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ABSTRACT

We constrain cosmological models where the primordial perturbations have an adiabatic and a (possibly correlated)
cold dark matter (CDM) or baryon isocurvature component. We use both a phenomenological approach, where
the power spectra of primordial perturbations are parameterized with amplitudes and spectral indices, and a
slow-roll two-field inflation approach where slow-roll parameters are used as primary parameters, determining the
spectral indices and the tensor-to-scalar ratio. In the phenomenological case, with CMB data, the upper limit to the
CDM isocurvature fraction is α < 6.4% at k = 0.002 Mpc−1 and 15.4% at k = 0.01 Mpc−1. The non-adiabatic
contribution to the CMB temperature variance is −0.030 < αT < 0.049 at the 95% confidence level. Including the
supernova (SN) (or large-scale structure) data, these limits become α < 7.0%, 13.7%, and −0.048 < αT < 0.042
(or α < 10.2%, 16.0%, and −0.071 < αT < 0.024). The CMB constraint on the tensor-to-scalar ratio, r < 0.26
at k = 0.01 Mpc−1, is not affected by the non-adiabatic modes. In the slow-roll two-field inflation approach,
the spectral indices are constrained close to 1. This leads to tighter limits on the isocurvature fraction; with the
CMB data α < 2.6% at k = 0.01 Mpc−1, but the constraint on αT is not much affected, −0.058 < αT < 0.045.
Including SN (or LSS) data, these limits become α < 3.2% and −0.056 < αT < 0.030 (or α < 3.4% and
−0.063 < αT < −0.008). In addition to the generally correlated models, we study also special cases where the
adiabatic and isocurvature modes are uncorrelated or fully (anti)correlated. We calculate Bayesian evidences (model
probabilities) in 21 different non-adiabatic cases and compare them to the corresponding adiabatic models, and find
that in all cases the data support the pure adiabatic model.
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structure of universe
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1. INTRODUCTION

The nature of primordial perturbations is the key observation
window to the physics of the very early universe and the very
high energy physics that is beyond the reach of particle accel-
erators. The simplest model for the generation of primordial
perturbations, single-field slow-roll inflation, predicts adiabatic
Gaussian nearly scale-invariant primordial scalar perturbations,
and tensor perturbations at a level that may or may not be ob-
servable, depending on the detailed model. Current cosmolog-
ical data are consistent with these kinds of perturbations, with
so far no evidence for primordial tensor perturbations. There
is some evidence of a small deviation from scale invariance.
More complicated models, like multi-field inflation, may give
rise to deviations from adiabaticity or Gaussianity that improved
observations may be able to detect.

In this paper, we study what information the currently
available data on the cosmic microwave background (Larson
et al. 2011; Reichardt et al. 2009; Brown et al. 2009) give
on possible deviations from adiabaticity, and check how the
results change if we add supernova (SN; Amanullah et al. 2010)
or large-scale structure (LSS; Reid et al. 2010) (that includes
baryon acoustic oscillations, BAOs; Percival et al. 2010) data
into the analysis. While adiabatic primordial perturbations are
fully determined by one physical perturbation quantity, which
we may take to be the curvature perturbation in the comoving
gauge, R, deviations from adiabaticity represent additional,
isocurvature, degrees of freedom that can be given in terms
of entropy perturbations, which represent how perturbations of

different particle species differ from each other. For example,
the primordial cold dark matter (CDM) entropy perturbation can
be written as

Scγ = δ(nc/nγ )

nc/nγ

= δnc

nc

− δnγ

nγ

, (1)

where nc and nγ are the number densities of CDM particles
and photons at early time, deep in the radiation-dominated
era. These kinds of perturbations do not (initially) perturb the
spatial curvature of comoving slices (R = 0), hence the name
“isocurvature perturbations.” There is so far no evidence for an
isocurvature perturbation component, and observations require
it to be subdominant compared to the adiabatic component
(Beltran et al. 2005a, 2005b; Keskitalo et al. 2007; Trotta 2007;
Seljak et al. 2006; Lewis 2006; Bean et al. 2006; Kawasaki &
Sekiguchi 2008; Beltran 2008; Sollom et al. 2009; Valiviita &
Giannantonio 2009; Castro et al. 2009; Li et al. 2011). Even if
no isocurvature component is found, improving upper limits to
it will help to constrain the particle theory related to the origin
of perturbations (Liddle & Lyth 2000).

Out of four possible isocurvature modes (Bucher et al.
2002, 2000), we focus here on CDM and baryon isocurvature
perturbations, which are observationally indistinguishable from
each other (see however Kawasaki et al. 2011b for the prospects
of using the hydrogen 21 cm lines), and do not consider the less
well-motivated neutrino isocurvature perturbations (Kasanda
et al. 2011). In our earlier work (Valiviita & Giannantonio 2009;
Keskitalo et al. 2007; Kurki-Suonio et al. 2005), we assumed
that tensor perturbations were negligible. Now we allow for the
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presence of tensor perturbations. We assume a power-law power
spectrum for the primordial curvature and entropy perturbations
and allow for correlations between them. We also study special
cases with no correlation or with ±100% correlation.

Assuming spatially flat geometry of the universe, we perform
full parameter scans of this mixed (adiabatic and isocurvature)
model, as well as the standard pure adiabatic ΛCDM model for
comparison. We present posterior probability densities of the
standard cosmological parameters and the extra isocurvature
parameters, and report the Bayesian evidences for these models
calculated with the MultiNest nested sampling package (Feroz
et al. 2009), using the CMB data alone or CMB and SN data or
CMB and LSS data.

We use two different approaches: (1) a phenomenological
approach, where we make no reference to the origin of the
primordial perturbations, and just try to determine or constrain
their amplitudes and spectral indices from the data; and (2) a
slow-roll two-field inflation approach, where we assume the
perturbations were generated by quantum fluctuations during
two-field inflation, and the spectral indices are determined by
the slow-roll parameters at the time the cosmological scales
exited horizon during inflation.

2. CURVATURE AND ENTROPY (ISOCURVATURE)
PERTURBATIONS

In this section, we define the curvature and isocurvature
perturbations, as well as our notation and sign convention for
them.

In general, the metric perturbed by scalar perturbations is
given by the line element

ds2 = a2{−(1 + 2φ)dτ 2 + 2∂iB dτdxi

+ [(1 − 2ψ)δij + 2∂i∂jE]dxidxj }. (2)

From the above metric perturbations one can construct gauge-
invariant Bardeen potentials (Bardeen 1980):

Φ ≡ φ + H(B − E′) + (B − E′)′, (3)

Ψ ≡ ψ − H(B − E′), (4)

where H = a′/a is the conformal Hubble parameter, a is the
scale factor of the universe, and prime denotes a derivative with
respect to conformal time τ . In the longitudinal (Newtonian)
gauge, where B = E = 0, the Bardeen potentials match the
Newtonian metric perturbations.

The comoving gauge is defined by requiring both comoving
slicing, B = 0, and comoving threading, v = 0, where v is
the fluid velocity potential. We denote the comoving gauge by
superscript C, and define the comoving curvature perturbation
R by

R ≡ −ψC = −ψG − H(vG − BG). (5)

Here, we used the gauge transformation properties of ψ in order
to relate ψC to the perturbation quantities in any other gauge G.

Our sign convention for R is such that a positive R cor-
responds to positive curvature of the three-dimensional τ =
constant slice. If we go to a spatially flat gauge (superscript F)
where ψF = EF = 0, we find

R = 1

3(1 + w)

[
δρF

ρ
+

2

3

(
k

H

)2

Ψ

]
, (6)

where ρ is the background (average, unperturbed) energy
density, and w = p/ρ with p being the background pressure.
A positive R corresponds to an overdensity, δρF > 0, on large
scales k/H � 1.

Finally, the definition (5) can be expressed in various forms
in terms of the gauge-invariant Bardeen potentials:

R = − Ψ − 2

3(1 + w)
(H−1Ψ′ + Φ) (7)

= − Ψ +
H
H′ (Ψ

′ + HΦ). (8)

It is important to note that our sign convention is opposite to,
e.g., Gordon et al. (2001), Gordon (2001), and Byrnes & Wands
(2006), and whether ψ/φ appear in the time or space part of
the metric and what sign they have in Equation (2) varies a lot
in the literature. Furthermore, often the definitions of Ψ and Φ
are swapped and also their sign convention varies. Our sign
convention matches with our previous works (Kurki-Suonio
et al. 2005; Keskitalo et al. 2007; Valiviita & Giannantonio
2009) and, e.g., with Li et al. (2011). Liddle & Lyth (2000) use
our sign convention for R, but has Ψ and Φ swapped.

We define the total entropy perturbation by

S ≡ H
(

δp

p′ − δρ

ρ ′

)
, (9)

where p′ and ρ ′ are the conformal time derivatives of the
background pressure and energy density, respectively. Further,
we define an entropy perturbation between particle species x
and y by

Sxy ≡ −3H
(

δρx

ρ ′
x

− δρy

ρ ′
y

)
. (10)

Using the continuity equation, this can be written as Sxy =
δx/(1 +wx)− δy/(1 +wy), where δ = δρ/ρ. This leads easily to
Equation (1) for CDM and photons. Both S and Sxy are gauge
invariants, and hence we did not need to specify the gauge above.

It can be shown that on super-Hubble scales (k/H � 1)
H−1R′ ∝ S (Garcia-Bellido & Wands 1996; Wands et al.
2000; Gordon et al. 2001; Gordon 2001; Amendola et al.
2002). Therefore, in the absence of entropy perturbation, the
comoving curvature perturbation remains constant on super-
Hubble scales.3 On the contrary,H−1S ′ ∝ S, and hence the total
entropy perturbation evolves with time even on super-Hubble
scales. Moreover, these differential equations imply that (part
of) S can be “converted” into R, but R cannot be converted
into S, and even if R and S were initially (e.g., at horizon exit
during inflation) uncorrelated, the later evolution can lead to a
correlation between them: there will be a part of R that has been
“created” from the initial S, and hence this part of R is fully
correlated or anti-correlated with S (Amendola et al. 2002).

If we assume that the universe consists of photons (γ ),
neutrinos (ν), baryons (b), and CDM (c), and that the entropy
perturbation between neutrinos and photons vanishes, then the
total entropy perturbation during radiation domination can be
written as

S = a

4aeq + 3a
(fcScγ + fbSbγ ), (11)

3 Brown et al. (2011) have claimed that a non-adiabatic pressure naturally
arises on super-Hubble scales even in an adiabatic system. Then the curvature
perturbation would evolve, but the effect is insignificant at linear order.
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where aeq is the scale factor at radiation-matter equality, fc =
ρc/(ρc + ρb), and fb = ρb/(ρc + ρb).

In this paper, we perform all the isocurvature analysis
by specifying a non-zero primordial Scγ , i.e., a primordial
CDM isocurvature mode, while keeping all the other relative
entropy perturbations Sxy zero. From now on we shorten our
notation, and denote

S ≡ Scγ (12)

at primordial time trad, deep in the radiation-dominated era, on
super-Hubble scales.

Finally, we comment once more on our sign convention.
The ordinary Sachs–Wolfe (SW) effect in the CMB temperature
anisotropy, in the direction n at the sky, is

δT

T
(n) = −1

5
[R(trad, n) + 2fcS(trad, n)]. (13)

(Note that we have −1/5R for the adiabatic part whereas
Equation (3) in Amendola et al. (2002) shows +1/5R due
to their different sign convention for R.) Note that R and
S appear with the same sign in this expression. Hence, a positive
primordial correlation, CRS > 0, leads to extra power at low
multipoles in the CMB temperature angular power spectrum,
C� ∝ 〈|δT /T |2〉, compared to the uncorrelated case. Vice versa,
a negative primordial correlation leads to a negative contribution
to the SW effect, and hence reduces the angular power at low
multipoles.

3. MECHANISMS THAT PRODUCE ISOCURVATURE

There are various mechanisms that can produce (correlated)
isocurvature and adiabatic perturbations. Compared to the
single-field slow-roll inflation which can stimulate only the
adiabatic perturbation mode, at least one extra degree of freedom
is needed. Inflationary models with multiple (scalar) fields are
a natural extension. Production of isocurvature perturbations
in these types of models has been studied, e.g., by Huston
& Christopherson (2011), Choi et al. (2007), Choi et al.
(2009), Hamazaki (2008), Di Marco et al. (2003), Di Marco
et al. (2007), Lalak et al. (2007), Byrnes & Wands (2006),
Rigopoulos et al. (2007), Bassett et al. (2000), Bassett et al.
(2006), Hattori & Yamamoto (2005), Di Marco & Finelli
(2005), Parkinson et al. (2005), Gruzinov (2004), Bartolo et al.
(2001a), Bartolo et al. (2001b), Bartolo et al. (2004), Vernizzi
(2004), Lee & Fang (2004), van Tent (2004), Mazumdar &
Postma (2003), Malik et al. (2003), Ashcroft et al. (2004),
Bernardeau & Uzan (2002), Wands et al. (2002), Tsujikawa
& Bassett (2002), Starobinsky et al. (2001), Groot Nibbelink
& van Tent (2002), Hwang & Noh (2002), Hwang & Noh
(2000), Gordon et al. (2001), Taylor & Berera (2000), Finelli &
Brandenberger (2000), Liddle & Mazumdar (2000), Pierpaoli
et al. (1999), Langlois (1999), Felder et al. (1999), Perrotta &
Baccigalupi (1999), Chiba et al. (1998), Nakamura & Stewart
(1996), Polarski & Starobinsky (1995), Polarski & Starobinsky
(1994), and Polarski & Starobinsky (1992), while Langlois &
Vernizzi (2007), Rigopoulos (2004), and Tsujikawa et al. (2003)
go to a nonlinear level. Many of these references derive so-called
consistency relations (there actually exists an infinite hierarchy
of them; Lidsey et al. 1997; Cortes & Liddle 2006) or analytical
expressions for the spectral tilts and amplitudes of adiabatic
and isocurvature components in specific inflationary setups. We
will use the notation and the leading-order results of Byrnes &
Wands (2006) for two-field slow-roll inflation.

Various types of axions carry isocurvature perturbations
(Hertzberg et al. 2008; Kawasaki & Nakayama 2008;
Sikivie 2008; Beltran et al. 2007; Lazarides 2007; Dine &
Anisimov 2005; Bozza et al. 2002; Vernizzi et al. 2001;
Kanazawa et al. 1999, 1998; Kasuya et al. 1997a, 1997b;
Kawasaki & Yanagida 1997; Kawasaki et al. 1996), and
Kasuya & Kawasaki (2009) have constructed an axion model
which leads to a large isocurvature spectral index, niso ∼ 2–4.
(These values are formally preferred in our phenomenologi-
cal approach.) Most axion–dilaton–moduli models give rise to
isocurvature perturbations (Copeland et al. 1997). Moduli fields
and isocurvature have been studied by Lemoine et al. (2009),
Lemoine et al. (2010), Yang & Ma (2008), and Lalak (2008).
One solid candidate for producing correlated mixtures of adia-
batic and isocurvature perturbations is the curvaton model (Lyth
& Wands 2002; Enqvist & Sloth 2002), or curvaton-type models,
such as late-decaying scalar condensations (Moroi & Takahashi
2001). Isocurvature perturbations in these models have been dis-
cussed by Lemoine et al. (2008), Matsuda (2007), Choi & Gong
(2007), Lemoine & Martin (2007), Lazarides (2005), Lazarides
et al. (2004), Moroi & Takahashi (2004b), Ferrer et al. (2004),
Chun et al. (2004), Gupta et al. (2004), Bastero-Gil et al. (2004),
Hamaguchi et al. (2004), Lyth & Wands (2003), Dimopoulos
et al. (2003), Moroi & Murayama (2003), Bastero-Gil et al.
(2003), Lyth et al. (2003), Bartolo & Liddle (2002), and Moroi &
Takahashi (2002). A generic feature of (minimally) supersym-
metric (standard) model is the existence of extra fields that
can carry isocurvature perturbations (McDonald & Seto 2008;
McDonald 2007; Feldstein et al. 2005; Enqvist & Mazumdar
2003). Kasuya et al. (2008), Kamada & Yokoyama (2008),
Charng et al. (2009), Kawasaki & Takahashi (2001), Enqvist &
McDonald (2000), Enqvist & McDonald (1999), and Koyama
& Soda (1999) focus on the Affleck–Dine mechanism which
typically leads to isocurvature perturbations. In brane models
isocurvature also arises naturally (Contaldi et al. 2008; Copeland
et al. 2006; Burgess et al. 2004; Koyama 2003; Koyama & Soda
2002) as well as in the ekpyrotic scenario (Koyama & Wands
2007; Notari & Riotto 2002).

