
Safe solutions for walks on graphs

Nidia Obscura Acosta

Helsinki February 19, 2018

UNIVERSITY OF HELSINKI
Department of Computer Science



Faculty of Science Computer Science

Nidia Obscura Acosta

Safe solutions for walks on graphs

Alexandru I. Tomescu and Veli Mäkinen

Master’s Thesis February 19, 2018 50 pages

Genome assembly, Metagenomics, Eulerian cycle, Safe solution, Graph algorithm, Edge-covering walk

In this thesis we study the concept of “safe solutions” in different problems whose solutions are
walks on graphs. A safe solution to a problem X can be understood as a partial solution common
to all solutions to problem X. In problems whose solutions are walks on graphs, safe solutions refer
to walks common to all walks which are solutions to the problem.

In this thesis, we focused on formulating four main graph traversal problems and finding charac-
terizations for those walks contained in all their solutions. We give formulations for these graph
traversal problems, we prove some of their combinatorial and structural properties, and we give
safe and complete algorithms for finding their safe solutions based on their characterizations. We
use the genome assembly problem and its applications as our main motivating example for finding
safe solutions in these graph traversal problems.

We begin by motivating and exemplifying the notion of safe solutions through a problem on s-t
paths in undirected graphs with at least two non-trivial biconnected components S and T and with
s ∈ S, t ∈ T . We continue by reviewing similar and related notions in other fields, especially in
combinatorial optimization and previous work on the bioinformatics problem of genome assembly.

We then proceed to characterize the safe solutions to the Eulerian cycle problem, where one must
find a circular walk in a graph G which traverses each edge exactly once. We suggest a characteri-
zation for them by improving on (Nagarajan, Pop, JCB 2009) and a polynomial-time algorithm for
finding them.

We then study edge-covering circular walks in a graph G. We look at the characterization from
(Tomescu, Medvedev, JCB 2017) for their safe solutions and their suggested polynomial-time al-
gorithm and we show an optimal O(mn)-time algorithm that we proposed in (Cairo et al. CPM
2017).

Finally, we generalize this to edge-covering collections of circular walks. We characterize safe
solutions in an edge-covering setting and provide a polynomial-time algorithm for computing them.
We suggested these originally in (Obscura et al. ALMOB 2018).

ACM Computing Classification System (CCS):
Mathematics of computing→ Discrete mathematics→ Graph theory→ Graph algorithms problems
Mathematics of computing → Discrete mathematics → Graph theory → Paths and connectivity
problems

Tiedekunta — Fakultet — Faculty Koulutusohjelma — Studieprogram — Study Programme

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Ohjaajat — Handledare — Supervisors

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI



ii

Contents

1 Introduction 1

1.1 Basic notions and notation . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Graph theoretical example on cut edges . . . . . . . . . . . . . . . . . 4

2 Related notions and previous work 8

2.1 Persistency, blockers, traversals and vital vertices and nodes . . . . . 8

2.2 Safe solutions in bioinformatics . . . . . . . . . . . . . . . . . . . . . 11

3 Safe walks common to all Eulerian cycles 17

3.1 Characterization of safe walks . . . . . . . . . . . . . . . . . . . . . . 20

3.2 A polynomial-time algorithm . . . . . . . . . . . . . . . . . . . . . . . 23

4 Safe solutions for edge-covering circular walks 25

4.1 Easy example: unitigs . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Characterization of safe strings: omnitigs . . . . . . . . . . . . . . . . 27

4.3 Omnitig algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4 An optimal O(mn)-time algorithm . . . . . . . . . . . . . . . . . . . 30

4.4.1 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Safe solutions for edge-covering collections of circular walks 37

5.1 Characterizations of safe walks . . . . . . . . . . . . . . . . . . . . . . 38

5.2 The algorithm for finding all safe walks . . . . . . . . . . . . . . . . . 40

6 Conclusions 44

6.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

References 46



1

1 Introduction

The aim of this thesis is to describe the concept of safe solutions in the context of
graph traversals. Informally, a safe solution can be understood as a partial solution
to a problem which is promised to appear in all possible solutions to the given
problem.

Since many real-world applications are naturally formulated as abstract combinato-
rial optimization problems, i.e. finding the best solution(s) out of a finite set, finding
constant parts in their solutions can ease in their characterization, enumeration or
practicality, as well as provide a clearer picture of the solutions in hand. Further-
more, since most combinatorial optimization problems can be formulated naturally
in terms of graphs and as (integer) linear programs, it is natural to try to understand
the shared properties in all optimal solutions.

For example, for the problem of finding a maximal matching in a bipartite graph,
the problem of finding all edges contained in every maximal matching, and all edges
never contained in any maximal matching is considered in [Cos94]. One can define
different sets of edges, nodes or even combinations of them (walks), as safe solutions,
depending on the problem whose solutions we want to further characterize. One
could for example, for the problem of finding all Eulerian cycles of a graph G, define
as safe solution those walks which are contained (as subwalks) in all the possible
Eulerian walks in a given graph G (see Section 3). It is therefore, important to
clearly define what is understood as a safe solution for each of the given problems.

The main motivation for this thesis comes from the genome assembly problem in
bioinformatics, where an unknown genome must be reconstructed from reads, frag-
ments obtained from a sequencing experiment on the genome. While this is one of
the oldest, real-world bioinformatics problems, it is considered a difficult problem.
This is mainly because it is very difficult to give an accurate model for it and because
there are many variables involved in the sequencing process. As we will see in Sec-
tion 2.2, even simple mathematical formulations of it turn out to be NP-hard. This
hardness has motivated practical genome assemblers to split the problem into several
heuristic stages. The usual first step in these practical assemblers is the assembly
of contigs, namely strings that are promised to appear in the original genome which
generated the reads. A common approach to this stage is to use graph theoretical
models, by building an adequate graph generated from the reads. In these graphs,
one is then interested in identifying certain walks which can model the contigs. In



2

this context, a safe solution contained in every possible solution models the idea that
the contigs must be contained in every possible genome that could have generated
the reads. The solutions for the problems dealt with in this thesis will be certain
types of walks in graphs, and as we will discuss in the following sections, several
meaningful formulations for the notion of safe solutions will be possible depending
on the problem in question.

The thesis is structured as follows:

In Section 2, we start by introducing related notions on persistency, blockers, traver-
sals, and vital vertices and nodes. In Section 2.2, we look at the concept of safe
solutions in a bioinformatics context, especially motivated by the genome assembly
problem.

In Section 3 we deal with the problem of finding all walks common to every Eulerian
cycle of a given graph; we suggest a characterization for them by improving on
[NP09] and a polynomial-time algorithm for finding them.

In Section 4, we look at more general edge-covering walks in strongly connected
graphs and we revisit the characterization from [TM17] for their safe solutions in
the edge-covering case and we show two algorithms to compute them: an easy
polynomial-time algorithm from [TM17] and an optimal O(mn)-time algorithm that
we proposed in [CMO+17].

Finally, in Section 5, we consider edge-covering collections of circular walks for
which we characterize safe solutions and provide a polynomial time algorithm for
computing them. Originally, we proposed these in [OMT18].

We conclude this introduction section, first, by providing basic terminology and
notions which will be necessary for the rest of the document, in Section 1.1. Sec-
ond, we show a motivating graph theoretical example of safe solutions in Section
1.2 for the particular problem of finding all the edges contained in every s-t path
between two biconnected components S and T . We give a full characterization and
a polynomial-time algorithm for finding them.



3

1.1 Basic notions and notation

Definition 1 (Graph). A graph G consists of a non-empty finite set of vertices or
nodes V (G) and a finite set E(G) of ordered pairs of distinct vertices called edges.
We call V (G) the vertex set and E(G) the edge set of G.

For a directed edge (u, v), the first vertex u is called its source and the second vertex
v is called its target. We also say that the edge (u, v) leaves u and enters v. We
will denote these source and target vertices as s(e) and t(e) respectively and we call
them e’s endpoints. We call two edges adjacent if they share an endpoint.

Definition 2 (Undirected graph). We call an undirected graph G a non-empty finite
set of vertices or nodes V (G) and a finite set E(G) of unordered pairs of distinct
vertices called undirected edges. We similarly call V (G) the vertex set and E(G)

the edge set of G.

Definition 3 (Loop). A loop is an edge whose endpoints are equal. Parallel edges
are edges with the same source and target nodes.

Definition 4 (Simple graph). A simple graph is a graph having no loops or multiple
edges.

Let G be a graph, possibly with parallel edges and self-loops. The number of nodes
and edges in a graph are denoted by n and m, respectively. We use N−(v) to denote
the set of in-neighbours and N+(v) to denote the set of out-neighbours of a node
v. We call the cardinality of N−(v) the in-degree of node v and the cardinality of
N+(v) the out-degree of node v.

Definition 5 (Walk). A walk w is a sequence (v0, e0, v1, e1, . . . , vt, et, vt+1) where
v0, . . . , vt+1 are nodes, and each ei is an edge from vi to vi+1, and t > −1. Its length
is its number of edges, namely t + 1. Walks of length at least one are called proper.

Definition 6 (Path). A path p is a walk where the nodes are all distinct, except
possibly the first and last nodes may be the same, in which case it will also be called
a cycle.

We denote by s(w) the first node of a path (walk) w and by t(w) the last node of
w. We call a path (walk) non-empty when its number of edges is at least one.

For a path (walk) w, we call internal those nodes which are different from s(w) and
t(w). A path (walk) with first node u and last node v will be called a path (walk)
from u to v, and denoted as u-v path (walk).



4

Definition 7 (Circular walk). A walk w whose first and last nodes coincide (that is
s(w) = t(w)) is called circular walk.

A walk is called node-covering if it passes through each node of G, and edge-covering
if it passes through each edge of G.

We call a walk w to be left-maximal in a set W , if it is not a proper suffix of a
subwalk of another walk w′ ∈ W . Similarly, we call it right-maximal, if it is not a
proper prefix of a subwalk of another walk w′ ∈ W . We call a walk w maximal if it
is both left- and right-maximal.

A walk w is called closed if it is non-empty and if s(w) = t(w) and open otherwise.

Definition 8 (Subgraph). A subgraph of a graph G is a graph H such that V(H)⊆V(G)
and E(H)⊆E(G) and the assignment of endpoints to edges in H is the same as in
G.

Definition 9 (Connected graph). An undirected graph G is connected if there is a
path between each pair of vertices. Otherwise, G is disconnected.

Definition 10 (Connected component). A connected component H of an undirected
graph G is a subgraph of graph G which has the property of being a connected graph.
Furthermore, we require that H is maximal, that is, it is not a proper subgraph of
any other connected component.

Definition 11 (Maximal string). We call a string s maximal in a set S, if and only
if it is not entirely contained in any other string of the set S; that is, it cannot be
obtained by removing any number of consecutive symbols from the beginning and/or
end of any other string r ∈ S.

1.2 Graph theoretical example on cut edges

Let us begin by presenting a motivating example of safe solutions in a graph the-
oretical context, namely on graphs with at least two biconnected components. Let
us first introduce some relevant definitions.

Definition 12 (Cut edge). In an undirected graph G, a cut edge is an edge for which
its removal increases the number of connected components.

Analogously we define:



5

Definition 13 (Cut vertex). In an undirected graph G, a cut vertex is a vertex for
which its removal (and the removal of its incident edges) increases the number of
connected components.

Definition 14 (Biconnected component). In an undirected graph, a biconnected
component refers to a maximal component for which none of its vertices is a cut
vertex. This means that the removal of any of its vertices leaves the component still
connected.

Observe that, by definition, it follows that there are two different paths between
every pair of vertices. Accordingly, no edge of a biconnected component different
than a single edge can be a cut edge. We note that by the above definition, any cut
edge is a biconnected component, which we will denote as trivial. Any biconnected
component which is not a cut edge will be denoted by non-trivial. For the rest of
this text, by biconnected component we will refer only to a non-trivial biconnected
component, unless stated otherwise.

