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1 Introduction

The Internet of Things (IoT) enables the interconnection between people and phys-
ical objects by providing a means of sharing information and coordination. Pre-
viously isolated physical objects, join communication networks with wired/wireless
technologies such as Ethernet, Bluetooth, Wifi, Zigbee, etc. and enhance the func-
tionality with the support of embedded sensors and actuators. IoT has made a
significant impact on both domestic and industrial sectors with applications ranging
from as simple as smart coffee machines to advanced smart manufacturing pro-
cesses. It is designed for uplifting the quality of life, better resource management
and intelligent decision making.

Popular recent applications in IoT include smart homes, smart buildings, intelli-
gent transportation systems, industrial automation systems, smart healthcare, smart
grids and smart cities. A smart home enables the automatic control of the heating,
ventilation and air-conditioning (HVAC) systems, lighting control, occupancy-aware
control systems (e.g. air quality controllers), appliance controls (e.g. doors, windows,
electronics) and improved security systems that enhance the consumers quality of
life. Lufthansa, a leading airline service provider, employs an IoT-based strategy
to optimize on-time performance and operation by aggregating the real-time air-
crafts, airports and weather sensor data which is a classic example of industrial IoT
implementation.

Since the inception of the IoT in the supply chain management using RFIDs in 1999,
IoT has achieved a significant growth in terms of the number of connected smart
devices, underlying technologies and offered services. A recent IHS forecasting [1]
suggests that the IoT installed base would reach approximately 30.7 billion by the
end of 2020, which is approximately a 50% increase compared to the predicted
installed base in 2017 as indicated in Figure 1. The advancement of technology and
innovativeness in electronics manufacturing industry have caused the production
costs of IoT devices to be reduced significantly. These two factors undoubtedly
draw the attention of new investments due to the promising market potential, thus
resulting in novice device manufacturers entering into the IoT device production.
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Figure 1: Internet of Things installed base in global market in billions.
Information for the figure was obtained from IHS White-paper on Internet of
Things [1].

1.1 Challenge of device identification

The rapidly increasing number of heterogeneous IoT devices joining the networks,
imposes an additional burden on network administrators to manage the networks in
terms of security, network resources and device troubleshooting unless they manage
to identify the devices present in the network. That is the reason for device identity
management to be considered as a key challenge in the Internet of Things [2, 3, 4, 5].
Hence identifying devices connected to a network (device fingerprinting) becomes an
essential component in modern network management tools as it provides important
information such as product vendor, product type, operating system and software
version of a particular device.

The successful fingerprinting of a device enables,

• Network administrators (defensive purposes);

– an inventory of the devices connected to the network

– locate vulnerable, rogue devices or unauthorized devices and provide a
proper security assessment of the network
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• Adversaries (offensive purposes);

– gain information about the device’s characteristics (driver/firmware) that
the attacker intends to attack

Defensive device fingerprinting is the base for vulnerability assessment for device
models using popular vulnerability repositories, security enforcement of the IoT de-
vices as in [6] and detection of device anomalies through continuous device behavior
monitoring which is described in our future work. In offensive device fingerprinting,
attacker gains more insights about the node which he intends to attack, thus the
vulnerabilities are exposed precisely.

Device fingerprinting is the process of gathering device information in order to char-
acterize it. In device fingerprinting the aim is to extract information about device’s
software, operating system or hardware components in order to create a signature
which also called as a fingerprint. Fingerprinting can be divided into three main
categories; Operation system fingerprinting, Host fingerprinting and Device finger-
printing. In our work we will be focusing on device fingerprinting in order to identify
the IoT devices present in a network. The concept of fingerprinting was first intro-
duced with Operating system (OS) fingerprinting tools, such as Network Mapper
(Nmap) [7], Xprobe [8], Passive OS fingerprinting [9] and SinFP [10]. They analyze
Internet Protocol (IP) packets to infer information related to the operating system
versions used in the hosts, the type of hosts present in the network and the types of
applications/ services used in hosts.

Device fingerprinting can be categorized into two main types; Active and Passive. In
active device fingerprinting the fingerprinter which can be a measurer, an attacker
or an adversary must be able to initiate a connection with the fingerprintee (the de-
vice which needs to be identified). The aim of this approach is to trigger a response
from the fingerprintee which is unique to that particular device. For instance, Bra-
tus et al. [11] measure the responses to a crafted set of IEEE 802.11 frames and
Sieka [12] fingerprints the wireless access points by measuring the timings related
to the authentication procedure for MAC layer communications. In passive device
fingerprinting, the fingerprinter passively listens to the network traffic of the finger-
printee and extracts information to produce a unique representation for the device.
For example, [6, 13, 14, 15, 16, 17, 18, 19] and [20] propose different passive device
identification techniques. In certain occasions a combination of active and passive
approaches are used where fingerprinter initially establishes a connection with the
fingerprintee and continue to use the same connection over time to gather required
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Active fingerprinting Passive fingerprinting
Reveals in depth information about fin-
gerprintee.

Limited information about a device
compared to active counterpart.

Introduces monitoring traffic to the net-
work.

Doesn’t introduce any additional traffic
to the network.

Needs cooperation from the finger-
printee.

Monitors and analyses the traffic.

Can be applied even when the devices
are behind NAT or firewalls.

Doesn’t need to establish a connection
with fingerprintee.

Can be applied over a long period of
time.

Undetectable to the fingerprinted de-
vice.

Table 1: Comparison of Active and Passive device fingerprinting ap-
proaches.

information about the device [17]. The selection of the device fingerprinting type
depends on the depth of information required about a device as well as the acces-
sibility of the device in the network. Table 1 compares the two main fingerprinting
techniques in detail.

1.2 Thesis contribution

In our study we are focusing on identifying IoT devices connecting to a network in
order to manage them properly. Despite the fact that active fingerprinting provides
additional insights about the devices, need for cooperation from the fingerprintee
limits its usage as devices might be reluctant to cooperate due to security concerns.
Further, if an adversary device joins the network, identification technique should
have the capability to identify the device and apply appropriate security policies
rather than waiting for the unknown device to cooperate in identification. Since
passive fingerprinting approach can be applied for any device connecting to the net-
work, irrespective of the cooperation from device, it suits our application better than
active fingerprinting approach. Further it keeps the network bandwidth utilization
intact as no additional monitoring traffic is introduced to the network which is ad-
vantageous in large scale deployments. Hence we have selected to deploy a passive
fingerprinting technique to identify IoT devices. Passive fingerprinting techniques
use unique deviations of devices’ clock skews, unique characteristics of USB hard-



5

ware, features extracted from protocol headers to generate a unique fingerprint for a
device. A detailed analysis of techniques that use above measurements are discussed
in Section 2.

We have performed a critical evaluation of existing device fingerprinting techniques
and identified limitations of each technique. Further, we have analyzed important
features which are missing in the existing studies to improve the performance of
device fingerprinting. The proposed device fingerprinting approach extracts features
from a sequence of packets (sequenced-based features) to generate a fingerprint that
uniquely represent a device. The feature set includes summary statistics (minimum,
maximum, mean, variance etc.) of feature types such as packet inter-arrival time,
Ethernet packet size, IP header size etc. (detailed feature description is provided
in Section 3, Table 4). Then the generated fingerprints are used to train a multi-
class machine learning classifier which can distinguish different IoT devices. Our
technique is a passive, payload independent, fast and scalable approach for device
fingerprinting based on the features extracted from the Ethernet, IP and TCP/IP
headers. As a result of using the information available in the protocol headers,
our approach can extract features from encrypted traffic as well. But unlike the
state-of-art feature-based device identification approach in [6], we have focused on
extracting features from a sequence of packets during the initial setup of a device
rather than extracting features from each individual packet. Furthermore, they
have not included features which are known to be vital for traffic classification, such
as the summary statistics and Fourier transform of packet inter-arrival times, the
summary statistics of packet sizes, and the direction of the packet sequences. Our
purpose was to utilize the above mentioned important sequence-based characteristics
that are missing in the IoT Sentinel approach, to improve the device fingerprinting
performance. Our system improves the average device prediction F1-score up to
0.912 which is a 14% increase compared with the state-of-the-art technique. Our
technique doesn’t require high computation power as in [16] and doesn’t need any
special protocols, hardware stacks or IP header options (SIP, USB, TCP timestmap
option etc.) as in [14], [15] and [17], thus suited for a vast range of devices.

The successful identification of IoT devices present in a network enables the efficient
management of the network resources and security policies. If a device’s normal
behavior can be modeled using a set of features, it can be used as a baseline to
detect abnormal behavior of a device of the same type. The abnormality detection
by comparing traffic patterns can reveal effects due to errors/faults of a device
other than attacks, that are undetectable to the security tools in general. In that
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case, accurately detecting the device type is critical as the selection of security
policies depends upon it. Further, an incorrect device prediction not only hinders
the performance of a device but also jeopardizes the security state of the network.
Therefore, the main purpose of our research is precisely identify devices present in
a network to support detection of abnormal behaviors of IoT devices. We suggest
a feature-based approach to detect abnormal device behaviors through long-term
behavior comparison.

In a summary, our contribution can be stated as follows.

• A critical comparison of existing device fingerprinting techniques and identify
the limitations, improvements.

• A novel device fingerprinting approach using packet header related features
that improves the average device classification over F1-score the state-of-the-
art solution [6] by 14%.

• Analysis of the impact of confidence threshold on fingerprinting unknown de-
vices.

• Proposal for a feature-based anomaly detection technique by behavior com-
parison.

1.3 Roadmap

The rest of the document is organized as follows. Section 2 introduces the existing
researches on device fingerprinting and provides a critical comparison of existing
techniques. The proposed novel device fingerprinting approach technique is ex-
plained in Section 3 followed by the implementation procedure in Section 4. Section
5 evaluates the proposed system covering classification model selection, performance
comparison with the state-of-the-art technique and analysis of the impact of confi-
dence threshold on identifying unknown devices. Existing work on device anomaly
detection and a proposal for anomaly detection using long-term traffic behavior
comparison are explained in Section 6, followed by the our conclusion in Section 7.
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2 State-of-the-art device fingerprinting techniques

Existing work on device fingerprinting has used both active and passive approaches.
In this section we will be covering few notable fingerprinting techniques under each
approach.

2.1 Active device fingerprinting

2.1.1 Analyzing responses to crafted MAC frames

An active fingerprinting approach which is based on identifying different responses
of different Media Access Control (MAC) layer implementations to non-standard
events. In [11] a series of crafted non-standard or malformed 802.11 MAC frames
(stimulus) are sent to devices and the differences of responses are analyzed to classify
a wireless device. By inspecting the values of MAC header 8 bit Frame Control
(FC) bits; To DS, From DS, More Fragments, Retry, Power Management, More
Data, Protected Frame and Order of response frames, a set of non-standard and
unusual combinations of FC bits are derived, which are capable of distinguishing
different device-types. Then a set of frames are crafted ensuring that they elicit
aforementioned non-standard and unusual combinations of FC bits in the responses.
Following are few scenarios (possible tests) identified in the study.

• Probe FC test - Test response to Probe requests with varying FC flags

• Authentication FC test - Test response to Authentication requests with varying
FC flags

• Beacon test

• Association Request test

• Re-association Request test

• Action test

A series of tests covering all of the 8-bit FC flag combinations (256 in total) as
responses is applied to a device using the crafted set of frames. Each of theses tests
were run 5 times, thus the output for each test would be a value between 0 - 5 where
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0 stands for no responses received with a particular FC bit combination and 5 for
always receiving a response with that FC bit combination. All the responses are
selected as a 256 dimensional feature vector. For n device types the feature vectors
are generated k times and the feature vectors are concatenated in to a 256 * (n * k)
dimensional matrix. Then using singular vector decomposition (SVD), this matrix is
decomposed in a product of three matrices. After that using the first 2 components
of the decomposition, each feature vector is projected in to a 3-dimensional space.