Dark energy isocurvature perturbations have been studied by
Gordon & Hu (2004). In some models with interaction between
CDM and dark energy, an isocurvature mode is rapidly growing
in some regions of the parameter space overtaking the usual adi-
abatic mode, and hence these regions can be ruled out (Valiviita
et al. 2008, 2010; Majerotto et al. 2010; Clemson et al. 2012).
Isocurvature in quintessence cosmologies has been studied by
Moroi & Takahashi (2004a), Li et al. (2002), Hwang & Noh
(2001), Kawasaki et al. (2002), Kawasaki et al. (2001), and
Abramo & Finelli (2001). Large-scale magnetic fields can also
induce a magnetic isocurvature component (Giovannini 2006;
Tsagas & Maartens 2000; Giovannini & Shaposhnikov 1998).
Finally, cosmic strings and other topological defects generi-
cally create isocurvature perturbations, but in this case they may
not be “primordial” but instead continuously created during the
evolution of universe (Takahashi & Yamaguchi 2006; Battye &
Weller 2000; Deruelle et al. 1997; Durrer & Sakellariadou 1997;
Hu et al. 1997). In order to match cosmic string models with
observations, one needs another mechanism to produce the pre-
dominant adiabatic component: Bevis et al. (2008) constrained
a model with a mixture of adiabatic perturbations from inflaton
and isocurvature perturbations from strings.

After introducing our model and its parameterization in
the next section, we give a few specific examples in
Section 4.3.
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4. THE MODEL

The general perturbation, here presented in Fourier space, is a
superposition of adiabatic and isocurvature perturbations, R(k)
and S(k). Its power spectrum P = PR + CRS + CSR + PS , where
C represents the correlation, is defined by the expectation value

〈[R(k) + S(k)]∗[R(k̃) + S(k̃)]〉 ≡ (2π )3δ(3)(k − k̃)

× 2π2

k3
[PR(k) + CRS(k) + CSR(k) + PS(k)] . (14)

Note that we used a calligraphic letter P , while P is reserved for
P (k) ≡ (2π2/k3)P(k).

Following Valiviita & Muhonen (2003), Kurki-Suonio et al.
(2005), Keskitalo et al. (2007), Kawasaki & Sekiguchi (2008),
and Valiviita & Giannantonio (2009), we divide the comoving
curvature perturbations into an uncorrelated part (“ar”), and a
part fully correlated with the entropy perturbation (“as”), and
assume power-law forms for the spectra:

PR(k) = Par(k) + Pas(k), (15)

where

Par(k) = A2
r0 (k/k0)nar−1 ,

Pas(k) = A2
s0 (k/k0)nas−1 , (16)

and
PS(k) = B2

0 (k/k0)niso−1 . (17)

The covariance is given by

CRS(k) = CSR(k) = As0B0 (k/k0)ncor−1 , (18)

where
ncor = (nas + niso)/2. (19)

In general, we denote A2
ri ≡ Par(ki), A2

si ≡ Pas(ki), and
B2

i ≡ PS(ki).
For fitting the different models to the data, we choose our

reference scales as

k1 = 0.002 Mpc−1

k0 = 0.010 Mpc−1

k2 = 0.050 Mpc−1. (20)

We further define

A2
i ≡ A2

ri + A2
si + B2

i , αi ≡ B2
i /A

2
i (21)

and

γi ≡ sign(AsiBi)
A2

si

A2
ri + A2

si

, (22)

so that

A2
ri = (1 − |γi |)

(
A2

ri + A2
si

) = (1 − |γi |)(1 − αi)A
2
i

A2
si = |γi |

(
A2

ri + A2
si

) = |γi |(1 − αi)A
2
i

B2
i = αiA

2
i

AsiBi = αcoriA
2
i = CRS(ki) = CSR(ki), (23)

where we defined the relative amplitude of the primordial cor-
relation between the adiabatic and CDM isocurvature perturba-
tions by

αcori ≡ sign(γi)
√

αi(1 − αi)|γi |. (24)

The total CMB temperature angular power spectrum can be
written as

C� = A2
0

[
(1 − α0)(1 − |γ0|)Ĉar

� + (1 − α0)|γ0|Ĉas
�

+ α0Ĉ
iso
� + αcor0Ĉ

cor
� + (1 − α0)r0Ĉ

T
�

]
≡ Car

� + Cas
� + C iso

� + Ccor
� + CT

� , (25)

where the Ĉ� represent the different contributions to the angular
power spectrum that would result from a corresponding primor-
dial spectrum with a unit amplitude at the pivot scale k = k0
(Kurki-Suonio et al. 2005). The last term, CT

� , is the possible
contribution from primordial tensor perturbations; see the next
subsection.

From Equation (11), we note that in order to lead to the
same observational effects we would need a primordial baryon
isocurvature perturbation that is Sbγ = (fc/fb)Scγ = (ωc/ωb)S.
So, if we find a constraint Bc for Bi (in case of CDM), this can
be converted to the constraint Bb = (ωc/ωb)Bc for the baryon
isocurvature. Therefore, a constraint αc for αi can be converted
to a constraint

αb = (ωc/ωb)2αc

1 − αc + (ωc/ωb)2αc

. (26)

For example, if ωb = 0.02 and ωc = 0.10, then αc =
0.10 corresponds to αb ≈ 0.74. Unless otherwise stated,
αs in the following refer to the CDM isocurvature fraction.
The constraints on the primordial baryon isocurvature fraction
reported in this paper have been obtained from our runs with
CDM isocurvature by the above mapping and by weighting
the posterior by a Jacobian determinant of the mapping (in
this case simply |∂αb/∂αc|), in order to simulate a situation
where αb would have had a flat prior (Kurki-Suonio et al. 2005;
Keskitalo et al. 2007; Valiviita & Giannantonio 2009).

Additional derived parameters can be defined. For example, a
parameter neff

ad represents the spectral index for adiabatic modes
obtained expressing the adiabatic contribution as a single power
law:

neff
ad (k) − 1 ≡ d lnPR(k)

d ln k

= (nar−1)(1−|γ0|)k̄nar−1 + (nas−1)|γ0|k̄nas−1

(1−|γ0|)k̄nar−1 + |γ0|k̄nas−1
,

(27)

where k̄ ≡ k/k0.
Our pivot-scale free measure of the non-adiabaticity will be

the total non-adiabatic contribution to the CMB temperature
variance:

αT ≡ 〈(δT non−ad)2〉
〈(δT total from scalar perturbations)2〉

=
∑2100

�=2 (2� + 1)
(
C iso

� + Ccor
�

)
∑2100

�=2 (2� + 1)
(
Car

� + Cas
� + C iso

� + Ccor
�

) . (28)

4.1. Phenomenological Parameterizations

The above-described model has six independent (scalar)
perturbation parameters. We can choose the spectral index
parameterization, where they are

ln A2
0, α0, γ0, nar, nas, niso, (29)
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or the amplitude parameterization, where they are

ln A2
1, ln A2

2, α1, α2, γ1, |γ2|. (30)

The model does not allow correlation to change sign as a
function of scale, and therefore the sign of γ2 is not an
independent quantity.

In addition, we can have primordial tensor perturbations
whose power spectrum we write as

PT (k) = PT (k0) (k/k0)nT . (31)

We parameterize the primordial tensor power in the traditional
way by the tensor-to-scalar ratio

r(k) ≡ PT (k)

PR(k)
, (32)

which may depend on the scale, as we see by substituting the
power spectra into the above definition

r(k) =
PT (k0)

(
k
k0

)nT

A2
r0

(
k
k0

)nar−1
+ A2

s0

(
k
k0

)nas−1

= r0

(
k
k0

)nT

(1 − |γ0|)
(

k
k0

)nar−1
+ |γ0|

(
k
k0

)nas−1 , (33)

where r0 ≡ r(k0). We assume the first consistency relation (see,
e.g., Lidsey et al. 1997; Bartolo et al. 2001a; Wands et al. 2002;
Cortes & Liddle 2006; Kawasaki & Sekiguchi 2008)

nT = − r

8(1 − |γ |) , (34)

to be approximately valid at all scales of interest. This requires
(moderate) “running” of tensor spectral index nT , since r and
γ depend on k. Hence we define nT up to first order as

nT (k) = nT (k0) +
1

2
qT 0 ln(k/k0), (35)

where the running is

qT 0 = d2 lnPT (k)

d(ln k)2

∣∣∣
k=k0

= dnT

d ln k

∣∣∣
k=k0

. (36)

Demanding Equation (34) to be valid at leading order in ln(k/k0)
leads to

qT 0 = nT 0[nT 0 − (nar − 1)]. (37)

This is the second consistency relation (Cortes et al. 2007; Cortes
& Liddle 2006), and we impose this together with the first
consistency relation as in Brown et al. (2009)—see discussion
after Equation (42) on how Equations (34) and (37) follow from
slow-roll inflation. Therefore, the possible primordial tensor
perturbations add only one extra parameter to the model, and
we choose it to be tensor-to-scalar ratio r0 at k0 = 0.010 Mpc−1.
This then gives the spectral index as a derived parameter,

nT 0 = − r0

8(1 − |γ0|) , (38)

and the running via Equation (37). (In the phenomenological
approach it would have been logical to keep r and nT as

independent free parameters, and thus use the data to test the
consistency relation. However, as neither tensor perturbations
nor deviations from adiabaticity have so far been detected, the
data currently have not much power for this, and we choose to
focus on the question of adiabaticity in this paper.)

In phenomenological studies we choose the amplitude param-
eterization rather than the spectral index parameterization, since
the amplitude parameterization leads to faster convergence of
the parameter scan, leads to tighter and more reliable constraints
on the parameters, and does not have the ambiguity of arbitrarily
chosen prior ranges (Trotta 2007) in Bayesian model selection
that the spectral indices suffer from (Sollom et al. 2009; Valiviita
& Giannantonio 2009). We list the primary (sampling) param-
eters of the amplitude parameterization in the first two blocks
of Table 1. In the last block we list some interesting derived
parameters, e.g., the spectral indices and amplitudes at k = k0
that are easy to calculate from the amplitudes at k1 and k2.

4.2. Inflationary Slow-roll Parameterization

In the slow-roll two-field inflation approach, we have the fol-
lowing relations between the slow-roll parameters and spectral
indices and r, to first order in slow-roll parameters defined in
Byrnes & Wands (2006) (see also, e.g., Bartolo et al. 2001a;
Wands et al. 2002; van Tent 2004; Peterson & Tegmark 2011,
and note that in Byrnes & Wands (2006) n = 0 stands for a
scale-invariant spectrum, whereas we have added the conven-
tional 1, and we have an opposite sign for cos Δ and hence for
tan Δ, due to the different sign convention for R),

nar = 1 − 6ε + 2ησσ

nas = 1 − 2ε + 2ηss − 4ησs tan Δ
niso = 1 − 2ε + 2ηss

r = 16ε sin2 Δ
nT = − 2ε, (39)

and to second order in slow-roll parameters, among others,

qT = −8ε2 + 4εησσ . (40)

Here the correlation angle Δ is defined by

cos Δ ≡ CRS

P1/2
R P1/2

S

= sign(AsB)

√
A2

s

A2
r + A2

s

(41)

with 0 � Δ � π (so that sin Δ is non-negative), and the relation
to γ is

γ ≡ sign(cos Δ) cos2 Δ
sin2 Δ = 1 − |γ |
cos Δ = sign(γ )

√
|γ |

tan Δ = sign(γ )

√
1 − |γ |√|γ | . (42)

In principle, the slow-roll parameters are functions of scale k,
and the parameters we are fitting are the values of the slow-roll
parameters when our reference scale k0 exited the horizon. We
are using these values to construct the approximate forms of the
primordial power spectra.

In multi-field inflation, non-zero correlation (Δ = π/2,
γ = 0) appears whenever the background trajectory in the field
space is curved between the horizon exit (of the perturbations
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Table 1
Parameters and Parameterizations

Parameter Explanation Range (min, max)
Primary background parameters (common for both parameterizations)

ωb Physical baryon density; ωb = h2Ωb (0.010, 0.050)
ωc Physical cold dark matter density; ωc = h2Ωc (0.02, 0.30)
100θ θ is the sound horizon angle; θ = rs (z∗)/DA(z∗) (0.5, 2.2)
τ Optical depth to reionization (0.02, 0.30)

Primary perturbation parameters in amplitude parameterization

ln(1010A2
1) A2

1 is the overall primordial perturbation power at k = k1 = 0.002 Mpc−1 (1.0, 7.0)
ln(1010A2

2) A2
2 is the overall primordial perturbation power at k = k2 = 0.05 Mpc−1 (1.0, 7.0)

γ1 Primordial ratio of correlated adiabatic component to total adiabatic power at k = k1 (−1.0, 1.0)
|γ2| Primordial ratio of correlated adiabatic component to total adiabatic power at k = k2 (0, 1.0)
α1 Primordial isocurvature fraction at k = k1; A2

1α1 = primord. isocurvature power at k1 (0, 1.0)
α2 Primordial isocurvature fraction at k = k2; A2

2α2 = primord. isocurvature power at k2 (0, 1.0)
(r0) Primordial ratio of tensor and scalar power spectra at k = k0 = 0.01 Mpc−1 (0, 0.75)
ASZ Amplitude of the Sunyaev–Zel’dovich (SZ) template (0, 2)

Primary perturbation parameters in slow-roll parameterization

ησσ Slow-roll parameter (when scale k = k0 = 0.01 Mpc−1 exited the horizon); ησσ = 1
8 πG

∂σ ∂σ V
V

(−0.075, 0.075)
ησs Slow-roll parameter (when scale k = k0 exited the horizon); ησs = 1

8 πG
∂σ ∂sV

V
(−0.075, 0.075)

ηss Slow-roll parameter (when scale k = k0 exited the horizon); ηss = 1
8 πG

∂s∂sV
V

(−0.075, 0.075)
(ε) Slow-roll parameter (when scale k = k0 exited the horizon); ε = 1

16 πG
( ∂σ V

V
)2 (0, 0.075)

ln(1010A2
0) A2

0 is the overall primordial perturbation power at k = k0 (1.0, 7.0)
γ0 Primordial ratio of correlated adiabatic component to total adiabatic power at k = k0 (−1.0, 1.0)

[γ0 ≡ sign(cos Δ0) cos2 Δ0, where Δ0 is the primordial “correlation angle” at k0]
α0 Primordial isocurvature fraction at k = k0; A2

0α0 = primord. isocurvature power at k0 (0, 1.0)
ASZ Amplitude of the SZ template (0, 2)

Derived parameters

H0 Hubble parameter [km s−1 Mpc−1]; calculated from ωb , ωc , and θ Top-hat (40, 100)
h h = H0/(100 km s−1 Mpc−1) (0.40, 1.00)
Ωm Matter density parameter; Ωm = (ωb + ωc)/h2 . . .

ΩΛ Vacuum energy density parameter; ΩΛ = 1 − Ωm . . .

nar Spectral index of primordial uncorrelated adiabatic part; nar − 1 = d ln(Par)/d ln k|k=k0 . . .

nas Spectral index of primordial correlated adiabatic part; nas − 1 = d ln(Pas)/d ln k|k=k0 . . .

niso Spectral index of primordial isocurvature part; niso − 1 = d ln(PS )/d ln k|k=k0 . . .

neff
ad Effective single adiabatic spectral index at k = k0 = 0.01 Mpc−1, Equation (27) . . .

αcor0 αcor0 = sign(γ0)
√

α0(1 − α0)|γ0|; A2
0αcor0 = CRS (k0) = CSR(k0) = primord. correlation ampl. . . .

αT Total non-adiabatic contribution to the CMB temperature variance, Equation (28) . . .

Notes. Our 11 (12 with primordial tensor perturbations) primary nested sampling parameters in two different parameterizations (amplitude and slow-
roll) and a selection of derived parameters. In addition, in the amplitude parameterization, parameters A0, γ0, and α0 can be derived from Ai, γi , and
αi (i = 1, 2). In the slow-roll parameterization, r is a derived parameter: r0 = 16ε(1 − |γ0|). For detailed definitions and expressions for the slow-roll
parameters ε and ηij , see, e.g., Byrnes & Wands (2006).

of cosmologically interesting scales) and the end of inflation.
It should be noticed that also the evolution between the end of
inflation and the primordial radiation-dominated era, such as
reheating or evolution during the “primordial dark era” (Easther
& Peiris 2011), may “convert” (part of) entropy perturbation
into the curvature perturbation, hence changing the values of
As, B, Δ, and γ . We mean by these symbols the values at the
primordial time trad, deep in the radiation-dominated era, on
super-Hubble scales.

From Equations (39) and (42) we see that r0 = 16ε(1 −|γ0|),
and nT 0 = −(r0/8(1 − |γ0|)), and furthermore Equation (40)
can be rewritten as qT 0 = −2ε[−2ε − (−6ε + 2ησσ )] =
nT 0[nT 0 − (nar − 1)]. So, the tensor perturbations satisfy both
the first and second consistency relations.

After doing all our analysis using the phenomenolog-
ical amplitude parameterization, we repeat everything us-
ing the theoretically motivated inflationary slow-roll param-
eterization. We summarize the parameters and notation in
Table 1.

4.3. Specific Examples

Although we will compare to the data the two models de-
scribed above, and uncorrelated or ±100% correlated variations
of them, we review in this subsection three examples on how a
(correlated) mixture of adiabatic and isocurvature perturbations
could arise without multiple (dynamical) inflaton fields. In these
cases, the spectral indices do not necessarily follow exactly the
formulae of Equation (39). Neither are they fully free as in our
phenomenological parameterization. So, constraining these spe-
cific models accurately would require additional parameter-scan
runs. As a fourth example we review one of the simplest two-
field inflation models, double quadratic inflation (see Langlois
1999), where the spectral indices obey Equation (39).