Problem 1. Given a connected undirected graph G containing at least two non-
trivial biconnected components S and T , and given any two vertices s ∈ S and
t ∈ T , find those edges which are contained in all s-t paths.

Solution 1. We first note that since both S and T are biconnected components,
none of their edges can be contained in all s-t paths, or otherwise their removal
would increase the number of connected components, contradicting the fact that they
are contained in a biconnected component. Then the only possible edges contained
in every s-t path should be edges between S and T .

We note that all those edges contained in every s-t path must, in particular, be also
contained individually in any given s-t path (by definition). If there exists an s-t
path, containing a cut edge e, then by definition the removal of this cut edge would
increase the number of connected components meaning that there exists no other edge
connecting the components S and T . This implies that this cut edge e should be part
of every s-t path. If there is a non-cut edge f in an s-t path (apart form the edges
of S and T ), then by definition of a non-cut edge, its removal does not increase the
number of connected components. This implies that the graph G is still connected
and in particular that there should exist another s-t path which does not contain f .

This shows us that all edges which are common to all s-t paths must be those cut
edges contained in an s-t path. This also shows that for non-cut edges, we can always



6

Figure 1: In a graph containing two biconnected components S and T , the red edges
contained in all s-t paths with s ∈ S and t ∈ T are given by the cut edges of the graph.

find an alternative path that does not pass through them. We can now call these cut
edges our safe solutions: edges which are contained in all possible s-t paths.

Observation 1 (Safe solution for the two biconnected components problem). All
those edges which are common to all s-t paths in an undirected graph G with two
given biconnected components S and T and s ∈ S and t ∈ T are all the cut edges
between S and T contained in any s-t path. (See Figure 1.)

As we will see next and in the following examples throughout this text, our charac-
terization of a safe solution allows us to develop algorithms for their enumeration.
As we proved above, it is only necessary to find one s-t path and then find the cut
edges contained in it, since every safe solution must itself be contained in every s-t
path. This automatically leads to a simple O(n + m)-time algorithm to find these
safe solutions (Algorithm 7), since finding the cut edges in an undirected graph G

can be done in linear time [Tar74].

We would ideally prefer algorithms which are safe (i.e. output only correct solutions)
and which are complete (i.e. which output all the correct solutions). However, time
complexity and memory space can be a burden for these algorithms, and it will
depend on each application which algorithms are preferred.



7

Algorithm 1: Algorithm to find all and only safe edges in graph G.
Input: A connected undirected graph G with two given biconnected components S and

T .
Output: A set of edges S which appear in all s-t paths for s ∈ S and t ∈ T

1 S := ∅;
2 B := TarjanAlgoritm(G) // B is the set of all cut edges of G.

3 P := Any path s-t for some s ∈ S and t ∈ T

4 foreach edge e ∈ P do
5 if e ∈ B then
6 S := S ∪ {e};

7 return S, the set of safe edges.

Lemma 1. Algorithm 7 is safe and complete.

Proof. Algorithm 7 returns only cut edges, since they form a subset of B. Further-
more, it returns only cut edges that appear in an s-t path, which by Solution 1 are
safe edges and therefore Algorithm 7 is safe. Similarly, by Solution 1, safe edges
can only be edges between S and T . Furthermore, non-cut edges cannot be safe so
that only the cut edges between S and T be safe; by definition the removal of cut
edges in any s-t path disconnects S and T , so each of them is safe, implying that
Algorithm 7 is complete.

Lemma 2. Algorithm 7 runs in linear time.

Proof. Finding all cut edges in a connected graph takes linear time with an algorithm
like Tarjan’s [Tar74], and finding an s-t path takes linear time. For the for loop, we
only execute it at most n − 1 times, since P is of length at most n − 1, while each
of its executions takes constant time.



8

2 Related notions and previous work

In this section we will introduce notions closely related to ours, starting with that
of persistency. We will introduce previous work for characterizing the similarity of
solutions in a more general combinatorial setting, and at the end of the section we
will present the concept of safe solutions in a bioinformatics context.

2.1 Persistency, blockers, traversals and vital vertices and

nodes

In a combinatorial optimization setting, a highly related notion to safe solutions
is that of persistency. It was first formally introduced by Costa in [Cos94] for the
maximum cardinality matching problem in bipartite graphs. The idea of persistency
is that there exist edges, nodes or certain structures which are always contained in
an optimal solution, as well as structures which are never contained in an optimal
solutions and structures which are contained in only some optimal solutions.

The motivation for this concept in combinatorial optimization is that very often,
the optimal (minimum or maximum) solutions for an optimization problem are not
unique; in some cases, the number of optimal solutions can be exponential, and list-
ing them may not be efficient. An easy approach to this problem is to add additional
constraints to reduce the number of these optimal solutions. This however, can re-
sult in increasing substantially the difficulty of our initial problem. It is therefore
a more natural approach to try to describe or characterize decision variables with
respect to optimal solutions and understand as persistent, those variables which are
common to all optimal solutions. In the case of a graph where the feasible solutions
are sets of edges, the persistency set is defined as:

Definition 15. The persistency set is a 3-partition (E1, E0, Ew) of the edge set of
a graph such that:

• E1 is the set of edges that belong to all optimal solutions (1-persistent edges),

• E0 is the set of edges that belong to no optimal solution (0-persistent edges),
and

• Ew is the set of edges belonging to at least one optimal solution but not to all
(weakly persistent edges).



9

For the problem of maximum cardinality matching in bipartite graphs, we want
to find a matching M of the edges E (a set of edges from E such that no two
edges share an endpoint) and such that M is of maximum size for bipartite graphs.
In a persistency setting, E1 corresponds to the edges belonging to all maximum
matchings, E0 to the edges which do not belong to any maximum matching and
Ew to those edges belonging to at least one maximum matching but not to all.
Costa [Cos94] studied the problem of finding the persistency set for this problem
and found an O(mn) algorithm for it, for a graph with n vertices and m edges. Her
results have been generalized and algorithms O(m2n)-time algorithms have been
derived for the assignment and transportation problem in [Cec98].

Furthermore, persistency has been studied in many other problems: In [CL01],
they look at persistency in combinatorial optimization problems on matroids. For
instance, they propose algorithms for finding the maximum weight independent set
of a matroid and for finding a maximum cardinality intersection of two matroids.
They further extend their analysis to obtain the persistency set.

The problem of finding the vertices belonging to all maximum stable sets of an
undirected graph is studied in [BGL02], where a stable set S of a graph is a maximum
set where no edge has both its endpoints in S. They improve on previous results from
[HHS82] and [LM02] by finding close relationships between the size of a maximum
stable set, the size of a maximum matching and the number of vertices belonging
to all maximum stable sets on connected graphs. They also prove that recognizing
if there is at least one vertex belonging to all maximum stable sets can be done
in polynomial time for graphs where the size of a maximum matching is less than
|V (G)|/3. Furthermore, they prove that in general, determining if there exist more
than k vertices belonging to all maximum stable sets is NP-complete for any fixed
k > 0

In [Lac00], the persistency set was calculated in polynomial time for the traveling
salesman problem, restricted to Halin graphs with three types of cost functions for
different versions of the traveling salesman problem. The persistency of the weighted
spanning tree and maximum flow problem have also been studied in [Lac98].

In [BNT06] they define the persistency problem for a discrete optimization problem
under certain objective as the problem of evaluating the expected optimal value and
the marginal distribution of the optimal solution in a discrete maximization prob-
lem with a linear objective function and where the coefficients are chosen randomly
from a distribution. They solve a special case of this model where the distribution is



10

assumed to belong to the class of distributions defined by given marginal distribu-
tions or given marginal moment conditions. They then use this persistency model
for problems in discrete choice modeling and in a stochastic knapsack problem.

Two other related notions are those of blockers and traversals, originally defined
in [ZRP+09] for an undirected graph G.

Definition 16. A d-traversal is a subset of V which intersects any optimum solution
in at least d elements.

Definition 17. A d-blocker is a subset of V whose removal deteriorates the value
of an optimum solution by at least d.

In the problem of maximum matchings, a d-traversal is a set of edges which intersect
every maximum matching in at least d edges. From a persistency point of view this
can be viewed as a set S ⊂ E1 ∪ Ew with the requirement that at least d edges are
common to every maximum matching. On the other hand, a d-blocker can be seen
as a subset of edges such that its removal reduces by at least d the cardinality c

of any maximum cardinality matching, that is a set S ⊂ E1 such that its removal
leaves the cardinality of any maximum matching of at most c− d.

In [ZRP+09] they looked at the problem of finding the minimum cardinality d-
blockers and d-traversals for the maximum matching problem and found relation-
ships between these two notions. They proved that deciding whether there exists a
d-blocker or d-traversal of size k in a given undirected graph G for given k and d is
NP-complete in bipartite graphs and they further analyse the complexity in com-
plete graphs, regular bipartite graphs, chains and cycles. In [RBP+10], the problem
is showed to be solvable efficiently in the special cases where G is a grid graph or a
tree.

In [CdWP11] they generalize and investigate the d-traversals and d-blockers of vertex
covers or stable sets in split and bipartite graphs. Furthermore, they revisit the
problems of matchings studied by [ZRP+09] and the s-t paths and s-t cuts in graphs
studied by [KBB+08] and [Wag90].

In [PBP14] blockers are studied for the minimum vertex blocker clique problem,
where one needs to remove a subset of vertices of minimum cardinality in a weighted
undirected graph, such that the maximum weight of a clique in the remaining graph
is bounded above by a given integer r. They prove that even on the special case of
unweighted graphs, this problem remains NP-hard.



11

Finally, closely related to these notions is the concept of most vital vertices/nodes.
In [SBNK95], they examine the problem of finding the k most vital edges (or nodes)
in a graph, which are those k edges (or nodes) whose removal maximizes the increase
in the length of the shortest path from s to t, where each edge e has an associated
non-negative length l(e). They prove this to be NP-hard even for edges of unit
length.

In [BTT11], they look at the problem of the k most vital nodes independent set,
which consists of determining a set of k vertices whose removal results in the greatest
decrease in the maximum weight of independent sets, as well as the homologous
k most vital nodes vertex cover problem where one must find a set of k vertices
whose removal results in the greatest decrease in the minimum weight of vertex
covers. They also consider the complementary problems of minimum node blocker
independent set and minimum node blocker vertex cover. They show all these
problems to be solvable in polynomial time on trees, cographs and graphs of bounded
treewidth, as well as on unweighted bipartite graphs, but NP-hard on bipartite
graphs.

2.2 Safe solutions in bioinformatics

Illustrative examples of safe solutions come also from bioinformatics applications;
in this section, we will discuss the genome assembly problem. In this problem, the
genome of an organism must be reconstructed out of sequencing reads. This will be
our main motivating example for safe solutions in the gap filling and contig assembly
problems.

A common approach to genome assembly is to sequence randomly cut fragments
of DNA to produce reads (using, for example a whole-genome shotgun sequencing
approach [EW14]). These reads however, are not sequenced in any specific order and
their orientation is unknown; furthermore, in order to ensure that all the genome is
sequenced and represented in the reads, several copies of the same original genome
are produced (known as coverage). With these reads one would like to find a
suitable sequence of nucleotides which contains completely all the reads and which
is consistent with the coverage of each read. More formally:

Definition 18 (Genome assembly problem). Given a set of sequenced reads S com-
ing from a supersequence G, reconstruct back G from the reads in S.