When an unknown device is being scanned, its responses are captured and the 256
dimensional feature vector is generated. Then the feature vector is projected in to
the 3-dimension space using the pre-computed decomposition. After that similarity
with the known signatures are computed calculating the cosine distance metric.
These distance metrics are then compiled in to a decision tree structure to derive
on the final prediction. The implementation consists of two main components; the
scanning platform which prepares and send the stimuli and the monitoring platform
which sniffs the response and reformat the responses to suit the tests in decision
tree.

Decision tree structures are deployed due to its simplicity and better human read-
ability. Nonetheless, in the proposed technique decision tree generation is a manual
process, which would be a bottleneck of the system in the long run. Hence suitable
measures needs to be taken to automatically generate the tree structure. Cosine dis-
tance metric however, claimed to be overly biased by the features with higher values
irrespective of the number of features two vector share as explained by Li et al. [21].
Hence instead of using ‘hard’ cosine distance metric, a similar vector space distance
model could be used such as Weighted-cosine metric [21] which is unbiased or soft-
cosine metric [22] which takes in to account the similarity of features. This technique
has been evaluated with wireless access points, however when extending it for client
stations the consent from the owners to participate in fingerprinting is required.
Since this technique actively communicates with the fingerprintee, there is a possi-
bility that the communication might be detected and blocked by intrusion detection
systems. Furthermore, vulnerable devices might face functionality limitations (cease
of services) due to the active testing.

2.1.2 Fingerprinting by timing analysis

The physical differences in devices affect the way they communicate with other en-
tities due to the differences in network interface cards (NICs) board layout (paths,
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STA MON AP
AUTH1

ACK1

AUTH2

ACK2

t'
t

Figure 2: Radio frames exchanges during 802.11 authentication procedure.
STA, MON and AP refers to client station, Monitoring node and Access point
respectively.

dimensions, soldering, etc.), turn-on/off transient time variability of elements and
differences in oscillators. Identifying and exploring these physical differences could
enable the characterization of each unique device. Sieka [12] propose a technique
that statistically analyzes the precise timing measurements related to radio commu-
nication and classify wireless devices using machine learning. Proposed technique
explores the variations of timing measurements required for a device to perform
various communication functions, specifically timings related to the authentication
procedure for 802.11 MAC layer communications. The basic frame sequence of
802.11 MAC layer authentication procedure is shown in Figure 2.

This approach focuses on exploiting the timing difference between the transmissions
of first acknowledgment (ACK1) and first Authentication response (AUTH2) from a
device. This time lapse is indicated in the Figure 2 as t. Since t cannot be measured
unless accessing the node being fingerprinted, t′ is measured from the Monitoring
node. This approximation is possible assuming that the timing difference of signal
propagation between monitoring node and access point is negligible. STA initiates
the authentication procedure by transmitting AUTH1 message and MON node keeps
recording all the communication between the STA and AP including timestamps.
The process is iterated multiple times to generate enough data for the statistical
analysis. The mean and the difference of each sample with the mean (deviations)
are calculated for set of samples. A fingerprint is generated by calculating a relative
histogram of the deviations to uniquely represent a device and a classifier is built
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using Support Vector Machines (SVM).

This approach was tested with a set of wireless access points and has achieved 86%
prediction accuracy. Nevertheless, the test device set was extremely limited (5 to
be exact), thus with the addition of more devices prediction accuracy might be
reduced further. One major consideration under this approach is the validity of the
assumption t = t′. We can assume this to be true, if the path between MON and AP
remains same during the transmission of ACK1 and AUTH1. But in an environment
where MON and AP are mobile the assumption might be invalid. Furthermore, the
timing variability of MON due to the other processes running in MON, can falsify
the assumption.

2.1.3 Use of association redirection

Four types of frames are transmitted between an Access point and a client station
during the initial connection; authentication request, authentication response, asso-
ciation request and association response. Association redirection happens when the
access point uses another address in the association response than the one mentioned
in the authentication response frame. The approach explained in [23] exploits the
association redirection to fingerprint clients connecting to a wireless access point.
It has been noted that during an association redirection of a wireless access point,
connecting clients behave differently to each other. In this technique, when the AP
is responding to the association request it changes source address, BSSID address
and both of them together in the association response to generate unique responses
from the clients. An extension of the approach was implemented by applying the
redirection on authentication responses from the access points which increased the
detection of unique devices. The technique was able to fingerprint 9 different devices
during the experiment with both authentication and association redirection mecha-
nisms. A dysfunction of association could happen as a result of this modification in
the association process, which could be a major drawback in this technique.

2.2 Passive device fingerprinting

2.2.1 Clock-skew deviation based fingerprinting

Basic concept behind this approach is to exploit the minute deviations in a device’s
clock skew to uniquely represent that device. Vern Paxon [24] defines clock skew as
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“A clock’s skew at a particular moment is the frequency difference (first derivative
of its offset with respect to true time) between the clock and national standards”.
It is a result of minute deviations between the clock oscillators in different devices.
Moon et al. [25] explains that the clock skews are relatively stable and constant for a
particular device. This phenomena of variability in clock skews has been used with
slight differences for fingerprinting devices in [17, 18, 19] and [20].

Transmission control protocol (TCP) includes a notion of the time of the device in
its TCP flows as Timestamp option based on RFC 1323. In [17], TCP Timestamp
option in the TCP header is used to derive the clock skew of a device and generate
a fingerprint of the device. It has been noted that in all modern operating systems
TCP Timestamp option is implemented which is a 32-bit timestamp generated by
the origin. The article explains that the clock skews can be measured by comparing
the timetstamps in the TCP header for two consecutive packets with timestamp
values at the fingerprinter for the same two packets. Passive, active and semi-passive
variants of this technique has shown promising results in fingerprinting devices when
they are behind NAT/ firewall, independent of the distance or access technology.
Nonetheless, scalable deployment of this approach is hindered by the necessity of
having the TCP timestamp option enabled. Older devices which do not have the
TCP timestamp option and the devices that have disabled it will not be able to
fingerprinted with this approach. Furthermore, time consumption of fingerprinting
process due to the deep packet inspection is significant.

Another clock-skew based device fingerprinting technique called ‘GTID’ has been
introduced in [20] which passively captures traffic of wireless devices on a wired seg-
ment between the end destination and the access point. The process involves three
main steps; feature extraction, signature generation and similarity measure. Packet
inter-arrival time (IAT) is selected as the feature under this approach which rep-
resents the delay between two successive packets in the flow. Signature generation
is focusing on identifying the distribution of the IAT vector due to the repetitive
nature of network traffic. It is achieved by a binning process which uses N (empiri-
cally found to be 300) equally sized bins and measuring the number of IAT values
falling in each of the bins (frequency). Once the signature generation is completed,
a closeness measure is used to compare the similarity between two signatures us-
ing Artificial Neural Networks (ANNs). Generated frequency vector representing a
device is input to the ANN and it compares the frequency vector with the master
database, returning a closeness value between 0 - 1 where 1 is the perfect match.
Proposed technique is capable of identifying device-types as well as unique devices.
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Unlike most of the device fingerprinting approaches, GTID has the ability to identify
previously unseen devices. Further it supports the IP level encrypted traffic and
compatible with any IP enabled device. Similar to most of the packet timing based
work, GTID also get affected by the buffering in switches and routers which limits
its deployment when devices are connected through Internet. In addition, capturing
traffic might be difficult sometimes due to restricted network access, as the traffic
capturing needs to take place on the wired segment in between the AP and end
destination. In terms of the machine learning mechanism used in this technique,
ANNs require a greater computational resources [26], thus is not easily deployable
at the edge networks. Apart from that, in order to achieve the optimum state
learning with minimal error it could take a considerable duration which slows down
the classification model generation process.

2.2.2 Packet inter-arrival time-based fingerprinting

In this technique, shifts in the inter-arrival times of a packet train caused by device’s
internal architectural differences are analyzed to create a unique fingerprint for a
device. [13] and [27] analyze the differences of responses by different devices when
they are subjected to a packet train, to fingerprint devices. These differences in
responses are due to the heterogeneity of device components in chip-set, firmware
and drivers. The technique introduced in [13], fingerprints wireless Access Points
(APs) in four steps as shown in Figure 3. In the feature extraction phase, a packet
train is sent through the access point and the egress traffic is captured where each
individual packet is shifted in time. Then for the captured packet train, packet inter-
arrival times (time delay between two consecutive packets) are calculated and an
inter-arrival time (IAT) sequence is generated. Then in the next step, IAT sequence
is subjected to wavelet transform that decomposes the IAT vector in to wavelet
coefficients in order to generate a signature. The resultant set of coefficients is
used as a master signature to represent the device-type and by repeating the same
steps, a collection of master signatures are generated representing each AP type.
When a signature of an unknown AP needs to be classified, it is compared with a
set of available master signatures in the similarity measure step, by measuring the
circular-cross correlation. The device-type with the highest circular-cross correlation
is predicted as the type of the unknown device.

It has suggested that the prediction accuracy could be improved by splitting the
packet transmission so that packet train is sent through a wire and received wire-
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Figure 3: Overview of wireless AP fingerprinting by analyzing packet inter-
arrival times.

lessly, reducing the delay introduced by accessing the wireless link twice. This
passive technique has been evaluated using emulated packets for 6 different wireless
APs with an accuracy reaching 100% with the increase of the number of packets.
Even though this technique has shown impressive results, the size of the test device
set is rather small. With more devices using live packets instead of emulated traffic
the prediction correctness might get affected.

2.2.3 Host identification via USB fingerprinting

A novel approach of device fingerprinting is explained in [14] which exploits the
unique characteristics of the USB hardware and software stacks due to its complexity,
variability and ubiquity. These unique characteristics allow distinguishing between
model identifiers, operating systems and state (real or virtual) of the devices. It
has been noticed that the sequence of USB transactions and inter-arrival timing of
commands get affected due to aforementioned characteristics. A set of computers
are used as a test set and the USB traces for each device are captured for 15 seconds
by connecting the computer to an USB protocol analyzer to capture high precision
transactions. This approach can perform both operation systems fingerprinting and
machine-type fingerprinting.

• Operating system fingerprinting
Enumeration and bulk IN-OUT transfer, USB transactions have shown to be
critically important in identifying the operating systems of devices. Enumer-
ations happens at the start of a communication between two devices where
the sequence of transactions depends on the operating system. After a device
is configured, during the Bulk In-OUT transfer requests, the type and size of
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<=102.365 >102.365
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Figure 4: Decision tree classifier generated from thumb drive characteris-
tics. All the timings for Reset and Suspend operations are in milliseconds. Finger-
print characteristics of a machine is compared to intervals in the decision to derive
on the machine-types as indicated by Elliptical nodes.

requests are determined by the operating systems. By comparing the above
two features operating system fingerprinting is achieved.

• Machine-type fingerprinting
In uniquely identifying machine-types, this study has focused on analyzing
time intervals between USB requests (inter-arrival time of commands). It has
been discovered that for different machine-types the intervals fall in different
ranges. In this study Suspend, Reset and Retry USB requests are analyzed to
compute time intervals to fingerprint a machine-type. Since the comparison
is not a simple one-to-one mapping as in operation system fingerprinting, a
decision tree structure is used as shown in Figure 4.