4.3.1. Mixed Inflaton–Curvaton Scenario

In many models, the inflationary evolution is dominated
by the inflaton field φ, but another light field is present
during inflation and entropy perturbations in this field may be
converted into curvature perturbations after inflation is over. In
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the curvaton scenario, the curvaton field χ is constant during
inflation but once the Hubble parameter becomes smaller than
the curvaton mass, the curvaton begins oscillating and behaves
like dust. Thus, its energy density decreases slower than that of
radiation and it can make a significant contribution to the energy
density of the universe and to the curvature perturbation. The
curvature perturbation is given by (Langlois et al. 2008)

R(k) = 1√
2M2

Plε∗
δφ∗ê1(k) +

2R

3

δχ∗
χ∗

ê2(k), (43)

where R ≡ (3ρχ/(3ρχ + 4ρr ))dec is evaluated at the time of
curvaton decay, ρr is the radiation energy density, and “∗”
means that a quantity is evaluated at the time of horizon exit
of the Fourier mode k = |k|. Here ê1 and ê2 are two inde-
pendent (Gaussian) random variables that obey 〈ê∗

i (k)êj (k̃)〉 =
(2π )3δ(3)(k − k̃)δij .

If CDM is created before curvaton decay, the entropy pertur-
bation is (Langlois et al. 2008)

S(k) = −2R
δχ∗
χ∗

ê2(k) (44)

and we have

α(k) = 9λ

1 + 10λ
, γ (k) = − λ

1 + λ
, (45)

where λ ≡ (8/9)R2ε∗(MPl/χ∗)2. Since α is constrained to
be small, the only observationally allowed possibility in this
scenario is that λ is small, which leads to (almost) uncorrelated
perturbations.

If CDM is created from curvaton decay then the entropy
perturbation is (Langlois et al. 2008)

S(k) = (1 − R)2
δχ∗
χ∗

ê2(k) (46)

and

α(k) = 9(1 − R)2

R2(1 + λ−1) + 9(1 − R)2
, γ (k) = λ

1 + λ
. (47)

Now α can be small either if λ is small, which again leads to
uncorrelated perturbations, or if R is very close to one, that is,
if the curvaton dominates the energy density of the universe at
the time of decay. In that case λ can be arbitrarily large, leading
to fully correlated perturbations, provided that the value of the
curvaton field is sufficiently below Planck scale at the time when
observationally relevant scales exit the horizon.

The spectral indices are given by

nar � 1 − 6ε + 2ηφφ; nas � niso � 1 − 2ε, (48)

where the parameters are evaluated at horizon exit.

4.3.2. Modulated Reheating with Gravitino Dark Matter

In the modulated reheating scenario, the decay rate Γ = Γ(σ )
of the inflaton depends on an additional scalar field σ , which
was light during inflation. The inflaton decays into radiation
when H ∼ Γ, which means that due to entropy perturbations
in the field σ the inflaton will decay at different times in
different parts of the universe. Assuming that after the end of
inflation the inflaton oscillates and behaves like dust, its energy

density decreases slower than that of radiation, which means
that the parts of the universe where it decays later will have an
overdensity compared to the parts where it decays earlier. Thus
the entropy perturbations in the modulating field are converted
into curvature perturbations, given by

R(k) = 1√
2M2

Plε∗
δφ∗ê1(k) +

1

6

(
dΓ/dσ

Γ

)
δσ∗ê2(k). (49)

If CDM is in the form of gravitinos then the entropy
perturbation is given by

S(k) = ±1

2

(
dΓ/dσ

Γ

)
δσ∗ê2(k), (50)

where + and − correspond to thermal and non-thermal pro-
duction of gravitinos, respectively (Takahashi et al. 2009). Then

α(k) = 9ξ

9 + 10ξ
, γ (k) = ± ξ

9 + ξ
, (51)

where

ξ ≡ 1

2
ε∗

(
σdΓ/dσ

Γ

)2

∗

(
MPl

σ

)2

∗
. (52)

Again perturbations are constrained to be (almost) uncorrelated.
The spectral indices are the same as in the curvaton case.

4.3.3. Axion

In the axion model the axion field is massless during inflation,
but obtains a mass after inflation ends, once the temperature
of the universe drops below the QCD scale, ΛQCD. When the
Hubble parameter is smaller than the axion mass, the axion
behaves like dust and can account for dark matter. The curvature
perturbation in the axion model comes from the inflaton,

R(k) = 1√
2M2

Plε∗
δφ∗ê1(k), (53)

and the isocurvature perturbation from the axion,

S(k) = 2
ωχ

ωc

δχ∗
χ∗

ê2(k), (54)

where ωχ/ωc is the fraction of axions in CDM. The value of the
axion field during inflation can be expressed as χ∗ = faθi , where
fa is the axion decay constant and θi is the initial misalignment
angle. We now have

α(k) = λ

1 + λ
, γ (k) = 0, (55)

where

λ ≡ 8ε∗
θ2
i

(
ωχ

ωc

)2 (
MPl

fa

)2

. (56)

The final abundance of axions is (Kawasaki & Sekiguchi 2008)

ωχ = 10−3 × fdθ
2
i

(
ΛQCD

200 MeV

)−2/3 (
fa

1010 GeV

)7/6

,

where fd � 1 is a dilution factor. The parameter fa is cosmo-
logically constrained to be in the region 1010 GeV � fa � 4.1
×1012 GeV. Thus if axions account for a significant portion of
CDM, then ε is constrained to be extremely small. The spectral
indices are given by

nar � 1 − 6ε + 2ηφφ, niso � 1 − 2ε. (57)
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4.3.4. Double Quadratic Inflation

If there are several dynamically important fields during
inflation then the direction of the background evolution plays the
role of the inflaton. Perturbations in this direction are adiabatic
while perturbations perpendicular to it are entropy perturbations.
The simplest such model is double quadratic inflation with two
non-interacting fields with quadratic potentials,

V = 1

2
m2

φφ2 +
1

2
m2

χχ2, (58)

where m2
χ � m2

φ . Denoting the perturbations in the direction of
the background trajectory by δσ and ones perpendicular to it by
δs and assuming that the heavy field decays into CDM and the
light field into radiation, the perturbations are (Langlois et al.
2008)

R(k) = 1√
2M2

Plε∗
δσ∗ê1(k)

+
1

4
M−2

Pl (1 − R−2)ξ∗ sin 2θ∗δs∗ê2(k)

S(k) = − 4R2

sin 2θ∗ξ∗
δs∗ê2(k), (59)

where tan θ ≡ χ̇/φ̇ and R ≡ mχ/mφ � 1 and ξ ≡√
φ2 + R4χ2. In this case

α(k)= β

1 +
[
1 + 4ε2(R2−1)2

β2

]
β

, γ (k)=− 4ε2(R2 − 1)2

β + 4ε2(R2−1)2
,

where

β ≡ 32ε∗
sin2 2θ∗

R4

(
MPl

ξ

)2

∗
.

The isocurvature fraction α can be small either when β � 1,
in which case we can have arbitrary negative correlations, or
when 2ε(R2 − 1) � β � 1, which means fully anticorrelated
perturbations. The spectral indices for this model are given by
Equation (39) with ε = (∂σV )2/(16 πGV 2),

2ησσ = ηφφ(1 + cos 2θ ) + ηχχ (1 − cos 2θ ),

2ηss = ηφφ(1 − cos 2θ ) + ηχχ (1 + cos 2θ ), (60)

and ησs tan Δ = ηss , where ηij = (∂i∂jV )/(8 πGV ).

5. ABOUT THE ANALYSIS

5.1. Data

First we use only the CMB temperature and polarization
anisotropy data: seven-year Wilkinson Microwave Anisotropy
Probe (WMAP7) data (Larson et al. 2011; Komatsu et al.
2011), the complete Arcminute Cosmology Bolometer Array
Receiver (ACBAR) data (Reichardt et al. 2009), and QUEST at
DASI (QUaD) data (Brown et al. 2009) (QUEST = Q and
U Extragalactic Survey Telescope, DASI = Degree Angular
Scale Interferometer). Then we add into the analysis either the
SN data from Supernova Cosmology Project (SCP) Union 2
compilation (Amanullah et al. 2010) or the LSS data from Sloan
Digital Sky Survey Data Release 7 Luminous Red Galaxies
(SDSS DR7 LRG) (Reid et al. 2010) that contains BAOs
(Percival et al. 2010).

We perform the full Bayesian evidence calculation for each
combination of data sets. Although this is computationally
demanding, it is important not to blindly combine different types
of data sets without testing what is the individual information
gained from each data set and whether they are consistent with
each other. In particular, the black-box method of combining
all available data may lead to artificially tight constraints, if
there is “tension” between the data sets, and there is between
CMB and LSS data. One historical example is using big-bang
nucleosynthesis and observed abundances of light elements to
constrain ωb; tension between different elements led to too tight
constraints, and a wrong value for ωb (see discussion in, e.g.,
Kainulainen et al. 1999). Therefore, we strongly advocate the
approach of adding data sets to the analysis one by one.

CMB. Our choice of the CMB data sets that extend the
coverage from WMAP7 to smaller scales and also provide extra
polarization data are ACBAR and QUaD. We impose in the
CMB likelihood calculations a cutoff multipole �max = 2100.
We do not use the South Pole Telescope (SPT) data (Shirokoff
et al. 2011) or the Atacama Cosmology Telescope (ACT)
data (Das et al. 2011) that would extend with high precision
to even much higher �, for the following reasons: (1) These
data were not publicly available when we started our massive
MultiNest runs. (2) In order to employ these data correctly
the foreground modeling is of vital importance, requiring
marginalization over many “extra” nuisance parameters that
would slow down the convergence of our parameter scan. (3)
Since the tensor spectrum in our analysis is red (nT < 0, see
Equation (34)), the tensor contribution modifies only the low-�
part of spectrum. So, the SPT and ACT data would not give
extra constraints on tensor-to-scalar ratio. (4) As we will see, in
the inflationary parameterization the isocurvature also modifies
only the low-� spectrum. The only effect of the SPT and ACT
data would be possibly a slightly tighter constraint on niso in
the phenomenological parameterization, and somewhat tighter
constraints on the background parameters that could indirectly
constrain non-adiabaticity.

SN. There are many SN data sets on the market. Based on
Kessler et al. (2009), our aim was to choose a recent set that
would be the most “conservative,” giving the loosest upper
bound for the non-adiabatic contribution in the phenomeno-
logical mixed model that prefers larger ΩΛ than the adia-
batic model (Kurki-Suonio et al. 2005; Keskitalo et al. 2007;
Valiviita & Giannantonio 2009). Since the SN data constrain
ΩΛ, the largest isocurvature fraction is allowed by the data that
allow for the largest ΩΛ. Even the same “raw” SN data give very
different results depending on how the light curves are fitted. In
general, the Spectral Adaptive Lightcurve Template (SALT-II)
fitter (Guy et al. 2007) leads to a Hubble diagram that prefers a
larger ΩΛ than the Multicolor Light Curve Shapes (MLCS2k2)
fitter (Jha et al. 2007) in the ΛCDM model (Kessler et al. 2009).
Therefore, our choice is the SCP Union 2 compilation that has
been obtained using SALT-II. In order to be as conservative as
possible, we run the likelihood code that comes with CosmoMC
with systematic errors turned on.

MPK. It should be noticed that in Section 7 we use the full
matter power spectrum data (MPK) as a function of k that in-
clude the baryon wiggles spectrum BAO(k), not the simplified
BAO distance measure(s) or BAO scale(s). In the mixed models,
these simplified measures cannot be used as given in the liter-
ature, since the extraction of these numbers from the data as-
sumes adiabatic initial conditions; see Kasanda et al. (2011; and
Carbone et al. 2011; Mangilli et al. 2010; Zunckel et al. 2011)
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for detailed accounts on the danger of misinterpretation of these
measures in the presence of isocurvature modes. Indeed, em-
ploying the MPK data with BAO in a right and consistent way
in the mixed models is not a trivial task. The detailed procedure
and modifications we did to CosmoMC and the MPK likeli-
hood code of Reid et al. (2010) will be described elsewhere
by J. Valiviita & T. M. Ruud (2012, in preparation). In short:
for each parameter combination, we extracted the oscillations
separately for the adiabatic and isocurvature modes with unit
primordial amplitude and scale-invariant spectrum by going
from Fourier space to real space, i.e., by finding the correla-
tion function. This has a bump that was removed with a tech-
nique described in the Appendix A.1 of Hamann et al. (2010).
The bumpless correlation functions were transformed back to
k-space. These smooth adiabatic and isocurvature matter power
spectra were then weighted by the initial amplitudes and
the spectral tilts were added. Finally, the two smooth adia-
batic spectra Par(k) and Pas(k) as well as the smooth Piso(k)
and sign(γ )(PasPiso)1/2 (the correlation) were added together.
The same was done for the original component spectra giving
the unsmooth spectrum with the baryonic wiggles, Pfull(k). Af-
ter this the MPK likelihood routine was used in the normal way
(Reid et al. 2010), i.e., a nonlinearity correction was applied to
the smooth spectrum, and, for presentation purposes, BAO was
calculated as BAO(k) = log10[Pfull(k)/Psmooth(k)]. When using
the MPK data, in order to reliably find Psmooth we restrict the
prior ranges of ωb to (0.016, 0.029), ωc to (0.05, 0.17), 100θ to
(0.90, 1.18), and τ to (0.02, 0.20), while keeping the priors of
all the other parameters the same as indicated in Table 1.

5.2. Sampling Method

For the full parameter scan and for calculating the total model
probability Z (or Bayesian evidence) of each variant of our
model as well as the reference adiabatic models we employ
the MultiNest package (Feroz et al. 2009) that is based on an
efficient variant of nested sampling algorithm.

After the conceptual introduction by Skilling (2004), this
method has been first applied to cosmology in a simple
case by Mukherjee et al. (2006). Its most sensitive part, the
sampling technique, has been refined by Shaw et al. (2007)
and Feroz & Hobson (2008) to minimize the required num-
ber of likelihood evaluations and to deal efficiently with
possible pathologies, such as multi-modal posterior distribu-
tions and strongly curved parameter degeneracies. Finally, an
even more robust and efficient code has been released by
Feroz et al. (2009) for applications in cosmology, astronomy,
and particle physics. The package, available for public use
from http://ccpforge.cse.rl.ac.uk/gf/project/multinest/, contains
an easily usable interface for the CAMB/CosmoMC cosmol-
ogy code (Lewis et al. 2000; Lewis & Bridle 2002) that we have
modified to handle an arbitrarily correlated mixture of adiabatic
and isocurvature perturbations.

The MultiNest user has simply to tune three parameters:
the tolerance (accuracy), the number of live points N, and the
maximum efficiency e, which sets how aggressively we want to
reduce the volume of parameter space at each iteration. A very
attractive feature of MultiNest is that the need of a proposal
matrix for the parameters’ covariance, a well-known hassle for
conventional Markov Chain Monte Carlo (MCMC) users, is
now superseded. Moreover, we have realized that MultiNest
is often much more efficient than MCMC if the shape of the
likelihood surface is complicated, like in the mixed models (see

Table 2
A Verbal Interpretation of Various Odds (Bqq ′ ) according to Jeffreys (1939)

Bqq ′ ≡ Pq/Pq ′ Bf ≡ ln Bqq ′ Interpretation

>1 >0 “Null hypothesis q supported”
1:3.16 . . . 1:1 −1.15 “Evidence against q, but not

worth more than a bare mention”
1:10 . . . 1:3.16 −2.72 “Evidence against q substantial”
1:31.6 . . . 1:10 −3.45 “Evidence against q strong”
1:100 . . . 1:31 −4.61 “Evidence against q very strong”
<1 : 100 <−4.61 “Evidence against q decisive”

Note. Bf are given at the lower bound.

also Easther & Peiris 2011; Norena et al. 2012 for a similar
argument in the case of inflationary reconstruction).

In this paper we set the efficiency parameter in MultiNest
to 0.3, the tolerance parameter to 0.5, and the number of live
points to N = 400. With these settings the error estimate for
the logarithm of the total model probability turns out to be
|δ lnZ| = 0.20–0.26 for all of our runs. Therefore, when
comparing model q to model q ′, the logarithm of the Bayes
factor, i.e., the logarithm of the ratio of the model probabilities,

Bf ≡ ln Bqq ′ = Δ lnZ = ln(Zq/Zq ′ ) (61)

has an uncertainty δBf ≈ ±0.4.

5.3. Bayesian Model Comparison and Jeffreys’ Scale

A brief summary of Bayesian model comparison, calculation
of evidence, i.e., the model probability P = Z , the sampling
method, and MultiNest can be found in the Appendix of Valiviita
& Giannantonio (2009). For a comprehensive review of many
aspects of Bayesian cosmology, see Trotta (2008).