There exists several mathematical formulations which try to model the problem of



12

reconstructing a string out of reads, for example the Shortest Common Super-
string Problem (SCSP). In the SCS problem, one is asked to find the minimum
superstring of a set of strings S (a string which contains the other strings in S as sub-
strings). When modelling the genome assembly problem, however, the SCS problem
can handle wrongly the repeats naturally contained in the genome and collapse them
into a shortest superstring; furthermore, the shortest common superstring problem
is known to be NP-hard for alphabet sizes bigger than two [GMS80].

Other popular approaches to the genome assembly problem use a graph-theoretical
formulation, where the genome corresponds to suitable walks on graphs constructed
out of the sequencing reads. In a string/overlap graph [Mye05] the nodes of the
graph are represented directly by the reads and the edges between them represent
valid overlaps between the reads. More formally:

Definition 19 (String graph). Given a set of reads S and its given overlap graph,
a string graph is built out of the overlap graph by applying the transitively inferable
edge reduction (if two reads x and z have a valid suffix-prefix overlap, z has a valid
suffix-prefix overlap with another read y, and also x and y have a valid suffix-prefix
overlap, then the inferable overlap of x to z is removed from the graph).

In the string graph setting, the genome is then represented by a walk in the graph
which uses all reads at least once (covers all nodes at least once).

In the Minimum s-walk problem we are given a weighted directed graph G and
a classification s of the edges in G into optional, required, and exact and are asked
to find a minimum weight cyclical walk of G, which satisfies the constraints in s, or
report that one does not exist.

In a De Bruijn graph model [PTW01a], the reads are further divided into k-mers
which represent the nodes of the graph, the edges represent valid overlaps among
them and the genome is given by a superwalk based on the original reads; more
formally:

Definition 20 (Edge-centric de Bruijn graph). An edge-centric De Bruijn graph
obtained from a set S of strings is a graph whose vertices represent length k subse-
quences (k-mers) of the strings in S. There is an edge from vertex u to vertex v

if and only if the k − 1-length suffix of u overlaps the k − 1-length prefix of v, and
additionally, if the string obtained by traversing u and v consecutively is contained
in some read in R. The graph is denoted by Bk(S).



13

Figure 2: A 4-mer de Bruijn graph and a corresponding sequence GATACATG obtained
from the walk denoted in green.

An n-length walk in a De Bruijn graph represents a unique sequence of n+ 1 nodes,
which in turn represents a unique k + n length sequence, where k is the number of
symbols each node represents. Reconstructing back a genome from a set of sequenc-
ing reads therefore reduces to finding adequate walks in the graph. (See Figure
2).

In the de Bruijn Superwalk problem (BSP) we are given a set of reads S and
are asked to find a minimum length superwalk (a walk that contains all the reads as
subwalks) in the de Bruijn graph Bk(S) constructed from the reads, or report that
one does not exist.

We will refer to the solutions to these problems as genomic reconstructions.

We note, however, that both the Minimum s-walk problem and the de Bruijn
Superwalk problem are proved to be NP-hard: for the Minimum s-walk prob-
lem, one can prove that finding a minimum length s-walk is NP-hard by reducing
from the Hamiltonian cycle problem for graphs. For the de Bruijn Superwalk
problem one can reduce from the Shortest common superstring problem, proving
that finding such a minimum length walk is NP-hard for |Σ| > 3 and for any k-mer
length [MGMB07].

The hardness of these problems means that most likely there cannot exist polynomial-
time algorithms that can compute them exactly. Because of this, multiple heuristics



14

have been sought for solving them as accurately as possible, namely, by dividing
the original problem into separate steps which one tries to solve with different ap-
proaches and algorithms and which are then merged together.

In practice, a usual reconstruction of a genome out of sequencing reads consists of a
series of heuristic dependent stages, from the extraction of DNA and the obtaining of
sequencing reads, the assembly of longer DNA stretches called contigs, the generation
of scaffolds, to the gap filling steps and the joining of scaffolds into linkage groups
[EW14]. We briefly explain these steps below:

In the sequencing step, a DNA is typically shreded randomly into small fragments
of some given length and the process is repeated a number of times to ensure that
there is enough coverage for all areas of the genome. As a next step, these reads
are assembled together into longer DNA stretches which can include various types
of algorithms and formulations. In the scaffolding phase, these contigs are joined in
longer sequences with gaps between them, known as scaffolds, which are obtained
by looking at mate-pair information or through optical mapping. The gaps between
contigs in the scaffolds are then filled with different gap-filling methods based on
the sequencing information. Finally, the resulting scaffolds are assigned to linkage
groups or chromosomes using genetic maps to order and orient them into longer
blocks.

We note that the assembly of a genome executed in this way is the result of a series
of assembly heuristics and hence its correctness should be treated accordingly. By
ensuring that each of its steps is as correct as possible, one can obtain a sensible
final reconstruction. Because of this, we focus on one of the first steps: the contig
assembly phase, where one must output strings which are promised to occur in the
genome. In our case, we focus on de Bruijn graph algorithms as described above.
Ideally, one would like to output those sequences which occur in any possible genomic
reconstruction (according to our chosen problem formulation). In graph-theoretic
approaches, since different genome reconstructions are possible depending on the
nature of the reads, i.e. different node/edge-covering circular walks can be possible
on the input graph, we are interested in those sequences (strings) which can be
guaranteed to occur in any possible reconstruction, and therefore in the original
genome. In the context of genome assembly, we will denote these strings by safe.

One of the main motivations for finding safe strings in contig assembly is that we
can safely output and use these strings at successive steps of the reconstruction of
the genome, namely at the scaffolding and gap-filling phases.



15

Figure 3: A unitig U = v0, e0, v1, e1, v2, e2, v3, e3, v4, e4, v5, e5, v6, e6, v7 contains no inter-
nal nodes with in- or out-degree larger than one. A unitig can, however, have starting and
ending nodes with in- and out-degrees larger than one.

For the de Bruijn superwalk problem, an easy to prove set of walks inducing safe
strings are the so-called unitigs. Unitigs are strings spelled by sequences of internal
nodes with in- and out- degree one (see Figure 3). For instance, take any internal
edge e in a unitig w; in order to traverse e in any edge-covering walk, we need to
traverse the whole of w since there is a unique way of reaching e and a unique way of
leaving from it (since its previous and following internal nodes in w have in- and out-
degrees equal to one). Making use of unitigs, is a common strategy which started
in [KM95].

It is worth noting that while unitigs are certainly safe strings, they are not maximal
safe solutions. Longer strings may also be safe while not fulfilling the unitig property,
as we will demonstrate in Section 4.1.

In [TM17] maximal safe solutions are characterized for the de Bruijn graph model.
These safe solutions represent safe walks from edge(node) covering reconstructions
on de Bruijn graph but which can be longer in length than the unitigs. We will
study these maximal safe solutions in Section 4.

Closely related to the contig assembly phase, gap filling phases can also be translated
into the safe solution framework.

The problem of gap filling, which emerged as a natural sub-problem of many de
novo genome assembly projects (e.g., filling gaps in scaffolds) is studied in [ST18].
They deal with the problem of multiple gap filling solutions, which we define next:

Definition 21. In the gap filling problem we are given a sequence X containing
gaps (e.g. scaffolds produced by a de novo assembler) and a set of sequencing reads.
Our task is to fill in the gaps in X using the sequencing reads.



16

The gap filling problem is usually formulated by building an assembly graph of
the sequencing reads and then filling the gaps by finding suitable s-t paths whose
length is consistent with the gap length estimate. [SSMT16]. This problem is proved
to be NP-hard [NU02], but various heuristics have been developed, like using the
shortest s-t paths whose length is consistent with the gap length estimate [MB09]
or by computing a multiple alignment of the paths when there exist only at most a
specified number of them [VJR+14]. In [ST18], they use the approach of filling a gap
only with those paths of the assembly graph that are subpaths of all possible filling
gaps (called safe), which applies to the cases when the solutions are not unique and
is especially important for guaranteeing reliable results and decreased error rates.
They show that in practice, they can retrieve a number of safe solutions by dynamic
programming in O(d2m logm + m polylog(m, d))-time where d is the gap length
estimate and m is the number of edges of the assembly graph.

Finally, a related bioinformatics problem is the sequence alignment problem.
In the sequence alignment problem one must compute the similarity score between
sequences (for example, of sequences of amino acids in proteins). Since several align-
ments are possible based on different similarity scores, one would be interested in
knowing those aligned sequences which are likely to be correct. In the literature,
several methods have been developed in order to retrieve reliable aligned sequences,
for example by dynamic programming algorithms like the Needleman-Wunsch algo-
rithm [NW70] or by using aminoacid substitution matrices [Alt91].



17

3 Safe walks common to all Eulerian cycles

Eulerian walks are a very well studied subject on graph traversals because of their
number of applications and polynomial-time computability. An Eulerian walk in a
graph G is a walk in G which traverses every of its edges exactly once; an Eulerian
cycle is an Eulerian walk, whose first and last node are the same. The Eulerian
cycle problem asks to obtain an Eulerian cycle given a graph G. (See Figure 4).

Figure 4: In the above graph, there exist three different Eulerian cycles, namely: AB-
DECFGHIGEBCA, ABDEBCFGHIGECA and ABCFGHIGEBDECA

Eulerian walks are not only used in bioinformatics applications (such as for algo-
rithms to reconstruct the DNA sequence from its fragments) [PTW01b]; Eulerian
walks are also used in for example circuit design to find optimal logic-gate order-
ings [Roy07].

In this section, we will focus on Eulerian cycles and finding those subwalks which
are common to all possible Eulerian cycles of a given graph G. These walks will be
our safe solutions for the Eulerian cycle problem, namely:

Definition 22 (Safe solution to the Eulerian cycle problem). A walk w is called
safe for the Eulerian cycle problem, if and only if it is a subwalk of any Eulerian
cycle of G.

In the literature, we find previous work trying to characterize these walks. In [IW95],
a characterization of Eulerian graphs which contain a unique Eulerian walk is given,
which we cite below.



18

Theorem 1 (From [IW95]). The intersection graph GI of simple cycles from G is
a tree if and only if there is a unique Eulerian cycle in G.

Here, G is any graph, which is strongly connected.

An intersection graph GI of simple cycles of G is constructed as follows: Decompose
G into simple cycles c1, c2, . . . , ck = c1, where no ci is equal to cj, except for ck = c1.
An edge can be used by at most one cycle cj, but vertices can be used arbitrarily
many times. Now, we define the intersection graph GI of the cycles c1, c2, . . . , ck = c1

by replacing every cycle ch by a single node Ch. We now have a graph with nodes
C1, C2, ..., Ck, where if cycle ch and cj have l vertices in common, we connect Ch

and Cj by l edges in GI . See Figure 5 for an example. It is worth noting that the
decomposition of G into simple cycles may not be unique, so that its corresponding
intersection graph may not be either.

In order to make our understanding of Eulerian cycles in G and their corresponding
intersection graph GI of simple cycles clearer, we introduce the notion of spanned
edge by a path p. Given a walk p in G, we say that p spans an edge (C1, C2) in the
intersection graph GI of simple cycles if p follows the edges in c1 until its intersection
with cycle c2 and then moves on to traversing edges of the cycle c2 instead. We note
that by this definition, we do not specify the starting or ending point of the path,
we only specify that it starts at a node in c1 (and traverses at least one edge in c1)
and ends at a node in c2 (traversing at least one edge in c2). Note also, that there
always exists at least one such path if there is an edge (C1, C2) in the intersection
graph GI of simple cycles: c1 and c2 correspond to different cycles in G and an edge
between them corresponds to a node in common, so independently of the starting
point when traversing cycle c1, we will eventually reach its intersection point with
c2.

For an edge e in the intersection graph GI of simple cycles of G, let us denote by
s(e) and t(e) the two cycles for which e is the corresponding intersection, and denote
by v(e) the common vertex between s(e) and t(e).