Experiments have shown that this technique achieves 100% accuracy in OS finger-
printing and over 95% in machine-type fingerprinting. Despite the higher prediction
accuracy, this technique has several limitations. In order to acquire high precision
timing data, a costly and bulky USB protocol analyzer is required along with a
physical connection to the fingerprintee, which might not be feasible at all times.
Furthermore, the stability of the features selected have shown inconsistency over
time, for an example Retry time intervals have shown a deviation after two weeks
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during the evaluation.

2.2.4 Timing analysis of probe request frames

Probe request frames are used by wireless devices in 802.11 active scanning process,
to search for wireless access points (APs) present in the wireless vicinity as soon as
the initialization of wireless Network Interface Card (NIC) of the device. Even after
connecting to an AP, probe request frames are continuously transferred between
the AP and the device, but in a lesser frequency. Non-standard implementations of
the active scanning process, has led different drivers to perform active scanning in
slightly different techniques which creates a mean to distinguish different devices.
As a result, even though all probe request frames are periodic, the periodic intervals
vary between different NIC drivers as seen in Figure 2 of Franklin et al. [28], for a D-
Link driver for the D-Link DWL-G520 and a CISCO driver for Aironet. This concept
has been exploited for fingerprinting wireless drivers and devices under [16, 28, 29]
and [30].

In [28], wireless driver fingerprinting happens in two steps; Trace capture and Fin-
gerprint generation. In trace capture phase, time intervals between all successive
probe request frames between the driver and an AP are captured. Then the sequence
of values are binned using a binning approach to assign them to discrete bins. Two
attributes related to probe rate are selected to fingerprint a wireless driver namely,
bin frequency and the average time interval of the bin. First attribute represents the
size of the bin and second the mean value of the bin. These two attributes creates
a master signature for a wireless device. When an unknown wireless driver needs
to be identified, it’s signature is compared with the signatures in the master sig-
nature database, to determine the wireless driver type. Hardware abstraction layer
implementations hinder the fingerprinting ability of this technique as it reduces the
diversity of the wireless drivers. As an example, the MadWifi driver for Linux works
well with most of the Atheros chipsets creating a more homogeneous environment.

Desmond et al. [16] explain that the probe request intervals are not only dependent
on NIC drivers but also device-type and operating systems used. It uses the dis-
tribution of inter-burst latencies to fingerprint wireless devices. Even though this
technique has a device prediction accuracy of 0.81, due to the slower rate of active
scanning process, higher amount of time and lengthy traces are required. For an
example, as per the evaluation results the average time required is approximately
1 hour to capture sufficient data to fingerprint a device and this could go up to 2
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Type Feature
Link layer protocol (2) ARP, LLC
Network Layer Protocol (4) IP, ICMP, ICMPv6, EAPoL
Transport layer protocol (2) TCP, UDP
Application layer protocol (8) HTTP, HTTPS, DHCP, BOOTP,

SSDP, DNS, MDNS, NTP
IP options (2) Padding, Router Alert
Packet content (2) Size (int), Raw data
IP address (1) Destination IP counter (int)
Port class (2) Source (int) / Destination (int)

Table 2: List of extracted features to uniquely represent a device. All
features except the ones marked with “int” are binary features.

hours for devices such as Intel NICs. In addition lossy nature of the wireless commu-
nication due to shadowing, interference etc. acts as a major barrier, causing delays
and packet losses. Furthermore, timing measurements of both the above mentioned
approaches are vulnerable to effects of temperature changes.

2.2.5 Fingerprinting with packet-based features

IoT Sentinel [6] uses differences of feature values present in the headers (Ethernet,
IP, TCP/UDP) of packets originated from the device during its initial startup, to dis-
tinguish device-types. When a newly observed MAC address is detected, the system
records the packets originated from the device, during the device setup phase. By
analyzing the Ethernet, IP and Transport packet headers, 23 features are extracted
per packet as indicated in Table 2.

The resultant set of feature vectors were stored in a 23 x N matrix F, where N is
the number of packets processed. Consecutively identical packets were discarded
when generating matrix F. Since F depends on the number of packets in the trace,
a fixed-size fingerprint F1 was built. F1 was generated using the first 12 unique
feature vectors from F resulting in a 276-dimensional fingerprint (12 vectors x 23
features). When a particular device did not have sufficient packets to generate a
276 dimensional fingerprint, it was padded with 0 values to make it consistent. This
fixed-size fingerprint F1 was used to train the machine learning classification model.

One classifier per device-type is generated using the fixed-size fingerprints (F1s)
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based on Random Forest classification algorithm. When training a classifier for a
device type, all collected fixed-size fingerprints were split into two classes where all
the fingerprints for that particular device is considered as one class and a subset
of fingerprints from all other device types as the other class. The ratio of the
number of fingerprints of device class to other class was 1:10 and a discrimination
threshold of 0.2 was used to determine the outcome of a classifier where if the
probability of prediction is over 0.2 it was declared accepted and rejected otherwise.
Random Forest classifier was implemented with 50 decision trees at a depth of 3,
using Scikit-learn [31]. This classifier creation was repeated for all device types
and a set of classifiers were generated. An unknown fingerprint was subjected to all
the classifiers and the results were collected. If the unknown fingerprint is positively
detected by only one classifier, the unknown fingerprint is considered to be one of
that class. But if multiple classifiers show positive results another separation step
was followed.

When more than one classifier accepts some unknown fingerprint, edit distance based
metric was used to discriminate among them. In this case Damerau-Levenshtein
edit distance was used to compute the edit distance. Edit distance was calculated
between the unknown fingerprint F and five fingerprints for each device type it got a
match for. The summed up distances per device-type were used to derive on a global
dissimilarity score, where the lowest dissimilarity score gives the final prediction.

This passive approach is aimed at Internet of Things and suitable for devices com-
municating over WiFi or any channel supporting TCP/IP. Fingerprinting can be
performed in a security gateway on the edge networks as it doesn’t need high pro-
cessing power or memory. In average it requires 21 packets to generate a fingerprint,
thus is faster and scalable. Since it extracts features from header fields, prior knowl-
edge of syntax or data fields are not required and encrypted traffic also can be used.
The technique was evaluated using a set of 27 off-the-shelf IoT devices and achieved
0.815 global prediction accuracy. Nonetheless, the machine learning algorithm used
involves time consuming edit distance calculations which could be simplified further
by using a multi-class classifier rather than using 27 binary classifiers. In addition
it doesn’t consider important classification features related to distribution of packet
sizes, inter-arrival times and Fast Fourier Transform of inter-arrival times.
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Active(A)/Passive(P) P A A P P P P P P P
Scalable 3 5 - - - - - 3 3 3

Wireless fingerprinting 3 3 3 5 3 3 3 5 3 3

Stability of features 3 3 - 5 5 5 3 5 3 3

Feature type: Time(T)/ Header(H) T H T T T T T T H H
Identify device-type(T)/unique device(U) T T U T U U U T/U T T
Dependencies 5 3 5 3 5 5 3 5 5 3

Detection of unseen devices 5 5 - - - - - 3 3 3

Need for special packets 5 3 5 5 5 5 5 5 5 3

Need for special equipment 5 5 5 3 5 5 5 5 5 3

Applicable to all devices 3 3 5 5 5 5 - 3 3 5

Evaluated with IoT devices 5 5 5 5 5 5 5 - 3 5

Prediction accuracy 0.9 - 0.86 0.95 0.81 - - - 0.81 0.86
Size of test data set (number of devices) 6 - 5 5 3 - - - 27 26

Table 3: Comparison of state-of-the-art device fingerprinting techniques.
First column lists down the set of parameters to compare the performance.

2.3 Summary

A comparison of aforementioned device fingerprinting technique can be seen in Ta-
ble 3. Active fingerprinting technique proposed by Bratus et al. [11], is less scalable
as with the increase of devices it will significantly utilize the useful bandwidth of the
network. In contrast, passive approaches [6, 13, 20] and [15] are capable of scaling
up with the addition of devices. As indicated in the Table 3, Letaw et al. [14] and
Uluagac et al. [20] cannot be used to fingerprint wirelessly as they need a physical
connectivity with the device being fingerprinted. Packet timing based fingerprint-
ing techniques experience stability issues in features due to the errors caused by
buffering in switches and routers and effects of temperature.

The fingerprinting techniques proposed in [12, 13, 14] and [16] exhibit accuracies
higher than 0.8, however the number of devices used for the evaluation is fairly less.
Even though Francois et al. [15] have used a set of 26 devices to validate their claim,
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all the devices used were hardphones or SIP servers.

Among device fingerprinting techniques discussed in Section 2, despite active fin-
gerprinting techniques have a high accuracy, usage of it is limited, because of the
lack of cooperation of devices. Further, the ability to fingerprint devices without
cooperation from devices should be a vital component of a fingerprinting technique
as one of their main purposes is to identify rogue/unauthorized devices in the net-
work. Hence we have considered on implementing a passive technique excluding the
active techniques discuss prior and analyzed the suited technique among clock-skew
based, packet inter-arrival time/ timing based or packet header information based
techniques. Even though USB based fingerprinting [14] seems to be promising its
implementation is hindered because of the necessity of having a USB stack and the
need for costly, bulky equipment to capture high precision data.

Most of the passive techniques discussed in Section 2 are based on measuring the
timing of packets. Higher time consumption, necessity of deep packet inspection,
errors caused by buffering in switches and routers, limitations introduced by proto-
col alterations and effect of the temperature, however have raised complexities for
the deployment of timing based fingerprinting techniques. Furthermore, these tech-
niques have been evaluated by fingerprinting APs or computers, thus compatibility
with off-the-shelf IoT remains to be unanswered. IoT sentinel [6], however has the
ability to fingerprint a device passively and faster by analyzing the headers of a
small set of packets. It can detect previously unseen devices and it can be appli-
cable to all devices. More importantly it has been evaluated with off-the-shelf IoT
devices. Even though the average prediction accuracy is comparatively lower then
other work, it has considered a diversified set of devices whereas Sieka et al. [12],
Gao et al. [13] and Letaw et al. [14] have achieved higher accuracies with a narrow
test set for evaluation. Despite the fact that the average device prediction accuracy
is 0.81, IoT Sentinel has a prediction accuracy of 100% for 10 device-types which
is still greater than the test sets of aforementioned studies. Francois et al. [15] has
achieved a prediction accuracy of 0.86 with a set of 26 devices which is at first seems
to overtake IoT Sentinel. But the devices were limited to a specific category that
uses SIP as a protocol, thus limiting the scalability. Hence compared to the state-
of-the-art techniques, IoT Sentinel edges ahead of other work and we have identified
its importance.

The IoT Sentinel is a lightweight, scalable passive fingerprinting approach. However,
the prediction accuracy for a set of devices (10 device-types) under this technique
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remains around 50% and there is a possibility of devices from same vendor to be
confused with each other. In order to overcome these limitations of the existing
techniques, We propose a device fingerprinting technique, which extracts features
from headers of a sequence of packets, to generate a fingerprint for a device and use
machine learning to classify the fingerprints.
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3 Sequence-based device fingerprinting

3.1 Overview

We propose a device-type fingerprinting technique, based on extracting the impor-
tant distinguishable features from the headers (Ethernet, IP, TCP/UDP) of packets
during the initial communication of a device. Since different vendors request differ-
ent information/ parameters from external entities during its initial communication
phase, capturing the initial communication patterns become a perfect criteria for
fingerprinting devices. Furthermore, in our approach we use a sequence, a set of
packets ordered by timestamps to extract the features. A sequence of packets can
be considered in two variants; bidirectional sequences (set of packets between a
device and other external entities where device can be present as either source or
destination) and source-originated sequences (set of packets originated from a de-
vice where device is always the source). In our approach we have considered features
from both bidirectional and source-originated sequences. In the training phase, us-
ing the extracted features, a fingerprint (collection of features which represents a
device) is generated for each device and a multi-class classifier is trained using ma-
chine learning algorithms as shown in Figure 5. When an unknown device needs
to be identified in the prediction phase, a fingerprint is generated using the packet
sequence during its initial setup with the same set of features as indicated in Figure
6. Then the generated fingerprinting is subjected to the classifier derived earlier
and a list of probabilities are be predicted. The device-type related to the highest
probability is assigned as the type of the test device.