The Bayes factors are classified with Jeffreys’ scale (Jeffreys
1939) for the strength of evidence. This empirically calibrated
scale has thresholds at certain values of odds. If we take the
model q in Equation (61) as our null hypothesis and the model q ′
as an alternative model, then the original Jeffreys’ book (Jeffreys
1939) grades verbally the odds according to Table 2. Jeffreys
calls the simpler model (which is nested, i.e., a subset of the
alternative model—with the extra parameters of the alternative
model fixed, often to zero values) the “null hypothesis,” and the
more complicated model that would lead to a new discovery
(and determination of extra parameters) an “alternative” model.
From this set up it is clear that one can only find evidence
against the null hypothesis, not evidence against the alternative
model, but merely just an indication that the null hypothesis is
supported (while the extra parameters of the alternative model
could be so small as not to show up) in light of the current data.

In the recent literature, q and q ′ have often been considered
from symmetrical footing, and indeed this is the only approach
one can take in situations where q is not a subset of q ′, i.e.,
whenever the two models are totally different and do not share
(any) parameters. However, in all our cases we have a clear
null hypothesis and hence we take a conservative “Jeffreys’ ap-
proach”: when comparing adiabatic and mixed models the null
hypothesis is the adiabatic model, where the “non-adiabaticity”
parameters have null values. When comparing models with and
without primordial tensor contribution, the null hypothesis is the
model without tensors where r0 or ε has a null value. In models
with and without CMB lensing the number of parameters is the
same, but the model with lensing has some extra ingredients,
e.g., lensing potential that modifies the unlensed C� spectrum,

9
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Table 3
Simplified Thresholds and Modernized Verbal Interpretation

of Various Odds (Bqq ′ )

Bqq ′ ≡ Pq/Pq ′ Bf ≡ ln Bqq ′ Interpretation

>3:1 >+1.0 “‘Null hypothesis q supported”
1:3 . . .3:1 −1.0 . . .+1.0 “Inconclusive”
1:12 . . .1:3 −2.5 . . .−1.0 “Weak evidence against q”
1:150 . . .1:12 −5.0 . . . −2.5 “Moderate evidence against q”
<1 : 150 < − 5.0 “Strong evidence against q”

Notes. The tabulated values of Bqq ′ are rounded, while the values of the
logarithm of Bayes factor, Bf , are the actual thresholds used in most of the
modern cosmology literature. The actual wordings vary from source to source.

and in this sense it is natural to choose the model without lens-
ing as our null hypothesis. For classifying the evidence against
the null hypothesis, we will use simplified thresholds and mod-
ernized wording following Trotta (2008), modified in Table 3
in order to take into account our conservative null hypothesis
approach.

5.4. Lensing: Bayesian Evidence and a Degeneracy
with Isocurvature

All runs were made with CMB lensing on, unless stated
otherwise. Initially, we did most of our runs without lensing,
which is by a factor of 4–10 faster. Comparison of lensed and
unlensed runs showed that lensing had only a minor effect on
most of the one-dimensional posterior probability densities.
However, the best-fit χ2 improve a lot when allowing for
lensing (Δχ2 ≈ −8 in the adiabatic case, −6 in the mixed
case), and furthermore we find moderate Bayesian evidence
against the unlensed models. For example, in the amplitude
parameterization the adiabatic unlensed model (without tensor
perturbations) has lnZ = −3861.3 while the lensed model
has lnZ = −3856.6. This gives for the logarithm of Bayes
factor Bf = lnZunlensed − lnZlensed = −4.7 ± 0.4 or odds of
Punlensed/Plensed = exp(−4.7) = 1 : 110. In the mixed model
the odds against the unlensed model are less overwhelming:
Bf = −3.3 ± 0.4, i.e., Punlensed/Plensed = 1 : 27.

The reason for this is that in the amplitude parameterization
large isocurvature spectral indices niso � 2 are favored and this
causes the isocurvature and correlation contribution to affect
rather uniformly the whole C� spectrum (Kurki-Suonio et al.
2005). In particular, at high multipoles the almost opposite phase
isocurvature (and correlation) components are able to “fill” dips
and “eat” peaks of the adiabatic spectrum, and hence they smear
the total C� spectrum compared to the pure adiabatic case. The
CMB lensing has a similar smearing effect. Since the peaks and
dips at high � in the data are smoother than the unlensed pure adi-
abatic ΛCDM model predicts, the fit to the CMB data improves
considerably either by allowing for the isocurvature contribution
(in the unlensed case Δχ2 ≈ −5.5 for the best-fit mixed model
in amplitude parameterization compared to the best-fit adiabatic
model) or by turning the lensing on. Therefore, there is a de-
generacy between lensing and isocurvature, and the Bayesian
evidence against “no lensing” is weaker in the mixed model.

6. THE GENERAL CASE WITH CMB DATA

6.1. Phenomenological Approach—Amplitude
Parameterization

An important question in constraining cosmologies is how
much the assumptions made in the analysis affect the values of

cosmological parameters obtained from the given data (Trotta
et al. 2001). Therefore, we start by comparing the marginalized
one-dimensional posterior probabilities in the mixed adiabatic
and isocurvature model to the results obtained for the pure
adiabatic model, using the amplitude parameterization. Figure 1
shows these for the primary parameters and Figure 2 for selected
derived parameters for models with and without primordial
tensor perturbations. In Tables 4 and 5, we tabulate 68% or
95% confidence level (CL) intervals for selected parameters as
well as Bayesian evidences Z for each model.

We note that the tensor contribution does not significantly
affect any of these results, and the maximum allowed primor-
dial tensor-to-scalar ratio, r0, is insensitive to the inclusion of
the isocurvature mode: r0 < 0.249 in the mixed model and
r0 < 0.264 in the pure adiabatic model at 95% CL. The reason
for the lack of interplay between tensor and isocurvature con-
straints is that the consistency relation requires the tensor per-
turbations to have a red spectrum (nT < 0), whereas the isocur-
vature perturbations favored in our phenomenological approach
have a steeply blue spectrum. The slight formal tightening of
the constraint in generally correlated models is due to the use
of the first inflationary consistency relation that with a fixed r0
leads to more negative nT (whenever γ = 0) than in the adiabatic
model (see Equation (34)), and hence a larger effect on large
scales. This has been noticed also by Kawasaki & Sekiguchi
(2008).

There is no evidence for the presence of tensor perturba-
tions. Indeed, Bayesian model selection supports the model
without a tensor contribution: in the mixed model the odds
are Pno tensors/Ptensors = 7 : 1 (Bf = +1.96), and in the adia-
batic model 11 : 3 ≈ 3.7 : 1 (Bf = +1.30) in support of the
model without tensors. Nevertheless we choose the model with
primordial tensor perturbations as our baseline case for three
reasons: (1) In inflationary models the tensor perturbations arise
naturally, and hence it is more straightforward to compare our
phenomenological model to the inflationary slow-roll model if
we include the tensor perturbations. (2) Given point (1), we have
a theoretical prejudice that the tensor perturbations exist, but
probably with much smaller amplitude than we guessed when
setting our linear flat prior r0 < 0.75, which is an integral part
of the “model” in the Bayesian evidence calculation and which
we had to decide “before seeing the data.” So, what we found
above is that the model without tensors (r0 = 0) is supported
over the model with r0 ∼ O(0.3). (3) In the literature and in
our previous work the model without tensor perturbations has
already been studied extensively, though with older data sets
than here.

The CMB data allow a CDM (baryon) isocurvature fraction
α < 0.064 (0.42) at scale k1, α < 0.154 (0.67) at scale k0,
and α < 0.512 (0.95) at scale k2, but does not show any clear
preference for a nonzero isocurvature contribution. The trans-
fer function that maps the primordial entropy perturbation S
into today’s angular power spectrum C iso

� has an extra factor
of (keq/k)2 ∝ (�eq/�)2 compared to the transfer function that
maps the primordial curvature perturbation into Car

� and Cas
�

(Kodama & Sasaki 1986; Hu & Sugiyama 1996; Kurki-Suonio
et al. 2005; Valiviita 2005). (Here keq is the wave number of per-
turbation that re-enters the Hubble horizon at matter-radiation
equality.) Therefore, primordial isocurvature perturbations con-
tribute much more strongly to large-scale (small k, small �)
CMB than to small-scale CMB, when compared to adiabatic
perturbations of the same primordial magnitude, and hence
the limits to α are tighter at large scales than at small scales.
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Table 4
The Median Values and 68% CL Intervals with Various Combinations of Data for Parameters that Exist Both in the Mixed Model and in the Pure Adiabatic Model

Ampl. Par. ωb ωc 100θ τ H0 ΩΛ ln(1010A2
0) neff

ad r0 − lnZ

Mixed model (68% CL) (68% CL) (68% CL) (68% CL) (68% CL) (68% CL) (68% CL) (68% CL) 95% CL
CMB 0.0227 (0.0221 0.0235) 0.102 (0.096 0.108) 1.048 (1.043 1.051) 0.091 (0.076 0.106) 77 (74 81) 0.79 (0.76 0.82) 3.11 (3.07 3.17) 0.989 (0.971 1.009) <0.25 3863.45

0.0224 (0.0218 0.0231) 0.104 (0.098 0.110) 1.048 (1.044 1.051) 0.089 (0.075 0.104) 76 (73 80) 0.78 (0.75 0.81) 3.13 (3.08 3.19) 0.979 (0.963 0.997) 0 3861.49
CMB and SN 0.0226 (0.0219 0.0233) 0.108 (0.103 0.112) 1.046 (1.039 1.050) 0.088 (0.074 0.103) 74 (71 77) 0.76 (0.74 0.79) 3.14 (3.09 3.20) 0.976 (0.960 0.994) <0.21 4129.81

0.0223 (0.0217 0.0230) 0.109 (0.105 0.114) 1.046 (1.040 1.050) 0.086 (0.073 0.101) 74 (71 76) 0.76 (0.73 0.78) 3.14 (3.10 3.20) 0.970 (0.954 0.986) 0 4127.80
CMB and MPK 0.0229 (0.0222 0.0235) 0.115 (0.112 0.119) 1.038 (1.036 1.041) 0.087 (0.074 0.102) 69 (67 71) 0.71 (0.69 0.73) 3.21 (3.16 3.27) 0.963 (0.946 0.980) <0.22 3882.84

0.0226 (0.0219 0.0233) 0.116 (0.112 0.119) 1.039 (1.036 1.044) 0.086 (0.072 0.101) 69 (67 71) 0.71 (0.69 0.73) 3.21 (3.15 3.28) 0.959 (0.943 0.975) 0 3880.82
CMB γ = 0 0.0236 (0.0229 0.0243) 0.104 (0.098 0.110) 1.044 (1.041 1.046) 0.092 (0.077 0.107) 76 (73 80) 0.78 (0.75 0.81) 3.21 (3.15 3.28) 0.998 (0.978 1.019) <0.28 3859.56

γ = 0 0.0233 (0.0226 0.0240) 0.106 (0.100 0.112) 1.043 (1.041 1.046) 0.090 (0.075 0.106) 75 (72 78) 0.77 (0.74 0.80) 3.23 (3.17 3.30) 0.985 (0.967 1.008) 0 3857.92
γ = −1 0.0223 (0.0217 0.0229) 0.116 (0.110 0.122) 1.037 (1.035 1.040) 0.091 (0.076 0.107) 68 (65 71) 0.70 (0.66 0.73) 3.20 (3.15 3.24) 0.943 (0.926 0.960) 0 3865.88
γ = +1 0.0219 (0.0213 0.0225) 0.105 (0.100 0.111) 1.049 (1.046 1.054) 0.089 (0.075 0.105) 76 (73 79) 0.78 (0.75 0.80) 3.10 (3.06 3.13) 0.979 (0.965 0.995) 0 3861.90

Model I 0.0220 0.103 1.052 0.094 78 0.80 3.08 0.978 0.12 . . .

Adiabatic
CMB 0.0229 (0.0223 0.0235) 0.107 (0.102 0.113) 1.041 (1.039 1.044) 0.089 (0.075 0.105) 73 (70 76) 0.76 (0.73 0.78) 3.11 (3.07 3.15) 0.977 (0.961 0.995) <0.26 3857.97

0.0225 (0.0221 0.0230) 0.111 (0.106 0.115) 1.041 (1.038 1.043) 0.088 (0.073 0.103) 71 (69 74) 0.74 (0.71 0.76) 3.13 (3.10 3.16) 0.964 (0.952 0.977) 0 3856.57
CMB and SN 0.0228 (0.0222 0.0233) 0.109 (0.105 0.114) 1.041 (1.039 1.043) 0.088 (0.074 0.102) 72 (70 74) 0.75 (0.72 0.77) 3.12 (3.08 3.15) 0.972 (0.958 0.988) <0.22 4123.95

0.0225 (0.0220 0.0230) 0.111 (0.107 0.116) 1.041 (1.038 1.043) 0.087 (0.074 0.101) 71 (69 73) 0.74 (0.71 0.76) 3.13 (3.10 3.17) 0.963 (0.952 0.975) 0 4121.96
CMB and MPK 0.0225 (0.0220 0.0230) 0.115 (0.111 0.118) 1.040 (1.038 1.042) 0.083 (0.070 0.098) 70 (68 71) 0.72 (0.70 0.73) 3.14 (3.11 3.17) 0.966 (0.954 0.980) <0.17 3877.99

0.0223 (0.0219 0.0228) 0.116 (0.112 0.119) 1.040 (1.038 1.042) 0.083 (0.070 0.098) 69 (67 71) 0.71 (0.69 0.73) 3.15 (3.12 3.18) 0.961 (0.949 0.973) 0 3875.85
Slow-roll Par. ωb ωc 100θ τ H0 ΩΛ ln(1010A2

0) neff
ad r0 − lnZ

Mixed model (68% CL) (68% CL) (68% CL) (68% CL) (68% CL) (68% CL) (68% CL) (68% CL) 95% CL
CMB 0.0228 (0.0222 0.0234) 0.109 (0.102 0.116) 1.040 (1.037 1.044) 0.090 (0.075 0.103) 72 (68 76) 0.75 (0.70 0.78) 3.14 (3.07 3.19) 0.966 (0.945 0.991) <0.18 3859.86

0.0227 (0.0222 0.0232) 0.109 (0.103 0.116) 1.040 (1.037 1.044) 0.088 (0.075 0.103) 72 (69 76) 0.74 (0.71 0.78) 3.14 (3.08 3.21) 0.966 (0.944 0.988) 0 3858.82
CMB and SN 0.0227 (0.0222 0.0232) 0.111 (0.106 0.116) 1.039 (1.037 1.042) 0.089 (0.075 0.104) 71 (69 73) 0.73 (0.71 0.76) 3.15 (3.11 3.20) 0.960 (0.944 0.977) <0.19 4125.68
CMB and MPK 0.0225 (0.0220 0.0230) 0.117 (0.113 0.120) 1.038 (1.036 1.040) 0.088 (0.075 0.102) 68 (66 70) 0.70 (0.68 0.72) 3.18 (3.15 3.22) 0.951 (0.937 0.965) <0.16 3878.24

0.0224 (0.0219 0.0229) 0.117 (0.113 0.120) 1.038 (1.036 1.040) 0.086 (0.073 0.100) 68 (66 70) 0.70 (0.68 0.72) 3.19 (3.16 3.23) 0.949 (0.936 0.963) 0 3877.14
CMB γ = 0 0.0232 (0.0226 0.0239) 0.105 (0.099 0.110) 1.042 (1.040 1.044) 0.088 (0.074 0.104) 75 (72 78) 0.77 (0.74 0.80) 3.12 (3.08 3.16) 0.989 (0.971 1.009) <0.24 3859.54

γ = 0 0.0230 (0.0224 0.0236) 0.107 (0.101 0.113) 1.042 (1.039 1.044) 0.087 (0.073 0.102) 74 (71 77) 0.76 (0.73 0.79) 3.14 (3.11 3.18) 0.980 (0.963 0.999) 0 3856.66
γ = −1 0.0223 (0.0218 0.0229) 0.115 (0.109 0.121) 1.038 (1.036 1.041) 0.089 (0.075 0.106) 69 (66 71) 0.71 (0.67 0.74) 3.18 (3.14 3.23) 0.948 (0.931 0.963) 0 3859.92
γ = +1 0.0228 (0.0223 0.0234) 0.105 (0.100 0.111) 1.043 (1.041 1.046) 0.086 (0.072 0.101) 75 (72 78) 0.77 (0.74 0.80) 3.09 (3.05 3.13) 0.984 (0.968 0.999) 0 3859.99

Model II 0.0221 0.115 1.037 0.087 68 0.70 3.20 0.927 0.015 . . .

