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ABSTRACT
We present a new map-making method for cosmic microwave background (CMB) measure-
ments. The method is based on the destriping technique, but it also utilizes information about
the noise spectrum. The low-frequency component of the instrument noise stream is modelled
as a superposition of a set of simple base functions, whose amplitudes are determined by
means of maximum-likelihood analysis, involving the covariance matrix of the amplitudes.
We present simulation results with 1/ f noise and show a reduction in the residual noise with
respect to ordinary destriping. This study is related to Planck Low Frequency Instrument (LFI)
activities.

Key words: methods: data analysis – cosmic microwave background.

1 I N T RO D U C T I O N

Construction of the cosmic microwave background (CMB) map
from time-ordered data (TOD) is an important part of the data analy-
sis of CMB experiments. Future space missions like Planck1 present
new challenges for the data analysis. The amount of data Planck
produces is far larger than that of any earlier experiments.

The destriping technique (Burigana et al. 1997; Delabrouille
1998; Maino et al. 1999, 2002; Keihänen et al. 2004) provides an
efficient map-making method for large data sets. The method is non-
optimal in accuracy but fast and stable. Other methods have been
developed which aim at finding the optimal minimum-variance map
for Planck-like data (e.g. Borrill 1999; Doré et al. 2001; Natoli et al.
2001).

In this paper we present a new map-making method for CMB
measurements, called MADAM (Map-making through Destriping for
Anisotropy Measurements). The method is built on the destriping
technique but unlike ordinary destriping, it also utilizes information
about the noise spectrum. The aim is to improve the accuracy of the
output map as compared to destriping, while still keeping, at least
partly, the speed and stability of the destriping method.

The basic idea of the method is the following. The low-frequency
component of the instrument noise in the TOD is modelled as a
superposition of simple base functions, whose amplitudes are de-
termined by means of maximum-likelihood analysis, involving the
covariance matrix of the amplitudes. The covariance matrix is com-
puted from the noise spectrum, assumed to be known.

This paper is organized as follows. In Section 2 we go through
the maximum-likelihood analysis that forms the basis of our map-
making method. We describe the map-making algorithm in Sec-
tion 3. In Section 4 we consider the covariance matrix of compo-
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nent amplitudes. Some technical calculations related to this section
are presented in Appendix A. We give results from numerical sim-
ulations in Section 5 and present our conclusions in Section 6.

2 M A P - M A K I N G P RO B L E M

2.1 Maximum-likelihood analysis of the destriping problem

In the following we present a maximum-likelihood analysis on
which our map-making method is based. The analysis is similar
to that presented in Keihänen et al. (2004), the main difference
being that here we include the covariance of the correlated noise
component.

We write the time-ordered data (TOD) stream as

y = Pm + n′. (1)

Here the first term presents the CMB signal and the second term
presents noise. The vector m presents the pixelized CMB map and
pointing matrix P spreads it into TOD.

We divide the noise contribution into a correlated noise com-
ponent and white noise, and model the correlated part as a linear
combination of some orthogonal base functions,

n′ = Fa + n. (2)

The vector a contains the unknown amplitudes of the base functions
and the matrix F spreads them into TOD. Each column of the matrix
F contains the values of the corresponding base function along the
TOD. Assuming that the white noise component and the correlated
noise component are independent, the total noise covariance is given
by

Ct = 〈n′(n′)T〉 = FCaF
T + Cn (3)

where Cn = 〈nnT〉 is the white noise covariance, Ca = 〈aaT〉 is the
covariance matrix for the component amplitudes a, and 〈x〉 denotes
the expectation value of quantity x.
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Our aim is to find the maximum-likelihood estimate of m and a
simultaneously, for given data y. We consider the likelihood of the
data, which by the chain rule of probability theory can be written as

P(y) = P(y|m, a)P(a|m)P(m). (4)

Here P(a|b) denotes the conditional probability of a under condition
b. Now P(m) is constant, since we are treating the underlying CMB
sky as deterministic (we associate no probability distribution to it).
The probability distribution of a is independent of the map so that
P(a| m) = P(a). We assume Gaussianity and write

P(a) = (2π det Ca)−1/2 exp

(
−1

2
aTC−1

a a

)
. (5)

With m and a fixed, the likelihood of the data is given by the white
noise distribution

P(y|m, a) = (2π det Cn)−1/2 exp

(
−1

2
nTC−1

n n

)
(6)

where now n = y − Fa − Pm. The white noise covariance Cn is
assumed to be diagonal, but not necessarily uniform.

Maximizing the likelihood (4) is equivalent to minimizing the
inverse of its logarithm. We obtain the chi-square minimization
function

χ 2 = −2 ln P(y) = −2 ln[P(y|m, a)P(a)]

= (y − Fa − Pm)TC−1
n (y − Fa − Pm)

+ aTC−1
a a + constant. (7)

We want to minimize (7) with respect to both a and m. Minimiza-
tion with respect to m gives

m = (
PTC−1

n P
)−1

PTC−1
n (y − Fa) . (8)

Substituting equation (8) back into equation (7) we get the chi-square
into the form

χ 2 = (y − Fa)TZTC−1
n Z(y − Fa) + aTC−1

a a, (9)

where

Z = I − P
(
PTC−1

n P
)−1

PTC−1
n . (10)

Here I denotes the unit matrix.
We minimize χ 2 with respect to a, to obtain an estimate for the

amplitude vector a. The solution is given by(
FTC−1

n ZF + C−1
a

)
a = FTC−1

n Zy. (11)

Here we have used the property ZTC−1
n Z = C−1

n Z.
The MADAM algorithm uses the conjugate gradient technique to

solve vector a from (11). Note that the matrix on the left-hand side
is symmetric. An estimate for the CMB map can then be computed
using equation (8).

2.2 Comparison to the minimum-variance solution

If the underlying CMB map is treated as deterministic, noise is
Gaussian, and its statistical properties are known, the optimal
minimum-variance map is given by

m = (
PTC−1

t P
)−1

PTC−1
t y (12)

where Ct is the covariance of the noise TOD.
In the following we show that if the total noise covariance is of the

form (3), the map estimate given by equations (8) and (11) equals
the minimum-variance map (12).