IoT Devices A

Feature 

Extraction
Training

IoT Devices B

IoT Devices n

fingerprint A

fingerprint B

fingerprint n

Classifier

Master 

Database

device identity

device identity

device identity

Figure 5: Training phase - classification model generation. From each IoT
device, its identity and packet sequence are inputs for feature extraction and gen-
erating a fingerprint. Then fingerprints of all devices are used in the training phase
to train a classifier.

From this point onwards we will be referring to the IoT Sentinel [6] fingerprinting
approach as packet-based device fingerprinting approach. Our sequence-based de-
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Device 
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Device
fingerprint

Classifier

Master 

Database

Prediction
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Figure 6: Prediction phase - Device identification. Feature extraction gener-
ates a fingerprint with the packet sequence of the test device. Then it is subjected
to the classifier which use a master database to provide a list of predictions. The
device-type related to the highest probability (P) is predicted as the type of the test
device.

vice fingerprinting approach differs from that of the packet-based mainly in feature
selection criteria. While packet-based approach focuses on extracting features from
each individual packet separately, we have focused on using summary statistics and
Fast Fourier Transform components of measurements as features. We identified that
the summary statistics and Fast Fourier Transform components are vital in classi-
fication as suggested by Nguyen et al. [32]. In addition, we introduced separate
feature sets based on the directionality of the traffic considering packets originated
from source (source-originated) and packets between source and other entities (bidi-
rectional). In contrast packet-based technique only employ packets originated from
source to generate features. Further we have simplified the two-fold classification
mechanism of packet-based technique which includes 27 binary classifiers and 5-7 tie
breaking edit distance calculations in to a single step. We used a multi-class Random
Forest classification algorithm which outputs a list of probabilities among which the
device label with the highest probability is assigned as the predicted device-type.
Reduction to a single step reduces the time required for classification significantly
due to the omission of the edit distance calculation. Furthermore, we have employed
F1-score as the metric for the evaluation of the performance of sequence-based tech-
nique which considers the effect of False Positives and False Negatives compared to
the accuracy metric used in packet-based approach.

3.2 Feature selection

In search for directions to define a feature set, we referred to articles related to
feature-based device fingerprinting techniques as well as feature-based Internet traf-
fic classification techniques to identify promising sequence-based features. IoT Sen-
tinel [6] uses 23 features extracted from packet headers at the initial startup of a
device as shown in Figure 7, with their importance to the classification. It can be
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seen that the accuracy of device fingerprinting depends mainly on four features;
Packet_size, Destination_IP, Source_port and Destination_port. A survey paper
on feature-based Internet traffic classification by Nguyen et al. [32] summarizes a list
of prominent work on Internet traffic classification. It suggests that summary statis-
tics (maximum, minimum, variance, quartiles, average etc.) of traffic measurements
(packet size, packet inter-arrival time etc.) can be used as features to represent a
class. As an example following list of features are frequently used in Internet traffic
classification as per the authors.

• Packet length statistics (minimum, maximum, quartiles)

• Packet inter-arrival statistics (mean, variance)

• TCP/UDP port numbers

• Fourier transform of packet inter-arrival times

• Total packet count

In addition, Moore et al. [33] proposes that different variants of packet length statis-
tics such as Ethernet packet size, IP packet size and control header size have a signif-
icant impact on flow-classification. Further it highlights the importance of defining
features based on the direction of traffic flows (bidirectional or unidirectional). Our
feature selection was influenced by the findings of aforementioned work.

We extract a set of 90 features from Ethernet, IP and TCP/ UDP packet headers
to generate a fingerprint for a device-type as shown in Table 4.

We selected minimum, maximum, first quartile, median, third quartile, mean, vari-
ance and inter-quartile range as the summary statistics to be calculated for each
feature type as they were the most frequently used statistics in Internet traffic clas-
sification. Assume the length of the sequence to be L. We measured the inter-arrival
times (delay between consecutive packets) for the L packets and computed the sum-
mary statistics as well as the 10 highest magnitudes of the Fast Fourier transform to
generate 18 features. We have divided the packet size measurement into three subs
categories as Ethernet frame size, IP packet header size and IP payload size to gain
additional information about the behavior of each header size used during the initial
communication of different devices. Then we have computed summary statistics for
each of the above feature types (header sizes) in order to grasp the aspects related
to distribution of each feature type. Total number of packets transmitted during a
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Figure 7: Average feature importance values for packet-based device fin-
gerprinting. Error bars showing the 95% confidence interval of the average impor-
tance values. The features are ordered in the decreasing order of importance and
the results are obtained by performing a 10-fold cross validation for 10 iterations.

device initiation is relatively higher compared to the normal operation of the device.
Hence we introduced a packet count feature to measure the packet transmission dur-
ing a defined time span. Furthermore, we also extract two variations of same feature
set considering bidirectional sequences and source-originated sequences. For source-
originated sequences we consider only packets having the source MAC address of the
device being fingerprinted, while for the bidirectional sequences we consider packets
where either the source or the destination has the MAC address of the device being
fingerprinted. In order to represent the direction of each packet between the de-
vice and other entities during the startup, a new feature was defined. Each packet
direction was represented by an integer as mentioned in Table 4 with respect to
the device and the packet direction feature was created as a series of integers for
the first L packets between a device and other entities. During the startup of a
device, it communicates with various outside units to receive parameters. Thus we
computed the IP destinations feature to denote the count and order of which the
device communicates during its startup. A counter is incremented whenever the
device communicates with a new IP address and the value of the counter is added
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Feature
ID

Feature Type Description

0 - 7 Packet inter-arrival time (1)
Minimum, Maximum, Q1, Me-
dian, Mean, Q3, Variance, IQR

Packet inter-arrival times for the bidi-
rectional sequence

8 - 17 FFT frequency of inter-arrival
times (2)

10 highest magnitudes of Fast Fourier
transform of packet inter-arrival times
for the bidirectional sequence

18 - 25 Ethernet packet size (3)
Minimum, Maximum, Q1, Me-
dian, Mean, Q3, Variance, IQR

Size of Ethernet packets for the bidirec-
tional sequence

26 - 33 IP payload size (4)
Minimum, Maximum, Q1, Me-
dian, Mean, Q3, Variance, IQR

Size of IP payload for the bidirectional
sequence

34 - 41 IP packet header size (5)
Minimum, Maximum, Q1, Me-
dian, Mean, Q3, Variance, IQR

Size of the IP header or control bits for
the bidirectional sequence

42 Packet count (6) Total number of packets transmitted
during the first 5 seconds

43 Packet direction (7) Series of int values, each representing
direction of a packet as,
0: Source -> destination
1: Destination -> source

44 - 86 Same above set of features (0-42)
for packets originated from source

Filter packets from source and calculate
the same set of features as above

87 IP destinations (8) Number of different IP addresses the
source establish connections

88 Source port class (9) Series of values each representing the
source/ destination port category as,
A: no port, B: well-known,
C: registered, D: dynamic

89 Destination port class (10)

Table 4: Feature set used in sequence-based device fingerprinting

to a series of values for the first L packets from the source. Analyzing the TCP/
UDP ports of the startup traffic provide a vision of services/ protocols each device
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uses to boot up. We assigned a value per packet depending on the port value as
mentioned in Table 4 for the first L packets originated from source resulting in a
series of values. Two features were created by inspecting the source and destination
ports.

Feature types (1), (2), (3), (4), (5) and (6) are generated for bidirectional and source-
originated sequences separately which results (2*(8+10+8+8+8+1)) = 86 features.
Feature type (7) is generated only for bidirectional sequences while feature types
(8), (9), and (10) are computed for source-originated sequences. The above (86+4)
= 90 features are used to generate a fingerprint to uniquely represent a device-type.

A comparison of the feature extraction under packet-based and sequence-based ap-
proaches can be explained as below, considering the packet size parameter as an
example. If X shows the list of packet sizes of the first n packets from a device.
X = [x1, x2, x3, x4 ..., xk, ...., xn]
Packet-based approach extracts feature from each individual packet for k packets
(k<n), thus the resultant fingerprint would be,
fpkt = [x1, x2, x3, x4 ......., xk]
In contrast, in the sequence-based fingerprinting, summary statistics of the packet
sizes of k packets are computed to create fingerprint. If first k packets are repre-
sented by Xk where Xk = [x1, x2, x3, x4 ......., xk], the resultant fingerprint would
be,
fseq = [maximum(Xk), minimum(Xk), mean(Xk), first quartile(Xk), median(Xk),
third quartile(Xk), Variance(Xk), inter-quartile range(Xk)]

The fingerprint generated using the packet-based approach will be a subset of X,
whereas under sequence-based approach it will contain summary statistics (min,
max, mean etc.) of X.

When the setup traffic of a new device is captured, a fingerprint is generated follow-
ing the above procedure. Then the fingerprint is subjected to a trained multi-class
machine learning classifier which is discussed in Section 3.3.

3.3 Fingerprint classification

After extracting features and generating fingerprints, next step is to develop a finger-
printing algorithm that has the capability of identifying a fingerprint. Depending on
the prior knowledge of device-types to the classification, fingerprinting algorithms
can be divided into two categories: Supervised (White-listing) and unsupervised
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Figure 8: A section of a decision tree from the Random Forest classifier
starting from root node. Colored-boxes represent the end-nodes where a class
label is assigned to each and transparent boxes represent decision-making nodes.
First parameter in the decision-making node is the feature and the threshold. ‘Gini’
value denotes the impurity at each node and ‘samples’ represent the total number
of training samples. The class name in the colored-boxes denotes the final predicted
class.

machine learning. In supervised learning approach knowledge of existing device-
types should be known to the fingerprinting algorithm in advance and Unsupervised
algorithms do not require prior knowledge. In our proposed approach a supervised
machine learning technique was used to train a machine learning classification model
with the extracted fingerprints. We selected Random Forest classification algorithm
as the supervised learning model due to the higher accuracy of the results. The Ran-
dom Forest classifier is an ensemble algorithm that uses a forest of decision trees and
aggregates the decisions of each tree to derive on the final prediction. Aggregation of
results reduce the effect of noise and over-fitting, thus provide accurate predictions.
The basic parameters of the Random Forest algorithm are number of decision trees
and the decision tree related parameters like maximum tree depth, minimum split,
split criteria etc.

The first few branches of a decision tree with the Random Forest algorithm is pre-
sented in Figure 8, which indicates the process of decision making in the classifier (a
complete decision tree can be seen in Figure 21 in Appendix 2). A decision tree is
created by comparing the feature values based on Gini impurity. The Gini impurity
is a measure of how often a randomly chosen fingerprint will be classified incorrectly
if it is classified randomly based on the distribution of classes. The dataset is split
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into training and testing set using k-fold cross validation mechanism and a classifier
is generated using the training set with same number of items in each device class
(balanced training set). When an unknown fingerprint is subjected to the classifier,
it predicts a list of probabilities. Each probability value in the list represents the
probability of the unknown fingerprint to be classified as a device-type the classifier
is trained for. The device-type label with the highest probability is assigned as the
predicted device type of the unknown fingerprint.

