Online to Batch Conversions

Mika Huttunen

October 29, 2017

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET - UNIVERSITY OF HELSINKI

Tiedekunta/Osasto — Fakultet/Sektion — Faculty/Section Laitos — Institution — Department
Faculty of Science Department of Computer Science

Tekija — Forfattare — Author

Mika Huttunen

Tyon nimi — Arbetets titel — Title
Online to Batch Conversions

Oppiaine — Lérodmne — Subject

Computer Science

Tyon laji — Arbetets art — Level Aika — Datum — Month and year Sivumaird — Sidoantal — Number of pages

M. Sc. Thesis 29.10.2017 56

Online to batch conversions have been studied by only a handful of people. Online learning
algorithms are usually efficient in time and memory usage and they are easy to implement.
Batch learning algorithms, on the other hand, are more complex both in resource requirements
and implementation. It turns out that there are ways to convert the hypothesis sequence made by
online algorithm into a single batch hypothesis that can be used on batch problems.

The basic idea of online to batch conversions is as follows. First, we get some samples of the
data i.e. instances and their respective targets. These samples are called the training set. Then,
we consider the training set as an ordered sequence and give it to some online algorithm A that
goes through data one element at the time. A returns a sequence of hypotheses and we perform
the conversion. We study both single methods, where we pick one hypothesis from this sequence
and use it as a batch hypothesis, and ensemble methods, where we combine a subset of the
hypothesis sequence and use all the hypotheses in this set to construct the batch hypothesis.

In this thesis we introduce most of the known conversions. The greatest emphasis is on
data-driven conversions, where we assume that some of the hypotheses generated by A are better
than others, and try to extract those to generate the batch hypothesis. For data-driven conversions
we prove a connection between risk bounds in batch setting and loss bounds of the conversion
techniques. These conversions are also evaluated using well-known test data, MNIST.

Studying 7 conversions, we reproduce some previous results. We evaluate each conversion
with various partitions of a single data set to the training and test sets. The conversions based
on single methods are mainly fast, but not as accurate as the slower conversions based on
ensemble methods. Most of these conversions are more accurate than the common practice of
picking the last hypothesis of the sequence.

There seems to be lot to study in online to batch conversions. Some of the best performing
conversions are rather slow, even quadratic with respect to the size of the hypothesis sequence.
Most of the time is spent on choosing an optimal subset of the hypothesis sequence. One could
study heuristics for picking this set. Optimizing the trade-off between accuracy and the time spent is
another problem left unanswered.

Avainsanat - Nyckelord — Keywords
Machine Learning

Sdilytyspaikka — Forvaringstille — Where deposited
Kumpula Science Library, serial number C-

Muita tietoja — Ovriga uppgifter — Additional information

Contents

1 Introduction 1
2 Machine Learning 4
2.1 Basic Concepts in Machine Learning 6
2.2 Batch Learningo 0oL 7
2.3 Online Learning Lo 8
2.4 Perceptron Algorithm 9
2.5 Support Vector Machine 11
2.6 Passive-Aggressive Algorithm 11
2.7 Conversions 13
2.8 Loss Functions 14
29 Riskand Regret oo 15
2.10 Practical Issues in Machine Learning 16
3 Conversion Algorithms 19
3.1 Data-Independent Conversions 19
3.2 Data-Driven Conversions 21
3.3 Finding a Good Hypothesis Set 22
4 Martingales 26
5 Data-Driven Conversion Algorithms 30
5.1 Suffix Conversion 30
5.2 Interval Conversion 30
5.3 Tree-Based Conversion 31
54 Cutoff-Averaging Lo 32
5.5 Wrap-up Lo 36
6 Experiments 37
6.1 Previous Experiments by Dekel and Singer 38
6.2 Results. 39
7 Conclusion 48

8 Appendix 53

1 Introduction

The idea of machine learning is to develop a procedure that can automatically
learn and improve its performance. This is done by finding patterns and
making wise decisions based on the given data. Algorithms are often based
on fundamental statistical principles. In this thesis, we will consider two
learning frameworks: online and batch learning, and the connection between
them.

Online learning algorithms are usually efficient in time and memory usage
and they are easy to implement. The data is presented to the online learning
algorithm as a sequence, and often no assumption of any data-generating
distribution is made. The algorithm updates a built-in predictor after each
data point. In this thesis, we are interested of that predictor sequence, also
called hypothesis sequence.

Batch learning algorithms, on the other hand, are more complex both in
resource requirements and implementation. In the batch learning setting, we
often assume the data is independently and identically drawn (i.i.d.) from
some distribution, and we try to learn the data generating rule by analyzing
given data. The goal is to find a hypothesis that minimizes the expected loss,
also called risk.

In the online setting we cannot define the risk of a hypothesis, since
we don’t make any assumptions of a data generating distribution. We use
cumulative loss instead, and compare our performance to the best performing
hypothesis, if we had picked it in hindsight.

It turns out that there are ways to convert the hypothesis sequence made
by online algorithm into a single batch hypothesis that can be used on batch
problems. There is also a connection between risk bounds in batch setting
and loss bounds of the conversion techniques that can theoretically justify
these techniques.

The last hypothesis of the hypothesis sequence generated by online al-
gorithm is often chosen as the batch hypothesis. This makes sense, as the
predictor tends to improve its performance over time. Nevertheless, using
the last hypothesis of the sequence does not give an optimal result. There
are more sophisticated and reliable ways to do a conversion.

Online-to-Batch conversion was pioneered by Stephen Gallant in 1986 |16]
and Nick Littlestone in 1989 [26]. The conversion by Gallant is known as the
Pocket algorithm and it returns the hypothesis that made the most correct
predictions. He used the same idea later in 1990 to the Perceptron algorithm
to develop the famous Pocket algorithm with ratchet [17].

The idea of Littlestone is as follows: after the online algorithm has gen-
erated the sequence of hypotheses, the conversion is made by choosing the

hypothesis among them that performs the best in a subsequent hypothesis
testing phase. These two are examples of so called single hypothesis conver-
S40Ns.

Some time later, new techniques were developed. These techniques form
the batch hypothesis by using all of the hypotheses of the sequence, and
they are called ensemble conversions. We introduce three ensemble conver-
sions: Sampling conversion by Helmbold and Warmuth in 1995 [19], Voting
conversion by Freund and Shapire in 1999 [15] and Averaging conversion by
Cesa-Bianchi, Conconi and Gentile in 2004 [5].

The Sampling conversion is most general of these, and it can be used in
any input space. After generating the sequence of hypotheses we simply pick
one hypothesis randomly from this sequence for each instance individually
and use it as our predictor. The randomness of this conversion may give poor
predictions at times, but the performance averages well.

Voting conversion technique assumes the output space is discrete. After
the online algorithm has generated a sequence of hypotheses from the training
set, all those hypotheses give a vote for an unseen data and we pick the label
that receives the highest number of votes. The conversion is reliable and
accurate, but the downside is that we need to keep the whole hypothesis
sequence in memory.

In Averaging conversion, the output space is assumed to be conver. Using
the sequence of hypotheses, the prediction is made by taking the average over
predictions given by all the hypotheses. This conversion works especially
well with linear hypotheses and does not utilize as much memory as voting
conversion.

None of these conversions use the actual data when constructing the
conversion, only the hypothesis sequence produced by the online algorithm.
Hence they are called data-independent conversions.

Data-driven conversion techniques were introduced by Ofer Dekel and
Yoram Singer in 2005 [12]. They consider three different conversions: Suffix
conversion, Interval conversion and Tree-based conversion. In all these con-
version techniques, additional information of the data is used in finding the
optimal batch hypothesis. The basic idea of all these conversions is to find
an optimal subset of hypotheses from the hypothesis sequence and then use
the conversions above to the hypotheses in this subset.