We develop the solution (11) into a Taylor series as

a = (
Ca − CaF

TC−1
n ZFCa + · · · )FTC−1

n Zy. (13)
We write y − Fa out and recollapse the resulting expansion, to get

y − Fa = (
I + FCaF

TC−1
n Z

)−1
y. (14)

We now use equation (3) and write FCaFTC−1
n = Ct C

−1
n − I. Using

this and writing Z out we arrive at

PTC−1
n (y − Fa)

= PT
[
Ct − (

CtC
−1
n − I

)
P
(
PTC−1

n P
)−1

PT
]−1

y

= [
I − PT

(
C−1

n − C−1
t

)
P
(
PTC−1

n P
)−1]−1

PTC−1
t y. (15)

In the last equality we have taken Ct out from the left and used
the identity A(I+BA)−1 = (I+AB)−1A, which is easily verified by
expanding both sides as Taylor series. The MADAM solution for the
map (equation 8) then becomes

m = [
PTC−1

n P − PT
(
C−1

n − C−1
t

)
P
]−1

PTC−1
t y (16)

which readily simplifies into (12).
If the chosen base function set accurately models the correlated

noise component, the CMB map estimate given by MADAM equals
the minimum-variance solution. This is necessarily true at the limit
where the number of base functions L per ring approaches the num-
ber of samples n, since the base functions then form a complete
orthogonal basis. In practice, however, it is not possible to use that
many base functions, since both the required memory and CPU
time increase with increasing L so that the method finally becomes
unfeasible.

3 I M P L E M E N TAT I O N

3.1 Map-making algorithm

Equations (8) and (11) form the basis of the MADAM map-making
method. In this section we consider the implementation of the
method.

Our starting point is a Planck-like scanning strategy, where the
detector scans the CMB sky in circles which fall on top of each other
on consecutive rotations of the instrument. In order to reduce the
amount of data, the data from consecutive scan circles is averaged, a
process called ‘co-adding’. We call one co-added circle a ‘ring’. In
the nominal Planck scanning strategy, the same circle is scanned 60
times before repointing. We denote by M the number of co-added
circles. On each ring, we model the correlated noise component as a
linear combination of some simple orthogonal arithmetic functions,
such as sine and cosine functions or Legendre polynomials. In the
simplest case we fit only uniform baselines.

The MADAM algorithm can easily be generalized to a scanning
strategy with no co-adding, by setting the co-adding factor M equal
to one. We consider both types of scanning strategy in the simulation
section. If no co-adding is done, one can choose any length of data
to represent a ring. The concept of ring then loses its connection to
the spin period and its length becomes a freely chosen parameter.

The most frequently used parameters and symbols of this paper
have been collected in Table 1.

The MADAM map-making algorithm consists of the following
steps.

(i) Choose a set of base functions to model the correlated noise
component and compute the covariance matrix Ca of their ampli-
tudes. The computation of the covariance matrix is discussed in
Section 4.
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Table 1. Main parameters and symbols used in this paper and values used
in simulation.

Symbol Parameter Value

n number of samples/ring 4608
N number of rings 8640
M co-adding factor 60
L number of base functions 1–65
f s sampling frequency 76.8 Hz
f sp spin frequency of the spacecraft 1/60 Hz
σ white noise standard deviation (std) 2700 µK
f min minimum freq. (noise spectrum) 10−5 Hz
f kn knee frequency (noise spectrum) 0.1 Hz
γ slope of the noise spectrum −1.0
m pixelized CMB map
P pointing matrix
Cn white noise covariance
F base function matrix
a base function amplitudes
ã reference values for a
Ca covariance of amplitudes a
Ck kth component covariance
bk . . . and its coefficient
gk kth characteristic frequency

(ii) Using the conjugate gradient technique, solve a from equa-
tion (11). The tricky part here is the evaluation of the term C−1

a a,
since matrix Ca is very large. For Planck-like data its dimension
typically varies from thousands to hundreds of thousands. Fortu-
nately, the matrix has symmetries, which allow us to evaluate C−1

a a
in a quite efficient manner, as we show in Section 3.2.

(iii) Solve the CMB map according to equation (8). This means
simple binning of the destriped TOD into pixels, weighting by the
white noise covariance. Here we have used HEALPIX2 (Górski,
Hivon & Wandelt 1999; Górski et al. 2005) pixelization.

3.2 Evaluation of C−1
a a

The conjugate gradient solution of equation (11) requires that we
evaluate

x = C−1
a a (17)

several times for different a. Here a and x are vectors of (NL) ele-
ments, where N is the number of rings and L is the number of base
functions per ring. Matrix Ca has dimension (NL, NL) and is thus
expensive to invert. However, Ca has symmetries which allow us to
perform the inversion quite efficiently.

We use index notation in the following. Evaluation of equa-
tion (17) is equivalent to solving xil from

ail =
∑

i ′l ′
Ca,i i ′ll ′ xi ′l ′ . (18)

Here i , i ′ label rings and l, l ′ label base functions. The matrix has
the symmetry property C a,i i ′ll ′ = C a,i ′il ′l .

We assume that the properties of the correlated noise component
do not change with time. Matrix Ca then depends on indices i , i ′

only through their difference, being thus approximately circulant in
indices i , i ′. The matrix can be stored as a table of L2 N elements.

A general symmetric matrix equation of moderate size can be
solved by Cholesky decomposition. Crout’s algorithm to find the

2 http://www.eso.org/science/healpix

decomposition is given, e.g. in Press et al. (1992). On the other
hand, circulant matrix equations can be solved by the Fourier
technique.

We solve equation (18) using a combined technique, where we
apply Cholesky decomposition to the indices l, l ′, and a Fourier
technique to indices i , i ′.

We drop indices i , i ′ for a while and introduce the following
notation. We denote by Ĉll ′ an (N , N ) submatrix of Ca. Now Ĉ can
be understood as an (L , L) matrix whose elements are themselves
(N , N ) matrices. Similarly, we denote by âl an N-element subvector
of a.

We now have

âl =
∑

l ′
Ĉll ′ x̂l ′ (19)

where it must be understood that each term Ĉll ′ x̂l ′ involves a ma-
trix multiplication of order N. Matrix Ĉ has the symmetry prop-
erty Ĉll ′ = (Ĉl ′l )T. In particular, the diagonal elements Ĉll are
symmetric.

We apply Crout’s algorithm to equation (19). We follow the pro-
cedure presented in Press et al. (1992), keeping in mind that instead
of scalar elements we are now operating with matrices.

We want to decompose Ĉ into

Ĉlk =
∑

j

L̂ l j L̂T
k j (20)

where L̂l j = 0 for j > l. Here L̂ is a lower triangular matrix, whose
elements are again (N , N ) matrices. Note that the transpose sign
refers to the element L̂k j , not L̂ itself.