3.4 Summary

Our solution for device identification is based on capturing the initial communication
behavior of a device during its setup and extracting the features related to a sequence
of packets. A set of summary statistics and Fast Fourier transform components of
sequence-based feature types such as Ethernet frame size, packet inter-arrival times
introduces the notion of distribution of feature values to distinguish different device-
types. In addition we consider the directionality of sequences as bidirectional and
source-originated to define two sets of same feature types resulting in 90 features in
total. Using the extracted features, a fingerprint is generated for each device and a
multi-class classification model is derived using Random Forest classification model
that has the ability to distinguish different devices based on feature values.
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4 Methodology

4.1 Dataset

The fingerprinting technique was evaluated using the same dataset that was used by
the authors of IoT Sentinel [6]. The dataset contains traffic traces for 27 different off-
the-shelf IoT devices related to smart lighting, health monitoring, home automation,
security cameras and household appliances. The list of devices along with the device
model information and supported connectivity technologies can be seen in Table 5.

Identifier Device Model W
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Aria Fitbit Aria WiFi-enabled scale
HomeMaticPlug Homematic pluggable switch HMIP-PS
Withings Withings Wireless Scale WS-30
MAXGateway MAX! Cube LAN Gateway for MAX! Home automation sensors
HueBridge Philips Hue Bridge model 3241312018
HueSwitch Philips Hue Light Switch PTM 215Z
EdnetGateway Ednet.living Starter kit power Gateway
EdnetCam Ednet Wireless indoor IP camera Cube
EdimaxCam Edimax IC-3115W Smart HD WiFi Network Camera
Lightify Osram Lightify Gateway
WeMoInsightSwitch WeMo Insight Switch model F7C029de
WeMoLink WeMo Link Lighting Bridge model F7C031vf
WeMoSwitch WeMo Switch model F7C027de
D-LinkHomeHub D-Link Connected Home Hub DCH-G020
D-LinkDoorSensor D-Link Door & Window sensor
D-LinkDayCam D-Link WiFi Day Camera DCS-930L
D-LinkCam D-Link HD IP Camera DCH-935L
D-LinkSwitch D-Link Smart plug DSP-W215
D-LinkWaterSensor D-Link Water sensor DCH-S160
D-LinkSiren D-Link Siren DCH-S220
D-LinkSensor D-Link WiFi Motion sensor DCH-S150
TP-LinkPlugHS110 TP-Link WiFi Smart plug HS110
TP-LinkPlugHS100 TP-Link WiFi Smart plug HS100
EdimaxPlug1101W Edimax SP-1101W Smart Plug Switch
EdimaxPlug2101W Edimax SP-2101W Smart Plug Switch
SmarterCoffee Smarter SmarterCoffee coffee machine SMC10-EU
iKettle2 Smarter iKettle 2.0 water kettle SMK20-EU

Table 5: Description of devices used in evaluating our fingerprinting tech-
nique. ‘Identifiers’ are used to address each device-type throughout the thesis.

The dataset consists of the traffic traces of devices during their setup procedure
that includes activating the device, connecting to the device directly over WiFi
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or Ethernet and transmitting the WiFi credentials. Most of the devices have been
connected to the network using WiFi or Ethernet, but few devices used IoT protocols
like ZigBee or Z-Wave to indirectly connect to network through WiFi or Ethernet
hubs. For those devices, indirect traffic of the hub has been captured which acts as a
gateway. A WiFi access point (AP) has been emulated with a laptop using hostapd

to create WiFi interfaces of the AP and external Ethernet port was attached to the
laptop to represent the Ethernet port of the AP. The packet capture module has
been implemented using tcpdump. The setup process has been facilitated by a smart-
phone application or a PC application following a guided list of instructions. After
each capture, the device has been hard reset to revert it back to factory settings.
The setup procedure has been repeated for 20 times, to generate sufficient amount
(20) of fingerprints for each device which accounts to 540 fingerprints in total. The
average capture duration of traces was 68 seconds and average packet length was
350 packets.

4.2 Feature extraction

Packet-based fingerprinting technique extracts 23 features from each individual packet
and constructs a feature vector. Then it generates a 176 dimensional fingerprint
for each device using the first 12 unique feature vectors. In order to generate a
fingerprint, packet-based fingerprinting technique used 21 packets in average. In
sequence-based fingerprinting approach, we evaluated the performance of the sys-
tem with sequence lengths (number of packets) in the range of 10 to 23. By analyzing
the results we discovered that the best performance occurs when the sequence length
is 21. Hence we selected 21 packets as the sequence length and then for generat-
ing these sequences, we included all packets intercepted till we obtained 21 packets
originating from the device being fingerprinted. The packets were filtered using the
device’s MAC address to create the two sequences with 21 packets each. Once the
filtered sequence is complete, Scapy1 was used to extract features as described in
Section 3.2 to produces a fingerprint. For each of the capture files, aforementioned
feature extraction was performed and a fingerprint was generated each consisting of
90 features.

1Scapy - Interactive packet manipulation program http://www.secdev.org/projects/scapy/
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4.3 Device classification

Generated fingerprints were used to train a multi-class classifier using Random For-
est (RF) classification algorithm implemented with Scikit-learn [31] libraries. We
used a Random Forest multi-class classifier with 50 decision trees where final pre-
dicted class is the mode of the predicted classes under all decision trees. Classifica-
tion was performed with a 10-fold cross validation for 10 iterations to generalize the
results. In addition we implemented the system proposed by IoT Sentinel for the
purpose of comparison and evaluation.

4.4 Metrics

4.4.1 Precision

Precision is a measure of relevant instances among retrieved instances, which is also
called as positive predictive value. It represents the probability that a randomly
selected retrieved instance is actually relevant or the probability of it being a false
instance. Precision can be mathematically represented as below.

Precision =
True Positives

True Positives + False Positives
We use Precision to measure the exactness of the predictions and the fraction of
False Positives of each device-type.

4.4.2 Recall

Recall is the referred to as the True Positive rate or sensitivity. It shows the fraction
of relevant instances that have been retrieved over the total relevant instances of a
test or the probability of a randomly selected relevant instance is retrieved in search.
We use Recall to measure the completeness of the prediction for each device-type.
Mathematical representation of Recall is as follows.

Recall =
True Positives

True Positives + False Negatives

4.4.3 F1-score

Fβ-score is a measure of effectiveness of retrieval, giving β times importance to
Recall as Precision. The mathematical equation for Fβ-score score is shown below.
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Fβ = (1 + β2) · Precision · Recall
(β2 · Precision) + Recall

F1-score is a variant of Fβ-score score, attaching an equal weight to Precision and
Recall, thus is balanced. Other commonly used F measures include F2-score and
F0.5-score which weighs Recall higher than Precision and Recall lower than Preci-
sion respectively. We use the F1-score as the performance metric to measure the
accuracy of prediction for each device-type. The F1-score is the harmonic mean of
Precision and Recall, and it reaches its maximum value when both Precision and Re-
call reach their respective maximums. The mathematical representation of F1-score
is as follows.

F1 = 2 · Precision · Recall
Precision + Recall

It summarizes the exactness and completeness of prediction by taking into account
the impact of False Positives and False Negatives, and compared with the Accuracy
metric, the F1-score edges ahead in terms of the ability to distinguish between False
Positives and False Negatives. In the rest of the paper, all figures showing the F1-
score include error bars showing the 95% confidence intervals, and these results were
obtained by performing a 10-fold cross validation over 10 iterations.

4.4.4 Zero-one loss

In order to measure the performance of a classifier in terms of the degree of accurate
classifications across all device-types we use Zero-one loss as the metric. Zero-one
loss is a standard loss function used in classification and decision theory which
evaluates the overall performance of a system. It assigns 0 to loss for a correct
classification and 1 for an incorrect classification. Loss value for each prediction is
accumulated and an average of the accumulated loss values is used as the to denote
the Zero-one loss for a classifier in our case.
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5 Performance evaluation

5.1 Selection of a classifier

We first analyze the impact of the selected classification algorithm by compar-
ing the average F1-score among well established classification algorithms using the
scikit-learn [31] library. Minimum, maximum and average F1-score under each
classification algorithm are shown in Table 6 and the classification was performed
with a 10-fold cross-validation over 10 iterations to generalize the results.

Classification algorithm F1-score
Minimum Maximum Average (C.I 95%)

Random Forest 0.8199 0.9803 0.9121 (±0.0063)
Adaptive Boosting (Random Forest) 0.8161 0.9803 0.8980 (±0.0072)
Adaptive Boosting (Decision Tree) 0.7210 0.9432 0.8632 (±0.0081)
Decision Tree 0.7580 0.9605 0.8596 (±0.0085)
Linear SVM 0.7161 0.9210 0.8057 (±0.0090)
Multilayer perceptron (MLP) 0.6432 0.8938 0.7863 (±0.0092)
K-neighbors 0.6716 0.8914 0.7863 (±0.0081)
Gaussian Naive-bayes 0.6117 0.8395 0.7350 (±0.0088)
Radial Basis Function SVM 0.5429 0.8073 0.6873 (±0.0111)
Quadratic Discriminant Analysis 0.3557 0.6681 0.5210 (±0.0115)

Table 6: The performance comparison of classification algorithms. The min-
imum, maximum and average F1-score with 95% confidence intervals are presented.
The list of classifiers are ordered with the decreasing order of average F1-score.

Based on the results, it is observed that the Random Forest Classification exhibits
the highest average prediction F1-score with the least deviation. Even though Adap-
tive Boosting classifier in conjunction with Random Forest and decision tree classi-
fiers classify devices faster than Random Forest, latter edges in terms of the predic-
tion F1-score. Hence we chose Random Forest as the classification algorithm to be
used in the proposed sequence-based device-type fingerprinting technique to train
the classification model and predict device-types.

Further, Figure 9 shows the prediction F1-score for each device-type, for classifi-
cation algorithms Random Forest which was used in [6], Decision Tree in [14] and
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(c) Linear Support Vector Machine

Figure 9: Comparison of classification algorithms. These 3 classification al-
gorithms are selected as they have been used by existing device fingerprinting tech-
nique.
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Figure 10: Feature importance and F1-score variation with the number
of features used to train the classifier. The error bars shows the 95% CI
for the mean feature importance values and F1-score. The results are obtained by
performing a 10-fold cross validation for 10 iterations.

Linear SVM in [12, 15] using the sequence-based featured introduced in our ap-
proach.

5.2 Analysis of feature importance

In the Random Forest algorithm, the importance of a feature in classification is
measured as the decrease in Gini impurity (a measure of how often a randomly
chosen fingerprint will be classified incorrectly if it is classified randomly based on
the distribution of classes) averaged over whole set of trees. The average importance
value of each feature used in the Random Forest classification under sequence-based
device prediction technique are indicated in Figure 10.