These conversions yield more accurate results than the data-independent
ones. The drawback is that some of these conversions are rather slow and
they utilize plenty of memory, so they need to be tuned to be usable in big
datasets.

A few years later, Dekel introduced a new data-driven conversion tech-
nique called Cutoff-Averaging |11]. This conversion is based on the Pocket

algorithm, where the best hypothesis so far is kept on memory until we find
a better one. In Cutoff-Averaging, we are interested in hypotheses that have
predicted correctly for some predefined amount of times. We do not have to
keep them all in memory, as we can calculate the averages on the fly.

The conversion does not require to see the data again when choosing the
hypotheses since that is done on the go. This is a key aspect in making
the algorithm faster, as going through the data is usually slow. The Cutoft-
Averaging conversion performs usually better than the aforementioned ones
and it is relatively fast, thus capturing the idea of online to batch conver-
sions.

2 Machine Learning

One of the earliest definitions of machine learning is by Arthur Samuel in
1959: "Field of study that gives computers the ability to learn without being
explicitly programmed". In his article Some studies in machine learning
using the game of checkers [29] he phrase it as: "Programming computers to
learn from experience should eventually eliminate the need for much of this
detailed programming effort."

In traditional programming, we have a data set and a program, which is
run on a computer to produce an output. In machine learning, we change this
order: we have the data and the output, from which a program is produced.
Essentially, machine learning means what the name suggests: the machine
learns from the given data.

The ability to learn without being explicitly programmed has become the
key to handle huge data masses collected everyday. This is why machine
learning is becoming more and more important and utilized in all areas.

The field is nowadays very wide and expands all the time. We will give a
simple example why we want computers to learn by themselves.

Let us consider the game backgammon, where machine learning algo-
rithms have surpassed humans long time ago as discussed in the paper by
Tesauro in 2002 [33]. It all began in 1992, when Gerald Tesauro developed the
program called TD-Gammon, which became widely known when he published
the article TD-Gammon, A Self-Teaching Backgammon Program, Achieves
Master-Level Play in 1994 [31].

TD-Gammon is based on a neural network that teach itself by playing
games of backgammon against itself. Then it learns from the outcomes of the
games. Even back in 1992, with randomized initial weights and no knowledge
built in at the start of the learning, the TD-Gammon was able to achieve
a strong intermediate level in backgammon. When it is provided with a set
of features that are hand-crafted by humans it was able to play at a strong
master level, which is almost on par to the best human players.

This algorithm is an example of reinforcement learning, where the algo-
rithm receives less information in the training process than in the supervised
setting. The algorithm is only given a reward (often called reinforcement)
that is often delayed, after a sequence of predictions. We will not discuss
reinforcement learning further in this thesis, but rather focus on supervised
learning.

For many traditional board game there is a machine learning algorithm
that can challenge the human masters. In the complex game of chess the
computer Deep Blue was able to win the reigning champion Garry Kasparov
in 1997 [4]. This was a project of many years that ultimately led to the

QOutput Patterns

[
Q{

¢,

W
(s

\\\?’
Xy
Y

7\

Internal
Representation
Units

7/
Xy
VA

Y%
i

N

Vs
Y
A\

Input Patterns

Figure 1: Multilayer architecture used in the TD-Gammon neural network.
The figure is adapted from Gerald Tesauros article published in 1995 [32].

victory.

Developing a clever algorithm or a whole machine like Deep Blue to play
chess is not an easy task. Big number of different moves on each rounds and
their outcomes make the game tree large very fast. Therefore it is hard to
develop an intelligent algorithm that uses ezplicit rules for playing chess.

It turns out that we actually don’t have to give the algorithm explicit
rules what to do in each possible situation, we can let the algorithm learn
that by itself, like in backgammon. The algorithm can learn good moves and
game strategies from a data set of games and their outcomes.

An example of this kind of learning is the chess engine called Giraffe by
Matthew Lai [22]. This engine was made by a computer science student
and it has proved to be very successful and tested in international chess
tournaments. The algorithm also relies on neural networks and learned to
play chess all by itself at a high international level.

In addition to popular games, machine learning is used in many tasks
and fields such as face recognition [36], stopping malware [27], blocking spam
messages [18], preventing money laundering [30] and preventing credit card
frauds |[6].

One popular field is text analysis, where machines try to learn what the

given text means. For example the machine can be provided with the text
of a news article and categorize it automatically. One such machine learning
algorithm is the fastText by Joulin et al.[21].

Machine learning is really everywhere as the amount of available data is
expanding. Whenever we have huge amounts of data or a need for something
that is too hard for a human programmer to code explicit rules, machine
learning is used to tackle the problem.

2.1 Basic Concepts in Machine Learning

Machine learning is a wide area of study and there are many ways to do it.
It is closely related to computational statistics, mathematical optimization
and data mining. In this chapter, we will go shortly through some very basic
concepts of machine learning.

Everything begins with data. Any prior knowledge we have of the data
will affect what we can do with it. Having some insight of the domain of the
problem can help with designing the machine learning algorithm to solve the
problem. In practice, the domain knowledge is combined with the statistical
principles to achieve the optimal result.

If the data includes the desired output, we can try to learn the rule
that generates the output from the data. This kind of learning is called
supervised. If we have just the data without any output, we have a more
restricted setting. In this setting we can try to learn the structure of the
data or relationships between different inputs. This kind of learning is called
unsupervised. A well known problem in unsupervised setting is clustering, in
which we generate clusters where each input is then assigned. In this thesis
we focus on the supervised setting.

The next question is: do we have access to some batch of the data, or
is the data fed to the algorithm one example at the time. The former is
called batch learning and the latter online learning. First we introduce the
basic components of both learning methods and then we will go through the
differences.

The basic components for both online and batch learning models are:

e Input space X, whose elements z € X are called instances

o QOutput space Y, whose elements y € Y are called response, or in the
case where Y is discrete, labels

e Target function f(x) =y is some pattern between the input and output
values. It is reasonable to assume that there is some kind of functional
and deterministic relationship between the two

e Hypotheses, a family of functions H C {h : X — Y}. The target
function that generates the outputs is unknown, so we try to find a
function that approximates it.

The goal is to find a hypothesis h that makes as few mistakes as possible
when predicting the target y of a given unseen data element x, i.e. it is as
close to the target function as possible.

Example. Linear classifiers. Here is a concrete example of the listed com-
ponents above. Consider the case where X C R" and Y = {—1,1}. Let
H={h":X =Y :h(z)=sign(w-z)and w € R"}. Here, w is called a
weight vector and sign(z) is —1 if z < 0 and otherwise 1.

Now the data is a vector in R™ and w is a weight vector in the same space.
The prediction generated by h" is the sign of the dot product of the weight
vector and a given data element. The learning part is then to update this
weight vector according to the result of the prediction made by it.

In batch learning, the accuracy of the learner is evaluated after all the
training examples have been seen. In online learning, the performance is
evaluated during the process, and is called regret. Any online algorithm with
small regret can be converted into a batch algorithm with good accuracy.
This will be proved in Section 3 and it justifies the conversions theoretically.

Example. We have 500 distinct pictures of handwritten digits 1 and 2. Each
number is written by a different person, and the appearance of the numbers
vary. Our goal is to use these 500 pictures to learn an algorithm that can
distinguish number one from number two written by any person in the world.

The set of pictures is the input space X and each picture is an instance
x € X. A label associated with each picture is either one or two, so Y =
{1,2}. Hypothesis h is now a function trained by some algorithm that will
predict either one or two when it receives any picture from X. Note that the
set X can contain pictures that the algorithm has never seen before, not just
the 500 used in training.