We write

Ĉlk = L̂lk L̂T
kk +

∑
j<k

L̂l j L̂T
k j (l > k) (21)

Ĉll = L̂ll L̂
T
ll +

∑
j<l

L̂ l j L̂T
l j . (22)

From this we can solve for the elements of L̂ ,

L̂lk =
[

L̂−1
kk (ĈT

lk −
∑
j<k

L̂k j L̂T
l j )

]T

(l > k) (23)

L̂ll =
[

Ĉll −
∑

j<l

L̂ l j L̂T
l j

]1/2

. (24)

For each l, we first use equation (23) to solve L̂lk for k = 1, . . . ,
l − 1 and then equation (24) to solve L̂ll . Once L̂ is known, elements
x̂k can be solved by back-substitution as

ẑk = L̂−1
kk

(
âk −

∑
j<k

L̂k j ẑ j

)
k = 1, . . . , L (25)

x̂k = L̂−1
kk

(
ẑk −

∑
j>k

L̂T
jk x̂ j

)
k = L, . . . , 1. (26)

The procedure presented above contains operations between
(N , N ) matrices and vectors of length N. These (N , N ) matrices
are nearly circulant, except for the corners, where they do not ‘wrap
around’ like circulant matrices do. However, the deviation is small,
and we may treat the matrices as circulant.

Circulant matrix operations are most conveniently carried out in
Fourier space. We pad each vector with zeros up to the next power
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of 2, and use the fast Fourier transform (FFT) technique to perform
the Fourier transforms.

To each elementary operation involving a circulant matrix there
corresponds an operation in Fourier space. The corresponding
Fourier operations are the following:

(i) matrix multiplication – element by element multiplication of
Fourier transforms;

(ii) matrix transpose – complex conjugate of the Fourier trans-
form;

(iii) square root of a matrix – square root of the Fourier transform;
(iv) matrix inversion – inverse of the Fourier transform.

The procedure for determining x = C−1
a a can be summarized as

follows. First perform a Fourier transform to the circulant ring index
i − i ′ of Ca. Then carry out Cholesky decomposition in index l as
described above, and store the resulting L̂ matrix.

For each vector a, carry out a Fourier transform along the ring
index i, perform back-substitution as given by (25)–(26), and do an
inverse Fourier transform to obtain x.

The total operation count of the above procedure is proportional
to L3 N ln N , as contrasted to L3 N 3 of normal matrix inversion.
Furthermore, the decomposition can be done ‘in place’ in the space
of L2 N elements, instead of L2 N 2.

3.3 Covariance of the output map

The covariance of the output map of MADAM is given by

Cm = [
PT

(
Cn + FCaF

T
)−1

P
]−1

, (27)

assuming that the noise is well modelled by the noise model (2).
The inverse of (27) can be put into the form

C−1
m = PTC−1

n P − PTC−1
n F

(
C−1

a + FTC−1
n F

)−1
FTC−1

n P. (28)

We presented in Section 3.2 a procedure for evaluating C−1
a a for

arbitrary a. By running this procedure L times one can compute the
inverse of matrix Ca. The matrix C−1

a + FTC−1
n F can then again

be decomposed and stored using the same procedure. When this
is done, one can then easily compute any element of C−1

m using
formula (28).

4 C OVA R I A N C E O F T H E C O M P O N E N T
A M P L I T U D E S

4.1 General

In this section we consider the computation of the covariance
matrix Ca.

First we define reference values for the amplitude vector a. Sup-
pose the actual co-added noise TOD, denoted by u, is known. We
consider here the correlated noise component only. We fit the noise
model Fa to the noise stream. A least-squares fit gives

ã = (FTF)−1FTu. (29)

Equation (29) gives the reference values or best estimates for the
amplitude vector. We compute the covariance matrix as

Ca = 〈ããT〉. (30)

Now let yp be the original, unco-added noise stream. We assume
that the noise is stationary and its autocorrelation c p−p′ = 〈ypy p′ 〉 is
known.

The co-added noise stream is

ui j = 1

M

M−1∑
m=0

y[i Mn+mn+ j]. (31)

Here n is the number of samples per ring and M is the number of co-
added circles (M = 60 for the nominal Planck scanning strategy).
The index i = 0, . . . , N − 1 labels rings, j = 0, . . . , n − 1 labels
samples on a ring, and m = 0, . . . , M − 1 labels circles co-added
into a ring.

Let Flj be the values of the base functions l = 1, . . . , L on a ring.
We assume orthogonality and write

F̄ l j =
(∑

j ′
F2

l j ′

)−1

Fl j . (32)

The reference values for component amplitudes are, according to
(29), given by

ãil =
n−1∑
j=0

F̄ l j ui j =
n−1∑
j=0

F̄ l j
1

M

M−1∑
m=0

y[i Mn+mn+ j]. (33)

For uniform baselines, for instance, the reference value is simply
the average of the noise over the ring.

Next we calculate the theoretical covariance of the reference val-
ues (33). The elements of the covariance matrix are given by

Ca,i i ′ll ′ = 〈ãil ãi ′l ′ 〉

=
n−1∑

j, j ′=0

F̄ l j F̄ l ′ j ′
1

M2

M−1∑
m,m′=0

〈y[inM+mn+ j] y[i ′nM+m′n+ j ′]〉

=
n−1∑

j, j ′=0

F̄ l j F̄ l ′ j ′
1

M2

M−1∑
m,m′=0

c[(i−i ′)nM+(m−m′)n+ j− j ′].
(34)

The sum over m, m ′ can be combined into one sum over m ′′ =
m − m ′,

Ca,i i ′ll ′ =
n−1∑

j, j ′=0

F̄ l j F̄ l ′ j ′

M∑
m′′=−M

M − |m ′′|
M2

c[(i−i ′)nM+m′′n+ j− j ′]. (35)

This is a general formula for the elements of the covariance
matrix Ca.

4.2 Exponential expansion of the autocorrelation function

Covariance (35) is rather heavy to evaluate computationally, since it
contains a three-dimensional sum. However, if the autocorrelation
function can be expanded in exponential functions, the covariance
can be computed in a very efficient way. This holds, e.g. for 1/ f
and 1/ f 2 noise.