The 10 most important features in packet-based and sequence-based approaches are
listed down in Table 7. All of the top 10 important features in sequence-based finger-
printing technique are for sequences originated from source. In addition, among the
top 10 important features, all of them are packet size related features and 80% fea-
tures are for the source-originated sequences and rest for the bidirectional sequences.
Apart from packet size related features, source/destination port class and packet di-
rection features have an impact on prediction accuracy approximately around 0.18
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Packet-based Sequence-based
1 Packet size IP payload size - maximum (S)
2 Destination IP counter Ethernet frame size - maximum (S)
3 Destination port class Ethernet frame size - variance (S)
4 Source port class IP payload size - variance (S)
5 HTTP feature Ethernet frame size - median (S)
6 IP feature IP payload size - maximum (B)
7 UDP feature Ethernet frame size - maximum (B)
8 MDNS feature Ethernet frame size - first quartile (S)
9 TCP feature Ethernet frame size - mean (S)
10 Raw data feature IP payload size - mean (S)

Table 7: Top 5 important features in classification for packet-based and
sequence-based approaches. Features are ordered in the decreasing order of
importance for each approach. Sequence-based features marked with (S) are for
source-originated sequences and (B) are for bidirectional sequences.

and 0.14 respectively, which are among the top 25 influential features. As it is visible
in the Figure 10, there are 8 features having an importance value of 0. These set of
features are identified as the summary statistics (minimum, first quartile, median
and third quartile) related to IP packet header size feature. Regardless, we decided
to keep these features in the feature set as they might be useful when scaling the
classification model with additional devices.

The average prediction F1-score depends on the number of features selected to train
the classifier. This scenario was analyzed by changing the number of features used
to train the classifier and then recording the average F1-score with each number of
features. Figure 10 plots the change to the F1-score against the number of features
used by the classification algorithm to generate the classification model (Figure 22
in the Appendix 3 shows the variation of Precision and Recall with the number of
features). It is noticed that there are few significant rises of the F1-score values with
the number of features added to the classification model specially at points 2, 4, 7,
9 and 25. The reason for those significant rises are the addition of features with
high importance. The importance value of features after first 40, are well below
0.1, resulting in lower impact for differentiating device-types. Thus the first 40
features the F1-score rises over 0.90 and the addition of features until 90, increases
the accuracy from 0.90 to 0.92 gradually without any sharp rises. Hence in situations



37

Aria HueBridge EdnetGateway

DHCP option bytes DHCP option bytes DHCP option bytes
53 3 53 3 53 3
61 9 50 6 12 11
12 16 57 4 57 4
55 10 55 9 55 6
255 1 60 14 255 1

12 13
255 1

Padding 21 Padding 80 Padding 43
Total 300 Total 370 Total 308

Table 8: Inspection of the different DHCP options and padding parameters
for Aria, HueBridge and EdnetGateway. DHCP options are represented with the
standard DHCP option IDs and the size of each option in bytes.

of resource constraint IoT environments deploying a lesser number of features could
be beneficial.

As IP payload size - maximum is the most important feature in sequence-based
device fingerprinting, we analyzed the maximum sized IP payloads of each device.
We noticed that among them, 56% of the packets are Dynamic Host Configuration
Protocol (DHCP), 22% multicast Domain Name System (mDNS) and 15% Trans-
mission Control Protocol (TCP). Further inspection of DHCP packets indicated that
the cause for the difference of IP payload sizes among these DHCP packets is the
DHCP header size, due to different DHCP options and padding values used in the
communication. For an example DHCP header sizes for Aria consists of 300 bytes,
for EdnetGateway it is 308 bytes and for HueBridge it is 370 bytes, thus differ the
IP payload size maximums as a result.

A through inspection of the DHCP header fields, specifically DHCP options and
padding fields for the aforementioned 3 device-types are shown in Table 8. As per
the table, it is clear that the sizes of different DHCP header options vary and devices
use various amount of padding which finally results in different packet sizes.

At certain occasions maximum IP payload size lies close to each other for different
devices. In the case of D-linkSiren and D-LinkSensor, maximum IP payload sizes
are 641 bytes and 640 bytes respectively, thus using just the maximum IP payload
size as a feature is not sufficient. Summary statistics of a parameter provide addi-
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tional insights based on the distribution of the parameter values. These information
add value to the classification model providing means of distinguishing devices. For
an example, using Variance of IP payload sizes along with the maximum IP pay-
load size for a sequence of packets as features in classification, reduce the overlaps of
devices as seen in Figure 14a. This case clarifies the importance of using a set of sum-
mary statistics of parameters under sequence-based device fingerprinting approach
in order to discriminate different devices.

5.3 Comparison to the state-of-the-art

In order to compare the performance of the sequence-based device fingerprinting
technique with state-of-the-art packet-based device fingerprinting (IoT Sentinel) ap-
proach we implemented the device prediction algorithm used by the packet-based
approach. We managed to achieve similar results in comparison to the original im-
plementation. IoT Sentinel has represented its results as accuracy of predictions for
each device-type. Hence we measured the same metric under our implementation
of the IoT Sentinel which will be referred to as packet-based device fingerprinting
approach in order to compare the performance. The difference of average prediction
accuracy of our implementation of packet-based approach, compared with the orig-
inal implementation was 3.2%. Further for the 10 devices with the worst prediction
accuracies under original version, the difference was 3.7% with our approach.

In comparing the performance of the proposed sequence-based device fingerprint-
ing approach with the packet-based counterpart, we decided to employ F1-score as
the main and Precision, Recall as supporting performance metrics as described in
Section 4.4.

A comparison between the packet-based and sequence-based device prediction F1-
score for 27 devices is shown in Figure 11. All devices except D-LinkWaterSensor
have F1-score over 0.60, which 18 of them are in fact over 0.95. Average F1-score for
our technique is 0.912 which is a 14% increase in the average F1-score in comparison
with the packet-based technique using the same number of packets from each device
to extract the features. In packet-based approach 10 devices were identified with
an average F1-score of 0.44. Nevertheless in the sequence-based approach for the
same 10 devices the average F1-score is 0.78 and all the 10 devices have higher F1-
score compared with the respective scores under packet-based approach. Among
the aforementioned 10 devices, SmarterCoffee exhibits the highest gain in terms of
the F1-score compared to the F1-score under packet-based approach which is 0.60
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Figure 11: Packet-based vs sequence-based average device prediction F1-
score. The Error bars show the 95% confidence interval of the average F1-score.
The devices are ordered in the decreasing order of F1-score values based on the
packet-based prediction results. The results are obtained by performing a 10-fold
cross validation for 10 iterations.

and a detailed description of F1-score and percentage gain are listed in Table 9.

Furthermore, comparison of Precision and Recall of device prediction under packet-
based and sequence-based fingerprinting approaches can be seen in Figure 12 and
Figure 13 respectively. As per the two figures, in sequence-based approach, for
all devices precision and recall remain approximately similar while in packet-based
approach some devices exhibit a vast difference. ikettle2 as an example, has pre-
cision and recall values as 0.467 and 0.80 which are significantly differ to each other
resulting in a F1-score of 0.581 with the packet-based approach. Global average
Precision under the sequence-based approach is 0.925 compared to the 0.778 with
packet-based approach which results in a 14.5% enhancement to the average Preci-
sion. Similarly, global average Recall gained a 13.5% increase from 0.781 to 0.918
with the sequence-based device fingerprinting approach. Altogether 20 devices has
shown over 0.90 in average Precision, Recall and F1-score with our approach where
only D-LinkWaterSensor exhibit values less than 0.60. Nevertheless Precision and
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Device Name
F1-score

Gain (%)
Packet-based Sequence-based

SmarterCoffee 0.1810 0.7853 60.4
TP-LinkPlugHS100 0.4270 0.9277 50.1
TP-LinkPlugHS110 0.4717 0.9090 43.7
D-LinkSensor 0.3845 0.7883 40.4
D-LinkSiren 0.2280 0.6093 38.1
EdimaxPlug2101W 0.5583 0.8240 26.6
D-LinkSwitch 0.7377 0.9507 21.3
iKettle2 0.5809 0.7907 21.0
EdimaxPlug1101W 0.5720 0.7430 17.1
D-LinkWaterSensor 0.2868 0.4313 14.5
Average F1-score 0.4428 0.7759 33.3

Table 9: Comparison of F1-score of packet-based and sequence-based pre-
diction for the 10 devices with lowest prediction accuracies with the
packet-based approach. Gain of prediction is shown as a percentage with the
sequence-based compared to packet-based approach. Devices are ordered in the
decreasing order of the prediction F1-score gain.

Recall might not be the best metric to evaluate the performance of the system in
general, but has its advantages in special occasions where the priority is to detect
all relevant instances of a device-type or limited to identify a device-type accurately.

A timing analysis was performed to determine the amount of time required to com-
plete each phase in device fingerprinting in sequence-based approach. As seen in
Table 10 our technique is able to capture the required amount of packets, extract
the features, generate the fingerprint and classify the device under 13.5 seconds in
average. At best the identification could happen in 5.33 seconds and 82.63 at worst.
Capturing packets required to generate the features takes at least 5 seconds, which
is 94% of the time it takes to classify a device, while feature extraction and classi-
fication requires only 352 ms. All these timings are for capturing the full set of 90
features and when we reduce the size of feature set depending on the constraints of
IoT devices the results could be generated in a lesser time.

Comparison of the impact of most important features in packet-based and sequence-
based approaches on distinguishing different devices is shown in Figure 14. A set of
5 devices were selected to be analyzed based on the following criteria.
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Figure 12: Packet-based vs sequence-based average device prediction Pre-
cision. Error bars show the 95% confidence interval of the average Precision. The
devices are ordered in the decreasing order of F1-score values based on the packet-
based prediction results. The results are obtained by performing a 10-fold cross
validation for 10 iterations.

Time (seconds)
Minimum Maximum Average (95% C.I)

Packet capture 5.0000 82.2475 12.7205 (±7.371)
Fingerprint extraction 0.3271 0.3779 0.3522 (±0.010)
Classification 0.0001 0.0004 0.0002 (±0.0001)
Total 5.3272 82.6258 13.0729

Table 10: A timing analysis of sequence-based device fingerprinting. The
timing results are averaged over 10 iteration for fingerprint extraction and 100 iter-
ations for classification to generalize the results. Timings for packet capturing are
averaged over 540 fingerprints.

• D-LinkSensor, D-LinkSiren: Representing two device-types which were able
to differentiate better than in the packet-based approach.

• SmarterCoffee, iKettle2: Representing two device-types which experience
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Figure 13: Packet-based vs sequence-based average device prediction Re-
call. Error bars show the 95% confidence interval of the average Recall. The devices
are ordered in the decreasing order of F1-score values based on the packet-based pre-
diction results. The results are obtained by performing a 10-fold cross validation for
10 iterations.

confusion in packet-based as well as sequence-based approaches.

• WeMoSwitch: Representing a device-type which was able to successfully iden-
tify under both approaches.