Let us now present a different proof of Theorem 1 from the one presented in [IW95].
For it, we use the idea of spanned edges and how we can formally construct an
alternative Eulerian cycle covering the same edges in G.

Proof. of Theorem 1. Let us prove the forward implication by induction. Let GI be
any intersection graph of simple cycles of G, and let it be a tree with n vertices. If
GI contains one vertex, then G has one cycle and the theorem is true. Assume the



19

Figure 5: Construction of an intersection graph of simple cycles of a given graph G. The
figure on the top-left is the given graph G. The figure on the top-right is one possible
decomposition of G into simple cycles C1, C2, C3 and C4. The figure in the bottom is
obtained from the second by making each cycle a single node and adding edges between
them corresponding to their nodes in common. Namely, edge (C1, C2) corresponds to
node B which is common to both C1 and C2, edge (C1, C3) corresponds to node C which
is common to both C1 and C3, edge (C3, C2) corresponds to node E which is common
to both C3 and C2 and edge (C3, C4) corresponds to node G which is common to both
C3 and C4.

statement is true for all trees up to n− 1 vertices. Consider a leaf corresponding to
a cycle C in the n-vertex tree GI . We note that C has only one vertex v in common
with the graph G′ obtained from G by removing the cycle C. Now, the graph G′ is a
tree with n− 1 vertices, which by hypothesis has a unique Eulerian cycle E passing
through v. Then, the unique Eulerian cycle in G starts in v, passes through E, back
to v, through C and ends in v. In our notion of spanned edge, we note that the
unique Eulerian cycle precisely corresponds to the concatenation of walks spanning
only the edges in GI and it is obtained by traversing the edges in GI in a depth first
manner.



20

Now for the reverse direction, we suppose that G has a unique Eulerian cycle and we
will prove GI is a tree. Assume for a contradiction that this is not the case and that
GI contains at least one cycle. Consider such a cycle X; for every cycle Xi in GI

(including X) iteratively remove one of its edges until both GI and X remain trees;
call these Gt and t1 respectively. By the forward implication of this theorem (which
we proved above), there exists a unique Eulerian cycle E1 which passes through all
the edges of G. We show how to construct another Eulerian cycle, using a different
tree t2 obtained by removing edges from GI . Let f1 be the last edge to be deleted
from X before ending up with t1. Since t1 is a tree, we know that t1∪{f1} contains a
simple cycle c′ where the deletion of any of its edges leaves the graph a tree. Delete
from t1 any edge f2 from c′ different from f1 (one exists since a cycle has strictly
more than one single edge) and add f1 to t1. By construction, t1 ∪ {f1} \ {f2} is a
tree and by the forward implication of this theorem, also contains a unique Eulerian
cycle E2 which passes through all the vertices of G.

In order to see that E1 and E2 are different, consider the cycles in G spanning the
edges f1 and f2 in t1: f1 corresponds to traversing cycle s(f1) and then moving
on to cycle t(f1) in E2, passing through v(f1). This implies that E2 contains a
subwalk of s(f1) and a subwalk of t(f1) joined by their common vertex v(f1). In
E1, however, since f1 is not contained in t1 ∪ {f2} \ {f1}, there cannot exist any
intersection between cycles s(f1) and t(f1) (there would be an edge otherwise), so
that no concatenation of edges in s(f1) and t(f1) with a common edge between them
can exist in the Eulerian cycle, and therefore, E1 and E2 must be different. Finally,
since both E1 and E2 cover all the edges in G, both are valid Eulerian cycles and
this contradicts the fact that G contained a single Eulerian cycle.

3.1 Characterization of safe walks

In [NP09] an algorithm for finding walks which are subwalks of all Eulerian walks is
suggested based on the characterization in [IW95] of Eulerian graphs which contain
a unique Eulerian Walk. We illustrate it below:

“In the case of Eulerian tours, reconstructing sub-tours that are part
of every Eulerian tour is feasible in polynomial time (see Thm 7.5 in
[Waterman, 1995]) based on finding acyclic subgraphs in the cycle-graph
decomposition of the original graph.”



21

We note that the cycle-graph decomposition which they mention refers to the in-
tersection graph GI of simple cycles of G. In [NP09] this claim is given without a
proof. Below, we sketch a more complete characterization of safe solutions. It turns
out that we indeed need to use the intersection graph of simple cycles, but the key
notion for it ends up being the cut edges of GI . We first introduce some notation
and definitions and then prove some properties about these safe solutions.

We first note that the intersection graph of simple cycles from the original graph is
made up of both nodes contained in subgraphs which are biconnected components,
and nodes which are contained in subgraphs which are trees; keeping in mind this
distinction, we can always create Eulerian walks in the original graph by appending
subtrees to biconnected components and viceversa. Since the graph G is connected,
the intersection graph of simple cycles is connected as well; assume that we are
computing an Eulerian cycle passing through a given biconnected component, then,
for a given tree t connected to it at node v, we can extend the Eulerian walk by
introducing the unique Eulerian cycle passing though t (because of Theorem 1)
which starts at v and one can then continue traversing the original Eulerian cycle in
the biconnected component. Similarly, if we were traversing an Eulerian cycle in a
tree t in the intersection graph of simple cycles, we could extend the Eulerian cycle
in a similar fashion when t intersects with a biconnected component at node u by
traversing an Eulerian cycle in the connected component first and then moving back
to t.

With this notion of extension, we can restrict our attention to separate such com-
ponents in the intersection graph of simple cycles, when proving safeness of certain
paths since we can always merge them together as described above.

For instance, it is enough to prove that for each non-safe walk w contained in a
biconnected component B and an Eulerian cycle spanning it, we can construct an
alternative Eulerian cycle that does not span w, by using a different set of walks
which span edges in B. We could then append this new sequence of nodes to the
original Eulerian cycle at the correct position as mentioned above. We illustrate
this idea in the following:

Lemma 3. Given a walk w containing edges from two cycles c1 and c2 whose cor-
responding edge (C1, C2) in an intersection graph GI of simple cycles of G is part of
a non-trivial biconnected component, we can find an Eulerian cycle of G which does
not contain w.



22

Proof. Let B be a biconnected component in the intersection graph GI of simple
cycles of G. We show that we can construct an Eulerian cycle which does not use
the path spanning edge (C1, C2) and which covers all edges of G. First, we note that
we can always delete edges from B in order to form a tree. Furthermore, we can
always delete the edge (C1, C2) (and possibly other edges) such that the remaining
graph is a tree (this holds since B is a biconnected component and removing one
edge does not leave it disconnected). Because of Theorem 1, once we have this tree
t where we deleted edges from B, we can use the unique Eulerian cycle E that spans
its edges and that covers all of B; furthermore, E only contains as subwalks, walks
which span an edge in t or which are completely contained in one of the cycles of
G. This implies that no walk w containing edges from two different cycles c1 and
c2 and which spans the edge (C1, C2) (which we explicitly deleted from GI) can be
contained as a subwalk of E. Hence E is an Eulerian cycle covering all of G and not
spanning edge (C1, C2).

We note that Lemma 3 implies that for every edge (C1, C2) which is contained in a
biconnected component in GI , we can always find an Eulerian cycle that covers the
entire graph and which does not span (C1, C2). This means that no edge (C1, C2)

contained in a biconnected component GI can be contained in all Eulerian cycles,
and thus cannot be safe.

Claim 1. Those walks that are subwalks of every Eulerian cycle in G are given by
the connected components of the subgraph induced by the cut edges of the intersection
graph GI of simple cycles of G and by those paths in G which do not contain any
internal node of in-degree or out-degree larger than one.

Proof sketch:

Because of Lemma 3, no subwalk which contains consecutive edges from two cycles
c1 and c2 and whose corresponding edge (C1, C2) in GI is contained in a cycle can be
safe. This means that only subwalks which span edges (C1, C2) that are not part of
a biconnected component in GI can both contain edges from different cycles and be
safe. One can prove that an edge (C1, C2) not contained in a biconnected component
(an edge which is a cut edge) is spanned by a safe walk in G. Furthermore, we claim
that the concatenation of two adjacent edges (C1, C2) and (C2, C3) which are both
not contained in a biconnected component in GI is also spanned by a safe walk, so
that the concatenation of the edges in the connected subgraph of GI induced by its
cut-edges is also spanned by safe subwalks. Finally, those paths in G which do not



23

Figure 6: A graph obtained from the cycle-graph decomposition where its acyclic sub-
graphs don’t necessarily correspond to safe walks. The graph on the left is the original
graph, while in the one on the right the blue shade corresponds to the counterexample
subgraphs which do not directly span a safe walk.

contain any internal node of in-degree or out-degree one (and are hence, contained
in a single cycle) are precisely the unitigs defined previously and which we prove to
be safe for any edge-covering walk of G (in particular an Eulerian cycle) in Section
4.1.

3.2 A polynomial-time algorithm

As we discussed above, [NP09] proposes a polynomial-time algorithm based on find-
ing acyclic subgraphs of the cycle-graph decomposition. This however, lacks detail
and a rigorous proof, and as we show next, is an incomplete characterization that
can lead to erroneous safe walks.

In Figure 6 we show a graph where the acyclic subgraph obtained by taking the
nodes {C7, C8} results in two connected components from where it is not clear how
to construct a safe walk; furthermore, the acyclic subgraph obtained by taking the
nodes {C2, C4, C3, C5}, itself contains edges spanned by a non-safe walk, namely,
edges (C2, C4) and (C4, C3) which are part of a biconnected component in the inter-
section graph GI of simple cycles of G and which we showed above that cannot be
safe.

Based on the lemmas presented in the previous subsection, we suggest a polynomial-
time algorithm based on the subgraph induced by all cut edges of G. This works as
follows:



24

• Given a strongly connected graph G and an intersection graph GI of simple cy-
cles, compute the set B of the cut edges of GI and the corresponding subgraph
GB induced by B.

• Compute the set of connected components Q of GB.

• For each connected component Qi, compute their corresponding unique Eule-
rian cycle (by Theorem 1) since by definition Qi is a tree.

• Compute all the unitigs, namely those subwalks of G which do not contain
any internal node with in or out-degree bigger than one.

The algorithm is clearly polynomial since each of its steps takes polynomial time,
given that there can exist at most n connected components in a graph H with n

nodes and since GB can contain at most n nodes (each node in GB corresponds to
a cycle in G and G contains n nodes).



25

4 Safe solutions for edge-covering circular walks

A natural generalization to Eulerian cycles where one must cover every edge exactly
once are general circular edge-covering walks of graph G, where one must cover
all the edges of G, without a constraint on the number of times any single edge can
be covered.

In this section, we will be showing the characterization given in [TM17] for walks
contained in every edge-covering circular walk on a strongly connected graph based
originally on the genome assembly edge-centric de Bruijn graph model. We also
illustrate the Unitig algorithm and the safe and complete Omnitig algorithm also
described in [TM17]. This Omniting algorithm is based on (an exhaustive search)
launching graph traversals from every edge of the graph. At the end of this section,
we describe some of our results from [CMO+17]. We present some combinatorial
properties of these walks contained in every edge-covering circular walk which lead
to a faster O(mn) safe and complete algorithm for finding these maximal walks. We
also give an upper bound on their number as well as a bound on their total length.

We will begin by formally defining the problems in the de Bruijn graph model which
we had briefly described in Section 2.2.

Definition 23 (The safe and complete contig assembly problem (de Bruijn model)).
Given a set of reads R and a de Bruijn graph Bk(R), output all the safe walks for
Bk(R).

Definition 24 (Safe walk for Bk(R) in the genome assembly problem). Given a set
of reads R and a de Bruijn graph Bk(R), a walk s is said to be a safe walk for the
de Bruijn model if for every edge-covering walk, s is a subwalk of w.