Adiabatic
CMB 0.0229 (0.0223 0.0235) 0.107 (0.102 0.113) 1.041 (1.039 1.044) 0.088 (0.075 0.104) 73 (71 76) 0.76 (0.73 0.78) 3.10 (3.07 3.14) 0.978 (0.962 0.995) <0.26 3856.67

0.0226 (0.0221 0.0231) 0.110 (0.105 0.116) 1.041 (1.039 1.043) 0.088 (0.074 0.103) 72 (69 74) 0.74 (0.71 0.76) 3.13 (3.10 3.17) 0.965 (0.953 0.978) 0 3854.44
CMB and SN 0.0228 (0.0222 0.0233) 0.109 (0.105 0.114) 1.041 (1.039 1.043) 0.088 (0.074 0.102) 72 (70 74) 0.75 (0.72 0.77) 3.12 (3.08 3.15) 0.973 (0.959 0.987) <0.22 4122.71
CMB and MPK 0.0225 (0.0220 0.0230) 0.115 (0.112 0.118) 1.040 (1.038 1.042) 0.083 (0.070 0.097) 70 (68 71) 0.72 (0.70 0.73) 3.14 (3.11 3.17) 0.967 (0.955 0.980) <0.17 3876.69

0.0224 (0.0219 0.0229) 0.116 (0.113 0.120) 1.040 (1.038 1.042) 0.083 (0.070 0.098) 69 (67 71) 0.71 (0.69 0.73) 3.15 (3.12 3.18) 0.961 (0.949 0.973) 0 3874.03

Notes. Since there is no detection of primordial tensor perturbations, 95% CL upper limits are reported for r0. The last column gives − lnZ , where Z is the Bayesian evidence that is proportional to the total probability
of the model. Whenever there are two lines for the given model and data sets, the first line represents the results with and the second line without primordial tensor perturbations, as is obvious from the r0 column. For
fully (anti)correlated models (γ = ±1) we automatically have r0 = 0. Models I and II are example models with high non-adiabaticity (see Table 5), but within “2σ” from the best-fit adiabatic model. Their C� spectra
are shown in Figure 10, and the matter power spectrum of Model I is shown in Figure 15(b).
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Table 5
The Median Values and 95% CL Intervals or Upper Limits with Various Combinations of Data for a Selection of Parameters Especially Needed in the Mixed Model

Ampl. Par. 100γ1 100γ2 100α1 100α2 100γ0 100α0 nar nas niso 100αcor0 100αT

Mixed model (95% CL) 95% CL 95% CL (95% CL) (95% CL) 95% CL (95% CL) (95% CL) (95% CL) (95% CL) (95% CL)
CMB 16.5 (−22.9 75.2) <69.0 <6.4 <51.2 16.8 (−21.1 76.6) <15.4 0.989 (0.878 1.082)0.997 (0.505 1.434) 2.146 (0.871 3.304) 8.0 (−8.8 16.2) 2.4 (−3.0 4.9)
r = 0 18.1 (−13.7 80.7) <72.9 <6.1 <53.6 18.2 (−9.7 81.4) <15.8 0.979 (0.844 1.096)0.992 (0.507 1.407) 2.157 (1.032 3.376) 8.4 (−7.2 17.0) 2.6 (−2.1 5.3)
CMB and SN 10.4 (−33.3 76.8) <68.7 <7.0 <52.3 10.7 (−32.4 77.6) <13.7 0.979 (0.877 1.065)0.973 (0.392 1.330) 2.138 (0.418 3.434) 5.9 (−10.7 13.7) 1.8 (−4.8 4.2)
r = 0 13.9 (−24.3 77.7) <68.3 <6.7 <47.7 14.1 (−21.8 77.0) <13.7 0.973 (0.871 1.063)0.965 (0.347 1.331) 2.159 (0.627 3.379) 6.4 (−9.0 14.0) 2.0 (−4.1 4.3)
CMB and MPK −13.8 (−61.3 12.0) <52.5 <10.2 <47.5 −11.2 (−61.1 11.4) <16.0 0.975 (0.883 1.028)0.901 (0.310 1.247) 1.291 (0.046 2.584) −6.4 (−12.9 6.5) −1.9 (−7.1 2.4)
r = 0 −8.3 (−41.8 43.2) <42.0 <9.8 <48.2 −5.9 (−41.0 42.7) <16.7 0.969 (0.897 1.014)0.900 (0.190 1.276) 1.615 (0.199 2.811) −5.4 (−11.8 9.3) −1.1 (−6.0 3.0)
CMB γ = 0 0 0 <11.2 38.5 (7.5 62.3) 0 <24.9 0.998 (0.962 1.042) . . . 1.869 (1.221 2.694) . . . <3.7
r = 0, γ = 0 0 0 <12.7 37.9 (6.4 60.8) 0 <25.8 0.985 (0.950 1.032) . . . 1.808 (1.141 2.742) . . . <4.3
r = 0, γ = −1 −100 −100 <1.1 <3.3 −100 <1.1 . . . 0.943 (0.909 0.975)0.957 (−0.02 2.649)−5.8 (−11.4 −1.9)−3.8 (−8.8 −0.7)
r = 0, γ = +1 +100 +100 <0.8 <40.6 +100 <3.4 . . . 0.979 (0.952 1.011) 2.477 (1.411 3.885) 11.0 (4.7 19.5) <4.5
Model I 66.2 73.0 0.0413 43.2 69.7 1.75 0.908 1.009 3.315 10.9 2.5

Adiabatic
CMB . . . . . . . . . . . . . . . . . . 0.977 (0.947 1.016) . . . . . . . . . . . .

r = 0 . . . . . . . . . . . . . . . . . . 0.964 (0.941 0.992) . . . . . . . . . . . .

CMB and SN . . . . . . . . . . . . . . . . . . 0.972 (0.946 1.004) . . . . . . . . . . . .

r = 0 . . . . . . . . . . . . . . . . . . 0.963 (0.941 0.986) . . . . . . . . . . . .

CMB and MPK . . . . . . . . . . . . . . . . . . 0.966 (0.943 0.994) . . . . . . . . . . . .

r = 0 . . . . . . . . . . . . . . . . . . 0.961 (0.937 0.983) . . . . . . . . . . . .

Slow-roll Par. 100γ1 100γ2 100α1 100α2 100γ0 100α0 nar nas niso 100αcor0 100αT

Mixed model (95% CL) (95% CL) (95% CL) 95% CL (95% CL) 95% CL (95% CL) (95% CL) (95% CL) (95% CL) (95% CL)
CMB p.r. p.r. p.r. <4.8 p.r. <2.6 0.946 (0.686 1.070)0.973 (0.726 1.153) 0.975 (0.845 1.121) −3.4 (−10.1 9.2) −1.7 (−5.8 4.5)
ε = 0 −1.4 (−6.1 3.5) −0.5 (−5.3 5.4) p.r. 0 p.r. <6.8 0.971 (0.878 1.071)0.957 (0.314 1.243) “p.r.” −2.1 (−9.2 9.2) −0.6 (−5.0 4.7)
CMB and SN p.r. p.r. p.r. <5.0 <65.9 <3.2 0.949 (0.672 1.059)0.962 (0.663 1.117) 0.967 (0.841 1.115) −4.3 (−10.4 5.8) −2.3 (−5.6 3.0)
CMB and MPK p.r. p.r. p.r. <5.0 <−12.9 <3.4 0.932 (0.638 1.058)0.954 (0.752 1.052) 0.954 (0.841 1.111) −5.7 (−11.1 −1.6)−3.2 (−6.3 −0.8)
ε = 0 −1.7 (−5.8 3.6) −1.3 (−6.0 2.7) p.r. 0 −25.1 (−89.4 0.1) <7.3 0.965 (0.885 1.073)0.919 (0.396 1.147) “p.r.” −5.1 (−10.3 0.2) −2.5 (−5.8 0.8)
CMB γ = 0 0.9 (−1.8 5.9) . . . p.r. <1.5 0 <11.0 0.989 (0.956 1.030) . . . 1.020 (0.849 1.136) . . . <3.9
ε = 0, γ = 0 −1.0 (−2.6 1.1) . . . p.r. 0 0 <12.5 0.980 (0.948 1.022) . . . “p.r.” . . . <4.1
ε = 0, γ = −1 . . . . . . −2.6 (−4.3 −1.1) 0 −100 <0.9 . . . 0.948 (0.915 0.978) 0.948 (0.915 0.978) −4.7 (−9.9 −0.9) −2.8 (−6.4 −0.5)
ε = 0, γ = +1 . . . . . . −0.8 (−2.3 0.8) 0 +100 <1.2 . . . 0.984 (0.954 1.016) 0.984 (0.954 1.016) 4.9 (0.9 12.1) <5.2
Model II 1.8 −0.9 −7.2 0.18 −46.1 1.02 1.026 0.812 0.852 −6.84 −4.9

Adiabatic
CMB 0.5 (−2.2 5.9) . . . . . . <1.6 . . . . . . 0.978 (0.947 1.013) . . . . . . . . . . . .

ε = 0 −1.7 (−3.0 −0.5) . . . . . . 0 . . . . . . 0.965 (0.939 0.991) . . . . . . . . . . . .

CMB and SN −0.1 (−2.3 4.4) . . . . . . <1.4 . . . . . . 0.973 (0.947 1.002) . . . . . . . . . . . .

CMB and MPK −0.7 (−2.5 3.0) . . . . . . <1.1 . . . . . . 0.967 (0.942 0.994) . . . . . . . . . . . .

ε = 0 −2.0 (−3.1 −0.8) . . . . . . 0 . . . . . . 0.961 (0.938 0.983) . . . . . . . . . . . .

Notes. The spectral index of the (uncorrelated part of) curvature perturbation nar and the slow-roll parameters ησσ and ε are present also in the pure adiabatic model. Whenever there are two lines for the given model
and data sets, the first line represents the results with and the second line without primordial tensor perturbations. In some cases the data do not constrain some parameters, so the whole prior range is allowed. This is
indicated by “p.r.,” and the prior range is given in Table 1. Models I and II are example models with high non-adiabaticity, but within “2σ” from the best-fit adiabatic model.
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Indeed, if no (extra) prior is placed on the isocurvature spectral
index, our phenomenological approach formally favors a large
niso ∼ 2–3, i.e., a large primordial isocurvature fraction at small
scales. For such isocurvature perturbations, a positive correla-
tion with curvature perturbations is favored. The marginalized
posterior probability density for the non-adiabatic contribution
to the CMB temperature variance, αT , appears to show a weak
detection of a positive value (αT > 0 at 90% CL), but Bayesian
model comparison does not support the inclusion of primordial
CDM (or baryon) isocurvature mode: Padiabatic/Pmixed = 240:1
(Bf = +5.48) with tensors, or 137:1 (Bf = +4.92) without ten-
sors. The last column of the first two rows of Table 5 indicates
that the CMB sets an upper limit of 5% for αT , which is our
pivot-scale free measure of non-adiabaticity.

According to Figure 1, the inclusion of isocurvature affects
significantly the sound horizon angle θ : mixed models pre-
fer larger θ than adiabatic models. They also prefer slightly
smaller ωc. These changes are reflected in the derived parame-
ters H0 and ΩΛ in Figure 2: mixed models prefer larger values.
Figure 3 demonstrates this degeneracy between the non-
adiabatic contribution and θ or ΩΛ.

The reason for the above degeneracy is extensively explained
in Keskitalo et al. (2007) and Valiviita & Giannantonio (2009),
see in particular Figure 2 and its explanation in Valiviita &
Giannantonio (2009). In short: the amplitude and phase of the
correlation component is somewhere in between the adiabatic
and isocurvature components. Therefore, the correlation com-
ponent gives the main “non-adiabatic” contribution to C�. When
the isocurvature and hence the correlation spectral indices are
much larger than 1, the positive correlation component adds
some power to the right end of each acoustic peak, moving
them slightly to right and making them wider; see Figure 2 in
Keskitalo et al. (2007). A larger θ counteracts this effect by
squeezing and moving the whole acoustic peak structure to left,
hence retaining the almost “adiabatic” shape of the tempera-
ture angular power spectrum that fits well the data. The sound
horizon angle is defined by θ ≡ rs/DA, where rs is the sound
horizon at last scattering and DA is the angular diameter dis-
tance to last scattering. As rs depends only on ωb and ωc that
are determined by the relative heights of the acoustic peaks,
and as even this dependence is very mild (Hu et al. 2001), the
CMB constraint on θ is directly reflected in the favored DA,
which depends on Ωm, ΩΛ (or ΩK in spatially curved models),
and H0. In the curved mixed models a well-fitting DA is achieved
in a slightly closed case (Valiviita & Giannantonio 2009), i.e.,
when Ωm + ΩΛ ∼ 1.05, but in the flat mixed models studied
here, the constraint Ωm + ΩΛ = 1 dictates that the only way to
achieve a well-fitting value for DA is to increase ΩΛ (and H0)
and decrease correspondingly Ωm compared to the well-fitting
adiabatic case.

Forcing the background parameters, for example ΩΛ, closer
to the “adiabatic” values should set indirect extra constraints on
isocurvature or at least disfavor the positive correlation and large
niso. Since ΩΛ is constrained by the SN data and Ωm (=1 − ΩΛ)
by the LSS (matter power spectrum) data, we check in Section 7
how our results are affected by the inclusion of these data.
However, it should be emphasized that the extra constraints on
ΩΛ may lead to tighter constraints on isocurvature only in the
spatially flat case which we consider here, leaving the constraints
untouched if spatially curved geometry is allowed (Valiviita &
Giannantonio 2009).

In addition, the amplitude and phase of baryonic wiggles
(BAO) in the matter power spectrum might set direct extra

constraints on the isocurvature and correlation components
if their relative amplitudes at scales probed by MPK were
large enough. As the CMB tightly constrains the isocurvature
contribution on large and medium scales (wave numbers k1 and
k0, respectively), the potential extra constraints from BAO come
in cases with a large non-adiabatic component on small scales
(k � k2), i.e., whenever niso, and hence ncor, are very large,
niso � 2.5. However, we will show in Section 7 that we would
need more precise data than the current SDSS DR7 LRG data.

6.2. Two-field Inflation Approach—Slow-roll Parameterization

Figure 4 shows marginalized one-dimensional posterior prob-
ability densities for the primary parameters in the slow-roll pa-
rameterization, and Figure 5 selected derived parameters. We
have collected in Figure 6 some two-dimensional combinations
of the four slow-roll parameters in the mixed model with tensors.
As indicated in Table 1, our prior constraint is that the magni-
tudes of the slow-roll parameters are smaller than 0.075, i.e.,
�1. We see that the data are not able to constrain the slow-roll
parameters this well: the 95% CL contours intersect this prior
constraint, except for ε, which we constrain to ε < 0.048 at the
95% CL. This is three times weaker than the limit ε < 0.016
in the adiabatic model, see Table 5. Using wider priors would
have the problem that our approximation of calculating the spec-
tra only to first order in slow-roll parameters (see Section 4.2)
would become questionable; including higher-order terms, on
the other hand, would require inclusion of additional slow-roll
parameters, whose determination would be infeasible. Thus the
current CMB data are not yet sufficiently accurate for usefully
constraining the slow-roll parameters of two-field inflation mod-
els, except for ε.

The assumption that the magnitudes of slow-roll parameters
are small, requires that all spectra are close to scale invariant
(see Equation (39)), except the correlated part of the primordial
curvature perturbation in the cases where γ0 is close to zero.4

These cases are excluded by the data, so in practice also nas
will be close to 1. In particular, the isocurvature perturbations
are not allowed to have a very different spectral index from
the adiabatic perturbations. This means, that the isocurvature
perturbations contribute much more to large-scale CMB than to
small-scale CMB, and the constraints to the isocurvature fraction
come mainly from the comparison between the level of large-
and small-scale CMB anisotropy, and not from the location of
the acoustic peaks in the angular power spectrum. The near scale
invariance of all spectra also means that the upper limit to α is
roughly the same at all scales. The upper limit α0 < 0.026 turns
out to be even tighter than our large-scale (k = 0.002 Mpc−1)
upper limit α1 < 0.064 in the phenomenological approach.