2.2 Batch Learning

The basic idea of batch learning is that the algorithm receives a set of m
pairs (z;, f(z;)) = (xs,y:) € X x Y, i =1,2,...,m. The examples (z;,y;)
are assumed to be drawn independently from distribution D. Then, the
algorithm generates a hypothesis h € H by analyzing the m examples. This
is called the training phase. After training, the hypothesis A is used to

unseen data and it should give rather good results, as we assume that all the
examples and unseen data are drawn from the same distribution.

The ultimate goal is to find a hypothesis that generalizes well and gives
reliable prediction on unseen data that is from the same distribution as the
training data. To achieve this, the hypothesis has to perform well for the
training data while not being too specific to that data alone. After all, it is
just a sample of the data and may contain bias and noise.

Ezample. We continue the previous example with the handwritten numbers
one and two. The algorithm used in this example is called the k-nearest
neighbours.

The idea is simple: we already have 500 examples of pictures with their
true labels. When we obtain a new sample we will compare it to all other
samples and find k£ samples that are closest to it. Then we check the ma-
jority in these k£ samples and predict the label of the new example with the
majority vote.

One question arises: how do we define what ‘close’” means? This has to
be defined with machine learning algorithms and there is no single simple
answer. The handwritten pictures are represented by matrices with numbers
0 to 255 corresponding to each pixel’s darkness, we can for example use the
Frobenius norm (Euclidean norm of matrices) as the closeness measure. This
approach has many flaws but it works fairly well on this setting.

In general, the most suitable measure for closeness is often derived by trial
and error and it is one of the key elements of a machine learning algorithm.
Minimizing or maximizing this measure is an essential step in many machine
learning algorithms.

2.3 Online Learning

In this setting, the learning is done as a sequence of trials. On any round ¢
the online learning algorithm receives x; € X and predicts the target value by
using hypothesis h;_1, which was generated at the previous round. The initial
hypothesis hq is arbitrary. Next, the correct label 3, € Y is revealed and the
algorithm updates the hypothesis h;_; into h;. Note that in online setting we
usually do not make any assumptions of how the data was generated. After k
iterations, we have obtained a sequence of hypotheses hg, by, ..., hg_o, hr_1.
These hypotheses are not necessarily distinct.

This has many advantages in practice. First of all, the examples can be
processed one by one, which means that we do not have to save the training
examples in memory, thus reducing the need for memory. The algorithm is

Figure 2: Example of a linearly separable data set and two linear boundaries.
There are infinitely many boundaries that separate the sets from each other
and the Perceptron algorithm might converge to any of them.

also faster as we do not run many iterations over the training set.

Both online and batch algorithms are fairly common in many fields. In
the next chapter, we will give a few concrete examples of online and batch al-
gorithms. These algorithms are well-known and are often used as a reference
for new machine learning algorithms. We start with the famous Perceptron
algorithm.

2.4 Perceptron Algorithm

Introduced by Rosenblatt [28] in 1958, the Perceptron algorithm is one of the
best known online algorithms. Tt is easy to implement, fast and gives fairly
good results in many situations.

The original algorithm is intended to be used when each data point belong
to one of two classes and the classes are linearly separable. This means that
if the data is n-dimensional, we can separate the two sets from each other
with an n — 1-dimensional hyperplane. After a finite number of iterations
the algorithm will converge to a set of weights that classifies each example
correctly.

If the data is not linearly separable, the Perceptron algorithm does not
converge to any set of weights. There are many ways to tune the algorithm

Initialise w; + 0.
Until all predictions are correct do
Fort=1,...,ndo
receive x; € R™,
predict y, = sign(w; - x;) € {—1,1},
receive the correct answer y, € {—1, 1},
if y; # ye do
set Wi <— Wy + Y Xy
end
end
end

Algorithm 1: The Perceptron algorithm by Rosenblatt |28]. The algorithm
is conservalive as it does not update the weight vector when the prediction
is correct.

to stop at a reasonably good solution. One such way is called the Pocket
algorithm by Gallant [17], [16] that stores the best weight vectors so far. So
even though we cannot separate the data linearly, we can try to find the best
separation to get the largest amount of correct classifications.

The idea of the Perceptron algorithm is as follows. We assume that the
classes used are Y = {—1,1}. The algorithm starts with an initial prediction
vector w = 0. Then it predicts the label of a new instance x to be y =
sign(w-x). After the prediction, the true label y is revealed to the algorithm.
If the prediction was right, we will continue to the next instance without
changes. If the prediction differs from the true label y, then the prediction
vector w is updated to be w = w + yx. This means that the hyperplane that
eventually separates the two classes moves after every mistake.

This process is repeated until the prediction vector converges to a vec-
tor that linearly separates the classes. The pseudo-code of the Perceptron
algorithm is found in Algorithm 1.

There are ways to convert Perceptron to multiclass problems. Easiest to
implement are methods called one vs. all and all vs. all. Both methods have
their pros and cons and it is not always clear which of them one should use.
In one vs. all we first create a two-class classification problem for each class y
and then we predict if our data sample belongs to that class or not. In all vs.
all we make a modified training set for each pair of classes. This means that
for a multiclass problem with & classes we have to train S0~ i = k(k —1)/2
classifiers.

10

Despite the fact that the algorithm is almost 60 years old, it serves as a
base for many machine learning algorithms used today. It is used for example
in natural language processing |[§].

2.5 Support Vector Machine

Support Vector Machine (SVM) is one of the best known batch learning
algorithms. We again consider a classification problem with two classes that
are linearly separable. We can find infinitely many decision boundaries, so
which one should we choose? The answer is the one that is as far as possible
from the both classes. This gap between two classes is called the margin (m)
and we want to maximize it.

This becomes a constrained optimization problem that can be solved with
a Support Vector Machine (SVM, originally invented by Chervonenkis and
Vapnik in 1964 35|, and popularized in the 1990s by Boser, Guyon and
Vapnik [3| and by Cortes and Vapnik [9]).

To put it short, the idea of SVM is to first map the instances to a very
high-dimensional space, where the two classes become linearly separable with
large margin. Note that this is always possible as we can add as many dimen-
sions as needed. Next, we use a special method called quadratic programming
to find a vector that classifies all the data without mistakes with a maximum
margin. This separator is a hyperplane in a high-dimensional space.

The support vector machines are a good example of so called kernel meth-
ods. The idea of a kernel method is to operate in a high-dimensional space
with kernel functions. A kernel function reduces the calculation of coordi-
nates of the data to calculating the inner products of feature maps. This
technique is called the kernel trick.

By this remapping we can transform a non-linearly separable data to be
linearly separable in a high dimensional space. The computation of feature
mappings themselves can be very expensive, but with kernel functions it is
enough to calculate only the inner products of the feature map, and producing
the output in an inner product space.

More thorough explanation of SVMs can be found in the article by Cortes
and Vapnik [9].

2.6 Passive-Aggressive Algorithm

The next online algorithm we are going to introduce is the Passive-Aggressive
Algorithm (PA), developed by Crammer et al.[10]. It is a generalization of
the SVM to the online setting. The PA algorithm is used in the original

11

Figure 3: The SVM separates the two classes of the data set with maximal
margin. The data sets are the same as in Figure 1.

data-driven conversion paper by Dekel and Singer [12]| for experiments on
their conversions.