It is important to note that such model contains important assumptions based on
the nature of the genomes sequenced, namely:

1. The genome sequenced is circular.

2. There is a good coverage of the genome sequenced; that is, there are no frac-
tions of the genome which are left unsequenced and not represented in the
reads.

3. There are no errors in the reads in the sequencing experiment; that is, no
fragment of the genome is sequenced incorrectly.



26

From a theoretical perspective, however, these assumptions can be interpreted into
a graph model: 1) can be interpreted as G being a strongly connected graph and
the solution walks being circular, 2) is necessary for ensuring that all fragments of
the genome sequenced are present in the graph and 3) is necessary for showing that
one of the valid circular edge-covering walks in the graph corresponds to the true
sequenced genome.

Using the de Bruijn graph model, we are able to characterize the safe solutions
for the contig assembly problem. We note, however, that not all safe solutions are
maximal, i.e. they can be contained in another safe solution, as we will see in Section
4.1.

4.1 Easy example: unitigs

As we have been mentioning in earlier sections, there exist walks which are contained
in every circular edge-covering walks of the de Bruijn graph G of reads from a
sequencing experiment. That is, there exist walks which are common to all possible
edge-covering circular walks in a strongly connected graph. We note that each edge
in G is contained en every edge-covering walk in G and hence is safe. There can
exist, however, longer walks in G which are safe. We will use the unitigs as our
first illustrative example of such walks, because of their simplicity and due to their
importance in genome assembly. Let us recall their formal definition.

Definition 25 (Unitig). Let u = u0, u1, . . . , uk be a path in a graph G. We call u
an unitig if and only if the in-degree ui equals 1 and the out-degree ui equals 1 for
all i = 1, . . . , k − 1.

Lemma 4. Let u = u0, u1, . . . , uk be a unitig in G. Then u is a safe walk in G.

Proof. First note that we have to traverse node u1 at some point in the edge-covering
walk (otherwise it would not cover all the nodes and hence the edges). Note also
that while u0 may have in or out-degree bigger than one, the only way of reaching
node u1 is by passing through u0. Similarly, once we accessed node n1 we need to
continue traversing u2, u3, . . . , uk−1 in order (since there is just one way of entering
those nodes and one way of exiting them), then since uk−1 has out-degree 1, we will
need to traverse uk regardless of its out- or in-degree.

We now note that even though unitigs are safe solutions, they do not characterize all
safe solutions in a graph G. Furthermore, there may exist longer safe solutions which



27

Figure 7: A walk in a de Bruijn graph G which is safe and which contains internal nodes
with in- and out-degree larger than one, contradicting the unitig property. Indeed the walk
(shown in blue) given by nodes TGAC,GACT,ACTG,CTGA, TGAT,GATA is contained
in all edge-covering walks in G and the in-degree of node TGAT and out-degree of node
CTGA are both larger than one.

contain completely a unitig and which do not fulfil themselves the unitig property.
We depict one such case in Figure 7.

Being able to characterize all safe solutions of a graph G in the de Bruijn model
would allow us to obtain longer safe solutions for the initial steps of genome assembly
and hence an easier subsequent steps in the whole genome reconstruction.

4.2 Characterization of safe strings: omnitigs

In this section, we provide a characterization of walks that spell safe strings taken
from [TM17]. This characterization will be the basis of the safe and complete omnitig
algorithm which we will present in the next section.

Definition 26 (Omnitig, edge-centric model). Let G be a graph and let w =

(v0, e0, v1, e1, . . . , vt, et, vt+1) be a walk in G. We say that w is a omnitig if and
only if for all 1 6 i 6 j 6 t, there is no proper vj-vi path with first edge different
from ej, and last edge different from ei−1. (See Figure 8.)

The following theorem gives an equivalence between being safe (a subwalk of all
edge-covering walks) and that of being an omnitig. See [TM17] for a proof.



28

Figure 8: An omnitig w = (v0, e0, v1, ..., e8, v9) admits the path p =

(v7, e12, v12, e13, v13, e14, v14, e15, v0) because its last edge is equal to e15, but it does not
admit the path p2 = (v5, e9, v10, e10, v11, e11, v2) shown in dotted lines since it uses edge
e9 6= e5 as first edge and e11 6= e1 as last edge.

Theorem 2 (From [TM17]). Let G be a graph. Then a walk w is contained as a
subwalk in all edge-covering walks of G if and only if it is an omnitig.

A very useful consequence from Theorem 2 is that one can check that a walk w =

(v0, e0, v1, e1, . . . , vt−1, et−1, vt) is an omnitig by simply checking that there exists no
path from any internal node vi to any other previous internal node vj in w which
uses as first and last edges any edges different from ei and ej−1, respectively.

A very useful observation using this fact is that one can extend an omnitig w by
adding an extra edge at its end and only checking for paths connecting the second-
last vertex of the extended omnitig to other internal nodes in w. This observation
is also exploited in the Omnitig algorithm and we illustrate it below.

Observation 2 (From [TM17]). Consider a walk w′ = (v0, e0, . . . , et−1, vt, et, vt+1)

of length at least two, and consider its subwalk w = (v0, e0, . . . , et−1, vt). Then w′ is
an omnitig if and only if (i) w is an omnitig and (ii) for all 0 6 i 6 t − 1, there
is no proper vt-vi path with first edge different from et and last edge different from
ei−1.

4.3 Omnitig algorithm

In this section, we depict and explain the omnitig algorithm (Algorithm 2) from
[TM17], which is based on Theorem 2, and give a sketch proof that it runs in



29

Algorithm 2: Omnitig algorithm to find all safe strings of a graph G. Taken
from [TM17].

1 extend(w)

2 Denote w = (v0, e0, v1, e1, . . . , vt−1, et−1, vt);
3 foreach edge e = (vt, y) out-going from vt do
4 X := (N−(v1) ∪ · · · ∪N−(vt)) \ {v0, . . . , vt};
5 let G′ equal G minus the edge e;
6 if there is no path in G′ from vt to a node of X then
7 extend((v0, e0, v1, e1, . . . , vt−1, et−1, vt, e, y));

8 if w was never extended then
9 W := W ∪ {w};

10 W := ∅;
11 foreach edge e = (u, v) of G do
12 extend((u, e, v));

13 remove from W any walk that is a subwalk of another walk in W ;
14 return {spell(w) : w ∈W};

polynomial time. The algorithm exploits the fact that one can easily extend an
omnitig one edge at a time by Observation 2 and that since subwalks of omnitigs
are also omnitigs, whenever an extension we of an omnitig w with an edge e ceases
to be an omnitig, we can forget about any further extension using this extension we

as prefix.

The algorithm starts at an edge (which is an omnitig) and starts extending it re-
cursively in a depth-first fashion while it remains an omnitig. The algorithm tries
extending the current omnitig w = (v0, e0, v1, e1, . . . , vt−1, et−1, vt) at all edges out-
going from vt. Once an omnitig cannot be extended, it is added to the set of right-
maximal omnitigs. As a final step, the algorithm removes those omnitigs which are
not maximal from the set W of maximal omnitigs and returns W .

In [TM17] they prove that the number of right maximal omnitigs obtained by the
algorithm (before deleting non-maximal ones) is polynomial, and that furthermore,
the length of each omnitig is at most mn.

For the polynomial-time complexity, we first note that the conditions needed to
be checked inside the foreach loop, can be done in polynomial time by hiding
edges from the graph and launching polynomial-time graph traversals. Using the



30

fact that the length of each omnitig is at most mn, they prove that the algorithm
reports each omnitig in polynomial time and that there are only polynomially many
omnitigs reported.

We note, that obtaining maximal safe solutions makes sense not only on a genome
assembly perspective, where longer initial safe solutions at the initial steps of assem-
bly can lead to better heuristic solutions to the genome assembly problem. From a
graph theoretical perspective, maximal safe solutions also contain non-maximal so-
lutions and hence can be used to retrieve them, being a more compact representation
of all safe solutions.

We now present an O(mn)-time algorithm to compute the set of all maximal om-
nitigs of a given graph G.

4.4 An optimal O(mn)-time algorithm

In [CMO+17] we studied further properties of the omnitigs, leading to an optimal
O(mn)-time algorithm for finding all maximal omnitigs. In this section, we will state
some of the main lemmas related to these results and we will then give the algorithm
described in [CMO+17] along with a note on its complexity. In order to state these
lemmas, we first need to introduce some relevant notation and definitions.

Definition 27. A node u is called branching, if its out-degree is more than one.
We call each edge e with s(e) = u a branch and we call two different edges e and e′

with s(e) = u = s(e′) siblings.

Definition 28. We denote by GR the reverse graph of G. This is the graph with
same vertex set as G, V (G) = V (GR), and interchanged endpoints in its edges. In
particular, for every edge e ∈ E(G) and starting and ending points s(e) and t(e),
we have an edge e′ ∈ E(GR) with s(e′) = t(e) and t(e′) = s(e).

We denote by R-branch an edge which is a branch in GR.

Definition 29. A walk is called univocal, if none of its edges is a branch, and
R-univocal if none of its edges is an R-branch.

We denote by wq the concatenation of two walks w and q, where t(w) = s(q).

Definition 30. On a graph G, an edge is called a strong bridge if its removal
increases the number of strongly connected components in G.



31

The algorithm presented in [CMO+17] is achieved by looking into three main prop-
erties of the maximal omnitigs, namely:

• There exists at most a single left-maximal omnitig which ends with a given
branch in G.

• There is an acyclic partial order between all of the branches of the graph.

• There are at most O(n) omnitigs not starting with a strong bridge. For the
rest of the cases, these omnitigs are of the form fq where f is a strong bridge
and q is an univical path.

We will justify these properties with the following lemmas taken from [CMO+17]:

Lemma 5. If G contains at least a branch, then every univocal walk is an open path.

Proof. Take for a minimal counterexample a univocal closed path p. We know that
G is strongly connected, and since every path from s(p) is a prefix of p, p has to
contain every node in G, leaving no branches.

Lemma 6. If w is an omnitig and q is a univocal path from t(w), then wq is an
omnitig.

Proof. Let p be a path which shows that wq is not an omnitig according to Defini-
tion 26. We now see that if s(p) is a node of q, since q is univocal, a whole suffix of
q has to be a prefix of p, such that the property that the first edge of p differs from
ej is not satisfied. Therefore s(p) has to be an internal node of w, but this implies
that p is a path which contradicts the fact that w is an omnitig.

Lemma 7. Every left-maximal omnitig contains a branch.

Proof. Assume for a contradiction that there exists a left-maximal omnitig w which
is univocal and (since G is strongly connected) let e be any edge with t(e) = s(w).
Since edge e is an omnitig, we can apply Lemma 6 to e and w to obtain that ew is
an omnitig, contradicting w’s left-maximality.

Lemma 8. Let fqe be an omnitig where q is an open path and e is a branch. Take
any sibling e′ of e and a closed path e′p starting with e′. Then, fq is a suffix of e′p.



32

Proof. Take for a contradiction, a minimum omnitig fqe such that fq is not a suffix
of e′p. Since fqe is an omnitig, qe is also an omnitig and q is a suffix of e′p because
of minimality. We know that q 6= e′p since q is an open path and so q should be
a suffix of p. Then, we can rewrite e′p as rq, where r is non-empty. Then we note
that r is a path certifying that fqe is not an omnitig since it starts with and edge
e′ 6= e and ends with an edge f ′ 6= f (this is guaranteed by the fact that fq is not a
suffix of e′p = rq), which contradicts the fact that fqe is an omnitig.

Lemma 9. Let e′pe be a walk where e and e′ are siblings and e′p is a closed path.
Then, e′pe is an omnitig if and only if p is univocal and e′ is the only sibling of e.

Proof. (⇐= ) It is easy to see that e′pe satisfies the conditions of an omnitig, since a
path certifying that it is not an omnitig could not start at a node in p (p is univocal)
and starting from s(e) would imply that either is uses t(e) or t(e′), where e′pe would
still maintain its omnitig property.