Suppose the autocorrelation function can be expanded as

c(t) =
∑

k

bkck(t) (36)

where

ck(t) = exp(−gk |t |) (37)

where gk is a selected set of characteristic frequencies and and bk

are coefficients to be determined.
We denote by Ck the covariance matrix that corresponds to an

exponential autocorrelation function of the form (37). Once the

C© 2005 RAS, MNRAS 360, 390–400

Downloaded from https://academic.oup.com/mnras/article-abstract/360/1/390/1062726
by Oikeustiet. kirjasto user
on 16 April 2018



394 E. Keihänen, H. Kurki-Suonio and T. Poutanen

component covariances Ck and coefficients bk have been deter-
mined, the total covariance Ca can be computed as

Ca =
∑

k

bkC
k . (38)

The component covariances Ck can be computed in a very efficient
way making use of the basic properties of the exponent function.

Expanding the autocorrelation as (36) is equivalent to expanding
the power spectrum as

P( f ) =
∑

k

bk
2gk

g2
k + (2π f )2

. (39)

The expansion does not exist for arbitrary noise spectra. In Appendix
A we calculate the expansion explicitly for a power-law spectrum
of the form

P( f ) =
(

fkn

f

)γ
σ 2

fs
( f > fmin) (40)

for −2 � γ < 0. Here f kn is the knee frequency, at which the spectral
power equals the white noise power σ 2/ f s, σ is the white noise std,
and f s is the sampling frequency.

For 1/ f noise (γ = −1) the expansion is particularly simple. If
the characteristic frequencies gk are chosen uniformly in logarithmic
scale, the correct spectrum is obtained with

bk = 2σ 2 fkn

fs
�, (41)

where � is the logarithmic interval in gk.
The 1/ f spectrum, as given by the expansion (39) with co-

efficients (41), is shown in Fig. 1. The 1/ f form holds inside
the frequency range f min < f < f max spanned by the character-
istic frequencies gk. Below f min the spectrum levels out, as can be
seen from the figure.

Another simple example is the 1/ f 2 spectrum (γ = −2). In that
case the desired spectrum is given by one single g component with
coefficient

b = 2π2 f 2
kn

g

σ 2

fs
(42)

and g = 2π f min.
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Figure 1. 1/ f noise power spectrum, as given by expansion (39) and equa-
tion (41). The solid line shows the pure 1/ f noise spectrum. The dashed line
shows the white noise level (P wn = σ 2/ f s). The dash-dotted line shows the
total noise spectrum, including both components. The parameters were σ =
2700 µK, f s = 76.8 Hz, f kn = 0.1 Hz, � = 1, f min = 10−5 Hz, f max =
10 Hz.

4.3 Component covariance matrices

In this section we give explicit formulae for the elements of the com-
ponent covariance matrix Ck that corresponds to the autocorrelation
function (37). The derivation is given in Appendix A. Here we just
quote the results.

We use again the index notation, where indices i , i ′ refer to rings
and l, l ′ to base functions. The elements of the component covariance
matrix are given by

Ck
ii ′ll ′ = Gk S+

kl S−
kl ′ exp

[
− gk

fsp
(i − i ′ − 1)M

]
(i > i ′) (43)

Ck
ii ′ll ′ = Gk S−

kl S+
kl ′ exp

[
− gk

fsp
(i ′ − i − 1)M

]
(i < i ′) (44)

Ck
ii ′ll ′ = 1

M

n−1∑
j=0

(F̄ l j F̄ l ′ j + F̄ l j Al ′ j + F̄ l ′ j Al j )

+ G0
k

(
S+

kl S−
kl ′ + S−

kl S+
kl ′

)
. (i = i ′) (45)

Here f sp = f s/n, where n is the number of samples on a ring,
represents the spin frequency of the instrument. If no co-adding is
applied, n can be chosen freely, and f sp does not need to have any
connection to the scanning pattern of the instrument. In that case f sp

represents simply the inverse of the chosen baseline length.
Factors S+ and S− are defined as

S+
kl =

n−1∑
j=0

F̄ l j exp

(
− gk

fs
j

)
(46)

S−
kl =

n−1∑
j=0

F̄ l j exp

[
− gk

fs
(n − j)

]
. (47)

Co-adding brings in the factors

Gk = 1

M2

[1 − exp(− gk
fsp

M)]2

[1 − exp(− gk
fsp

)]2
(48)

and

G0
k = 1

M

1

1 − exp(− gk
fsp

)

[
1 − 1

M

1 − exp(− gk
fsp

M)

1 − exp(− gk
fsp

)

]
. (49)

If no co-adding is done (M = 1), we have Gk = 1 and G0
k = 0.

Factor Alj is defined by

Al j =
j−1∑
j ′=0

F̄ l j ′ exp

[
− gk

fs
( j − j ′)

]
(50)

and can be computed rapidly using the recurrence relation

Al j = (Al, j−1 + F̄ l, j−1) exp

(
− gk

fs

)
, (51)

with the starting value Al0 = 0.
Formulae (43)–(45) are very fast to evaluate numerically, as com-

pared to the general formula (35).
Fig. 2 presents the theoretical covariance, computed using ex-

pansion (38), between uniform baselines for 1/ f noise with f kn =
0.1 Hz. Other parameters used were f s = 76.8 Hz, f sp = 1/60 Hz,
n = 4608 and M = 60. We show in the same figure the covari-
ance as determined from simulated 1/ f noise. We generated 10
realizations of noise TOD of one year length, and computed their
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Figure 2. Covariance between uniform baselines, as a function of the dis-
tance between rings. The solid line shows the theoretical curve, computed
using equations (43)–(45). Diamonds present the values determined from
simulated noise. The noise parameters were σ = 2700 µK, f s = 76.8 Hz,
f kn = 0.1 Hz, � = 1, f min = 10−5 Hz, f max = 10 Hz.