We will only discuss the binary classification case. The idea is to have a
weight vector that is updated according to the seen data. The weight vector
is initialized to a zero vector and on round ¢ the new weight vector w;, is
the solution to the following constrained optimization problem:

Wiy = afugerﬂglgn %Hw —w|® st L(w; (z,y:)) = 0. (1)

Loss function used is the Hinge loss defined in Section 2.8 The algorithm
is passive whenever the Hinge loss is zero: we do not change the weight vector.
On the other hand, the algorithm is aggressive whenever the loss is positive,
as it forces the new weight vector to satisfy the constraint [(w; (x4, y:)) = 0.
Therefore the algorithm is called Passive-Aggressive (PA). The pseudo-code
of the algorithm is presented in Algorithm 2.

The idea of the update rule originates from Helmbold et al. [20]. The
update requires the current weight vector w;y; to predict with high margin
while staying as close to w; as possible. This way the algorithm makes
confident decision while keeping as much information learned from previous
rounds as possible.

12

Initialize: wy = (0,...,0)

Fort=1,2,... do
receive instance x; € R”
predict y;, = sign(w, - x;)
receive correct label y, € {—1,1}
suffer loss I; = max{0,1 — y¢(w; - 24) }
update wy11 = wy + H;ﬁyt:ﬁt

end

Algorithm 2: The passive-aggressive algorithm. The algorithm is passive
whenever the loss is zero, but it aggressively updates the weight vector when-
ever a mistake occurs.

Equation (1) has a closed form solution

Wi = Wi + l—tytiﬂt-
[l

We will not go through the derivation, which can be found in [10].

There are many versions of this algorithm with a different weight update
strategy. Some modification is needed for a multiclass case. We will not,
however, go more in to details of online passive-aggressive algorithms. A
detailed explanation of different variants of the above presented can be found
from the article Online Passive-Aggressive Algorithms [10].

2.7 Conversions

Now we are ready to describe conversions of the hypothesis sequence con-
structed by an online algorithm into a single batch hypothesis. Conversion
is not a single method, there are many different conversions to be used, all
with their pros and cons.

The basic idea of online to batch conversions is as follows. First, we get
some samples of the data i.e. instances and their respective targets. These
samples are called the training set. Then, we consider the training set as an
ordered sequence and give it to some online algorithm A that goes through
data one element at the time. A returns a sequence of hypotheses H; and we
perform the conversion.

The goal is to find a good subset of hypotheses from the sequence A
produced and use only those hypotheses to generate the batch hypothesis.
The batch hypothesis in this thesis will usually be a collection of the best

13

performing hypotheses of the hypothesis sequence.

One of the oldest conversions is to pick the last hypothesis and use it as
a batch hypothesis. The technique makes sense as the hypothesis sequence
tends to converge to a reasonably good hypothesis and sometimes this is the
best possible result, for example when the Perceptron algorithm is used on
linearly separable data.

This method can also result in a bad batch hypothesis. If the end of
the data sequence seen by A contains bad examples or complete outliers,
the end of the hypothesis sequence generated by A may be worse than the
hypotheses before the outliers. We will discuss this problem and define more
reliable conversions in Chapter 3.

2.8 Loss Functions

We use loss functions to measure the performance of a hypothesis. We denote
the loss function by [. The value I(y,y’) measures the penalty suffered for
predicting 3’ when correct target was v.

Choosing a suitable loss function for a problem is important. In some
learning problems, there is no distinction between different incorrect predic-
tions. In this case our loss function should always punish the hypothesis by
same amount of loss when it makes a mistake, no matter what the prediction
was. The loss function called 0-1-loss fits this purpose well.

In general, this is not the case, and we need to use more complex loss
functions. For example, we can learn a spam filter using machine learning
algorithms. Putting an important message to spam folder is a worse mistake
than letting a spam message through and thus the loss function should pun-
ish the algorithm more for filtering real messages out than for letting spam
messages through.

The loss functions used in this thesis are:

0-1 -loss:
1 ify#y
Uy,y') = {

0 otherwise

Absolute loss:

Wy, y) =1y =y
Square loss:

Wy, y) = (y—y)

14

Logarithmic loss: for y € {0,1} and 0 <3/ <1,

o) = —In(1—v¢) ify=0
A In(y") otherwise

Note that this is not defined if either y = 0and ' = 1 or y = 1 and ¢/ = 0.

Hinge loss:
for any margin parameter p > 0 and weight vector w:

0 if y(w - x) > p

pw—1y(w-x) otherwise

l(w, (z,y)) = {

The common use of this loss function is with support vector machine.

The right loss function is not always obvious for a given problem. Machine
learning tasks often include a metric we want to optimize and we need to
choose the loss function carefully to succeed in this. Finding a good loss
function might get tricky and may require some background knowledge of
the data.

2.9 Risk and Regret

The risk and regret are used in batch and online setting to measure how well
a given hypothesis performs on a given task.

In the batch learning setup, we assume there exists a probability distri-
bution D over the product space X x Y. Thus, we can define the average
performance of a hypothesis h over the entire domain, called the risk

R(h) = E(y~pll(y, h(2))].

This is the expected loss of a hypothesis A with respect to the loss function
[, when a sample (x,y) is independently and identically distributed (i.i.d.)
and drawn from the distribution D. Naturally, we want to find a hypothesis
that minimizes the risk.

In the online setting, we cannot define the risk because we often do not
make any assumptions of a data generating distribution. Therefore, we mea-
sure the performance of an algorithm by regret. It is the difference between
the losses of our hypotheses and the best possible hypothesis in H on the
given example sequence. This can be measured only after all the examples

15

Representation Evaluation Optimization

Instances Accuracy/Error rate | Combinatorial optimization
K -nearest neighbor Precision and recall Greedy search
Support vector machines | Squared error Beam search

Hyperplanes Likelihood Branch-and-bound
Naive Bayes Posterior probability | Continuous optimization
Logistic regression Information gain Unconstrained

Decision trees K-L divergence Gradient descent

Sets of rules Cost /Utility Conjugate gradient
Propositional rules Margin Quasi-Newton methods
Logic programs Constrained

Neural networks Linear programming

Graphical models Quadratic programming
Bayesian networks
Conditional random fields

Figure 4: The three components of learning algorithms. This figure is
adapted from Pedro Domingos [13].

have been seen, because only then we can know for sure which hypothesis
performed the best.

We compare the performance of our hypothesis sequence to the best per-
forming single hypothesis. This is different from minimizing the accumulated
loss. The reason is that in online learning the target function is not fixed, as
the length of the data stream is not known. In online learning we can never
be sure what happens next, whatever we have learned now might be obsolete
in future.

Mathematically, the regret of an online algorithm is

1 n
— [(hy— — l(h
n; (he-1, (1, y1)) }Tl{lel[l}nz (e,)

We want to make the regret of an online algorithm as small as possible.
It turns out that by minimizing the regret of an online algorithm we can have
a loss bound for the risk of the batch algorithm generated by the following
online to batch conversions.

2.10 Practical Issues in Machine Learning

The ability to generalize beyond training data examples is the key in ma-
chine learning. It is all about statistics and learning the data generating
distribution. We will next go through a few practical issues that arise when
designing and implementing machine learning algorithms.

16

Figure 5: An example of overfitting. The datapoints (circles) are values of a
linear function with some added noise. A first degree polynomial (blue line)
has larger training error than the 10-degree polynomial (green line), but the
simpler predictor will generalize better.

Most of this chapter is adapted from the article by Pedro Domingos: A
few useful things to know about machine learning [13]. The first problem
with machine learning is to choose a suitable algorithm for a given problem.
As there are thousands of algorithms, this is not a trivial task. Domingos
give few hints how to start this search.

He states that learning is equal to representation, evaluation and opti-
mization: a classifier must be represented in some formal language a com-
puter can understand. Choosing the representation of a learner defines the
hypothesis space, from which a classifier can be learned. With evaluation we
mean a scoring function that help us distinguish good classifiers from bad.
The last part is to optimize the algorithm so that it can efficiently traverse
the hypothesis space to find the best classifier. In Figure 4 are listed some
examples for each of these components.

