showing faster adaptation and
decrease in activity (Fig. 3A, interaction between strain and time F
(7,196)= 4.0, p < 0.001). Profile of the circadian activity (number of
corner visits) differed significantly between the strains (Fig. 3B). BALB
mice were more active in the beginning of the dark phase, whereas B6
mice showed two peaks of activity – in the beginning and end of the
dark phase (effect of strain not significant, effect of time F
(23,644)= 56.1, p < 0.0001, interaction of strain and time F
(23,644)= 19.2, p < 0.0001). The B6 mice were more active in the
end of the dark phase and during the first 4–5 h of the light phase,
whereas the BALB mice displayed more corner visits (and were more
active than B6) in the beginning of the dark phase (Fig. 3B). Drinking
(Fig. 3C, number of licks) was increased in B6 mice (effect of strain F
(1,28)= 16.8, p < 0.001, effect of time F(23,644)= 23.8,
p < 0.0001, interaction of strain and time F(23,644)= 8.3,
p < 0.0001).

Extended adaptation, strains separated. The mice were removed
from the Intellicage for changing the bedding, shelters and water bot-
tles (~1 h). After returning to the IntelliCages, the mice showed en-
hanced activity during 1st hour and rapid decline of exploration.
Interestingly, in contrast to start of the previous phase, BALB mice were
more active in visiting the corners in cleaned, but otherwise already
familiar environment (Fig. 2D, interaction between strain and time F
(5,140)= 5.2, p < 0.001). Difference in circadian activity was still
remarkable in the end of the dark phase and in the beginning of light
phase when B6 mice showed significantly more corner visits (Fig. 3E).
In contrast, difference between the strains in the beginning of dark
phase had disappeared (Fig. 3E). Lick number was still higher in B6
mice (Fig. 3F, effect of strain F(1,28)= 10.5, p < 0.01).

3.5. Social mixing

The BALB mice showed significantly increased number of corner
visits (F(1,28)= 18.8, p < 0.001) and tube visits (F(1,28)= 142.6,
p < 0.0001) during initial 7 h after connecting of 3 cages (Fig. 4A-B).
Thereafter, the total number of corner visits did not differ between the
strains (Fig. 4C), and the pattern in circadian activity for corner visits
remained similar to what was established during previous phases
(Fig. 4C). In contrast, BALB mice displayed substantially higher activity
in visiting the connecting tubes (F(1,28)= 95.0, p < 0.001), specifi-
cally during dark phase (Fig. 4D). Regarding preference to the

IntelliCages, starting from the second day the B6 mice showed clear
preference to corners in their previous home-cage, and> 90% of
drinking took place there. In contrast, visits and drinking of BALB mice
were rather equally distributed over all 3 cages, without clear pre-
ference (Fig. 4E–F).

After 6 days the mice were removed from the IntelliCage environ-
ment, separated by strain and kept for two days in standard cages.
Thereafter, they were returned to thoroughly cleaned IntelliCages and
monitored for another 5 days. The B6 mice showed significantly re-
duced activity in visiting the corners (F(1,28)= 6.8, p < 0.05) and
connecting tubes (F(1,28)= 67.8, p < 0.001) during the first hours of
the experiment (Fig. 5A–B). The activity patterns were essentially si-
milar to the previous phase (Fig. 5C–D) with B6 mice visiting corners
more in the early hours of light phase and BALB in the beginning of
dark phase, and BALB being significantly more active throughout 24 h
in the tubes (F(1,28)= 40.8, p < 0.001). During first 2 days neither
strain showed clear preference to any of the IntelliCages (as measured
by the proportion of corner visits and licks in 3 cages). Thereafter, B6
mice developed gradually strong preference to one cage, and BALB
mice followed there, although at lower level of preference (Fig. 5E–F).