Since tensor perturbations share with isocurvature perturba-
tions the property that, when close to scale invariant, they con-
tribute more to large-scale CMB than to small-scale CMB, we

4 We see from Equation (23) that the relative amplitudes of the uncorrelated
and correlated adiabatic components are 1 − |γ0| and |γ0| at scale k0.
Assuming the slow-roll parameters to be close to zero gives, according to
Equation (39), nar = 1 − 6ε + 2ησσ ∼ 1 and
nas = 1 − 2ε + 2ηss − 4ησs tan Δ ∼ 1 − 4ησs tan Δ. Now the relative
amplitudes at another scale, k, are 1 − |γ0| and |γ0|(k/k0)−4ησs tan Δ. Assuming
γ0 = −0.0001 and ησs = 0.01 we find tan Δ ≈ −100 and −4ησs tan Δ ≈ 4. In
this case, at k > 8.4k0 (or at k < 0.12k0 if ησs × γ0 had the opposite sign), the
correlated adiabatic component would be the dominant component even
though, at first sight, we would naively think that |γ0| = 0.0001 means a
negligible contribution from Pas. This example shows that there are cases
where an extremely small |γ0| leads to a large nas and to a large Pas either at
the large-scale end or the small-scale end of the CMB angular power spectrum.
However, these models are ruled out by the data.
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Figure 1. General case, amplitude parameterization, and CMB data. Marginal-
ized one-dimensional posterior probability densities of the primary parameters
(except ASZ which would be flat) in amplitude parameterization. Red lines are
for the purely adiabatic model, and black lines for the mixed adiabatic and
isocurvature model. The solid lines are for the models with primordial tensor
perturbations, while the dashed lines are for models with only scalar perturba-
tions.
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Figure 2. General case, amplitude parameterization, and CMB data. Marginal-
ized one-dimensional posterior probability densities of selected derived param-
eters from runs made in amplitude parameterization. The line styles are the same
as in Figure 1.
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Figure 3. General case, amplitude parameterization, and CMB data. Marginal-
ized two-dimensional posteriors of selected parameters for the mixed model
with tensors. The thick black curves indicate the 68% and 95% CL regions. The
intersection of thin black (red) lines is the best-fit mixed (adiabatic) model. The
difference between these two best-fit models is Δχ2 ≈ −3 in favor of the mixed
model. The color scale indicates the mean likelihood.
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Figure 4. General case, slow-roll parameterization, and CMB data. Marginal-
ized one-dimensional posterior probability densities of the primary parameters
(except ASZ) in slow-roll parameterization. The line styles are the same as in
Figure 1.
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Figure 5. General case, slow-roll parameterization, and CMB data. Marginal-
ized one-dimensional posterior probability densities of selected derived param-
eters from runs made in slow-roll parameterization. The line styles are the same
as in Figure 1.

now get a degeneracy between the tensor and non-adiabatic
contribution. In Figure 7 we show how the allowed tensor con-
tribution, parameterized by the primary parameter ε or the de-
rived parameter r0, depends on the non-adiabaticity parameters
γ0, α0, and αcor0. Because negative correlations give a nega-
tive contribution to large-scale C�, whereas tensor perturbations
give a positive contribution, a larger tensor contribution is al-
lowed when the isocurvature mode is negatively correlated than
when it is positively correlated, see the left hand side panels of
Figure 7. Or the other way around, when allowing for the primor-
dial tensor contribution, the 95% interval of αcor0 changes from
the symmetrical (−0.092, 0.092) to (−0.101, 0.092) while the
median moves from −0.021 to −0.034; see Table 5. How-
ever, since strongly correlated isocurvature perturbations cause
a much larger signal for a given α0 than uncorrelated ones,
the limit to the CDM isocurvature fraction is formally tighter
(α0 < 0.026) when tensor perturbations are allowed than when

14



The Astrophysical Journal, 753:151 (26pp), 2012 July 10 Väliviita et al.

η
ss

η σ s

−0.05 0 0.05

−0.05

0

0.05

ε

η σs

0 0.02 0.04 0.06

−0.05

0

0.05

ησσ

ε

−0.05 0 0.05
0

0.02

0.04

0.06

η
ss

ε

−0.05 0 0.05
0

0.02

0.04

0.06

Figure 6. General case, slow-roll parameterization, and CMB data. Marginal-
ized two-dimensional posteriors for the two-field inflation slow-roll parameters
from MultiNest runs with primordial tensor contribution allowed (ε � 0).

(A color version of this figure is available in the online journal.)

they are not (α0 < 0.068). The corresponding numbers for the
baryon isocurvature are 0.29 and 0.44.

Allowing for isocurvature perturbations also leads formally
to a tighter limit on the amplitude of tensor perturbations
(r0 < 0.18) than in the adiabatic case (r0 < 0.26). The main
reason for this is the tan Δ term in the expression for nas in
Equation (39). As explained in footnote 4, if γ0 was too close
to zero, the Pas spectrum could be steeply red or blue, and
hence be excluded by the data. This disfavors those values of γ0
that would lead to a large r0, since according to Equations (39)
and (42) r0 = 16ε(1 − |γ0|). Moreover, due to the 1 − |γ0|
factor, and due to large (negative) correlations being favored,
the constraint ε < 0.048 is much weaker than in the adiabatic
case (ε < 0.016).

The 1 − |γ0| factor in r0 together with the upper left corner
plot of Figure 7 also explains the difference of one-dimensional
posteriors of γ0 in Figure 4: the data constrain the primordial
tensor amplitude, r0, but whenever |γ0| is close to 1, we obtain an
acceptably small value for r0 no matter what value the primary
parameter ε has. Therefore, when marginalizing over ε, there
is a large volume of well-fitting models when |γ0| is close to
1. In contrast, when γ0 is close to zero, ε must be small in
order to obtain a small r0. Hence the well-fitting parameter
space volume is small, if |γ0| is small. This means that the
difference between one-dimensional posteriors of γ0 of “no
tensors” and “with tensors” cases is due to a marginalization
artifact, and the apparent preference of γ0 = −1 with tensors
is not strictly speaking physical. From the mean likelihoods
(indicated by the color scale) in Figure 7 we see that indeed
the best-fitting models have only a mildly negative correlation,
γ0 ∼ −0.1, and the good-fit region covers the range (−0.95, 0),
but does not particularly favor γ0 = −1. Indeed, often one-
dimensional marginalized posteriors give limited information on
high-dimensional problems, in particular, if some parameters are
loosely constrained: although the one-dimensional Figures 4 and
5 give only weak hints, the two-dimensional Figure 7 supports
the conclusion that in the slow-roll parameterization, negative
correlation (negative γ0 and αcor0) is clearly favored—slightly
more favored with tensors than without them.
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Figure 7. General case, slow-roll parameterization, and CMB data. Marginal-
ized two-dimensional posteriors for various combinations of non-adiabaticity
(γ0, α0, αcor0) and tensor perturbation parameters (ε, r0).

(A color version of this figure is available in the online journal.)

The amplitude parameterization favors a positive correlation.
So why does the slow-roll parameterization favor a negative
correlation? The explanation lies again in the spectral indices,
i.e., what part of the angular power spectrum the non-adiabatic
contribution is able to modify. In the amplitude parameteriza-
tion the width (and location) of the acoustic peaks got slightly
modified due to large niso and ncor. In the slow-roll parame-
terization the isocurvature mode does not have the ability to
modify this region, since niso ∼ nar. So, the non-adiabatic con-
tribution can significantly modify only the large-scale (� � 50)
part of C�. There the angular power at some multipoles is lower
in the data than predicted by the adiabatic ΛCDM model, most
notably the quadrupole, � = 2. An uncorrelated or positively
correlated isocurvature contribution is thus disfavored as they
would further increase the discrepancy between the data and
theory, but a negative correlation can reduce the power in this
region. However, due to the cosmic variance the contribution to
χ2 from this region does not have as much weight as the one
from the acoustic peak region, and thus the difference of the
best-fit mixed model and adiabatic model is only Δχ2 ≈ −2
in favor of the mixed model (while it is −3 in the amplitude
parameterization).

The shapes of the preferred regions in the slow-roll parameter
space can be understood by the preference for certain values of
the spectral indices. From Equation (39) we have that nar ∼ 1
corresponds to ε ∼ ησσ /3. Since nar somewhat less than 1 is
preferred by the data, this line is shifted a bit to the left in the
(ησσ , ε) plane, see Figure 6. The slope of the good-fit region in
the (ηss, ησs) plane is about −2/3, i.e., 2ηss − 3ησs ≈ constant,
which corresponds to tan Δ ≈ −3/4 or γ0 ≈ −0.64, which is in
line with negative correlations being preferred.

The effect of the optical depth τ on the CMB temperature
angular power spectrum is also somewhat degenerate with
isocurvature and tensor perturbations, affecting the relative
level of low and high �, but since τ is mainly determined by
low-� WMAP7 polarization data, where it causes the distinctive
reionization bump, isocurvature perturbations have negligible
effect on the determination of τ .

15



The Astrophysical Journal, 753:151 (26pp), 2012 July 10 Väliviita et al.

0.021 0.022 0.023 0.024 0.025

  ω
b

 

 
Adi, with tensors, ampl param.
Adi, with tensors, slow roll param
Mixed, with tensors, ampl param.
Mixed, with tensors, slow roll param.

0.09 0.1 0.11 0.12 0.13

  ω
c

1.03 1.035 1.04 1.045 1.05 1.055

  100θ

65 70 75 80 85

  H
0

0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13

  τ

0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.5

1

  n
as

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

  r
0

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15

  n
ar

0.6 0.65 0.7 0.75 0.8 0.85

  Ω
Λ

0.9 0.95 1 1.05

  n
ad
eff

0 1 2 3 4

  n
iso

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

 α
cor 0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

  γ
0

0 0.05 0.1 0.15 0.2 0.25

  α
0

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08

  α
T

Figure 8. General case, comparison of amplitude and slow-roll parameter-
izations, and CMB data. Marginalized one-dimensional posterior probability
densities of selected parameters from runs made in amplitude and slow-roll
parameterizations, allowing for a tensor contribution. The solid lines are for the
amplitude parameterization and the dot-dashed for the slow-roll parameteriza-
tion, red color for the adiabatic, and black for the mixed model.

Finally, the odds for the adiabatic model compared to the
mixed model in the slow-roll parameterization are 24:1 (Bf =
+3.19) with tensors, and 80:1 (Bf = +4.38) without tensors,
in support of the adiabatic model. In the adiabatic model, with
our priors for the slow-roll parameters, we find again support
for the model without tensor contribution, Pno tensors/Ptensors =
9:1 (Bf = +2.23). In the mixed models this changes to
Pno tensors/Ptensors = 2.8:1 (Bf = +1.04), but recalling our error
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Figure 9. Effect of priors. Priors (dashed) and posteriors (solid) of selected
derived parameters, and posteriors divided by priors (dot-dashed). The red
color is for the amplitude parameterization and the black is for the slow-roll
parameterization.

estimate δBf ≈ ±0.4, the last result could fall into the category
“inconclusive.”

6.3. Comparison of Parameterizations and Priors
of Derived Parameters

To allow for an easy comparison between our phenomeno-
logical and two-field inflation approaches, we repeat the one-
dimensional posteriors of some parameters of the adiabatic and
mixed models with tensors in Figure 8. First we note that the
parameters of the adiabatic model are so well constrained that
the two parameterizations lead to almost identical results.

Since the allowed isocurvature contribution is smaller in
the two-field inflation approach than in the phenomenological
approach, the preferred values for the background parameters
in the mixed model are closer to the adiabatic case in the slow-
roll parameterization (see Figure 8). Even more important is
the preferred negative sign of the correlation. Due to this, the
preferred value of the sound horizon angle moves to the other
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Figure 10. Typical temperature angular power spectra of well-fitting mixed models with a non-negligible non-adiabatic contribution. Model I (αT = +0.025) is
from our amplitude parameterization runs and Model II (αT = −0.049) from our slow-roll parameterization runs. Both models are within Δχ2 ≈ 4 from the best-fit
adiabatic model. Solid black curves are for the total lensed �(� + 1)C�/(2π ), the solid red for the adiabatic contribution, the solid green for the positive non-adiabatic
contribution, the dashed green for the negative non-adiabatic contribution, and the dotted black for the tensor contribution. Parameters of these models are reported in
Tables 4 and 5.
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Figure 11. General case, amplitude parameterization, comparison of CMB,
CMB and SN, and CMB and MPK data. Marginalized one-dimensional posterior
probability densities of the primary parameters in amplitude parameterization
with different data sets: CMB (solid line style), CMB and SN (dot-dashed), or
CMB and MPK (dashed). The red color is for the adiabatic and black is for the
mixed model.
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parameterization with different data sets. The line styles are the same as in
Figure 11.

side (smaller) of the adiabatic result, which is then reflected
in ωc, H0, and ΩΛ. Since the negative correlation reduces the
power at large scales compared to the small scales, the (slow-
roll) models with negative correlation prefer a smaller spectral
index neff

ad .
It should be kept in mind that for the derived parameters the

prior is not necessarily flat, and hence the posteriors could in
some cases directly reflect the prior or be biased by it. We have
checked that this is not the case for our derived parameters.
In Figure 9, we show the prior in both parameterizations for
selected derived parameters. We plot also the posterior divided
by the prior, which indicates how the results would look if
we had a flat prior for the derived parameters. Importantly, the
prior is almost flat for all of our derived parameters (including
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Figure 13. General case, slow-roll parameterization, comparison of CMB, CMB
and SN, and CMB and MPK data. Marginalized one-dimensional posterior
probability densities of the primary parameters in slow-roll parameterization
with different data sets. The line styles are the same as in Figure 11.
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Figure 14. General case, slow-roll parameterization, comparison of CMB, CMB
and SN, and CMB and MPK data. Marginalized one-dimensional posterior
probability densities of selected derived parameters from runs made in slow-roll
parameterization with different data sets. The line styles are the same as in
Figure 11.

the isocurvature parameters) in the region of the peak of
their posterior. There is one exception: since the CMB data
do not constrain niso, a flat wide range prior for it (as in the
spectral index parameterization) would lead to very large values
being “preferred” (Kurki-Suonio et al. 2005; Sollom et al.
2009), niso ∼ 3–7 depending on the chosen pivot scale. (See
Figure 21 in Kurki-Suonio et al. 2005 and Figure 5 in Valiviita
& Giannantonio 2009.) Note from the latter figure also that
although αT is a pivot-scale free measure of non-adiabaticity,
its posterior probability density is affected by the choice of
pivot scale.). The amplitude parameterization leads naturally to
a prior that excludes models with niso � 3.5, see Figure 9,
and the slow-roll parameterization limits niso close to one:
1 − 2 max(ε) + 2 min(ηss) � niso � 1 − 2 min(ε) + 2 max(ηss).
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It is also interesting to compare how the parameterization and
prior ranges (that are considered as part of the model in Bayesian
thinking) affect the Bayesian evidence. In the adiabatic case with
tensors we find Bf = 1.30 and in the mixed case Bf = 3.59 in
favor of the slow-roll parameterization. This is what one would
have expected, since the prior ranges are so much narrower in
the slow-roll parameterization.

To complete the comparison of parameterizations, we
show the temperature C� spectra of two example models in
Figure 10: Model I is from our amplitude parameterization
run and has roughly the maximum 95% CL allowed primor-
dial non-adiabatic contribution at scale k2 (αcor2 = 0.42).
Model II is from our slow-roll parameterization run and has
roughly the maximum allowed negative non-adiabatic contribu-
tion at k1 (αcor1 = −0.11). These models represent the above-
described typical features of well-fitting mixed models in ampli-
tude and slow-roll parameterizations, respectively. The param-
eters of these examples can be found in Tables 4 and 5 under
names “Model I” and “Model II.”

7. THE GENERAL CASE WITH ADDITIONAL DATA

We study how the results are affected by using SN (Amanullah
et al. 2010) or matter power spectrum (MPK; Reid et al. 2010)
data in addition to the same CMB data as in the previous
sections. For brevity and clarity, we show figures only for models
with tensors. Figure 11 shows the one-dimensional posteriors
of the primary parameters of amplitude parameterization for
different data sets: (1) with CMB only, (2) with CMB and SN,
and (3) with CMB and MPK. Figure 12 gives the same sets
for derived parameters. The analysis is repeated in the slow-roll
parameterization in Figures 13 and 14.

In the phenomenological approach, the additional data ex-
clude those mixed models that have a large ΩΛ (see Figure 12).
These models have a large positive non-adiabatic contribution,
which thus gets less favored (see γ0, αcor0, and αT ). There-
fore, by constraining the background parameters (see also H0 in
Figure 12 and ωc, θ in Figure 11) closer to the “adiabatic
values” or to less favorable values to isocurvature, the positive
non-adiabatic contribution gets indirectly constrained tighter
than with the CMB data alone: the upper limit for αT changes
from 4.9% (CMB) to 4.2% (CMB and SN) or to 2.4%
(CMB and MPK).

The additional data have less effect in the slow-roll approach,
since the background parameters were already closer to the
adiabatic case. Actually the additional data prefer a smaller
ΩΛ than the CMB data in the adiabatic model, which is the
same direction where the isocurvature contribution pulls in
the slow-roll approach. Therefore, including the additional data
makes the mixed model more favorable than with the CMB data
alone. The upper limit to the CDM isocurvature fraction relaxes
from α0 < 0.026 (CMB) to 0.032 (CMB and SN) or to
0.034 (CMB and MPK). From the αT plot in Figure 14 it is
clear that the preference for small ΩΛ leads to a very strong
preference for a negative non-adiabatic contribution. The 95%
CL range for αT in the slow-roll parameterization changes from
αT ∈ (−5.8%, 4.5%) with CMB to (−5.6%, 3.0%) with CMB
and SN or to (−6.3%,−0.8%) with CMB and MPK. So, in
the slow-roll parameterization the MPK data exclude positive
non-adiabatic contribution with more than 95% CL.

The results with SN data are between the results of CMB
alone and the ones with CMB and MPK data for most of the
parameters. This happens because the SN constrain ΩΛ only
mildly and are in a relatively good agreement with the CMB. In

contrast, the MPK data prefer a significantly smaller ΩΛ (larger
Ωm) than the CMB (Reid et al. 2010; Percival et al. 2010). If this
discrepancy in the determination of Ωm persists in the future,
then MPK data will continue to have a dramatic indirect effect
on the determination of isocurvature.