One of a more concrete problems is overfitting, which means that our
algorithm learns the training set well, but does not generalize to fit the
underlying distribution. For example a higher degree polynomial will always
fit the data at least as well as a lower degree polynomial. This is seen in the
Figure 5.

This problem is often tackled by folding the training set in k distinct

17

sets. One of these sets is left out of training the algorithm, and is used for
validation. Then, we vary the training and validation sets, and finally pick
the hypothesis that worked best out of all the different hypotheses we made
during the verification phase.

Also a additional term called regularization is often added to the loss
function. The regularization term punishes the more complex models and
enables a trade-off between accuracy on the training set and model complex-
ity. The term Occam’s razor is often used with overfitting. It is a principle by
William of Ockham from 14th century and it states that one should choose
among competing models the model that has least assumptions.

The curse of dimensionality, an expression by Richard E. Bellman, means
that many algorithms that perform well in low dimensions become useless
in large dimensions. Also the intuition and the ability to visualize the data
becomes harder when dimensionality of the data increases, often to hundreds
or even thousands of dimensions. The common theme of these problems is
that the volume of the space increases so fast that the available data becomes
sparse.

Fortunately the examples in most applications are not spread uniformly in
the high dimensional space, but rather occur in clusters on lower-dimensional
subspaces.

The theoretical guarantees are not what they seem to be at the first
glance. The main thing in machine learning is generalization and many pub-
lished machine learning articles contain theorems that assure generalization
of the algorithm, if we just have enough training data.

This is usually misleading, as first of all the bounds are usually very loose
and probabilistic. Secondly, the hypothesis spaces tend to be large and it is
not always true that a good approximation of the underlying function is found
in this space and the theorem does not say how to find a good hypothesis
space. What these bounds usually say is just that if we have large enough
training corpus, we have high probability that the learner either returns a
hypothesis that generalizes well, or fails to find one.

18

3 Conversion Algorithms

Finding a good hypothesis with a batch learning algorithm is usually time
consuming. Programming takes time, and training and validation have to
be done with care and precision. On the other hand, online algorithms and
conversions are usually very fast to implement and run. As a result we obtain
a batch hypothesis that performs well and it is more easily obtained than the
ones generated by batch algorithms.

What choices do we have for conversion? The conversions are often di-
vided to two classes: single and ensemble methods. In the single method,
we pick one hypothesis from the hypothesis sequence. In ensemble method,
we try to combine some set of the hypotheses in the hypothesis sequence to
generate a batch hypothesis.

In this chapter, we will go through the basic ideas of online to batch
conversions. We will start with the earliest and simplest conversions called
data-independent conversions. The word "data-independent" is from Dekel
and Singer [12]. They do not consider the data when constructing the batch
hypothesis. Then, we will move to more powerful data-driven conversions
that exploit also the given examples in generating the batch hypothesis.

3.1 Data-Independent Conversions

We will consider three different data-independent algorithms for the online-
to-batch conversion: Voting, Averaging and Sampling conversions. The first
two are ensemble methods and the Sampling conversion is a single method.
They serve as a basis for data-driven conversions.

Voting Conversion

Voting conversion was developed by Freund and Schapire in 1999 [15]. It is
a good example of an ensemble method.

We assume that the target space Y is discrete and we call y € Y a la-
belling. First some online algorithm A has generated a sequence of hypotheses
ho, ..., h, from the training set (z1,v1), ..., (Tn,yn). Given an input z € X,
each online hypothesis outputs a vote h;(z) and our batch hypothesis hY
outputs the class that received the most votes. If two or more classes receive
the same number of votes, we pick one of them at random.

The Voting conversion gives fairly good results but it is very slow. Where
it wins 'pick last hypothesis’-method in accuracy it loses in time consumption
by big marginal. This is because with every unseen data element we have to
go through our whole hypothesis sequence to collect all the votes before we

19

can output the prediction. The size of the hypothesis sequence depends on
the size of the training set used and there is a trade-off between the accuracy
of the predictor and the time consumed in predicting.

Back in 1999 the authors of this algorithm experimented it with the Per-
ceptron algorithm against SVM on the task of hand-written digit recognition.
The end result was that SVM gives slightly better results, but this conversion
is easier to implement and it is much faster.

Averaging Conversion

The next one is called Averaging conversion by Cesa-Bianchi et al.published
in 2004 [5]. Tt applies to problems where the target space Y is convex. Using
the sequence of hypotheses generated by A we predict by taking the average
over predictions given by all the hypotheses. Mathematically, our batch
hypothesis h4 is defined as

1 n
1=0

This conversion is also time consuming if the hypothesis sequence is long,
as we have to calculate the prediction of every hypothesis in the sequence.
Then again, the conversion is robust, as it is the average over all the hypothe-
ses gathered in the training phase. This conversion is also used as a base to
the more advanced conversion Cutoff-Averaging which we will go through in
detail in Section 5.4.

Sampling Conversion

Sampling conversion published in 1995 by Helmbold and Warmuth [19] is
the most general of these conversions: it applies to any learning problem.
Generated batch hypothesis h° is a stochastic function that is obtained by
choosing for each unseen data element a random hypothesis h; from the
hypothesis sequence generated by A. This means that if we apply it twice to
a same instance we might get a different result on each.

This conversion is very fast but it does not guarantee a good result on
any given data element. On the other hand, it does not get stuck with a
hypothesis that predicts often incorrectly. This is because we pick a different
hypothesis after every prediction, so the ability to predict correctly averages
over the data set.

20

In the experiments section we will see that this conversion does not pro-
vide as accurate results as the other conversions. It usually loses to the
pick-last method except if the last hypothesis happens to be exceptionally
bad.

The experiments section shows that this conversion should be used if
we need a very fast conversion and we just cannot risk and pick the last
hypothesis which can be very inaccurate even though the probability for
generating one is relatively small.

The performance of this conversion improves by using the techniques
introduced in the next section.

3.2 Data-Driven Conversions

This section follows Section 2 of the presentation of Dekel and Singer [12].
We use the three data-independent conversions introduced in Section 3.1.
as a basis for the data-driven conversions. The main idea behind the data-
driven conversions is to assume that some of the hypotheses generated by
A are better than others. This is a reasonable assumption, because before
seeing any data, our online algorithm can only guess.

After the first sample our algorithm can update the hypothesis only by
using the information obtained from the first data element, hence the first
part of the hypothesis sequence is generally worse than the last part. After an
anomalous example or two, we might get into a wrong direction for a while,
so there tends to be some bad hypotheses in the middle of the hypothesis
sequence. We can try to separate the best hypotheses from the rest, and only
use those to generate the batch hypothesis.

We start the search of the optimal set of hypotheses by introducing some
notation. First, we denote the set {0,...,n} by [n]. Let I C [n]. Now we
only use the hypotheses h; where, ¢ € I, in Voting, Averaging and Sampling
conversions. We want this set to contain only hypotheses that perform well.
Since the set [n] has an exponential amount of subsets, we will restrict our
search of I to some family of subsets Z of the set [n].

We use Voting, Averaging and Sampling conversions as before, but only
apply each to hypotheses {h; : 1 € I}.

The idea is to use the training data to find the set I that leads to batch
hypotheses with smallest risk. Finding the optimal set plays a crucial role.
There are two advantages in this approach. First, the hypotheses in this set
I have better performance on average than those that are left out of this
set. Secondly, this set is smaller than the whole hypothesis sequence, so
for example Voting conversion is faster as there are not so many hypotheses
voting in the first place.