Testing for anhedonia at different stages of the experiment showed
that initially both groups had high saccharin preference (B6 more than
BALB, but not significantly). However, the preference for saccharin was
significantly reduced in B6 mice after mixing of two strains, whereas no
change was evident in BALB mice (Fig. 6A, effect of repeated mea-
surement F(3,84)= 5.7, p < 0.01; interaction between strain and re-
petitions F(3,84)= 4.4, p < 0.01). The body weight of the B6 mice
was lower throughout the experiment, but it is noteworthy that there
was a significant drop immediately after mixing the two strains
(Fig. 6B).

4. Discussion

The C57BL/6 and BALB/c mice have been shown to exhibit several
differences in behaviour (including anxiety-related and social beha-
viour) and these differences were confirmed by the current study.
However, we extended our analysis by observing the effect of mixing
and confronting two strains of mice in the extended environment of
IntelliCages where the animals had previously habituated. The pre-
dominant consequence was the aversive influence of BALB mice on the
behavioural repertoire of B6 strain. The latter showed acute aggrava-
tion of anxiety and depression-like behaviours such as anhedonia, de-
crease of body weight and supressed activity during the social mixing.

Earlier studies have reported that C57BL/6 mice show less anxiety,
they are more resilient to stress and emotionally more stable than
BALB/c mice [29–32]. At first this seems rather contradictory to the
results presented in the current study. What could be the main differ-
ence in the experimental setup that leads to such opposite results? In
aforementioned studies the experiments have been performed on ani-
mals in standard conditions. Duration of the experiments has been short
and social interaction is often possible only through perforated walls.
The main aim of these studies is only to document the interest and
exploration of test animals towards unfamiliar stimulus mouse, either
spontaneous or after social defeat procedures. At the end of the ex-
perimental manipulation all mice were returned to their home cage to
stay with their mates of the same genotype. In our experimental design
animals from different genotypes were housed together in a complex
environment which gave all of the animals from different genotypes
access to the same visual, tactile and very importantly olfactory stimuli
for over 6 days at a time aiming at observing changes in behavioural
patterns.

Olfactory cues are perhaps the most important sensory information
for the mice, particularly for social communication. Olfactory in-
vestigation is the first part in the process of social interaction between
the animals. The relevant odours emit from the urine, faeces, scent
glands and saliva [33]. However, it has been suggested that extreme
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inbreeding is likely to severely compromise an animal's ability to dis-
criminate between individuals that are genetically very similar or
identical [34,35]. Therefore, social interaction followed by changes in
the behaviour and physiology can be most effectively achieved by
confronting the conspecifics from different genetic backgrounds.

In our experiment, anxious BALB mice excrete the anxiogenic sig-
nals into their shared environment. For the BALB mice, whose baseline
anxiety is already high and who are used to being surrounded by these
signals, there is no significant effect in their behavioural response. On
the other hand, B6 mice, which are accustomed to much calmer en-
vironment, sense these signals and their behaviour changes thereafter
drastically. Combined with the stress of being housed in the common
area with BALB mice that dominated over them in the tube test earlier,
this new situation causes B6 mice to express anxious and depressive-like
symptoms.

In this study we have shown that in complex (and more ethologi-
cally valid) situations well studied inbred mice like C57BL/6 can be-
have in a rather unexpected way. As social enrichment in rodents is
becoming increasingly popular method while studying autism spectrum
disorders, it is important to notice the complex nature of social

encounters and the possible consequences. The standard tests of social
interaction (such as 3-chamber test) have suggested that BALB/c mice
could be used as a strain modelling some aspects of autism spectrum
disorders (reduced sociability) [21,36,37]. However, recent findings
have challenged this view by showing that C57BL/6 mice are able to
respond to and process social cues in a vicinity, not requiring physical
contact with the stimulus, while BALB/c mice predominantly process
social cues by direct contact with the source without any evidence of
defects in sociability [38]. Moreover, social activities can be classified
as active (sniffing, investigating other animals) and passive (e.g. hud-
dling) behaviour, and it has been shown that development of these
behaviours is different in BALB/c and C57BL/6 mice between 30 and
70 days of age [39]. It is important to emphasize that the passive social
behaviours cannot be expressed in situations where the (unfamiliar)
stimulus mice are placed in the perforated cylinders. Another method
for testing social interaction of mice was recently proposed [40]. There,
the mice could voluntarily enter a tube in an aversive open field and co-
occupancy time was measured and no difference between the C57BL/6
and BALB/c mice was detected. Interestingly, inbred strains did not
differ in preference for siblings or strangers whereas outbred mice were