Table 2. The first elements of the covariance matrix Ca [in (µK)2]. The
noise parameters were the same as in Fig. 2. We used Fourier components as
base functions, normalized as

∑
j

F2
l j = n. We show elements l, l ′ = 1, . . . ,

5 and i − i ′ = 0, . . . , 3. Index value l = 1 refers to the uniform baseline and
values l = 2 and l = 3 (l = 4 and l = 5) to the sine and cosine of the first
(second) Fourier mode, respectively. The noise parameters were the same as
in Fig. 2.

l i − i ′ l ′ = 1 l ′ = 2 l ′ = 3 l ′ = 4 l ′ = 5

1 0 56049 0 −2.41 0 −0.668
1 31324 −89.6 1.10 −44.9 0.307
2 18707 −28.9 0.0531 −14.5 0.0133
3 12928 −16.3 0.0210 −8.17 5.25e-3

2 0 0 161 0 1.64 0
1 89.6 −1.42 0.209 −0.745 0.0696
2 28.9 −0.0751 2.35e-4 −0.0376 5.88e-5
3 16.3 −0.0297 5.90e-5 −0.0148 1.48e-5

3 0 −2.41 0 158 0 −0.123
1 1.10 −0.209 0.133 −0.139 0.0617
2 0.0531 −2.35e-4 1.14e-6 −1.18e-4 2.85e-7
3 0.0210 −5.90e-5 1.73e-7 −2.95e-5 4.32e-8

4 0 0 1.64 0 79.9 0
1 44.9 −0.745 0.139 −0.401 0.0524
2 14.5 −0.0376 1.18e-4 −0.0188 2.94e-5
3 8.17 −0.0148 2.95e-5 −7.42e-3 7.38e-6

5 0 −0.668 0 −0.123 0 79.0
1 0.307 −0.0696 0.0617 −0.0524 0.0334
2 0.0133 −5.88e-5 2.85e-7 −2.94e-5 7.13e-8
3 5.25e-3 −1.48e-5 4.32e-8 −7.38e-6 1.08e-8

autocorrelation using the Fourier technique. The agreement is very
good.

As another example we show in Table 2 the first elements of the
covariance matrix for Fourier components. Index l = 1 refers to the
uniform baseline and indices l = 2 and l = 3 (l = 4 and l = 5)
to the sine and cosine of the first (second) Fourier mode, respec-

tively. We have normalized all components to
∑

j F2
l j = n. Ele-

ments of matrix F are thus F1 j = 1, F2 j = √
2 sin(2π j/n), F3 j =√

2 cos(2π j/n), F4 j = √
2 sin(4π j/n), F5 j = √

2 cos(4π j/n),
and F̄ is given by F̄ l j = Fl j/n. We see that the dominant elements
are those corresponding to uniform baselines.

5 S I M U L AT I O N R E S U LT S

5.1 Data sets

We have produced two sets of simulated TOD. We refer to them as
‘co-added’ and ‘unco-added’ data sets.

The co-added data set mimicks the one year TOD from one Planck
Low Frequency Instrument (LFI) 70-GHz detector. The scanning
pattern was the following. The spin axis remained in the equatorial
plane and was turned 2.4 arcmin every hour, so that after 8640 h the
spin axis had turned 360 degrees. The detector turned around the
spin axis with an opening angle of 85 deg and spin frequency f sp =
1/60 Hz. The sampling frequency was f s = 76.8 Hz. We co-added
data of 60 consecutive spin circles to form a ring. Our total data
set consisted of 8640 rings, with 4608 samples in each. The sky
coverage was 0.9964.

The unco-added data set was generated with a quite similar scan-
ning pattern. The main difference was that instead of moving in
steps, the spin axis turned continuously at the rate of 360 degrees in
8640 min. The sampling and spin frequencies as well as the opening
angle were the same as in the first data set. Because the spin axis
moved continuously, consecutive circles did not fall on top of each
other, and no co-adding was done. The total length of the TOD was
the same as in the co-added data set, i.e. 8640 × 4608 samples. The
amount of data was equivalent to 6 d of one detector Planck data,
spread over the whole sky. This scanning pattern was rather arti-
ficial, but our purpose was only to demonstrate the use of MADAM

in the case of unco-added data. Full-scale simulations with realistic
unco-added one-year Planck data are beyond the scope of this paper.

The underlying CMB map was created by the SYNFAST code of
the HEALPIX package (Górski et al. 1999, 2005), starting from
the CMB anisotropy angular power spectrum computed with the
CMBFAST3 code (Seljak & Zaldarriaga 1996) using the cosmologi-
cal parameters �tot = 1.00, �� = 0.7, �bh2 = 0.02, h = 0.7, n =
1.00, and τ = 0.0. We created the input map with HEALPIX reso-
lution N side = 2048 and with a symmetric Gaussian beam with full
width at half maximum (FWHM) of 14 arcmin. We then formed
the signal TOD by picking temperatures from this map. Our output
maps have resolution parameter N side = 512, corresponding to an
angular resolution of 7 arcmin.

We used the stochastic differential equation (SDE) technique to
create the instrument noise stream, which we added to the signal
TOD. We generated noise with power spectrum

P( f ) =
(

1 + fkn

f

)
σ 2

fs
, ( f > fmin) (52)

with parameters σ = 2700 µK, knee frequency f kn = 0.1 Hz, and
f min = 10−5 Hz. The white noise level 2700 µK (CMB temperature
scale) corresponds to the estimated white noise level of one 70-GHz
LFI detector. We used the same noise spectrum for both data sets.

We run our code on one processor of an IBM eServer Cluster
1600 supercomputer.

3 http://www.cmbfast.org
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Table 3. Estimated rms of the residual 1/f noise map (see text for expla-
nation) for different numbers of base functions, for co-added data. We fit
Fourier components and Legendre polynomials. We show also the number
of iteration steps and CPU time in the Fourier case.

Legendre Fourier
L rms/µK rms/µK iter CPU/s

1 19.232 19.232 16 59
2 18.801
3 18.591 18.351 20 65
4 18.331
5 18.147 17.970 28 106
7 17.914 17.749 28 123
9 17.752 17.604 32 164

11 17.634 17.503 32 191
15 17.482 17.370 36 267
25 17.284 17.213 40 530
35 17.194 17.137 44 758
45 17.141 17.096 52 1154
65 17.057 56 1959

5.2 Results for co-added data

We show our results for the co-added data set in Tables 3–5 and in
Figs 3–5.

We created a reference map by co-adding the pure signal TOD
into a map and computed the total residual noise map by subtracting
the reference map from the output map. We computed the rms of the
residual map (rms tot) and averaged it over 10 noise realizations.
The rms values show little variation, because they are dominated
by white noise. Therefore we have used as a figure of merit the
estimated rms of the residual 1/f noise, which was computed as
follows. Using the white noise sigma (2700 µK) and the known
distribution of measurements in the sky we obtained rms wn =
108.95 µK for the expected contribution from white noise to the
residual noise map. We computed an estimate for the rms of the
residual 1/f noise as rms = sqrt((rms tot)2-(rms wn)2). Tables 3
and 4 quote these rms values.