In Figure 14a the distribution of IP payload size - maximum and Ethernet frame
size - variance which are two of the top 3 important features is displayed whereas
in Figure 14b Packet size vs Destination port class has been shown. Figure 14b
shows that D-LinkSensor and D-LinkSiren have overlapping feature values which
get confused for each other in classification with packet-based features. However
Figure 14a shows the contribution of the summary statistics IP payload size - max-
imum and Ethernet packet size - variance in reducing overlaps of feature values
to successfully distinguish D-LinkSensor from D-LinkSiren when using sequence-
based features. This further elaborates the importance of using a set of summary
statistics of a parameter (in this case IP payload size), rather than a single val-
ues representing that parameter as in the case of packet-based features. Even in
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Predicted class
Packet-based Sequence-based

Actual class A B C D E Θ A B C D E Θ

D-LinkSiren (A) 45 82 0 0 0 73 129 1 0 0 0 70
D-LinkSensor (B) 43 98 0 0 0 59 10 157 0 0 0 33
SmarterCoffee (C) 0 0 87 105 0 8 0 0 158 36 0 6
ikettle2 (D) 0 0 97 95 0 8 0 0 40 160 0 0
WeMoSwitch (E) 0 0 0 0 200 0 0 0 0 0 200 0
Other (Θ) 46 121 19 19 1 - 68 31 2 0 0 -

Table 11: Comparison of confusion matrices for sequence-based and
packet-based prediction. Each row represent the actual device and columns
represent the predicted classes for 200 fingerprints. Other groups the results for the
remaining devices.

the sequence-based approach if we used only the IP payload size - maximum as a
feature without using Ethernet frame size - variance, the separation of overlaps in
D-LinkSensor and D-LinkSiren would have been difficult. Nevertheless using IP
payload size - maximum in combination with Ethernet frame size - variance reduces
the overlaps significantly, enabling the fingerprinting technique to differentiate the
two device-types. As a result, we managed to increase the device prediction F1-score
for D-LinkSensor and D-LinkSiren to 0.79 and 0.61 using sequence-based features
compared to the 0.38 and 0.23 with the packet-based features. The confusion ma-
trix in Table 11 supports the above claim by providing quantitative evidence on the
confusion with each approach. A more detailed version of confusion matrices are
attached in Section 7, Figure 20 of the Appendix 1.

In the case of SmarterCoffee and iKettle2 the average prediction F1-score rise to
0.79 for both device-types with sequence-based features. However, Figure 14a visu-
ally implies that a considerable amount of overlaps are still present with sequence-
based features between SmarterCoffee and iKettle2 compared to the overlaps of
D-LinkSensor and D-LinkSiren. Quantities in Table 11 validates this fact. As per
the Table, while the confusion between D-LinkSensor and D-LinkSiren reduces to
0.064 and 0.008 respectively, confusion between SmarterCoffee and iKettle2 only
managed to achieve 0.23 and 0.25.

Distinctive features of WeMoSwitch enabled identifying it consistently resulting in
zero confusion irrespective of the feature set (sequence-based or packet-based) used.
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(a) Sequence-based approach

(b) Packet-based approach

Figure 14: Impact of the important features. The important features of
sequence-based solution are able to identify the devices which largely appear in-
distinguishable to the packet-based approach of IoT Sentinel.
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Figure 15: Identifying a previously unseen device. Feature extraction gener-
ates a fingerprint with the packet sequence of the unknown device. Then it is sub-
jected to the classifier which use a master database to provide a list of predictions.
If at least one of the prediction probabilities P are higher than T , a device-type is
predicted or else declared as unknown.

5.4 Fingerprinting an unknown device

In general context there is a higher probability that the IoT device connecting to
the network would be unknown to the classifier as there are vastly different IoT
device-types currently in use. But the supervised machine learning approach used
in our fingerprinting technique will fail to identify such a device due to the lack of
knowledge of the device in the classifier. Since a fingerprinting technique is expected
to fingerprint all devices connecting to a network, it should have a mechanism to
identify previously unseen devices as unknown. In the IoT Sentinel [6], they have
used a threshold based identification technique to detect previously unseen devices.
They have used a threshold of 0.2 and if the prediction probability is less than the
threshold they identify that as an unknown device. However the reasons for selecting
such a threshold is not clearly expressed in their work. Therefore we investigated
the impact of a threshold on the confidence of the classification, where devices with
low confidence would be classified as unknown rather than misclassifying. On one
hand, if a classification confidence threshold is not used (threshold = 0), there is a
higher possibility of an unknown device being detected as some known device to the
classifier. On the other hand an extremely high threshold will classify all devices as
unknown.

In order to identify the effect of classification confidence threshold (T) on the device
prediction performance, we modified the classification algorithm used. The modified
Random Forest classifier outputs a list of probabilities which denotes the likelihood
of the fingerprint being tested match each of the device-types the classifier is trained
for. If at least one probability in that list is greater than a defined confidence
threshold, the unknown device is identified with a device-type or else considered
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Figure 16: Normalized Zero-one loss score with the variation of confidence
threshold in the absence each device. Loss score is normalized based on loss
values at no threshold (threshold = 0). Each pixel denotes the normalized Zero-one
loss value for the threshold in y-axis when device-type in x-axis is unknown. The
results are generalized with a 10-fold cross validation for 10 iterations.

to be unknown. The classifier was trained using 26 device-types, omitting the set
of fingerprints for a particular device-type. We then used this omitted device-type
as the unknown device-type to find the confidence threshold at which it would be
correctly classified as unknown, as well as classifying the other known device-types
correctly.
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We employed Zero-one loss to evaluate the performance of the classifier at different
confidence thresholds. For each prediction made, Zero-one loss was measured and
averaged to represent a loss value for the classifier at each confidence threshold.
Further we normalized the Zero-one loss value at each threshold by the loss value
observed when there is no threshold (threshold = 0). For an example, in the absence
of device-type Aria, Zero-one loss at confidence thresholds 0 and 0.5 are 0.545 and
0.063 respectively. Thus the normalized Zero-one losses at thresholds 0 and 0.5
are 1 (0.545/0.545) and 0.116 (0.063/0.545). The normalized Zero-one loss at each
threshold in the absence of a particular device-type is displayed in Figure 16.

It is visible in the Figure 16 that when the confidence threshold is in the range of 0 to
0.19 when any device is unknown, the loss remains closer to 1 because the unknown
devices are mis-classified as known device-types by the classifier. Similarly, when the
confidence threshold reaches 1.0, the loss increases again towards 1, as more devices
are classified as unknown by the classifier. First column represents the behavior of
Zero-one loss at each threshold when device-type Aria is unknown to the classifier.
Until the confidence threshold reaches 0.19 the loss remains closer to 1 and then grad-
ually decreases with the incrementing threshold. Confidence thresholds in the range
of 0.23 - 0.65 results in a normalized Zero-one loss under 0.2 and reaches its mini-
mum of 0.08 at a confidence threshold of 0.31. As seen in Figure 16, such a range
exists when the unknown device is any device except SmarterCoffee, ikettle2,
EdimaxPlug2101W, EdimaxPlug1101W, TP-LinkPlugHS100 and TP-LinkPlugHS110.
When the unknown device was SmarterCoffee, it was identified as ikettle2 fre-
quently by the classifier and vice-versa, resulting in a higher Zero-one loss around
0.98 irrespective of the confidence threshold been used. The same behavior is ob-
served for device pairs (EdimaxPlug2101W, EdimaxPlug1101W) and (TP-LinkPlugHS100,
TP-LinkPlugHS110) with a higher Zero-one loss round 0.95 throughout. Similarity
of the features in these 3 device-type pairs caused the higher normalized Zero-one
losses at any threshold.

Figure 17 analyses zero-one loss in a different perspective where it explores the dis-
tribution of combined zero-one loss for all devices at a defined confidence threshold.
Until the confidence threshold reaches 0.19, the normalized mean and median zero-
one losses stay closer to 1 and starts to reduce with increasing thresholds. As it
depicts, best mean performance occurs in range t ∈ [0.54, 0.69], while the minimum
mean zero-one loss occurring at a confidence threshold of 0.62. However selection
of a threshold between 0.31 and 0.35 ensures that the combined zero-one loss for
all device-types stay within the IQR while maintaining the mean loss value under
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Figure 17: Normalized Zero-one loss score distribution of all devices for
a defined confidence threshold. The boxes show the inter-quartile range and
whiskers range till the last datum within 1.5 * IQR. Purple solid lines and Red dotted
lines represent the mean loss and median loss respectively. Outliers are marked with
circles outlined in black. The results are generalized with a 10-fold cross validation
for 10 iterations.

0.6, thus is a safer approach. The aforementioned region of thresholds provides a
higher recall but with higher false positives which fits in well when the priority is
to identify all instances of a particular device-type. A confidence threshold over
0.77 results in a condensed normalized zero-one loss distribution with few outliers.
These higher thresholds produce classifiers with a higher precision while sacrificing
the recall, which suits the cases where accurate identification is critical with a low
false-positive rate.
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6 Future work: A novel feature-based anomaly de-

tection

The rapid growth of wireless technologies such as the Internet of Things has caused
a heavy burden on network security in terms of monitoring, troubleshooting and se-
curing networks. In addition, devices are vulnerable for hacking and compromising
which increase the risk of attacks. Existing network security solutions are mainly
categorized as Signature-based and Anomaly-based techniques [34]. Signature-based
threat detection mechanisms build a database of signatures or threat models to
match with the suspicious activities. But their applications are limited due to their
inability to detect new attack types, other than the attacks that are defined in the
signature database. Further, these network security solutions mainly focus on pre-
venting adversary attacks, but are proven to have security holes that can be exploited
by the adversaries. E.g. Recovery of passphrases in Wi-Fi Protected Access (WPA)
and Wi-Fi Protected Access II (WPA-II). Other than attacks devices could misbe-
have due to device configuration changes, driver failures, failed software/firmware
updates, incompatibility of firmware and hardware, operational human errors. The
effectiveness of traditional security solutions are limited in above cases due to the
evolving nature of attacks and unpredictability of device misbehaviors.

Anomaly-based threat detection models define a normal behavior of a device through
offline training and any activity that lies outside of the normal range is considered
to be an anomaly. Device fingerprinting has emerged as an anomaly-based solution
to identify devices present in the network and reducing the device vulnerabilities.
Our future work focuses on analyzing long-term device behavior of devices and
identify abnormalities by comparing the features extracted from packet headers. The
proposed anomaly detection technique uses our sequence-based device fingerprinting
approach to identify device-types and then a identifies anomalies based on a white-
listing approach.

6.1 Traffic anomaly detection

Traffic anomalies can be defined as patterns in data that do not conform to well
defined notion of normal behavior [35]. Therefore identifying the deviating patterns
in data streams are considered as traffic anomaly detection which can be an attack
or a misbehavior of a device. Selection of an anomaly detection technique depends
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on few factors.

• Nature of input data

– Different attribute types (feature, field, dimension etc.)

– Relationship among data instances (sequential, spatial, graph etc.)

• Type of anomaly

– Point anomaly: anomalous behavior in a single data point with respect
to other data points.

– Contextual anomaly: Data instance is considered anomalous in a specific
context, but may be it is normal in another context. The data instances
consist of contextual attributes and behavioral attributes.

– Collective anomaly: When a set of data instances are anomalous with
respect to the entire data set, but if we consider each individual data
instance it might not be anomalous.

Recent researches have developed variety of techniques to detect anomalies such as
offline log analysis, Statistical anomaly detection, Rule-based anomaly detection and
feature-based behavior classification. Notable work under each of these techniques
will be discussed in the next section.

6.1.1 Offline log analysis

Usually information generated by network devices in the case of an event/ activ-
ity occurrence are recorded in device logs. Due to the heterogeneity of devices in
network, the logs differs widely, often incomplete, contradictory and very large in
volume. The usual attempt of referring to logs manually takes time as well as a
considerable amount of effort. Beehive [36] provides a mechanism of automatically
mining and extracting information from logs produced by large amount of network
devices. The concept is based on behavioral detection of suspicious activities of
hosts which might lead to traffic anomalies. Beehive has been evaluated in a large
enterprise and it has been able to detect suspicious activities which were not de-
tected by the state-of-art security tools. Since Beehive does not depend of signature
based traffic anomaly detection it is able to detect previously unknown anomalous
behaviors. Further it used a customized white-list generated by monitoring the nor-
mal traffic pattern of the organization to reduce the raw log data by 74%. Cid [37]
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propose a system that uses the logs collected by network devices to detect traffic
anomalies with the support of user-defined rules. The logs are collected at the OS-
SEC server and they are pre-decoded to extract generic information from logs. Then
the server decodes the logs to identify key information from logs such as source IP,
username, id etc. Then the decoded information is checked against the user-defined
rules reducing the processing time.