Fig. 3. Activity of B6 and BALB mice in the IntelliCage during adaptation sessions when strains were separated. A. Number of corner visits during initial 8 h after introducing the mice in
the IntelliCage. B. Average number of corner visits per hour during circadian cycle (data averaged from days 2–5 of free adaptation). C. Average number of licks per hour during circadian
cycle (data averaged from days 2–5 of free adaptation). D. Number of corner visits during initial 6 h after returning the mice to cleaned IntelliCages for extended adaptation. E. Average
number of corner visits per hour during circadian cycle (data averaged from days 2–4 of extended adaptation). F. Average number of licks per hour during circadian cycle (data averaged
from days 2–5 of extended adaptation). *p < 0.05 between the strains (Newman-Keuls post hoc test).
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clearly less likely to co-occupy the tube with strangers [40].
One confound related to the standard tests is brief duration of ob-

servation and recording (10–15min in most of the protocols) combined
with stress induced by handling and unfamiliar novel arenas. For in-
stance, exploratory behaviour of BALB/c mice can change remarkably
over extended period of testing rendering interpretation of anxiety-like
behaviour in standard terms questionable [41,42]. Therefore, more
reliable characterization of behavioural profile could be yielded by
prolonged monitoring of unrestricted activity and importantly, invol-
ving also active (dark) period of the circadian cycle.

IntelliCage as a tool for behavioural profiling of mouse strains and
disease models has been available for> 10 years. The major benefits
and advantage of the system is elimination of human interference by
handling during experiments and possibility to carry out complex
cognitive tasks in group-housed animals. However, little is known
about how such extensive social interaction affects and interacts with
the performance of animals. Depending on the genotype and phenotype
of interacting animals, the effects can be either positive (e.g. im-
provement in learning [18]) or negative (stress, anxiety-like behaviour
[20]). Nevertheless, with special experimental designs it is also possible
to investigate some specific aspects of social behaviour. For instance,
social dominance can be measured with protocols where thirsty animals

are competing for access to the water [43,44], social transmission of
fear and avoidance can be studied by designating “demonstrator”- and
“observer”-mice [45]. There have been also attempts to model en-
dophenotypes related to autistic-like behaviour of mice in the In-
telliCage, based on social status and interest towards conspecifics
[46–48]. The major limitation of the IntelliCage is that activity of the
animals is recorded only when they visit the corners, motivated either
by curiosity or thirst, while exact nature and duration of social contacts
between the animals remains unknown in the present setup. However,
corner visits in the IntelliCage and locomotor activity measured con-
tinuously in single housed animals correlate well and reveal similar
rankings [10,49]. Moreover, combination of different readouts (activity
and preference patterns in corners and between cages, anhedonia as
measured by saccharin preference, changes in body weight) allows to
draw some conclusions about the effects of confronting animals with
different behavioural phenotypes.