In the amplitude parameterization, the MPK data might also
lead to a direct extra constraint on non-adiabatic perturbations.
At first sight, the niso plot of Figure 12 seems to support this:
the MPK data exclude the largest isocurvature spectral indices
which the CMB data are not able to constrain. More clearly,
this effect can be seen in the α2 plot of Figure 11. However, as
we will see below, in practice the extra constraint on α2 comes
almost fully from the background constraint on Ωm. This can
be also realized by noticing that the SN data (that are purely
background data) have a similar, but milder, effect.

The MPK constraints on non-adiabaticity in the slow-roll
parameterization are (and will always be) purely indirect back-
ground constraints, since the nearly scale-invariant isocurvature
perturbations with the tiny amplitude allowed by the large-scale
CMB are not able to modify the matter power spectrum at all.
In contrast, in our phenomenological approach, which (after
the CMB constraints) allows large primordial isocurvature and
correlation components on small scales, the slope of the matter
power spectrum at large k can be affected (Kurki-Suonio et al.
2005; Sollom et al. 2009) by the correlation component (and
by the isocurvature component on very small scales).5 How-
ever, here the MPK likelihood code tries to soften the effect
of the overall shape (by marginalizing over two nuisance pa-
rameters) as the exact shape is not known due to the nonlinear
effects. Therefore we would not expect tight extra constraints
from the slightly modified slope, but instead from the phase and
amplitude of the BAOs. Unfortunately, primordial isocurvature
perturbations of the same amplitude as the adiabatic ones lead
to 20–150 times smaller matter power spectrum today over the
observable scales. This is clearly seen in Figure 15(a) where we
plot the resulting matter power spectra from scale-invariant pri-
mordial spectra with primordial amplitude 1. The background
parameters in Figure 15(a) are the same as in Model I.

In Figure 15(b), we show a breakdown of the total matter
power spectrum into its components for the mixed Model I of
Tables 4 and 5. This model has a maximum allowed (at 95% CL
by CMB alone) primordial non-adiabatic contribution at scale
k = k2 = 0.05 Mpc−1 that falls in the middle of the log(k)-
range of the MPK data: αcor2 = 0.42, γ2 = 0.73, α2 = 0.43,
and niso = 3.3. We choose this model in order to study why
the MPK data rule it out. For this model the isocurvature
(correlation) contribution to the matter power at k2 is 120 (6.7)
times smaller than the sum of the two adiabatic components.
As seen in Figure 15(b), the correlation component makes the
matter power spectrum decrease less steeply compared to the
adiabatic spectrum at the highest wave numbers probed by the
data. (Note that the observational window functions related to
each data point are rather broad, extending well beyond the last
data point.)

From Figure 15(c) we see that, although the amplitude of the
isocurvature BAO is damped compared to the adiabatic BAO, the

5 Our phenomenological model with a free niso differs from, e.g., Trotta et al.
(2003), where the adiabatic and isocurvature components share the same
spectral index—the situation that is close to our two-field slow-roll inflation
approach. As the CMB data prefer predominantly adiabatic nearly
scale-invariant perturbations, the common spectral index is forced near to 1,
which in Trotta et al. (2003) leads to a conclusion that the isocurvature would
not affect the matter power spectrum. This is in agreement with what we
concluded in the case of slow-roll parameterization.
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Figure 15. Matter power spectra and baryon acoustic oscillations. (a) Linear matter power spectra at redshift z = 0 (today) resulting from scale-invariant primordial
spectra with unit amplitude. The dashed red curve is for the adiabatic primordial perturbations (A2

i = 1, γi = 0, αi = 0, nar = 1), the dotted blue curve is for the
isocurvature (A2

i = 1, γi = 0, αi = 1, niso = 1), and the green curve is for their correlation. The corresponding thin solid curves are the smooth spectra from where the
baryonic wiggles have been removed as described in Section 5.1. (b) Linear matter power spectra at redshift z = 0 for Model I of Tables 4 and 5. The gray dots with
error bars are the SDSS DR7 LRG data (Reid et al. 2010) as supplied with CosmoMC, and the dashed thin black curve is the linear power spectrum (“tot”) modified
to take into account the BAO damping, the uncertainty in the nonlinear modeling, and finally convolved with the observational window function (see Equation (5) in
Reid et al. 2010) in order to be compared directly to the data. The solid thin black curve is the smooth part of this. Note that plot (d) provides a “zoom-up” of the
difference between these dashed (wiggly) and solid (smooth) thin black curves that are not easily visible in this plot. (c) The linear baryon acoustic oscillations of plot
(a): the full oscillating curves divided by the smooth thin solid curves. (d) The baryon acoustic oscillations of plot (b): the solid black, red, and green curves are the
linear BAO(k) at redshift z = 0 for the total, adiabatic, and non-adiabatic components of Model I, respectively. The corresponding dashed curves that have smaller
amplitude are obtained from the linear curves at three different redshifts modified to take into account the BAO damping, the uncertainty in the nonlinear modeling,
and finally convolved with the observational window function. For comparison, the dashed thick gray curve indicates BAO(k) for the best-fit (to CMB and MPK) pure
adiabatic model. The gray dots with error bars are the SDSS DR7 LRG data divided by the smooth part of the best-fit adiabatic model. The first two data points [see
plot (b)] fall outside of the scale of this plot, the first being 0.22 and the second one being 0.10. It should be noticed that plot (d) is only for illustration purposes, and
the actual MPK likelihood is calculated comparing the theoretical convolved matter power to the data, as shown in plot (b), and taking into account the full covariance
matrix of the MPK data that accounts for the strong correlations between the data points.

isocurvature would distinctively modify the phase of BAO if the
isocurvature contribution in the matter power spectrum was of
the same order or larger than the adiabatic contribution. As seen
above, after the CMB constraints, the maximum non-adiabatic
contribution is ∼10%. Moreover, this comes mostly from the
correlation component whose phase is rather close to the
adiabatic component. According to Figure 15(d), the maximum
non-adiabatic contribution to the total BAO is �5% (compare
the green and black curves). This is not detectable by the SDSS
DR7 data. To set direct extra constraints on isocurvature, the
matter power data should be about an order of magnitude more
accurate, which could be within the reach of Euclid (Laureijs
et al. 2011). Anyway the future LSS surveys will be important in
constraining the isocurvature modes by breaking degeneracies
that the CMB leaves between the background parameters and
non-adiabaticity.6

6 Detailed forecasts for combining the near-future Planck (Ade et al. 2011;
Mennella et al. 2011) CMB data with the predicted LSS data from Baryon
Oscillation Spectroscopy Survey (BOSS; see, e.g., Schlegel et al. 2009;
Eisenstein et al. 2011) and Advanced Dark Energy Physics Telescope
(ADEPT; see, e.g., Sefusatti & Komatsu 2007) or Euclid-like survey are
provided in Kasanda et al. (2011) and Carbone et al. (2011). Using the LSS
data together with Planck is expected to bring down the uncertainty of the
isocurvature fraction from a few percentage points to better than 1%.

As the non-adiabatic contribution to BAO(k) does not explain
the very bad MPK likelihood of Model I, the main reason has to
be the wrong turnover scale (compare the position of the peak of
the best-fit (to CMB and MPK) adiabatic matter power spectrum
to that one of Model I in Figure 15(b)). In the ΛCDM model
the turnover scale is determined by the scale that enters the
Hubble horizon at the time when the matter and radiation energy
densities are equal. This scale is keq = ωm × 0.0729 Mpc−1,
i.e., keq/h = hΩm × 0.0729 Mpc−1. For Model I, which has
Ωm = 0.203 and h = 0.783, this gives keq/h = 0.0116 Mpc−1,
whereas for the best-fit adiabatic model we have Ωm = 0.293
and h = 0.688 leading to keq/h = 0.0147 Mpc−1 in agreement
with Figure 15(b). The rest of the bad MPK likelihood of Model I
comes from the wrong phase of (even the adiabatic component
of) BAO caused by the “non-adiabatic” values of the background
parameters, i.e., the very small Ωm.

To test the above observations further we report several MPK
χ2: the best-fit adiabatic model to CMB and MPK has an MPK
χ2 = 47.0 (60.0) with (without) baryonic wiggles. Model I
has χ2 = 60.5 (67.8) with (without) wiggles. Furthermore,
Model I has χ2 = 60.8 without non-adiabatic wiggles. This
is about the same as with all the wiggles. So, as expected,
the “wrong” phase of (the less than 5% contribution of) non-
adiabatic wiggles does not affect χ2. Interestingly, dropping
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Figure 16. Special cases, amplitude parameterization, CMB data, and compari-
son of uncorrelated or fully correlated models to the generally correlated model.
The solid lines are for models with tensors. The black is for the generally cor-
related model, the magenta dashed lines for fully anticorrelated (γ = −1),
magenta dot-dashed for fully correlated (γ = +1), and blue for uncorrelated
(γ = 0).

the non-adiabatic contributions from Model I gives χ2 = 58.2
(62.3) with (without) wiggles, i.e., improves the fit only by
Δχ2 = −2.3 (−5.5). This gives an indication of the magnitude
of the effect from the modified slope by the non-adiabatic
contribution. Finally, changing the four background parameters
to the values of the best-fit adiabatic model, the mixed model
gives χ2 = 48.8. This is only 1.8 worse than for the best-fit
adiabatic model, and shows clearly that the bad MPK χ2 of
high isocurvature fraction mixed models comes almost solely
from the unfavorable values of the background parameters while
only Δχ2 ∼ 1–2 comes from the too-gradual slope and in
practice nothing from the phase information of the non-adiabatic
BAO component.

8. SPECIAL CASES WITH CMB DATA

8.1. Uncorrelated Perturbations

In the uncorrelated case there is no Pas(k) spectrum, and
therefore we have only nine independent parameters: the usual
four background parameters

ωb, ωc, θ, τ, (62)

and five perturbation parameters

ln A2
0, nar, α0, niso, r0, (63)

where

nar = 1 − 6ε + 2ησσ
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Figure 17. Special cases, slow-roll parameterization, CMB data, and compari-
son of uncorrelated or fully correlated models to the generally correlated model.
The line styles are the same as in Figure 16.
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Figure 18. Special cases, slow-roll parameterization, CMB data, and compari-
son of uncorrelated or fully correlated models to the generally correlated model.
The line styles are the same as in Figure 16.

niso = 1 − 2ε + 2ηss

r0 = 16ε. (64)

In the amplitude parameterization, the primary perturbation
parameters are

ln A2
1, ln A2

2, α1, α2, r0, (65)

and in the slow-roll parameterization

ln A2
0, α0, ησσ , ηss ε. (66)

The marginalized one-dimensional posteriors for this model
with the CMB data are indicated by the solid blue γ = 0
curves in Figure 16 for the amplitude parameterization, and
in Figures 17 and 18 for the slow-roll parameterization. The
black curves show for comparison the general case studied in
Sections 6.1 and 6.2. The dashed lines are for the same models
but without tensors, i.e., r0 = 0 or ε = 0.

Let us first comment on Figure 16 (amplitude parameteriza-
tion). Since it was the correlation component that modified the
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acoustic peak structure in the generally correlated case, and this
component is missing in the uncorrelated case, we do not have
a mechanism that would favor a small ωc and large θ , H0, and
ΩΛ. Therefore, these background parameters are now closer to
their “adiabatic” values. Also, a smaller niso is now preferred.
This is compensated by a slightly larger neff

ad . A much larger α0
is allowed but, as seen from the αT plot, this leads to a smaller
overall non-adiabatic contribution to C�, since the correlation
component is missing. The determination of r0 is unaffected for
the same reason as in the general case: isocurvature with a large
niso modifies the small-scale end and the tensor contribution with
a nearly scale-invariant spectrum modifies the large-scale end of
the C� spectrum. Taking the numbers from Table 4 we find that,
compared to the mixed model, the adiabatic model has odds
of 4.9:1 (Bf = +1.59) with tensors, and 3.9:1 (Bf = +1.35)
without tensors. Since the CMB data are compatible with the
pure adiabatic model and the uncorrelated mixed model has two
parameters less than the generally correlated model, it is natural
that the uncorrelated model is much less disfavored than the
generally correlated model that gave Bf ≈ +5 in support of the
adiabatic model.

Our result α1 < 0.112 with tensors or 0.127 without tensors
in Table 5 agrees well with the WMAP7 result (Larson et al.
2011; Komatsu et al. 2011) α1 < 0.13 (their “Axion” model).
For the non-adiabaticity we find αT < 3.7% with tensors and
4.3% without tensors.

In the slow-roll parameterization (Figures 17 and 18)
ε receives a tighter constraint than in the general case, since
the sin2 Δ factor is now 1 in Equation (39). The constraint on
r0 loosens.

In the general case we had a tight connection between niso
and nas (see Equation (39)) and the data (loosely) constrained
nas. This led to a similar constraint on niso. However, now
nas is absent, and hence niso does not receive any constraint,
see Figure 17. As the data seem to prefer the isocurvature
contribution not showing up at any scale (which is achieved
easier the closer it is to 3 niso recall the left panel of Figure 10
where niso = 3.3), the posterior of niso has a peak almost at the
upper boundary of its prior range, niso = 1.15.

The odds in favor of the corresponding adiabatic models
compared to the uncorrelated mixed model in the slow-roll
parameterization are 17.6:1 (Bf = +2.87) with tensors, and
80:1 (Bf = +4.38) without tensors.

Interestingly, the slow-roll parameterization gives very simi-
lar constraints on α—that are almost independent of the scale,
since niso ∼ 1 – (α0 < 0.110 with and 0.125 without tensors) as
the amplitude parameterization gives for α1. The 95% CL upper
limits for αT are also very similar, although the shape of the
posterior is different, the slow-roll parameterization preferring
more clearly a zero non-adiabatic contribution.

8.2. Fully (anti)correlated Perturbations

In the fully correlated cases there is no Par(k) spectrum (γ =
−1 or γ = +1). In the standard two-field inflation approach,
we get this situation, when the curvature perturbations are
completely dominated by the part that evolved from the entropy
perturbations after horizon exit, and the tensor perturbations that
were generated at horizon exit together with the uncorrelated
part of the curvature perturbations are negligible.

Therefore, in this case we assume no tensor perturbations,
and we have just eight independent parameters: background
parameters

ωb, ωc, θ, τ, (67)

and four perturbation parameters

ln A2
0, nas, niso, α0. (68)

According to Equation (39), the two-field slow-roll inflation
gives

nas = niso = 1 + 2ηss, (69)

which reduces the number of independent perturbation param-
eters to three in the slow-roll parameterization.

In the amplitude parameterization, the primary perturbation
parameters are

ln A2
1, ln A2

2, α1, α2, (70)

and in the slow-roll parameterization

ln A2
0, α0, ηss . (71)

The marginalized one-dimensional posteriors for this model
with the CMB data are indicated by the dashed magenta (γ =
−1, 100% anticorrelation) and dot-dashed magenta (γ = +1,
100% correlation) curves in Figure 16 for the amplidude
parameterization, and in Figures 17 and 18 for the slow-roll
parameterization.

As we would expect, in the amplitude parameterization (see
Figure 16), the γ = +1 case leads to very similar results
as we obtained with the general correlation without tensors
(dashed black curves). Some of the features of the well-fitting
phenomenological mixed model are amplified, such as the
preference for very large niso. Due to the 100% correlation, for a
given α the non-adiabatic contribution modifies the C� spectrum
in the maximal way. Therefore α0 is formally constrained very
tightly, but the peak of αcor0 moves to slightly larger value than
in the general case. The posterior of αT is practically unaffected.
On the other hand, the γ = −1 case differs significantly from
the general case. Indeed, the amplitude parameterization results
are now very close to the slow-roll parameterization results.
This is natural, since the slow-roll parameterization favored
the negative correlation. The only clearly noticeable difference
lies in the lower limit for αT that is now −0.08. Our result
α1 < 0.011 coincides with the WMAP7 result (Larson et al.
2011; Komatsu et al. 2011; see their “Curvaton” model).

The odds for the adiabatic model compared to the fully
correlated mixed model are 206:1 (Bf = +5.33) and the
fully anticorrelated model 11048:1 (Bf = +9.31). Here, the
overwhelmingly small odds of the mixed models are partially
due to our choice to keep α1 and α2 independent, i.e., allowing
for niso = nas.

In the slow-roll parameterization this extra freedom is missing
and we find that the adiabatic model has odds of 240:1 (Bf =
+5.48) when compared to the fully correlated model, and 257:1
(Bf = +5.55) when compared to the fully anticorrelated mixed
model.