The results for different numbers of base functions are given in
Table 3. We tried two sets of base functions: Fourier components and
Legendre polynomials. Because a Fourier fit always includes a uni-
form baseline plus an equal number of sine and cosine functions, the
total number L of base functions is always an odd number. The rms
values continue improving when we increase the number of base
functions. Fourier components give lower rms values than Legendre
polynomials for the same number of components. In the rest of the
simulations in this section we fitted only Fourier components.

We show also the number of iterations and total CPU time taken
by one run in the case of Fourier components. Since the CPU time
naturally depends on the computer used and may vary from run to
run, the values quoted should not be taken too seriously. They merely
give an idea how the run time increases with increasing number of
base functions.

In Fig. 3 we have plotted the rms values against the inverse of the
number of base functions. At the limit 1/L → 0 the rms seems to
be approaching the value 16.97 µK. We expect that to be the std of
the minimum-variance map (Section 2.2).

In Fig. 4 we show the power spectrum of the residual noise map
for L = 1, L = 5, and L = 25 (Fourier components), as an average
over 10 noise realizations. Note that these spectra include the white
noise contribution. The spectra look very similar. We therefore used
the L = 1 spectrum of Fig. 4 as a reference spectrum, which we sub-
tracted from other spectra. The differences are shown in Fig. 5, for

Table 4. Effect of misestimating the noise spectrum. We show the estimated
1/f residual map rms (in µK) for different numbers of Fourier components
and for different assumed knee frequencies f kn (upper panel), spectral slopes
γ (middle), and minimum frequencies f min (lower panel). The other two
noise parameters were kept at their correct values ( f kn = 0.1 Hz, γ = −1.0,
and f min = 10−5 Hz). The lowest rms value on each row is denoted by an
asterisk. The correct parameter value is shown in boldface.

f kn

L 0.03 Hz 0.05 Hz 0.1 Hz 0.2 Hz

1 19.232 19.232 19.232 19.232
3 18.396 18.345∗ 18.351 18.398
5 18.056 17.961∗ 17.970 18.083
7 17.888 17.754 17.749∗ 17.904
9 17.786 17.624 17.604∗ 17.788

11 17.721 17.538 17.503∗ 17.709
15 17.641 17.428 17.370∗ 17.603
25 17.556 17.326 17.213∗ 17.485

γ

L −0.6 −0.8 −1.0 −1.2

1 19.266 19.233 19.232∗ 19.232∗
3 18.384 18.340∗ 18.351 18.373
5 18.008 17.951∗ 17.970 18.009
7 17.799 17.733∗ 17.749 17.788
9 17.666 17.592∗ 17.604 17.641

11 17.576 17.495∗ 17.503 17.536
15 17.461 17.369∗ 17.370 17.396
25 17.340 17.226 17.213∗ 17.230
35 17.291 17.159 17.137∗ 17.151

f min

L 10−6 Hz 10−5 Hz 10−4 Hz 10−3 Hz

1 19.232∗ 19.232∗ 19.233 19.350
3 18.351∗ 18.351∗ 18.351∗ 18.501
5 17.970∗ 17.970∗ 17.971 18.220
7 17.749∗ 17.749∗ 17.750 18.039
9 17.604∗ 17.604∗ 17.605 17.926

11 17.503∗ 17.503∗ 17.505 17.849
15 17.370∗ 17.370∗ 17.371 17.748
25 17.213∗ 17.213∗ 17.215 17.626

Table 5. Pixelization noise. Rms of the resid-
ual map for noise-free TOD. The error is due
to finite pixelization of the sky.

L rms/µK

1 0.138
3 0.207
5 0.233
7 0.257
9 0.274

11 0.289
15 0.319
25 0.359
35 0.380
45 0.393

L = 3, 5, 11, 25. The spectra were binned into bins of 10 multi-
poles for clarity. Fig. 5 shows that increasing the number of Fourier
components systematically reduces the residual noise at multipoles
above l = 60.
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Figure 3. Rms of the residual 1/f noise map plotted against the inverse
of the number of base functions, for Legendre polynomials (+) and Fourier
components (∗). The numerical values are given in Table 3. The rms seems
to converge towards 16.97 µK at the limit L → n.
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Figure 4. Power spectrum of the residual noise map (including white noise),
for L = 1 (dot-dashed), L = 5 (dashed), and L = 25 (solid). We fit Fourier
components.
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Figure 5. Difference of the power spectrum of the residual noise map, with
respect to the L = 1 case, as bins of 10. From above: L = 3 (thin dashed),
L = 5 (thin solid), L = 11 (thick dashed), and L = 25 (thick solid).

We have compared results of fitting uniform baselines using
MADAM and ordinary destriping technique. We got the destriping
results by running MADAM with C−1

a = 0. At this limit the method
reduces to pure destriping. The destriping result was 19.232 18 µK
(19.232 12 µK with MADAM). This indicates that when fitting uni-
form baselines only, the covariance plays a very small role, but the
baselines can be determined from the data alone with good accuracy.

Keihänen et al. (2004) showed that fitting Fourier components
beyond the uniform baseline with the ordinary destriping technique,
without using the covariance matrix, did not improve the results. In
this work we have found a clear improvement. This indicates that
information about the noise spectrum is important when fitting base
functions other than the uniform baseline.

We have also studied the effect of misestimating the noise spec-
trum. We varied in turn each of the three noise parameters (knee
frequency, spectral slope, and minimum frequency) while keeping
the other two at their correct values ( f kn = 0.1 Hz, γ = −1.0,
f min = 10−5 Hz). We then recomputed the covariance matrix Ca for
Fourier components with the new parameter values and rerun the
map estimation. The results are shown in Table 4.

It is perhaps surprising that for small L underestimating the knee
frequency or assuming a less deep slope seems to improve the re-
sults. This can be understood as follows. When L is small, the noise
is not perfectly modelled by the base functions. There is an error
involved, related to the higher Fourier components that have not
been included in the analysis. This error disturbs the estimation of
the lower components, leading to a too high variation in their ampli-
tudes. The error in the covariance matrix, caused by misestimation
of the noise spectrum, partly compensates for this error. We notice
that the best results are obtained with a spectrum (a less deep slope
or lower knee frequency) which leads to a smaller covariance for
the low-frequency Fourier components. Smaller covariance tends to
restrict the variation of the amplitudes, thus decreasing their error
also. With larger L the phenomenon disappears, and the lowest rms
is obtained with the correct noise spectrum, as expected.