In addition to well-known profound phenotypic differences between
inbred strains of mice, during last 15–20 years increasingly more evi-
dence accumulates on subtle differences between substrains of inbred
mice [50]. Indeed, substrains of C57BL/6 mice have been shown to
exhibit several genetic and phenotypic differences which may have a
major impact on the interpretation of data [51–56]. For our study, and

Fig. 4. Activity of mice in and between IntelliCages during first social mixing with neutral cage connected to previous home cages. A. Number of corner visits per hour during initial 7 h.
B. Number of tube visits per hour during initial 7 h. C. Average number of corner visits per hour during circadian cycle (data averaged from days 2–5). D. Average number of tube visits
per hour during circadian cycle (data averaged from days 2–5). E. Total number of corner visits over 5 days. F. Total number of tube visits over 5 days. G. Percentage of corner visits in
three different IntelliCages (neutral middle cage connected to previous home cages for BALB and B6 mice, respectively). H. Percentage of licks in three different IntelliCages (neutral
middle cage connected to previous home cages for BALB and B6 mice, respectively). *p < 0.05 between the strains (Newman-Keuls post hoc test).
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Fig. 5. Activity of mice in and between IntelliCages during second social mixing in three clean IntelliCages. A. Number of corner visits per hour during initial 7 h. B. Number of tube visits
per hour during initial 7 h. C. Average number of corner visits per hour during circadian cycle (data averaged from days 2–4). D. Average number of tube visits per hour during circadian
cycle (data averaged from days 2–4). E. Total number of corner visits over 5 days. F. Total number of tube visits over 5 days. G. Percentage of corner visits in three different IntelliCages
(all cleaned before start of the session). H. Percentage of licks in three different IntelliCages (all cleaned before start of the session). *p < 0.05 between the strains (Newman-Keuls post
hoc test).

Fig. 6. Assessment of body weight and anhedonia-like behaviour during different phases of experiment. A. Saccharin preference (percentage of 0.5% saccharin consumed) on last day of
extended adaptation (EA-D5), first and fifth days of first social mixing (SM1-D1, SM1-D5) and last day of second social mixing (SM2-D4). B. Body weight of the mice as measured before
beginning of testing in the IntelliCage (FA-D0), before beginning of extended adaptation (EA-D0), and during social mixing (SM1-D0,D1,D6; SM2-D0,D5). *p < 0.05 between the
indicated measurements (Newman-Keuls post hoc test).
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for assessment of social behaviour in general, it is important and in-
teresting to note that C57BL/6N mice show reduced place preference or
even aversion in socially conditioned place preference paradigm as
compared to C57BL/6 J mice [57] and therefore, C57BL/6N mice may
be less “sociable” also in the other tests measuring social interest and
interaction. Unfortunately, not all papers indicate explicitly the strains
and substrains of the animals used.

Our findings suggest that environmental complexity and social en-
richment have a strong effect on the behaviour of both C57BL/6N and
BALB/c mice. In theory, as a result of mixing animals from different
backgrounds, one could expect either spontaneous separation of the
strains to different cages (social avoidance based on strain character-
istics) or sharing and preferring one cage (high sociability), or indis-
tinguishable preference. BALB/c in the present experiment tend to lean
towards the latter (indistinguishable preference) and C57BL/6N clearly
favour one cage. Regarding the social interaction between the two
strains, it is unclear from the present data if the BALB/c were dom-
inating over entire environment forcing the B6 mice to stay mostly in
one IntelliCage out of three (expression of avoidance or social with-
drawal), or another explanation could be that the C57BL/6N mice
dominated in one cage, not allowing cohabitation of the BALB/c mice.
Neophobia and novelty-induced anxiety-like behaviour was clearly re-
duced in BALB/c mice as a consequence of such experience. On the
other hand, it may also be interpreted as an exaggerated activity and
inability to adapt with the novel environment along with avoidance of
C57BL/6N strain. Interestingly, BALB/c strain (compared to C57BL/6)
has been shown to be more sensitive to the effects of phencyclidine and
MK-801, thus suggesting “psychosis-prone” phenotype in this strain
[58–60]. Environmental challenges may well contribute to manifesta-
tion of psychotic-like behaviour. Further studies with combinations of
different inbred strains and also with established genetic models for e.g.
autism-like phenotypes in mice are warranted for elucidation of pro-
posed method. Moreover, other behavioural domains (e.g. social be-
haviour, learning and memory) could be investigated by conventional
tests more thoroughly after this kind of challenge.
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