21

Table 1: Conversions

Time complexity for
Method Target space one classification Type
Pick Last Hypothesis Any Constant Single hypothesis
. . . Line .I.t. the size
Voting Conversion Discrete nearw.t t. the size Ensemble
of hypothesis sequence
. . Linear w.r.t. the size
Averaging Conversion | Convex . Ensemble
of hypothesis sequence
Sampling Conversion Any Constant Single hypothesis
. . . Linear w.r.t the size of
Data-Driven Voting Discrete mearw.r ¢ sre ot a Ensemble
subset of hypothesis sequence
Data-Driven Averaging | Convex Linear w.r.t. the size of a Ensemble
o ging - subset of hypothesis sequence ‘
Data-Driven Sampling | Any Constant Single hypothesis

Note that we get the original data-independent conversions by choosing
I =[n].

3.3 Finding a Good Hypothesis Set

How can we find a good set I7 If the set contains only a few hypotheses, even
one poorly predicting hypothesis in this set can have a devastating effect on
the performance of the resulting batch hypothesis. This is why we want the
set to be reasonably large to average out any biased hypotheses.

The hypotheses in the set have to predict well, so we try to pick only the
hypotheses that made as few mistakes in the training phase as possible.

We start our search for a good set by defining for any set J C [n — 1] the
empirical loss

L(J) = (/[T Uyse1, b)) (2)
jeJ

It is the average loss of each hypothesis h; on the next example (211, y;41)-
We expect that a small empirical loss indicates a low batch risk, so we want
to find a set J for which L(J) is small. We also want that our set J is
reasonably large so that a few bad hypotheses would not effect the resulting
hypothesis too much. This trade-off can be formalized as follows. Let C' be
a positive constant. For a hypothesis set J we define

B(J) = L(J) + C|J| 2. (3)

The function decreases when empirical risk decreases and also when the size
of the set increases. Therefore, it is a good measure for our purposes. Now,
we can set I = argminycp,—1)3(J). This S-function and its minimization

22

is the main point in the article by Dekel and Singer and it is also used
throughout this thesis.

We aim to theoretically justify the Voting, Averaging and Sampling con-
version. The following lemma (Lemma 1 from Dekel and Singer [12]) relates
the risk of hY, h7 and h9 with the average risk of the hypotheses indexed by
J.

Lemma 1. Let (z1,11),- -, (Tm, Ym) be a sequence of examples which is pre-
sented to the online algorithm A and let hg, ..., h,, be the resulting sequence
of online hypotheses. Let J C [m — 1] be non-empty and let [: Y x Y — Ry
be a loss function.

1. Ifl is the 0 — 1 loss then
Riskp(hY) < (2/17]) S,c, Riskp(hi(x)).

2. If | is convex in its second argument then

Riskp(hd) < (1/1.J)) Sies Riskp(hi(x)).

3. For any hypothesis hy it holds that
Riskp(hS) < (1/|]) Xie, Riskp (hi(x).

Note that we leave the last hypothesis of the sequence out of the set J. This
leads to simpler proofs.

Proof. Recall that Risk(h) = Eq)~pll(y, h(x))]

1. Let [be 0 — 1-loss. We have two cases; either we predict correctly and
we suffer no loss or we predict wrong so [(y, hY (x)) = 1. Let’s consider
first the case when we do not make a mistake. Then at least half of the
hypotheses in {h;};c; predict correctly, so also hY predicts correctly,
which means that I(y, hY (x)) = 0.

If we make a mistake, then at least half of the hypotheses in {h;};cs
make an incorrect prediction. Since 0 — 1 loss calculates the number of
mistakes, we get (|.J]/2) < .., l(y, hi(z)). We solve that

Iy, Y (2)) =1 < % Sy, ()

ieJ

Now we can take expectation over the examples and use linearity of
expectation to obtain

23

Eli(y, b} (2))] < E

2 2
]ﬂzmmwﬁﬂﬂZﬂ@%@”

ieJ icJ
By the definition of Risk we get
Riskp(hY) < (2/1J])) _ Riskp(hi(z))
ieJ
as was to be proved.

2. Let [be convex in its second argument. We use Jensen’s inequality
(Theorem 4, Appendix):

Riskp(hy) = Egyyonll(y, b7 (2))]

=7 Z Riskp(hi(z)).

3. Let [be any loss function. The hypothesis h5 chooses a random hy-
pothesis from {h; : i € J} and uses the selected hypothesis to output a
prediction. The probability of choosing any given hypothesis from this
set equals 1/|.J]. This means that the expected loss suffered by A5 on
any example (z,y) is

(L/1]) D Uy, hi(x)),

icJ

i.e. the average loss of all the hypotheses in J. Now,

24

Riskp(h3) = B yy~nll(y, 5 ()]

1
= E/’(gw,)ND|—J| Z U(y, hi(z))

ieJ

— ﬁ Z E(%y,)ND[l(?Ja hz(l“))}

ieJ

— ﬁ Z Riskp(hi(x)),

ieJ
which proves our claim. O

The above lemma means these three conversions give fairly good results
in theory. This is verified in the experiments section and we will actually see
that these upper bounds are loose. We will get back to this in Chapter 6.

Next, we need some definitions and theorems before we are ready to
justify the choice of the S-function in equation (3). We begin by introducing
a concept called martingales.

25

4 Martingales

Martingales arise naturally in the context of online to batch conversions,
as we will see in lemma 2. First we introduce them and then we prove an
important theorem by Azuma [1], which plays an essential role in proving
the error bound of the following conversions.

Definition 1. A discrete time martingale is a sequence of random variables
X1, X5, X3, ..., also known as a stochastic process, that satisfies for any time
n7

1. B(|X,]) < o0
2 B(Xpir | X1, X)) = X,

i.e. the expected value of a random variable is always finite and the expec-
tation of the next value is the same as the currently observed value, even if
we know all the previous values. Martingales express a fair game where any
prior knowledge does not give information on the next outcome.

FExample. A gambler is playing a game of coin tossing. He will win one dollar
if the result is heads and lose one dollar if the result is tails. Let X,, be the
gamblers wealth after n coin tosses. The gamblers expected wealth after the
next trial conditioned with the whole previous coin toss sequence is the same
as his fortune at the moment. Thus, this sequence is a martingale.

Given a sequence X7, X5, X3,... of random variables, a martingale with

respect to the sequence (X;) is another sequence of random variables 71, Z5, Zs, . . .

if each Z; satisfies
1. BE(|Z]) < >
2. there exist functions g; such that Z; = ¢;(X;, Xo,..., X;), and
3. E(Zi| X1,...,Xi1) = Z; 1.

We will later see that the difference of the risk and the penalty by a loss
function turns out to be a martingale. This is a very important observation
in proving the necessary loss bounds for our conversion techniques. Now, we
are ready to prove Azuma’s inequality which plays a central role to bound
our method.

Theorem 1. (Azuma’s inequality [1]) Let Xo, X1,... be a martingale
such that for each i, | X; — X;_1| < ¢ for some ¢; > 0. Then for all A > 0 it
holds that

)\2
P(X, — Xy >\ <exp (—22 02))

26

Proof. Fori > 1,1let Y; = X; — X;_1. Now E[Y; | Xy,..., X; 1] = 0 since the
sequence (X;) is a martingale. Let Z, = Y " | Y; = X,, — X,. Now for any
t > 0 we have

[

= e ME[E[e | Xo, ..., Xn_1]]

_ e_AtE[E eth—l . etY" | X07 e ,Xn—l]]
[- ,anl]]

< [

—_ ef)\tetQ(cn)2/2 . E[eth_l]

o (PELT)

where we used Lemma 4 (Appendix) to the random variable Y, /c,. It has 0
mean and takes values in [—1,1]. We also solved E[e'?"~1] recursively.