( =⇒ ). First we show that e′ is the only sibling of e. Take any sibling e′′ of e and
any closed path e′′p′. Then, we can apply Lemma 8 so that e′p is a suffix of e′′p′;
since both paths are closed, they must be equal and e′p = e′′p′ with e′′ = e′, so that
e′ can be the only sibling of e.

In order to show that p is univocal assume for a contradiction that it is not and
write p = qfr, with f a branch. Take a sibling f ′ of f and a closed path f ′p;
since s(e) 6= s(f) = s(f ′), f ′ cannot appear in the closed path e′p = e′qfr. Now
take the shortest prefix q′ of p′ such that t(q′) is a node in p (one exists since
t(p′) = s(f ′) = s(f) is in p). Note that the last edge of q′ does not appear in e′p

and that t(q′) should be either a node in q or a node in r. In the first case, the path
f ′q′ is a path certifying that e′qf is not an omnitig; in the second, the path e′qf ′q′

is a path certifying that fre is not an omnitig. This shows that in either case, the
walk e′qfre = e′pe is not an omnitig, which is a contradiction.

Let us now prove the main theorem of this section using the previous lemmas.

Theorem 3 (From [CMO+17]). There exists a unique left-maximal omnitig we,
ending with a given branch e.

Moreover, for any sibling e′ of e and a closed path e′p, either:

• we = p′e′pe, where p′ is the longest R-univocal path to s(e), or

• we is a suffix of pe,



33

where the first case occurs iff e′ is the only sibling of e and p is univocal.

Proof. In order to see that there is a unique left-maximal omnitig we for a given
branch e we show that either we is a suffix of pe or of the form we = p′′e′pe, where p′′

is an R-univocal path. This also shows that at least one of the cases in the theorem
must occur.

We first note that by Lemma 8, if w is an open path, then we must be a suffix of
pe; if it is not, by taking the shortest suffix of w denoted by e′′p which is not an
open path we get that e′ = e′′ again by Lemma 8, since p is an open path. Hence
a counterexample is an omnitig we = fqe′pe with q an R-univocal open path (by
Lemma 5) and f an R-branch. We note that since t(q) = t(p) and q is R-univocal,
then q has to be a suffix of e′p; furthermore we can write e′p = rq and we = fqrqe

where r is non empty, since q is also a suffix of p because it is open.

Next we show that there can exist no omnitig of the form fqrqe, where qr is a
closed path, r is non-empty, e is a branch, and f is an R-branch. Assume it exists
and let e′ be the first edge of r, let r = e′r′, e′′ 6= e be a sibling of e and let e′′p

be a closed path. Now, since r′q is an open path, by Lemma 8 e′r′q is a suffix of
e′′p. Furthermore, since both e′r′q and e′′p are closed paths, e′r′q = e′′p and hence
e′ = e′′ 6= e. We now note that we can apply the same argument to the reverse
graph GR, since the notion of omnitig is symmetrical. This implies that for the
last edge f ′ of r, it holds that f ′ 6= f . Hence, we get a contradiction, since r is a
non-empty path with first edge e′ 6= e and last edge f ′ 6= f contradicting the fact
that we = fqrqe is an omnitig.

Finally, for the first case to happen we only need to satisfy the conditions in Lemma
9, since the fact that by applying Lemma 6 in the reverse graph gives us that p′e′pe
is an omnitig if and only if e′pe is an omnitig.

Corollary 1. There are at most m maximal omnitigs.

Proof. We follow the proof given in [CMO+17]. We begin by noting that because
of Lemma 7, every maximal omnitig w contains a branch; we can then write w as
w′er, where r is an univocal path and e is its last branch. Because of Lemma 6, r
is the longest univocal path form t(e), which is uniquely determined by branch e.
Similarly, because of Theorem 3, w′ is uniquely determined by branch e. Therefore,
every omnitig has to contain a last branch, and every branch is the last branch of



34

Figure 9: A graph with two maximal omnitigs w1 = lp1lp2l and w2 = lp2lp1l where
l = (v0, e0, v1, e1, v2, e2, v3, e3, v4, e4, . . . , ek−1, vk, ek, vk+1) and where every node is used
exactly three times in both omnitigs.

at most one maximal omnitig.

Let us also note that there exist families of graphs where the bound in Corollary 1 is
tight, namely, in a complete graph on n nodes where each of its edges is a maximal
omnitig.

Corollary 2. Every maximal omnitig traverses any node at most three times, and
thus has length at most 3n− 1.

Proof. We can rewrite any maximal omnitig w as w = w′er where e is its last branch.
Using Theorem 3, we note that either w′ should be an open path or w = p′e′per

where p′, p, r are univocal and open paths (by Lemma 5). Since open paths visit
each node at most once, our claim follows.

Corollary 3. The total length of maximal omnitigs is O(nm).

In Figure 9 we can observe that there are families of graphs where the maximal
omnitigs are of length 3n − 1 and in Figure 10, graphs where the total length of
omnitigs is Ω(nm), hence Corollaries 2 and 3 are also tight.

To conclude this section on the properties of omnitigs, we note that exploiting the
fact that each left-maximal omnitig can be extended is crucial to the implementation
of a faster optimal algorithm.

4.4.1 The algorithm

Using the previous properties of omnitigs, an O(mn) algorithm has been described
by [CMO+17]. We illustrate it below and we give a note on its complexity and



35

Figure 10: A graph where the total length of maximal omnitgs is Ω(mn). The walk
wi = (vi, ei, vi+1, ei+1..., vi+k−1, ei+k−1, vi+k, ei+k, vi+k+1) is a maximal omnitig, for 0 6

i 6 k − 2, and has length k + 1.

Algorithm 3: Algorithm to compute all the maximal omnitigs in G. Taken from
[CMO+17]

1 W := ∅;
2 B := set of branches in G;

3 foreach e ∈ B do
4 w = OmnitigEndingWith(e);
5 Let p be the longest univocal path from t(e);
6 W = W ∪ {wp}

7 Remove those walks in W which are not right-maximal;
8 return W , the set of maximal omnitigs.

correctness.

The main idea in Algorithm 8 is that because of Lemma 7 and Theorem 3, each
maximal omnitig contains a branch e, and furthermore, we can find a unique left-
maximal omnitig ending with a given branch e. This allows us to look at each branch
in G, compute the unique left-maximal omnitig that ends with e and then append
the longest univocal path starting at t(e), which is right-maximal and by Lemma 6
is also an omnitig.

Algorithm 8 uses a subroutine OmnitigEndingWith(e) which finds the left-maximal
omnitig ending with a given branch e. For e′ a sibling of e, e′p any closed path, f
the last branch of e′p and fq the suffix of e′p starting with f , and p′ the longest
R-univocal path to s(e), the left-maximal omnitig we ending with e is computed by



36

one of four cases:

• we = p′e′pe when e has only one sibling e′ and p is univocal (by Theorem 3).

• we = p′e when e is not a strong bridge and therefore e′ could not be an internal
edge.

• we = LongestSuffix(fqe), when LongestSuffix(fqe) 6= fqe and fqe is not an
omnitig.

• we = LongestSuffix(w′′qe), when fqe is an omnitig and where w′′ =

OmnitigEndingWith(f).

Here the function LongestSuffix(w) returns the longest suffix of w which is an omnitig.

For a correctness proof the reader can see [CMO+17]. However, we note that one
of the previous cases must occur and therefore the algorithm always returns a left-
maximal omnitig ending with branch e.

In order to see that Algorithm 8 can be implemented in O(mn) time, we first note
that the function LongestSuffix(w) can be implemented in O(m) time by finding an
acyclic partial order between the branches which allows to reuse computation and
pay linear time per-branch.

For the OmnitigEndingWith(e) function, we observe that in the first two cases, the
algorithm takes only O(n) time, since the lengths of p and p′ are linear. By us-
ing memoization, one then achieves an O(mn) time bound for the executions of
OmnitigEndingWith(e) where the first two cases occur.

Since there are O(n) strong bridges inG, the number of executions for the fourth case
is also linear, which together with the fact that LongestSuffix(w) can be implemented
in linear time andmemoization gives an O(mn) bound. For the third case, an O(mn)

bound can also be shown by noting that the total length of the walks in W is O(mn)

and then using an auxiliary data structure to remove non-right-maximal ones.



37

5 Safe solutions for edge-covering collections of cir-

cular walks

Similarly as in the previous section, we are now interested in generalizing the notion
of safe walks of a single edge-covering circular walks to safe walks of edge-covering
collections of circular walks. In a graph theorectical perspective, one would be
interested in finding those walks which are subwalks of at least one walk in the
collection of circular walks for every possible edge-covering collection of circular
walks.

The main motivation for this characterization in terms of collections comes from
metagenomic assembly, the problem of reconstructing back the genomes of a series
of organisms whose sequenced reads are all contained in the same set of reads.

In a biological setting, reads from multiple organisms could all have been sequenced
together and one is then interested in reconstructing back each particular genome.
This scenario could happen when for example, sequencing samples of the gut bacteria
[SMT+13] or ocean environments [VRC+12] where the number of organisms to be
reconstructed is unknown.

In this section we give characterizations for these walks contained in all collections
of circular edge-covering walks which we originally proposed in [OMT18]. We adapt
the proofs for node-covering walks (walks covering all nodes of a graph) for their
edge-covering counterparts. We also show a safe and complete algorithm for finding
all maximal such walks which runs in O(m2 + n3 log n) adapted from our results
in [OMT18].

We first start with definitions for the metagenomic assembly problem, for the
de Bruijn metagenomic superwalk problem and the safe solutions to it in a
strongly connected graph G.

Definition 31 (Metagenomic assembly problem). Given a set of subsequences
(reads) R obtained from a set C of (possibly) multiple different sequences (organ-
isms), reconstruct back the set C from R.

One can then define, similarly as for the de Bruijn superwalk problem, a de
Bruijn metagenomic superwalk problem, where one is interested in finding a
minimum cardinality set C of circular walks (genomes), which are of minimum total
length and where each of the reads is contained in at least one of the circular walks.
More formally:



38

Definition 32 (de Bruijn metagenomic superwalk problem (BMSP)). Given a set
of reads R and a de Bruijn graph Bk(R) constructed from them, find a minimum
cardinality set C of circular walks which are of minimum total length and such that
every read in R is contained as a subwalk in some circular walk c ∈ C.

Let us call the solution to the de Bruijn metagenomic superwalk problem,
that is, the set C of edge-covering circular walks which contains as subwalks each of
the reads, a metagenomic reconstruction.

Note that the genome assembly problem is a special case of the metagenomic
assembly problem for |C| = 1 and hence, its NP-hardness follows. This motivates
similar heuristics as the ones used in the single genome assembly problem; in par-
ticular, the use of contigs as an initial step of the metagenomic reconstruction.

Following the lines of Definitions 23 and 24 in the previous section one can define:

Definition 33 (The safe and complete metagenomic contig assembly problem (de
Bruijn model)). Given a set of reads R and a de Bruijn graph Bk(R), output all the
safe walks for Bk(R).

Definition 34 (Safe string for Bk(R) in the metagenomic assembly problem). Given
a set of reads R and a de Bruijn graph Bk(R), a walk s is said to be a safe walk
for the metagenomic de Bruijn model if for every metagenomic reconstruction C
(collection of circular edge-covering walks), s is a subwalk of at least one c ∈ C.

5.1 Characterizations of safe walks

In this section we give characterizations of safe walks. We present the equivalent
of Theorem 2 for the single edge-covering walk, namely that the property of being
an omnitig, together with a simple additional property characterize the walks of
a strongly connected graph G that are subwalks of all edge-covering collections of
circular walks of G.