Table 5 shows results from a run with noise-free data. The TOD
contained only the contribution from the CMB signal, but no in-
strument noise. The error that still remains in the map is due to
‘pixelization noise’ (Doré et al. 2001) caused by the finite size of
sky pixels. The pixelization error increases with increasing number
of base functions, but is very small compared with the error due to
instrument noise.

5.3 Results for unco-added data

If no co-adding is applied, the length n of a ring is not determined by
the scanning pattern of the instrument, but is a free parameter to be
chosen at will. We then have two parameters to select: the number
L of base functions and their length n.

To keep things simple, we tried two schemes. First we kept the
baseline length fixed at one minute and varied the number of Fourier
components that we fitted. Secondly, we fitted uniform baselines
only (L = 1) but varied their length. Results from the first case are
shown in Table 6. The baseline length was fixed at n = 4608 samples
(one minute). We show again the estimated rms of the residual 1/f
noise map, computed in the same way as in the case of co-added
data. The white noise level was higher than in the co-added case by
a factor of

√
60. The expected white noise contribution to the rms

of the residual noise map was 844.0 µK.
Table 7 shows results of fitting uniform baselines of different

lengths. The first column gives the length n of the baseline, as the
number of samples. The second column gives the baseline length
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Table 6. Average residual noise rms for different
numbers of Fourier components, for the unco-added
data set. The ring length was n = 4608. Also shown
are the number of iteration steps and the CPU time
for one run.

L rms/µK iter CPU s−1

1 149.45 28 68
3 141.52 36 102
5 138.64 48 161
7 136.71 52 205
9 135.72 56 280

11 134.93 60 336
15 133.90 64 436
25 132.63 76 847

Table 7. Results of fitting uniform baselines of different lengths to unco-
added data. The first three columns give the baseline length as the number
of samples and in seconds, respectively, and the number of baselines per one
minute of TOD. The next columns give the estimated residual 1/f noise rms,
number of iteration steps and total CPU time taken by one run.

n t s−1 N min−1 rms/µK iter CPU s−1

4608 60.0 1 149.45 28 68
2304 30.0 2 144.14 32 80
1152 15.0 4 141.85 36 96

576 7.5 8 137.97 48 123
288 3.75 16 135.26 64 150
144 1.88 32 133.31 84 215

72 0.94 64 132.07 116 331
36 0.47 128 131.41 160 672
18 0.23 256 131.06 224 1284

9 0.12 512 130.91 320 2889

in seconds. The third column shows the number of baselines per
minute (4608/n). The shortest baseline we tried consisted of only
nine samples.

The third column of Table 7 and the first column of Table 6 are
comparable, since they give the total number of unknowns per one
minute of TOD. We see that for a given number of unknowns, fit-
ting Fourier components works better than fitting uniform baselines.
However, when we compare CPU times, we see that fitting uniform
baselines is more effective.

As in the case of co-added data, we compared results of fitting
uniform baselines using MADAM and the ordinary destriping tech-
nique. The results are shown in Table 8. With one-minute baselines
the difference between the methods is small, but increases with
decreasing n, in favour of MADAM. The rms value obtained with de-
striping reaches a minimum around 0.5 min baseline length, while
with MADAM the values continue improving. With small values of
n MADAM is clearly superior to basic destriping.

6 C O N C L U S I O N S

We have presented a new map-making method for CMB experiments
called MADAM. The method is based on the well-known destriping
technique, but unlike basic destriping, it also uses information on the
known statistical properties of the instrument noise in the form of the
covariance matrix of the base function amplitudes. We have shown

Table 8. Comparison between MADAM and destriping.

MADAM destriping
n t s−1 N min−1 rms/µK rms/µK

4608 60.0 1 149.45 149.48
2304 30.0 2 144.14 144.26
1152 15.0 4 141.85 147.43

576 7.5 8 137.97 170.85
288 3.75 16 135.26 233.85

that with this extra information the CMB map can be estimated with
better accuracy than with pure destriping.

We have tested the method with simulated co-added Planck-like
data. As a figure of merit we have used the rms of the residual 1/f
noise map. Our simulations show that fitting more base functions
clearly improves the accuracy of the output map, with the cost of
increasing requirements for CPU time and memory.

We have shown theoretically that the map estimate given by
MADAM approaches the optimal minimum-variance map when the
number of fitted base functions increases. In practice it is not possi-
ble to reach the exact minimum-variance map using MADAM, due to
CPU time and memory limitations. Still, MADAM provides a fast and
efficient map-making method. By varying the number of base func-
tions the user may flexibly move from a very fast but less accurate
map-making (small L) to a more accurate but more time-consuming
map-making (large L), depending on what is desired.

We also demonstrated the use of MADAM for unco-added data.
Although the data set used was quite artificial, in the sense that
it does not mimick data from any existing CMB experiment, the
method was shown to work well for unco-added data also.

The current implementation of the method is a serial one. With
a parallelized version we expect to be able to process data sets
equivalent to full-year unco-added Planck data.
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Doré O., Teyssier R., Bouchet F. R., Vibert D., Prunet S., 2001, A&A, 374,

358
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A P P E N D I X A : C OVA R I A N C E M AT R I X F O R A
P OW E R - L AW P OW E R S P E C T RU M

We discussed the computation of the covariance matrix Ca in Sec-
tion 4. In this appendix we present some technical calculations which
were omitted there.

A1 Exponential expansion for a power-law spectrum

Assume that the autocorrelation function of the noise can be ex-
panded as

c(t) =
∑

k

bk exp(−gk |t |) (A1)

where gk is a selected set of characteristic frequencies. We now
derive the coefficients bk in the case of a power-law power spectrum
of the form

P( f ) ∝ f γ (A2)

for −2 � γ < 0.
The power spectrum P( f ) and the autocorrelation function c(t)

of stationary noise are related by the cosine transform

P( f ) =
∫ ∞

−∞
c(t) cos(2π f t) dt . (A3)

The autocorrelation function exp(−g|t |) corresponds to the power
spectrum

P( f , g) = 2g

g2 + (2π f )2
. (A4)

The total power spectrum corresponding to the autocorrelation (A1)
is given by

P( f ) =
∑

k

bk P( f , gk) =
∑

k

2bk gk

g2
k + (2π f )2

. (A5)

We pick the frequencies gk uniformly in a logarithmic scale inside
some range [ f min, f max] and use the Ansatz

bk = Agγ+1
k � (A6)

where �= ln(gk+1/gk) is the logarithmic step in g and A is a constant
to be determined. The total power spectrum becomes