As this holds for any ¢t > 0, we choose t = Zv()‘cl_)Q and get

PIX, — Xo > A| < exp <-#§C>2) |
]

The next lemma relates the empirical performance and average risk of
hypotheses indexed by J. This guarantees that our conversions work in the
sense that if we minimize the regret, we will get a batch hypothesis with a
low risk. We will use Azuma’s inequality in the proof.

Lemma 2. Let (X1,Y1),...,(Xm,Ym) be a sequence of examples indepen-
dently drawn from D. Let Hy,..., H,, be a sequence of online hypotheses
generated by some online algorithm A while observing this sequence of exam-
ples. Assume that the loss function | is bounded from above by some R > 0.
Then for any J C [m — 1],

1 , C?
P (m ZstkD(Hi) > B(J)> < exp (—Q—RQ)
where C' is the constant used in the definition of 5 (Equation 3).

27

Proof. We begin by manipulating the expression:

=P (IJ\ > " Riskp(H;) > L(J) + O|J|%>
_ <| ‘Z (Riskp(H;) — 1(Yisr, hi(zis1)) >O\Jy—%>

i€

RZSk’D Z(Y;+1, z 1+1 > C/ ’J)

Next, we denote Riskp(H;) —l(H;(X;4+1), Yiy1) by Vi. Since [takes values in
(0, R) we get that —R < V; < R for all i:

ElVi | (X1,Y1),..., (X, Y))]
= Risko(H,) — BU(H(Xo), Yier) | (X0, Yo), ., (Xi, Y] = 0.

This means that the random variable sequence (V;) is a martingale with
respect to (X;) by definition 1. First denote {jo,...,jn} = J, which is
possible because J C [m — 1]. We can use Azuma’s inequality 1 to Vs to
get the desired bound:

P (Z Riskp(H,) = I(H;,(X;,,,), Yi..) > cm) =P (Va= Vo> V)
< eap (_ <C¢W)

2> e 12

=ex _CZIJ\
— P\ TR

02
~o(-57)

which proves the lemma. O]

28

The following theorem justifies the choice of § in Equation 3. This is a
very important result as all the conversions rely on finding the optimal set
of hypotheses.

Theorem 2. Let b denote any of the three considered conversion strategies
(Voting, Averaging or Stochastic). If the loss function | meets the require-
ments of Lemmas 1 and 2, then for all J € T it holds that Riskp(h%) < 5(J)

with a probability greater than or equal to

02
1—|Zlexp (—2—R2> :

Proof. We prove this theorem for Averaging technique only, as the proofs for
the other techniques are almost identical.

Lemma 1 says that Riskp(hy) < ﬁ > icy Riskp(hi(z)). From lemma 2,
we get that Riskp(h4) < 5(J) holds with probability at least 1—exp(—C?/2R?)
for any J. Now we can use union bound to get that Riskp(h4) < B(J) with

all J € Z simultaneously with probability at least

1> P(Riskp(h}) > B(J)) =1 — |I|exp (¢) .

T op2
JeT 2R

]

Now when we increase the value of C, the size of the set J influences 5 on
a greater degree. Increasing the value of C also increases the probability that
[upper bounds the risk of hypotheses indexed by any J € Z. The choice of
[is now also justified theoretically.

After these theorems and lemmas, we have proved that the conversions
given in the earlier section do work fairly well in theory. Now we improve
these methods and move on to experimenting.

29

5 Data-Driven Conversion Algorithms

The idea of data-driven conversions is to use the provided data to find a set
with as small f—value as possible. This set is then used with algorithms
provided in Section 3 to get a batch hypothesis.

We discuss four different online to batch conversions. The first three
conversions are by Dekel and Singer [12] and the fourth is by Dekel [11].

5.1 Suffix Conversion

Many online algorithms generate bad hypotheses during the first few rounds
of learning. This sounds natural, as we start from a guess and the more
examples we have seen the more we have learned. Therefore, we consider
subsets of the form {a,--- ,n} for some 1 < a < n. In this setting, we set Z
to be the set of all suffixes of [n — 1].

After the algorithm has generated the hypothesis sequence hy, ..., h,, we
set | = argmin .7 3(J). A downside of this conversion is that the memory
requirement grows linearly with n. Also going through all the suffixes is very
time consuming. This is seen in the experiments section: this conversion is
the slowest one in our experiments.

Some heuristics for choosing the optimal value of a have been suggested
by Li [25], but we use the S-function minimization approach, like Dekel and
Singer did.

5.2 Interval Conversion

The idea of the Interval conversion is only sketched here, as introducing all the
necessary background properly is out of the scope of this thesis. Interested
reader may take a look at the original paper by Dekel and Singer [12] for a
more thorough explanation.

A function A is a kernel-based hypothesis, if it is defined by

h(z) = Z%‘K(Zjafﬁ),

where K is a Mercer Kernel i.e. positive semi-definite and z;’s are in-
stances (also called support patterns) and «;’s are real valued weights.

Support Vector Machine (SVM) is an example of a batch algorithm that
produces kernel-based hypotheses. An interesting learning problem is to learn
a kernel-based hypothesis h that is defined by at most B support patterns,

30

where B is a predefined constant. This constant is often called the budget of
the support patterns.

The less support patterns needed for representing a kernel-based hypoth-
esis, the faster it is to calculate.

In online learning setting, a similar problem arises when we want to con-
struct an online algorithm where each hypothesis h; is a kernel-based function
that is defined by at most B support patterns.

To convert a budget-constrained online algorithm A into a budget-constrained
batch algorithm, we need to make an additional assumption of the update
strategy used by A. We have to assume that whenever the algorithm A up-
dates the hypothesis, it adds a new support pattern to the set that represents
the kernel-hypothesis. Now we can choose I to be the set {a,a + 1,...,b}
for some integers 0 < a < b < n.

Let A update its hypothesis k£ times during rounds a+ 1 through b. Then
the resulting hypothesis is defined by at most B + k support patterns. So
we define Z to be the set of all non-empty intervals in [m — 1]. Now 3(J)
bounds the risk Riskp(h4) for every J € Z with high probability.

Next we generate the hypothesis sequence by running the algorithm with
budget parameter B/2. Then we choose I to be the set in Z which contains
at most B/2 updates and minimizes §. By this construction, the resulting
hypothesis h# is defined by at most B support patterns.

5.3 Tree-Based Conversion

In this conversion, we build the subset Z recursively. This way, we do not
have to store the hypothesis sequence in memory like with suffix conversion.
First, we assume without loss of generality that n is a power of 2, as we can
just add more hypotheses with infinite loss, if needed. We define J,, = {a}
forall0<a<n-—1.

Next, we assume that we have already constructed the sets J,; and J. 4,
where a, b, ¢ and d are integers such that a < d, b = (a+d—1)/2 and ¢ = b+1
i.e. we divide the interval in half. Now we define

(Ja,b U Jc,d)

Ja,b if B(Ja,b) S ﬁ(Jc,d> and B((Lz,b) S 6
S B(Ja,b U Jc,d)

Ja,d = Jc,d if 5<Jc,d) < B(Ja,b) and ﬁ(Jc,d)
Jap U Jeq otherwise

Finally, we define Z = Jy,,,_1 and output the batch hypothesis hi. To
put it in words, we start by looking at each individual hypothesis and their
beta-value and we will compare every hypothesis h; with its neighbor h;,

31

Jo,3 Ja7 Js 11

7 N 7 N 7 N

Jo,1 J2,3 Jas Je,7 Js,9 J1io,11

o —— e — e — e — —— ——
hO hl h2 h3 h4 h5 h6 h7 hS h9 th hll h12

Figure 6: An example of the tree based conversion. The picture is from Dekel
and Singer [12]

and then move to the next hypothesis pair that has not been compared yet.
Then we will choose either of the hypotheses or merge them, depending which
of these options get the smallest beta-value.