Theorem 4 (Adapted from [OMT18]). Let G be a strongly connected graph. A walk
w = (v0, e0, v1, e1, . . . , vt, et, vt+1) in G is a safe walk in G if and only if the following
conditions hold:

(a) w is an omnitig, and

(b) there exists e ∈ E(G) such that w is a subwalk of all cycles passing through e.



39

Proof. (⇒) Assume that w is safe. Suppose first that (a) does not hold, namely
that w is not an omnitig. This implies that there exists a proper vj-vi path p with
1 6 i 6 j 6 t with first edge different from ej, last edge different from ei−1, then,
for any edge-covering reconstruction C of G, and any circular walk c ∈ R such that
w is a subwalk of c, we replace c in C by the circular walk c′, not containing w

as subwalk, obtained as follows. Whenever c visits w until node vj, c′ continues
with the vj-vi path p, then it follows (vi, ei, . . . , ej−1, vj), and finally continues as c.
Since p is proper, and its first edge is different from ej and its last edge is different
from ei−1, the only way that w can appear in c′ is as a subwalk of p. However, this
implies that both vj and vi appear twice on p, contradicting the fact that p is a vj-vi
path. Since each such circular walk c′ covers the same edges as c, the collection C ′ of
circular walks obtained by performing all such replacements is also an edge-covering
reconstruction G. This contradicts the safety of w.

Suppose now that (b) does not hold, namely, that for every e ∈ E(G), there exists a
cycle ce passing through e such that w is not a subwalk of ce. The set R = {ce : e ∈
E(G)} is an edge-covering reconstruction of G such that w is not a subwalk of any
of its elements. This contradicts the safety of w.

(⇐) Let C be an edge-covering reconstruction of G, and let c ∈ C be a circular walk
covering the edge e. If c is a cycle, then (b) implies that w is a subwalk of c, from
which the safety of w follows.

Otherwise, let G[c] be the subgraph of G induced by the edges of c. Clearly, c is an
edge-covering circular walk of G[c], and thus G[c] is strongly connected. Moreover,
we can argue that w is an omnitig in G[c], as follows. By taking the shortest proper
circular subwalk of c passing through e we obtain a cycle c̃ passing through e. From
(b), we get that w is a subwalk of c̃. Since all edges of c̃ appear in G[c], then also
all edges of w appear in G[c] and thus w is a walk in G[c]. The condition from
the definition of omnitigs is preserved under removing edges from G, thus w is an
omnitig also in G[c]. By applying Theorem 2 from the single edge-covering walk
case to G[c] we obtain that w is a subwalk of all edge-covering circular walks of
G[c], and in particular, also of c. We have thus shown that for every edge-covering
reconstruction C of G, there exists c ∈ C such that w is a subwalk of c. Therefore,
w is a safe walk for G.

The following statement is a simple corollary of condition (b) from Theorem 4.

Corollary 4. Let G be a strongly connected graph, and let w be a safe walk in G.



40

Then w is either a path or a cycle.

5.2 The algorithm for finding all safe walks

In this section we give an algorithm for finding all safe walks of a strongly connected
graph and some necessary lemmas to prove its correctness adapted from [OMT18].

We begin with a lemma stating a simple condition when a maximum overlap of two
omnitigs is an omnitig.

Lemma 10. Let G be a graph, and let w = (v0, e0, v1, . . . , vt, et, vt+1) be a walk
of length at least 2 in G. We have that w is an omnitig if and only if w1 =

(v0, e0, v1, . . . , vt) and w2 = (v1, e1, v2, . . . , vt, et, vt+1) are omnitigs and there is no
vt-v1 path with first edge different than et and last edge different than e0.

Proof. The forward implication is trivial, as by definition subwalks of omnitigs are
omnitigs. For the backward implication, since w1 is an omnitig, then for all 1 6 i 6

j 6 t − 1, there is no proper vj-vi path with first edge different from ej, and last
edge different from ei−1. If there is no vt-v1 path with first edge different than et

and last edge different than e0, we obtain that w is an omnitig.

The following definition captures condition (b) from Theorem 4.

Definition 35 (Certificate). Let G be a graph and let w be a walk in G. An edge
e ∈ E(G) such that w is a subwalk of all cycles passing through e is called a certificate
of w. The set of all certificates of w will be denoted Cert(w).

By Theorem 4, safe walks are those omnitigs with at least one certificate. In the
following Lemma we relate the certificates of an omnitig with the certificates of its
edges.

Lemma 11. Let G be a graph and let w = (v0, e0, v1, . . . , vt, et, vt+1) be a proper
omnitig in G. Then Cert(w) = Cert(e0) ∩ Cert(e1) ∩ · · · ∩ Cert(et).

Proof. We prove the claim by double-inclusion. The inclusion Cert(w) ⊆ Cert(e0) ∩
Cert(e1)∩· · ·∩Cert(et) is trivial, since all cycles passing through an edge e ∈ Cert(w)

also contain each of e0, . . . , et.

We now prove the reverse inclusion by induction on the length of w. The case when
w is of length one is trivial, so we check the base case when w has length two. Assume



41

for a contradiction that there is a cycle C passing through e ∈ Cert(e0) ∩ Cert(e1)

and not having w = (v0, e0, v1, e1, v2) as subpath. Then, after visiting e, (i) C

first traverses e0 and then reaches e1 with a path different than v1, or (ii) C first
traverses e1 and then e0. The case (i) cannot happen since admitting a proper path
from the end of e0 to the start of e1 would imply that there is a proper vj-vj path,
contradicting the fact that w is an omnitig. If (ii) holds, then C has to traverse the
node v1 twice: first at the start of e1 and second at the end of e0, contradicting the
fact that C is a cycle.

We now use the inductive hypothesis to show if e ∈ Cert(e0)∩Cert(e1)∩· · ·∩Cert(et),
then e ∈ Cert(w). We partition w into the two walks w0 = (v0, e0, v1, . . . , vt) and
wt = (vt, et, vt+1). By induction, since e ∈ Cert(e0)∩Cert(e1)∩· · ·∩Cert(et) we have
e ∈ Cert(w0). Analogously, since e ∈ Cert(et), we have x ∈ Cert(wt). Since vt is a
node in both w0 and wt, then any cycle passing through e, once it passes through w0

it must continue passing through wt. Therefore, any cycle passing through e passes
also through w, and hence e ∈ Cert(w).

Given a circular walk c = (v0, e0, v1, . . . , vd−1, ed−1, vd = v0), i ∈ {0, . . . , d − 1} and
k ∈ {0, . . . , d}, we denote by c(i, k) the subwalk of c starting at vi and of length k,
that is, c(i, k) = (vi, ei, vi+1 mod d, . . . , v(i+k) mod d).

Algorithm 4 finds all safe walks of a strongly connected gsaferaph G (possibly with
duplicates), but does not return each safe walk explicitly. Instead, it returns an
edge-covering circular walk c of G and the set of pairs (i, k) such that c(i, k) is a
safe walk. The algorithm works by scanning c and checking whether each subwalk
of c of length k is an omnitig and has at least one certificate.

Theorem 5 (Adapted from [OMT18]). Given a strongly connected graph G, Algo-
rithm 4 correctly computes all the safe walks of G, possibly with duplicates.

Proof. We will first prove by induction on k that the set Sk contains all those indices
i for which c(i, k) is a safe walk of length k. In the base case k = 1 (Line 6), we
know that each c(i, 1) is an omnitig because all edges in G are omnitigs. We also
check if c(i, 1) has at least one certificate, by checking (due to Lemma 11) whether
Cert(ei) 6= ∅ (Line 7). Thus, for each i we checked whether c(i, 1) is a safe walk (due
to Theorem 4), and the claim follows for S1.

We assume now that the claim is true for Sk−1. For each i, by Lemma 10, c(i, k)

is an omnitig if and only if c(i, k − 1) and c(i + 1 mod d, k − 1) are omnitigs, and
there is no vi+k−1 mod d-vi+1 mod d path with first edge different than ei+k−1 mod d and



42

Algorithm 4: Computing the safe walks of a strongly connected graph G. Adapted
from [OMT18]
Input: A strongly connected graph G; n = |V (G)|.
Output: One edge-covering circular walk C in G, and all pairs (i, k) such that

c(i, k) is safe.

1 compute c = (v0, e0, v1, . . . , vd−1, ed−1, vd = v0) an edge-covering circular walk of G;
2 compute Cert(e), for every e ∈ E(G);

3 for k := 1 to n do
4 Sk := ∅; // stores those indices i for which c(i, k) is safe

5 for i := 0 to d− 1 do
6 if k = 1 then
7 if Cert(ei) 6= ∅ then // c(i, 1) is safe

8 Sk := Sk ∪ {i};

9 else
10 if i ∈ Sk−1 and i + 1 mod d ∈ Sk−1 and there is no

vi+k−1 mod d-vi+1 mod d path with first edge different than ei+k−1 mod d and
last edge different than ei then

11 if Cert(ei) ∩ · · · ∩ Cert(ei+k mod d) 6= ∅ then // C(i, k) is safe

12 Sk := Sk ∪ {i};

13 return c and {(i, k) : k ∈ {0, . . . , n}, i ∈ Sk}.



43

last edge different than ei. This is verified in Line 10. In Line 11 we check whether
Cert(C(i, k)) 6= ∅ by checking whether Cert(vi) ∩ · · · ∩ Cert(vi+k mod d) 6= ∅ (due to
Lemma 11). Thus the claim is true for all Sk.

By Corollary 4, all safe walks of G are paths or cycles, thus of length at most n. By
the definition of safe, they are also subwalks of c. Thus for each safe walk w of G of
length k 6 n, there exists i ∈ {0, . . . , d− 1} such that w = c(i, k) and i ∈ Sk.

Each of the steps in our algorithm takes polynomial time and it can be implemented
in time O(m2n) as we show in [OMT18]. Furthermore, we also show that it can be
further optimized to output only maximal safe strings.



44

6 Conclusions

In this thesis, we focused on exemplifying and motivating the use of safe solutions
as an extra tool in problems on walks on graphs. Furthermore, we justified the
characterization of safe solutions for their own importance and structural properties
which have proved to be of relevance in applications like bioinformatics.

We studied four main graph traversal problems, we presented full safe solution char-
acterizations and safe and complete polynomial-time algorithms for three of them
and we suggested a full characterization and safe and complete algorithm for the
Eulerian walk problem. In particular, we studied the problem of finding all edges
contained in all s-t paths between two biconnected components S and T in an undi-
rected graph U (Problem 1), the problem of finding an Eulerian cycle in a graph G

(the Eulerian cycle problem), the problem of finding a minimum length circular
edge-covering walk in a graph G, and the problem of finding a minimum cardinality
set of collections of circular edge-covering walks of minimum length.

We see this work, together with [TM17] as starting points and motivating examples
for the characterization of safe solutions on broader combinatorial ambits: from
related graph problems to problems on sets and functions.

6.1 Future work

We leave as future work an optimal polynomial-time algorithm for computing safe
solutions to the Eulerian cycle problem and a rigorous proof of the given character-
ization of safe solutions. Similarly, we leave as an open problem an optimization to
our polynomial-time algorithm for finding safe solutions in the metagenomic case
which currently lacks a tight bound and which we believe could be improved by
using similar optimizations as in Section 4.4.

A close variant to the problems studied in this thesis is presented in [TM17], where
one considers instead node-covering circular walks (circular walks covering every
node). One is then interested in finding those walks which are subwalks of every
node-covering walk of a graph G. In [TM17], they present a characterization for
these walks and a polynomial-time algorithm for computing them. However, their
algorithm is not bounded and whether an optimal algorithm like Algorithm 8 which
we presented in Section 4.4.1 can be achieved is still open. Similarly, in [OMT18]
we studied the node-covering variant of the safe solution to metagenomic assembly



45

problem, namely, we are interested in finding those walks which are subwalks of every
node-covering collection of circular walks. We showed an analogous characterization
to the one in Theorem 4 and a polynomial-time algorithm for computing them. It
is, however, also open whether a similar optimization to the algorithms as in Section
4.4 which we originally presented in [CMO+17] is possible.