9. COMPARISON TO OLDER RESULTS

Some of the earliest constraints (Stompor et al. 1996; Hu et al.
1995; Hu & Sugiyama 1994; Chiba et al. 1994) on isocurvature
were obtained soon after COBE (Wright et al. 1992) in the mid-
1990s. Setting tight observational constraints on isocurvature
(Enqvist et al. 2000) became possible when BOOMERANG
(de Bernardis et al. 2000) and MAXIMA (Hanany et al.
2000) firmly observed the first acoustic peak in the CMB in
the year 2000. Pre-WMAP constraints were derived, e.g., in
Gordon & Lewis (2003), Amendola et al. (2002), Langlois
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& Riazuelo (2000), and Pierpaoli et al. (1999), some papers
focusing on the determination of the cosmological constant in
the presence of primordial isocurvature modes (Trotta 2003;
Trotta et al. 2003), while Enqvist et al. (2002) finally ruled
out a pure CDM isocurvature perturbation even in a spatially
curved universe. Constraints from the BOOMERANG 2003
flight were derived by MacTavish et al. (2006) and from Cosmic
Background Imager (CBI) observations by Sievers et al. (2007).
The WMAP first-year data (Hinshaw et al. 2003) were used
by Beltran et al. (2005b), Beltran et al. (2005a), Andrade
et al. (2005), Lazarides et al. (2004), Kurki-Suonio et al.
(2005), Beltran et al. (2004), Parkinson et al. (2005), Moodley
et al. (2004), Ferrer et al. (2004), Valiviita (2003), Valiviita
& Muhonen (2003), Dunkley et al. (2005a), Andrade et al.
(2004), Gordon & Malik (2004), Crotty et al. (2003), Peiris et al.
(2003), and Bennett et al. (2003) to constrain various mixtures
of adiabatic and isocurvature perturbations in a spatially flat
universe. The focus of Dunkley et al. (2005b) was in testing
how much the (possible) presence of isocurvature modes affects
the determination of the geometry (spatial curvature) of the
universe.

The WMAP three-year data (Hinshaw et al. 2007) were
employed by Kawasaki & Sekiguchi (2008), Keskitalo et al.
(2007), Trotta (2007), Seljak et al. (2006), Lewis (2006), and
Bean et al. (2006; note the post-publication corrections at
http://arxiv.org/pdf/astro-ph/0606685v3 for the case of a varying
isocurvature spectral index). The most recent observational con-
straints and model selection with WMAP five-year data (Nolta
et al. 2009) combined with SN and SDSS matter power spectrum
data were presented in Sollom et al. (2009) for a spatially flat
universe. Valiviita & Giannantonio (2009) performed a com-
prehensive Bayesian comparison of flat and curved universes
both in pure adiabatic and in mixed cases, finding that the spa-
tial curvature is disfavored roughly by the same amount as the
isocurvature compared to the flat adiabatic model.

Kawasaki et al. (2011a) studied the possibility of extra radi-
ation (a radiation component other than photons or three stan-
dard species of neutrinos) carrying isocurvature and concluded
that the current data allow the existence of an extra radiation
component but do not favor its isocurvature mode. Liu et al.
(2011) showed that constraints on dark energy isocurvature are
very weak.

Slow-roll parameters and parameters of inflationary poten-
tials in the adiabatic case, paying particular attention to reason-
able priors, have been constrained, e.g., by Mortonson et al.
(2011) and Norena et al. (2012). Finally, forecasts for fu-
ture experiments have been worked out, e.g., by Easson &
Powell (2011b), Easson & Powell (2011a), Hamann et al.
(2009), Gordon & Pritchard (2009), Baumann et al. (2009),
Bucher et al. (2001), Bucher et al. (2002), and Enqvist &
Kurki-Suonio (2000).

For a closer comparison to our results we pick six pub-
lications where the pivot scale(s) and parameterizations are
the most similar to our work. In our earlier work Kurki-
Suonio et al. (2005), Keskitalo et al. (2007), and Valiviita &
Giannantonio (2009), where we used one-year, three-year,
and five-year WMAP data, respectively, and older small-scale
CMB data, we did not include tensor perturbations. In the
slow-roll parameterization this would correspond to assuming
ε = 0, but as all those works were in a phenomenological
parameterization, we pick from Table 5 the “Ampl. par.” re-
sults. Our new result (with CMB data) is α0 < 0.158, while in
Kurki-Suonio et al. (2005) we obtained α0 < 0.18; in Keski-

talo et al. (2007) α0 < 0.169; and in Valiviita & Giannanto-
nio (2009) α0 < 0.22. The actual limits on α are very sen-
sitive to the precise amount of correlation preferred by the
data, since the same α leads to a larger modification of the
C� spectrum if |γ | differs significantly from zero. The non-
adiabatic contribution to the CMB temperature variance is less
sensitive to this “arbitrariness,” and has evolved consistently
toward tighter limits: from −0.075 < αT < 0.075 (Kurki-
Suonio et al. 2005), 0.017 < αT < 0.073 (Keskitalo et al.
2007), and −0.031 < αT < 0.067 (Valiviita & Giannantonio
2009) to our new constraint −0.021 < αT < 0.053 without and
−0.030 < αT < 0.049 with tensors. The WMAP one-year data
had relatively large error bars and did not extend to the third
acoustic peak. As seen above, the range for αT was symmetric
about 0. The later data map more precisely the acoustic peak
structure and, as explained earlier, there is a persistent formal
preference for a positively correlated isocurvature component
with a large niso in the phenomenological approach.

Of other publications, the most similar to our work are
Kawasaki & Sekiguchi (2008), and Li et al. (2011), although
they do not perform a Bayesian model comparison, but only
parameter estimation. Kawasaki & Sekiguchi (2008) employ
WMAP three-year data together with or without the SDSS
DR4 LRG matter power spectrum, and include tensor pertur-
bations fixing the tensor spectral index nT by the first con-
sistency relation. In addition, although their parameterization
is phenomenological, they impose an “inflationary constraint”
that niso = nas = 1 + nT . Therefore their work is closer to
our slow-roll case than to our phenomenological approach:
although we do not have niso = nas in the slow-roll, our
slow-roll approach guarantees that niso is nearly scale invari-
ant like theirs. Since they use spectral index parameteriza-
tion with pivot scale k = 0.05 Mpc−1, we need to map our
slow-roll results to spectral indices and then from our pivot
scale k0 = 0.01 Mpc−1 to their pivot scale. Furthermore, we
need to map to their isocurvature and correlation parameters:
Ba = √

α/(1 − α) and cos θa = sign(γ )
√|γ |, respectively.

After these mappings, our general slow-roll case with (with-
out) tensors, using CMB data, gives Ba < 0.25 (0.26) at the
95% CL and −0.79 < cos θa < 0.73 (−0.67 < cos θa < 0.72).
Adding the SDSS DR7 LRG data into the analysis, these change
to Ba < 0.23 and −0.89 < cos θa < 0.21. Their results with
old WMAP and SDSS DR4 LRG are Ba < 0.28 (0.33) and
−0.77 < cos θa < 0.27 (−0.40 < cos θa < 0.28). For tensor-
to-scalar ratio at k = 0.05 Mpc−1 we find r < 0.24 with CMB
and 0.17 with CMB and MPK data, while their upper bound
is 0.32. The general agreement is good when keeping in mind
the differences in the data sets and parameterizations. For the
special cases (uncorrelated model with tensors, uncorrelated
model without tensors, fully anticorrelated, fully correlated) we
find with CMB data Ba < 0.32, 0.35, 0.083, 0.077, while they
find with the old WMAP data—in remarkable agreement—0.31,
0.33, 0.080, 0.087, respectively. For the tensor-to-scalar ratio at
k = 0.05 Mpc−1 in the uncorrelated case we find r < 0.25
while their constraint is 0.26.

Li et al. (2011) use the same CMB, SN, and MPK data sets
as we (except QUaD replaced by CBI and BOOMERANG).
Unfortunately, they do not specify how the BAO part of
the MPK theory and likelihood code was modified in order
to take into account the isocurvature BAO when using the
LRG sample, or whether the MPK code was not modified
relying on the fact that BAO from subdominant isocurvature
component would not change the results significantly with the
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current accuracy of data, as we have explicitly shown here. (BAO
in the presence of isocurvature modes is further discussed by
Kasanda et al. (2011), Carbone et al. (2011), Mangilli et al.
(2010), Zunckel et al. (2011), J. Valiviita & T. M. Ruud (2012,
in preparation). Li et al. (2011) employ the phenomenological
amplitude parameterization without tensor contribution and
therefore the corresponding case in our study is “Ampl. par.”
(no tensors) with either CMB and SN or CMB and MPK data.
As they have included both SN and MPK simultaneously, we
would expect their results to lie somewhere between our CMB
and SN, and CMB and MPK results, and to be slightly tighter.
Indeed, taking an “average” of the dashed and dot-dashed curves
in our Figures 11 and 12, noticing that αtheir = 1 − αour, and
comparing to their Figures 2 and 3 shows a good qualitative
agreement, except for the exact shape of α2. Note that their cos Δ
equals sign(γ )

√|γ |. They do not specify their sign convention,
but we deduce from their Figure 1 that it is the same as ours. This
is supported by their Figure 4, (cos Δ, Ωm) plot, which indicates
the same degeneracy as we have seen, i.e., positive correlation
prefers a large ΩΛ. Finally, their numerical 95% CL constraint
on α1 (α0) is 6.1% (14.6%) while we find 6.7% (13.7%) with
CMB and SN and 9.8% (16.7%) with CMB and MPK. We
cannot perform an exact one-to-one comparison as they have
one parameter less in their model, since they assume nas = nar.

Castro et al. (2009) constrained uncorrelated models, assum-
ing nar = niso. The closest of our cases is the uncorrelated
slow-roll model without tensors. However, even if niso is forced
close to one in this model, it is completely free from nar; see
Equation (64), remembering that ε = 0. As the CMB data are
very “adiabatic” and hence require that the isocurvature contri-
bution is subdominant at all multipoles, they prefer spectral in-
dex niso ∼ 3. However, our slow-roll prior requires niso � 1.15.
Therefore the blue dashed curve in our Figure 17 peaks at
niso = 1.15. This means that our model is quite different from the
model of Castro et al. (2009) where the posterior peaks at niso =
nar ∼ 0.987. We find α0 < 0.125. Mapping into the spectral
index parameterization and to the pivot scale k = 0.002 Mpc−1

used in Castro et al. (2009) we obtain α < 0.117, whereas
their constraint 0.19 with QUaD and WMAP five-year data is
much looser, showing—once again—that the formal constraints
on undetected isocurvature parameters can depend strongly
on the theoretical assumptions, here whether one imposes
nar = niso or uses slow-roll parameterization that makes them
independent.

Recently, Norena et al. (2012) performed a slow-roll recon-
struction employing Bayesian model comparison by MultiNest.
They studied adiabatic models, matching the last blocks (“Slow-
roll par. Adiabatic”) of our Tables 4 and 5. Apart from the differ-
ent pivot scale (k = 0.05 Mpc−1), their ε∗ corresponds to our ε
and their η∗ to our ησσ (to first order), but as their treatment was
fully numerical they did not need to demand inflaton to be slowly
rolling and could allow for broad ranges: 0 � ε∗ � 1 and −1 �
η∗ � 1. Instead of the median and 95% CL ranges of marginal-
ized posteriors, they report the mean and σ . With WMAP7 and
a uniform prior for ε∗, they find ε∗ = (6.71 ± 4.96) × 10−3

and η∗ = (0.38 ± 1.89) × 10−2, while we find, in agreement,
ε = (6.53 ± 4.97) × 10−3 and ησσ = (0.87 ± 2.11) × 10−2.
For a model without tensor contribution they find with WMAP7
and SPT data η∗ = (−2.23 ± 0.54) × 10−2, and our result with
CMB data is ησσ = (−1.73 ± 0.64) × 10−2.

Interestingly, Norena et al. (2012) show that the model
selection prefers one-parameter models (either ε∗ only, or η∗
only) over the two-parameter model that has both ε∗ and η∗, if

a uniform prior for ε∗ is used, but this preference disappears if,
instead, a uniform prior for log ε∗ is assumed. The explanation
is that the logarithmic prior gives much weight to models with a
very small ε∗, so the model turns to almost one-parameter model
with ε∗ ∼ 0. Our uniform prior 0 � ε � 0.075 should hence
lead to results that are somewhere between their uniform and
logarithmic prior results. Indeed, this is the case. With WMAP7
and SPT (and LRG) data they find Bf = ln(P(η∗)/P(ε∗,η∗)) ≈ +5
when using the uniform prior on ε∗, and Bf ≈ 0 when using
a logarithmic prior. With CMB (CMB and MPK) data and
our uniform prior 0 � ε � 0.075, we find Bf = +2.23
(+2.66) in support of the adiabatic slow-roll model without
tensors (ε = 0) over the model with tensor contribution. The
logarithmic difference in the parameter space volume of the
model with 0 � ε � 1 and our model with 0 � ε � 0.075
is ln(1/0.075) = 2.59. Assuming that all the models with
ε > 0.075 are bad fits to the data (a reasonable assumption
after seeing the posterior), our result with their prior 0 � ε � 1
would be Bf ∼ +4.8 (+5.3), in agreement with their result.
However, it should be noticed that, according to their Figure 1,
the requirement of a minimum number of e-folds of inflation
after the pivot scale exits the horizon affects the prior on ε and
η, making the above naive argument more subtle.

10. CONCLUSIONS

Apart from using more recent CMB data, the main new results
of this paper compared to Valiviita & Giannantonio (2009), who
also utilize MultiNest and Bayesian model comparison, are as
follows: (1) Showing that allowing for a primordial tensor con-
tribution has a negligible effect on the determination of the
non-adiabatic contribution and that the possible presence of a
CDM or a baryon isocurvature mode has a minor effect on the
determination of the tensor-to-scalar ratio, as long as the tensor
spectral index obeys the first inflationary consistency relation.
(2) Showing that the results change considerably compared to
Valiviita & Giannantonio (2009) if, instead of the phenomeno-
logical parameterization, one uses inflationary slow-roll param-
eterization that forces all the spectra near to scale invariance.
(3) Including one of the most important complementary (to
CMB) data sets into the analysis, namely the matter power spec-
trum, and showing that its current accuracy is not enough to give
direct extra constraints on isocurvature. However, even the cur-
rent MPK data change the results considerably due to the tension
between the low matter density preferred by the CMB data and
the high matter density preferred by the MPK data. (4) Valiviita
& Giannantonio (2009) and Sollom et al. (2009) performed all
the runs without CMB lensing, because already computationally
intensive runs turn by an order of magnitude heavier if lensing
is applied. Ignoring the lensing was justified by the fact that the
one-dimensional posteriors stayed rather unaffected. However,
in this paper, in Section 5.4 we have noticed that comparing
the unlensed mixed model to the unlensed adiabatic model may
make the mixed model seem slightly more favorable than it ac-
tually is, in particular when it comes to the Bayesian evidences.
Therefore, the CMB lensing is now included in the analysis. In
the end the effect on model comparison is mild: for example,
Bf = +5.48 with and Bf = +4.18 without lensing when com-
paring the adiabatic model to the mixed one (phenomenological
model with tensors).

We conclude that current cosmological data give no evidence
of an isocurvature perturbation contribution. Thus, we can only
set upper limits to it. Since isocurvature perturbations contribute
to the large-scale CMB more strongly than to small-scale CMB,
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in comparison to the adiabatic perturbations, the tightest limits
to isocurvature perturbations are at the large scales. In the
absence of a detection of an isocurvature contribution, the
phenomenological approach to constraining the parameters then
leads to a preference of a steeply blue primordial isocurvature
perturbation spectrum (large niso), unless a prior constraint
on spectral indices is imposed. The limits to an isocurvature
contribution then come mainly from the relative locations of the
acoustic peaks in the CMB angular power spectrum.

In addition to a phenomenological approach, we considered
an approach motivated by two-field inflation, where the four
first-order slow-roll parameters were fitted to the data, with
the prior assumption that the slow-roll parameters are small.
This means that all primordial spectra are constrained to
be close to scale invariant. Since in this case isocurvature
perturbations contribute much more to large CMB scales than
to small scales, when compared to the adiabatic perturbations,
the isocurvature contribution is mainly constrained by the
relative levels of the low-� and high-� parts of the observed
CMB angular power spectrum. This leads to a tighter limit to
isocurvature perturbations than when their spectral index is not
constrained a priori. When spectra are close to scale invariant,
the contribution of isocurvature perturbations to C� is somewhat
similar to that of tensor perturbations—both contribute mainly
to low �. If isocurvature perturbations are anticorrelated with
adiabatic perturbations, they have a negative contribution at low
�, and thus their contribution can be partly canceled by tensor
perturbations. Thus, the combination of negatively correlated
isocurvature perturbations and tensor perturbations fit the data
better than positively correlated isocurvature perturbations and
tensor perturbations. However, since for a given isocurvature
fraction α, correlated perturbations give a much stronger signal
in the CMB than uncorrelated perturbations, allowing for tensor
perturbations does not relax the upper limit to α.

In the two-field slow-roll inflation approach it is not feasible
to go beyond the level of first order in slow-roll parameters,
since the number of parameters would then become too large.
In any case, the slow-roll approximation is only valid, when the
parameters are small. Therefore, we assumed a prior constraint
that their magnitudes are smaller than 0.075. With this prior
assumption, we obtained a somewhat tighter posterior limit
to the slow-roll parameter related to the first derivatives of
the inflation potential V (φ1, φ2), namely ε < 0.048, but no
useful constraint to the second-derivative slow-roll parameters
ηij . Thus, to make progress on constraining two-field inflation,
we need more accurate data, e.g., from the Planck satellite.
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