P( f ) = A
∑

k

2gγ+2
k

g2
k + (2π f )2

�. (A7)

We transform the sum into an integral

P( f ) = A

∫ fmax

fmin

2gγ+2

g2 + (2π f )2

dg

g

≈ A

∫ ∞

0

2gγ+1

g2 + (2π f )2
dg ( fmin � f � fmax). (A8)

The integral converges for −2 < γ < 0,

P( f ) = A
π(2π f )γ

sin[(γ + 2)π/2]
∝ f γ . (A9)

We choose

A = σ 2

fs

1

π
(2π fkn)−γ sin[(γ + 2)π/2] (A10)

to obtain the desired power spectrum

P( f ) = σ 2

fs

(
f

fkn

)γ

( fmin � f � fmax). (A11)

Here σ is the white noise std, f s is the sampling frequency, and f kn

is the knee frequency, at which the power of the power-law noise
component equals the white noise power σ 2/ f s. The maximum f max

should well exceed the knee frequency.
The coefficients bk are given by

bk = σ 2

fs

1

π
(2π fkn)−γ sin[(γ + 2)π/2]gγ+1

k � (A12)

for −2 < γ < 0. In particular, for 1/ f noise (γ = −1) we have the
simple formula

bk = 2σ 2 fkn

fs
�. (A13)

The case γ = −2 requires a separate treatment. We see directly
from equation (A4) that the desired spectrum is given by one single
g component with coefficient

b = 2π2 f 2
kn

g

σ 2

fs
. (A14)

The spectrum then has the form

P( f ) = f 2
kn

f 2
min + f 2

σ 2

fs
(A15)

where f min = g/(2π). The spectrum behaves as ∝ f −2 at f � f min

and levels out below f min.

A2 Component covariance matrices

Once the expansion (A1) has been found, the covariance matrix can
be computed as

Ca =
∑

k

bkC
k . (A16)

In the following we calculate the component covariance matrices
Ck.

In Section 4 we derived the general formula

Cii ′ll ′ =
n−1∑

j, j ′=0

F̄ l j F̄ l ′ j ′
1

M2

M−1∑
m,m′=0

c[(i−i ′)nM+(m−m′)n+ j− j ′]. (A17)

Assume then that the autocorrelation function is of the exponen-
tial form

〈yp yp′ 〉 = ck,p−p′ = exp (−gk |t |) = exp

(
− gk

fs
|p − p′|

)
(A18)

where f s is the sampling frequency and indices p, p′ label sam-
ples along the TOD. We substitute this into equation (A17). The
covariance becomes

Ck
ii ′ll ′ =

n−1∑
j j ′=0

F̄ l j F̄ l ′ j ′
1

M2

M−1∑
m,m′=0

× exp

(
− gk

fs
|(i − i ′)nM + (m − m ′)n + j − j ′|

)
.

(A19)

We treat the cases |i − i ′| > 0 and i = i ′ separately.
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(i) |i − i ′| > 0. If i − i ′ > 0 the quantity inside the brackets is
positive, and we can split the four-dimensional sum into a product
of four sums as

Ck
ii ′ll ′ = exp

[
− gk

fs
(i − i ′ − 1)nM

]

× 1

M2

M−1∑
m=0

exp

(
− gk

fs
mn

)

×
M−1∑
m=0

exp

[
− gk

fs
(M − 1 − m)n

]

×
n−1∑
j=0

F̄ l j exp

(
− gk

fs
j

)

×
n−1∑
j ′=0

F̄ l ′ j ′ exp

[
− gk

fs
(n − j ′)

]
. (A20)

We have arranged the terms in such a way that the argument of an
exponent function is always negative. This is helpful in numerical
evaluation. The sum over m, m ′ can be carried out analytically,
yielding

Gk = 1

M2

M−1∑
m=0

exp

(
− gk

fs
mn

) M−1∑
m=0

exp

[
− gk

fs
(M − 1 − m)n

]

= 1

M2

[
1 − exp

(
− gk

fsp
M

)]2

[
1 − exp

(
− gk

fsp

)]2
(A21)

where f sp = f s/n.
The elements for which i − i ′ < 0 are obtained from the symmetry

relation, Ck
ii ′ll ′ = Ck

i ′il ′l .
(ii) The case i = i ′ is more complicated, since the quantity in-

side the brackets in equation (A19) takes both positive and negative
values. We split the sum into three terms (m = m ′, m > m ′, and

m < m ′) and the m = m ′ term further into three terms ( j = j ′, j >

j ′, and j < j ′),

Ck
iill ′ =

n−1∑
j j ′=0

F̄ l j F̄ l ′ j ′
1

M2

M−1∑
m,m′=0

exp

[
− gk

fs
|(m − m ′)n + j − j ′|

]

= 1

M2

M−1∑
m=0

∑
m′<m

exp

[
− gk

fs
(m − m ′ − 1)n

]

×
n−1∑
j=0

F̄ l j exp

(
− gk

fs
j

) n−1∑
j ′=0

F̄ l ′ j ′ exp

[
− gk

fs
(n − j ′)

]

+ 1

M2

M−1∑
m′=0

∑
m<m′

exp

[
− gk

fs
(m ′ − m − 1)n

]

×
n−1∑
j=0

F̄ l j exp

[
− gk

fs
(n − j)

] n−1∑
j ′=0

F̄ l ′ j ′ exp

(
− gk

fs
j

)

+ 1

M

n−1∑
j=0

F̄ l j F̄ l ′ j + 1

M

n−1∑
j=0

F̄ l j

∑
j ′< j

F̄ l ′ j ′ exp

[
− gk

fs
( j − j ′)

]

+ 1

M

n−1∑
j ′=0

F̄ l ′ j ′
∑
j< j ′

F̄ l j exp

[
− gk

fs
( j ′ − j)

]
. (A22)

The sum over m, m ′ can again be calculated analytically,

G0
k = 1

M2

M−1∑
m=0

∑
m′<m

exp

[
− gk

fsp
(m − m ′ − 1)

]

= 1

M

1

1 − exp(− gk
fsp

)

[
1 − 1

M

1 − exp(− gk
fsp

M)

1 − exp(− gk
fsp

)

]
. (A23)

Formula (A22) may seem complicated, but is easy and fast to eval-
uate numerically.

Equations (A20) and (A22), when written in compact form, give
the formulae (43)–(45) in Section 4.
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