Close to our problems, one would like to consider as a genomic reconstruction an
edge-covering (node-covering) walk which is not necessarily circular, allowing us to
model also non-circular genomes.

Following the line of multi-assembly, one would like to consider as a genomic recon-
struction of a graph G, a set of s-t paths (where s and t are given source and sink
nodes) that altogether cover all the nodes of G. This problem is known as the min-
imum path cover problem which for acyclic graphs can be solved in polynomial time
using an algorithm based on Dilworth’s theorem for partially ordered sets [Ful56].
One could translate this problem into a safe solutions setting by looking at the sub-
walks contained in all s-t paths, or those subwalks contained in at least one s-t path
for every minimum path cover.

The safe solutions setting could be translated into other particular problems dealing
with edge (or node) traversals on graphs; for instance a problem where one must
find a walk satisfying a classification of the edges (nodes) into optional, required,
exact or a classification of the edges (nodes) based on the number of times they
must be traversed.

In a general combinatorial setting, safe solutions could be characterized as such
in problems which involve sets, like in games and their sets of moves, or in social
choice problems and sets of allocations. For example, one could look at those sets
of items which are contained in every complete envy-free allocation for the problem
of allocating indivisible items among two players with the allocation having the
property of being envy-free, as defined in [BKK14].



46

References

Alt91 Altschul, S. F., Amino acid substitution matrices from an information
theoretic perspective. Journal of Molecular Biology, 219,3(1991), pages
555 – 565. URL http://www.sciencedirect.com/science/article/pii/

002228369190193A.

BGL02 Boros, E., Golumbic, M. C. and Levit, V. E., On the number of vertices
belonging to all maximum stable sets of a graph. Discrete Applied Mathematics,
124,1-3(2002), pages 17–25. URL https://doi.org/10.1016/S0166-218X(01)

00327-4.

BKK14 Brams, S. J., Kilgour, D. M. and Klamler, C., Two-person fair division of
indivisible items: An efficient, envy-free algorithm. Notices of the AMS. URL
http://www.ams.org/notices/201402/rnoti-p130.pdf.

BNT06 Bertsimas, D., Natarajan, K. and Teo, C., Persistence in discrete optimiza-
tion under data uncertainty. Math. Program., 108,2-3(2006), pages 251–274.
URL https://doi.org/10.1007/s10107-006-0710-z.

BTT11 Bazgan, C., Toubaline, S. and Tuza, Z., The most vital nodes with respect to
independent set and vertex cover. Discrete Applied Mathematics, 159,17(2011),
pages 1933–1946. URL https://doi.org/10.1016/j.dam.2011.06.023.

CdWP11 Costa, M., de Werra, D. and Picouleau, C., Minimum d-blockers and
d-transversals in graphs. J. Comb. Optim., 22,4(2011), pages 857–872. URL
https://doi.org/10.1007/s10878-010-9334-6.

Cec98 Cechlárová, K., Persistency in the assignment and transportation problems.
Math. Meth. of OR, 47,2(1998), pages 243–254. URL https://doi.org/10.

1007/BF01194399.

CL01 Cechlárová, K. and Lacko, V., Persistency in combinatorial optimization
problems on matroids. Discrete Applied Mathematics, 110,2-3(2001), pages 121–
132. URL https://doi.org/10.1016/S0166-218X(00)00279-1.

CMO+17 Cairo, M., Medvedev, P., Obscura Acosta, N., Rizzi, R. and Tomescu,
A. I., Optimal omnitig listing for safe and complete contig assembly. 28th
Annual Symposium on Combinatorial Pattern Matching, CPM 2017, July 4-
6, 2017, Warsaw, Poland, 2017, pages 29:1–29:12, URL https://doi.org/10.

4230/LIPIcs.CPM.2017.29.



47

Cos94 Costa, M., Persistency in maximum cardinality bipartite matchings. Oper.
Res. Lett., 15,3(1994), pages 143–149. URL https://doi.org/10.1016/

0167-6377(94)90049-3.

EW14 Ekblom, R. and Wolf, J. B. W., A field guide to whole-genome sequencing,
assembly and annotation. Evolutionary Applications, 7,9(2014), pages 1026–
1042.

Ful56 Fulkerson, D. R., Note on dilworths decomposition theorem for partially or-
dered sets. Proc. Amer. Math. Soc, 7,4(1956).

GMS80 Gallant, J., Maier, D. and Storer, J. A., On finding minimal length super-
strings. J. Comput. Syst. Sci., 20,1(1980), pages 50–58.

HHS82 Hammer, P. L., Hansen, P. and Simeone, B., Vertices belonging to all or
to no maximal stable sets of a graph. SIAM Journal on algebraic and discrete
methods, 3,4(1982), pages 511–522.

IW95 Idury, R. M. and Waterman, M. S., A new algorithm for DNA sequence
assembly. Journal of Computational Biology, 2,2(1995), pages 291–306. URL
https://doi.org/10.1089/cmb.1995.2.291.

KBB+08 Khachiyan, L., Boros, E., Borys, K., Elbassioni, K. M., Gurvich, V.,
Rudolf, G. and Zhao, J., On short paths interdiction problems: Total and node-
wise limited interdiction. Theory Comput. Syst., 43,2(2008), pages 204–233.

KM95 Kececioglu, J. D. and Myers, E. W., Combinatiorial algorithms for DNA
sequence assembly. Algorithmica, 13,1/2(1995), pages 7–51.

Lac98 Lacko, V., Persistency in optimization problems on grpahs and matroids.
Master’s thesis, 1998.

Lac00 Lacko, V., Persistency in the traveling salesman problem on halin graphs.
Discussiones Mathematicae Graph Theory, 20,2(2000), pages 231–242. URL
https://doi.org/10.7151/dmgt.1122.

LM02 Levit, V. E. and Mandrescu, E., Combinatorial properties of the family of
maximum stable sets of a graph. Discrete Applied Mathematics, 117,1-3(2002),
pages 149–161. URL https://doi.org/10.1016/S0166-218X(01)00183-4.

MB09 Medvedev, P. and Brudno, M., Maximum likelihood genome assembly. Jour-
nal of Computational Biology, 16,8(2009), pages 1101–1116.



48

MGMB07 Medvedev, P., Georgiou, K., Myers, G. and Brudno, M., Computabil-
ity of models for sequence assembly. Algorithms in Bioinformatics, 7th In-
ternational Workshop, WABI 2007, Philadelphia, PA, USA, September 8-9,
2007, Proceedings, 2007, pages 289–301, URL https://doi.org/10.1007/

978-3-540-74126-8_27.

Mye05 Myers, E. W., The fragment assembly string graph. ECCB/JBI’05 Proceed-
ings, Fourth European Conference on Computational Biology/Sixth Meeting of
the Spanish Bioinformatics Network (Jornadas de BioInformática), Palacio de
Congresos, Madrid, Spain, September 28 - October 1, 2005, 2005, page 85, URL
https://doi.org/10.1093/bioinformatics/bti1114.

NP09 Nagarajan, N. and Pop, M., Parametric complexity of sequence assembly:
Theory and applications to next generation sequencing. Journal of Computa-
tional Biology, 16,7(2009), pages 897–908. URL https://doi.org/10.1089/

cmb.2009.0005.

NU02 Nykänen, M. and Ukkonen, E., The exact path length problem. J. Algorithms,
42,1(2002), pages 41–53.

NW70 Needleman, S. B. and Wunsch, C. D., A general method applicable to
the search for similarities in the amino acid sequence of two proteins. Jour-
nal of Molecular Biology, 48,3(1970), pages 443 – 453. URL http://www.

sciencedirect.com/science/article/pii/0022283670900574.

OMT18 Obscura Acosta, N., Mäkinen, V. and Tomescu, A. I., A safe and com-
plete algorithm for metagenomic assembly. Algorithms for Molecular Biology,
13,3(2018).

PBP14 Pajouh, F. M., Boginski, V. and Pasiliao, E. L., Minimum vertex blocker
clique problem. Networks, 64,1(2014), pages 48–64.

PTW01a Pevzner, P. A., Tang, H. and Waterman, M. S., A new approach to frag-
ment assembly in DNA sequencing. Proceedings of the Fifth Annual Interna-
tional Conference on Computational Biology, RECOMB 2001, Montréal, Québec,
Canada, April 22-25, 2001, 2001, pages 256–267, URL http://doi.acm.org/

10.1145/369133.369230.

PTW01b Pevzner, P. A., Tang, H. and Waterman, M. S., A new approach to
fragment assembly in dna sequencing. Proceedings of the Fifth Annual Inter-
national Conference on Computational Biology, RECOMB ’01, New York, NY,



49

USA, 2001, ACM, pages 256–267, URL http://doi.acm.org/10.1145/369133.

369230.

RBP+10 Ries, B., Bentz, C., Picouleau, C., de Werra, D., Costa, M. and Zenklusen,
R., Blockers and transversals in some subclasses of bipartite graphs: When cater-
pillars are dancing on a grid. Discrete Mathematics, 310,1(2010), pages 132–146.
URL https://doi.org/10.1016/j.disc.2009.08.009.

Roy07 Roy, K., Optimum gate ordering of CMOS logic gates using euler path ap-
proach: Some insights and explanations. CIT, 15,1(2007), pages 85–92.

SBNK95 Schieber, B., Bar-Noy, A. and Khuller, S., The complexity of finding most
vital arcs and nodes. Technical Report, College Park, MD, USA, 1995.

SMT+13 Sharon, I., Morowitz, M. J., Thomas, B. C., Costello, E. K., Relman, D. A.
and Banfield, J. F., Time series community genomics analysis reveals rapid shifts
in bacterial species, strains, and phage during infant gut colonization. Genome
Research, 23,1(2013), pages 111–120.

SSMT16 Salmela, L., Sahlin, K., Mäkinen, V. and Tomescu, A. I., Gap filling as
exact path length problem. Journal of Computational Biology, 23,5(2016), pages
347–361.

ST18 Salmela, L. and Tomescu, A. I., Safely filling gaps with partial solutions com-
mon to all solutions. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, PP,99(2018), pages 1–1.

Tar74 Tarjan, R. E., A note on finding the bridges of a graph. Inf. Process. Lett.,
2,6(1974), pages 160–161.

TM17 Tomescu, A. I. and Medvedev, P., Safe and complete contig assembly through
omnitigs. Journal of Computational Biology, 24,6(2017), pages 590–602. URL
https://doi.org/10.1089/cmb.2016.0141.

VJR+14 Vandervalk, B. P., Jackman, S. D., Raymond, A., Mohamadi, H., Yang, C.,
Attali, D. A., Chu, J., Warren, R. L. and Birol, I., Konnector: Connecting paired-
end reads using a bloom filter de bruijn graph. Bioinformatics and Biomedicine.
IEEE Computer Society, 2014, pages 51–58.

VRC+12 V, I., RM, M., CD, F., CT, B., RL, M. and EV., A., Untangling genomes
from metagenomes: revealing an uncultured class of marine euryarchaeota. Sci-
ence, 335,6068(2012), pages 587–90.



50

Wag90 Wagner, D. K., Disjoint (s, t)-cuts in a network. Networks, 20,4(1990), pages
361–371.

ZRP+09 Zenklusen, R., Ries, B., Picouleau, C., de Werra, D., Costa, M. and Bentz,
C., Blockers and transversals. Discrete Mathematics, 309,13(2009), pages 4306–
4314. URL https://doi.org/10.1016/j.disc.2009.01.006.