6.1.2 Statistical anomaly detection

A generic analytics engine is proposed in [38], a research by Intel to detect changes
and anomalies in IoT sensor data streams. The framework comprises of multi-level
analysis including time series classification, single/ multi sensor change detection,
abnormal behavior detection and change classification using statistical testing tech-
niques such as Kolmogorov Smirnov, YIN algorithm, etc.

6.1.3 Rule-based detection

NETAD [39] operates on rule-based traffic filtering. The filtering process removes
uninterested traffic such as Non-IP packets, all outgoing traffic, UDP to high num-
bered ports etc. Thus reduce the amount of data processing as well as the time
consumption. The basis for filtering process is that the first few packets of a con-
nection request are sufficient for traffic anomaly detection. The NETAD models 48
attributes consisting of the first 48 bytes of the packet starting with the IP header.
It computes a packet score depending on the time and frequency of each byte of
packet. Rare and novel header values are assigned high scores. A threshold is ap-
plied on a packets score to find anomalous packets. One drawback of the approach
is, since the technique is an anomaly detection it does not provide information about
the nature of the fault/ attack. But unlike the usual security tools it will provide
alerts on all the unknown traffic anomalies.

The research of Palanivel et al. [40] propose a system named IDEA for efficient main-
tenance of IoT sensors to ensure the minimal disruption of services in IoT enabled
smart environments which monitors activities of daily living (ADLs). The identi-
fication of ADLs are performed by learning patterns of sensors that are initiated
while performing an ADL, thus the focus of the study lies on behavioral monitoring
of smart sensors rather than off-the-shelf IoT devices in our consideration. IDEA
follows mainly three methods to identify failures in sensors which could be periodic
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or event-driven. For periodic sensors the system raises a failure alert upon reaching
a threshold amount of time since the last recorded state report. The system clas-
sifies sensors based on the importance a particular sensor in identifying ADLs. A
grave sensor is such a type where an ADL detection depends solely on that sen-
sor and the ADL cannot be detected without inputs from that sensor. The second
failure detection is associated with grave sensors, where the system raises an failure
alert upon reaching a threshold time since the last occurrence of ADL, based on the
frequency of occurrences for that particular ADL. The third technique focuses the
sensors which are redundant in detecting a particular ADL. In such case a rarity
score is associated with a sensor which denotes the probability that the sensor is not
triggered given that some ADLs which the sensor participates have been detected
using other sensors. IDEA raises a failure alert when the rarity score exceeds a
particular threshold.

6.1.4 Behavior classification using feature extraction

The main concept under this technique is to extract features from packets trans-
mitted to/from a device and use machine learning to train a classification model
that has the capability to classify the device behavior as normal/abnormal. A list
of popular features used by recent studies on security attack classification are shown
in Table 12.

Study Time Features Output
frame Basis Type/ Name

Moskovitch
et al. [41]

Every 1
second

Time
based

323 features:
Internet Control Message
Protocol (27)
Internet Protocol (17)
Transport Control Proto-
col (9)
User Datagram Protocol
(5)
Features of device hard-
ware and processor

Detection of
known/ un-
known worm
activities



53

Study Time Features Output
frame Basis Type/ Name

Lakhina et al.
[42]

Every 5
minutes

Statistical 4 features:
Source IP address, desti-
nation IP address, source
port and destination port

Classification
of port scans,
outage events,
worms, flash
crowds, alpha
flows

Brutlag et al.
[43]

Every 1
second

Time
based

1 feature:
Outgoing bandwidth rate

Abnormal
behavior is de-
tected by time
series analysis

Lakhina et al.
[44]

Every 5
minutes

Time
based

3 features:
Number of bytes, number
of packets, number of IP-
flows (origin to destina-
tion)

Detect alpha
crowds, outages,
scans, ingress-
shift and flash
crowds

Kim et al. [45] - Time
based

12 features:
ICMP/TCP/UDP
packet counts,
TCP/UDP source
and destination ports,
TCP/UDP source and
destination IPs, Total
packet count

ICMP/TCP/UDP
flooding, ping-
pong, port
scanning

Nychis et al.
[46]

Every 5
minutes

Time
based

7 features:
Source and destination
addresses
Source and destination
ports
Flow size distribution
(FSD)
In and Out-degree distri-
butions

Identifies alpha
flows, scans,
spoofed DoS
activities in the
network
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Study Time Features Output
frame Basis Type/ Name

King et al. [47] - Time
based

8 features:
Source and destination
addresses
Source and destination
ports
TCP flags
Protocol number
Packet size
Flow duration

Detects
port mis-
configurations,
server failures,
abnormal pro-
tocol behaviors,
configuration
anomalies, port
scanning, DoS
attacks, SYN
flooding

Table 12: List of features used by feature-based anomaly detection tech-
niques

The extracted features are then treated differently in each of the aforementioned
studies to classify device behaviors. Anomalies cause changes in traffic feature dis-
tributions and this has been used to detect attacks in [42]. They use sample entropy
as the summary statistic to denote the degree of dispersal or concentration of the
distribution. [46] use the feature entropy distributions and correlations between the
time series of entropy data to detect abnormal behavior of devices. In [43], they
generate a time series from the collected features and model the normal behavior.
Then they use Holt-Winters forecasting method to predict the feature values and if
the observed feature value falls outside the confidence band of the predicted value it
is declared as an anomaly. A similar time series analysis has been used in [44] where
a time series is generated for each feature and they are analyzed using subspace
method. For each feature, the calculation of squared prediction error for residual
vector and t-squared (t2) statistic reveal the possible anomalies. Kind et al. [47] pro-
pose a technique that constructs histograms, model normal behavior and identify
deviations as anomalies.

CISCO proposes [48] an anomaly detection technique to identify worm viruses in
the network and infected hosts by training a threshold-based detection mechanism.
The system first conducts a learning phase (default 24 hours) assuming no attacks
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Figure 18: Experimental setup used to check the behavior of Philips Hue-
Bridge. Raspberry Pi was used as an access point connecting to the HueBridge via
Ethernet port and to the Internet via Wi-Fi.

happen during that time and derives on policy thresholds which fits the network.
During the learning phase histograms are developed for each TCP/ UDP ports to
generate a baseline for the normal behavior of the network. For an example the
thresholds for the number of source addresses, based on the amount of destination
addresses reached by each source address are derived. In the detection phase the
system monitors the network traffic flows that violates the thresholds and generate
alerts based on the alert configuration.

6.2 Anomaly detection based on long-term feature analysis

Our focus is to develop an anomaly detection technique by analyzing the features
of packet headers. As per the Table 12 a huge set of features are at the disposal to
detect suspicious device behaviors. After analyzing the aforementioned related work
on feature-based anomaly detection we have identified a set of features to represent
the behavior of a device as indicated in Table 13.

We set up a Philips HueBridge to monitor its normal behavior as well as the
behavioral changes when some interruption was created. The experimental setup
is displayed in Figure 18. All the packets to/ from the Philips HueBridge was
captured (all traffic of Ethernet port with the MAC address of HueBridge) with a
Raspberry Pi III using tcpdump as a capturing module. The capturing process was
started by turning on the device after a reset, while tcpdump capture module was
running.

As an initial test we checked the changes to the traffic patterns of the HueBridge

when the Internet connection was interrupted intentionally. First we captured the
network traffic during the normal operation of the device for 90 hours. We assumed
that during the capture of normal operation the device behaves as it is expected
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Feature Explanation
Periodic statistics of packet inter ar-
rival times
Minimum, Maximum, Q1, Median,
Mean, Q3, Variance, IQR

Summary statistics of packet in-
ter arrival times measured in a de-
fined time period

Fast Fourier transform components of
packet inter-arrival time
Periodic counts of protocol occurrences
TCP, UDP, HTTP, DHCP, DNS

Number of packets for each pro-
tocol in a defined time period

Rate of packets Number of packets transmitted in
a defined period

Order of Protocols Order of packet transmission
based on protocol type (TCP,
UDP)

Periodic Ethernet, IP header, IP pay-
load sizes Minimum, Maximum, Q1,
Median, Mean, Q3, Variance, IQR

Summary statistics of header
sizes in bytes

Packet direction Direction of the packet flow rep-
resented by a series of integers

IP destinations Number of different IP addresses
a device connects to

Source/ Destination port class Series of values representing the
source/ destination port classes

Table 13: List of features which can be used to detect anomalies.

to without any abnormalities. Then we restarted the capturing process, however
after 22 hours we intentionally disconnected the Internet connection while capturing
packets. We observed that the Domain Name Server (DNS) traffic was increased
significantly as a result of the interruption as seen in Figure 19.

It is seen in the Figure 19a, that during the normal operation initially the rate of
DNS traffic was higher during the device setup time. After that periodic spikes are
observed in the rate of DNS packets while it remains at zero mostly. But once the
Internet connection is interrupted, the rate of DNS traffic increased significantly and
exhibit an offset from the DNS traffic rate at normal operation. Hence, monitoring
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(a) Normal traffic pattern (b) Interrupted Internet connection

Figure 19: Comparison of DNS traffic behavior

the rate of DNS traffic enables the identification of interruptions to the Internet
connection.

As clarified in this simple example, the set of features introduced in Table 12 has
the ability to detect abnormalities in traffic flows and support locating the issues in
the devices. Our next step is to capture the traffic from different IoT devices and
generate traffic profiles for them to denote the normal behavior. Then using those
traffic profiles we plan to synthetically generate anomalies and try to identify them
using machine learning classification models similar to the models used in device
identification.
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7 Conclusion

We propose a novel device fingerprinting technique based on features extracted from
a sequence of packets representing the summary statistics of packet sizes, inter-
arrival times, Fast Fourier Transform of inter-arrival times, packet directions, etc.
A 14 % increase in the average prediction F1-score was achieved in our approach
compared to the state-of-the-art technique. Furthermore, we were able to increase
the average prediction F1-score of the 10 devices with the lowest prediction F1-score
from 0.44 to 0.76. We pointed out that the summary statistics related to packet
size measurements are the most important in classifying different devices due to the
differences in the DHCP header options used by each devices. Then we analyzed the
impact of the confidence threshold on identifying previously unseen devices by the
classifier maintaining the prediction loss at minimum and we propose possible ranges
of thresholds that can be used under different circumstances. As our future work we
plan to extend this approach to detect anomalous behaviors of devices by comparing
long-term device behavior with the featured extracted from packet headers similar
to the fingerprinting approach.
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Appendix 1. Confusion matrices comparison
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(a) Confusion matrix for Packet-based approach
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Figure 20: Confusion matrix for the 10 devices with lowest prediction
accuracies under packet-based fingerprinting technique. As clearly seen in
the figures, confusion is much resolved in Sequence-based approach.



Appendix 2. Complete decision tree for our sequence-

based features classifier

A complete decision tree generated by the Random Forest algorithm is displayed in
Figure 21. A pdf version of the full decision tree is available at https://version.
helsinki.fi/prana/device-fingerprinting/nishadh-thesis-manuscript/blob/

master/appendix/decision_tree_V_full.pdf
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Figure 21: Sample decision tree which was generated in the Random Forest
classification algorithm.



Appendix 3. Variation of feature importance, preci-

sion and recall
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Figure 22: Feature importance, Precision and Recall variation with the
number of features used to train the classifier. The error bars shows the 95%
CI for the mean feature importance values, Precision and Recall. The results are
obtained by performing a 10-fold cross validation for 10 iterations.
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