The benefit of this conversion is that it can also be done in parallel with
the online rounds.

When the instances are elements in R™ and Averaging conversion is used
with linear hypotheses, the memory utilization with this conversion is only
O(logn) compared to memory utilization of suffix conversion that is O(n).

The reason for this is that in this special case the hypotheses are weight
vectors and we can discard all the online hypotheses hy, ..., hy after we have
calculated J, ;. We also don’t have to save the set J, 5, we only need to know
the loss L(J,p) and the size of this set. Storing these require only constant
amount of memory so the overall memory utilization is indeed O(logn).

5.4 Cutoff-Averaging

This algorithm is from Dekel, published in 2009 [11]| and it is considered an
improvement to the above three conversions.

Cutoff-Averaging conversion can be used for any conservative online learn-
ing algorithm that utilizes a conver hypothesis set. Conservative learning
algorithms change the hypothesis only when a mistake is made. If the pre-
diction is correct, the weight vector stays the same for predicting the next
example. The convexity constraint is needed, as in the earlier Averaging
conversion algorithm.

The idea of the algorithm is to calculate the survival time for the hy-
potheses. The survival time of a hypothesis is the number of consecutive
rounds it is used in predicting before it makes a mistake and is replaced with
a new hypothesis. After calculating the survival time for all the hypotheses

32

we keep only the hypotheses with survival time greater than some predefined
cutoff parameter k.

The conversion outputs the weighted average over all the survived hy-
potheses. Weight of a hypothesis that survived m times is m — k. Ultimately,
the optimal cutoff parameter k is chosen by the algorithm itself; if there are
few outstanding hypotheses we take only them and set k high. If no clear
winners are found, the cutoff parameter is set small.

This conversion is fast because we can collect all the survived hypotheses
during the online phase. Together with good accuracy, this conversion cap-
tures the idea of online to batch conversion as it is easy to implement and
significantly faster than the suffix conversion.

Statistical Analysis

The analysis presented earlier does not apply to the Cutoff-Averaging-algorithm.
Therefore, we are going to go through some statistical analysis and justify
the correctness of the conversion before going further. The analysis is mostly
adapted from Dekel [11]. To refresh memory on conditional expectation,
please see the Appendix.

We represent the examples as a sequence of random variables ((X;, Y;))™,.
From online algorithm A, we get the online hypothesis sequence (H;)™,.
This is a sequence of random functions. Each of these functions are defined
deterministically by ((X;, Y;))™,. Since the examples are independent we get
that

[(Hi, D) = E(I(H;, (Xiy1, Yir)) | (X5, Y5))5=1)
It means that the risk of H; is the same as the expectation of the online loss on
round ¢ + 1 conditioned on all the previous examples. With this observation
we can again convert the regret bound into risk bound. We define a sequence
of binary random variables as follows

Bi_{l iti=0orifi>kand Hop=Hpn == H

0 otherwise

Now we can define the output hypothesis to be

m—1 -1 m—1
H = (ZO BZ-> Za B;H;. (5)

Setting the survival time parameter k to 0 signifies that every hypothesis
in the sequence is qualified and the procedure reduces to standard Averaging

33

conversion technique. Setting the value k larger and larger we will achieve the
longest survivor technique i.e. we will use only the hypothesis that survived
the longest and discard others.

The next theorem bounds the risk of H} in case where the used loss
function is convex and bounded. This is the case with Hinge loss and the
Perceptron algorithm we are going to use in experiments. The theorem and
the related lemma are adapted from [11]. To prove the theorem we need the

following lemma which is a corollary of Freedman’s tail bound for martingales
[14].

Lemma 3. Let (L;)™, be a sequence of real-valued random variables and let
(Zi)i2y be a sequence of arbitrary random variables such that Ly = E[L;|(Z;)_,]
and L; € [0,C] for all i.

Define U; = E[Li|(Z;)'_}] for all i, and define L, = St L and U, =
2;1 Ui for allt. For any m > 4 and for any § € (0,1), with probability at
least 1 — 0, it holds that

Vie{l,...,m} U <L+ 201n(%)it+701n(%).

The proof of this lemma is found in the technical appendix of Dekel’s
article [11].
Now we are ready to prove the main theorem related to Cutoff-Averaging.

Theorem 3. Let k be a non-negative constant and let | be a convexr loss
function such that [(h | (x,y)) € [0,C]. An online algorithm is given m > 4
independent samples from distribution D and it constructs the online hypoth-
esis sequence (H;)™ .

Define B; and H} as in equations (4) and (5), let L; = B;_1l(H;—1; (X, Y;))
for all i and let L = (3. B;)"' S L;. For any 6 € (0,1), with probability at
least 1 — 0, it holds that

. . 2CIn(%)L 7CIn(%2)
I(H; D) < L+ S5, + S B,

Proof. Define U; = E[L|(X;,Y;)Z}] for all i € {1,...,m}, and define U =

i Xilj=1
> Ui Using lemma 3, we have that with probability at least 1 — 4§

U, < L, + QCln(%)Et +7C I

5

By definition we have

34

U; = B[Bi1l(Hi—y; (X3,)| ((X5,Y)))i21)-

Since B; is deterministically defined by ((Xj;,Y;))’_}, it can be taken out
of the conditional expectation above. Now we have U; = B; 1l(H;_1; D).

Overall, we have shown that

ZBZ W[(H;_1; D) <L+,/2Cln(5)Lt+701n(5)
=1

Using Jensen’s inequality, the left-hand side above is at least

<ZBl 1) (H;; D).
O

The Cutoff-Averaging technique sets the output hypothesis H* to be the
hypothesis with smallest bound obtained from the Theorem 3 from the set
{H,...,H}_,}. Sothe number k is chosen automatically. If a small number
of online hypotheses have long survival times, k£ will be large. In the case
where most hypotheses have small survival times, k£ will be small and more
hypotheses will be taken to the ensemble.

This conversion is quite similar to the Averaging conversion technique
described earlier in this section. As discussed before, the suffix conversion
requires O(m) space whereas the Cutoff-Averaging has smaller memory uti-
lization. The memory requirement of O(y/m) is achieved with the following
observation.

The technique cannot choose the optimal value k£ before it has seen the
whole dataset, but it can group the seen online hypotheses based on their
survival times and store the average hypothesis and total loss in each group.
Then calculating the optimal k£ and outputting the hypothesis is straightfor-
ward. In a sequence of length m, the maximum number of distinct survival
times x is calculated by solving the following inequality:

. w(z+1)
Y=<,

: 2
=1

where the maximum for x is proportional to the square root of m. Hence the
memory requirement for this conversion is O(y/m).

35

5.5 Wrap-up

We considered four different conversion: Suffix, Interval, Tree-Based and
Cutoff-Averaging. In the article by Dekel and Singer where the first three
were introduced, the authors claimed that all the three perform roughly
equally. So when choosing a conversion for a given problem, the important
difference between these conversions is the target space and memory require-
ment.

The most intuitive and easiest to implement is the Suffix conversion. But
calculating the S-value for each possible suffix is very time consuming. But
we have to pay this price only once, and when we are done, the resulting
suffix of the hypothesis sequence tend to perform well in practice. This is
more emphasized in the next section.

The Tree-Based conversion saves memory compared to the Suffix con-
version and is easier to both understand and implement than the Interval
conversion. It is also relatively fast and gives reliable results as seen in the
Ezrperiments section.

The Cutoff-Averaging is more sophisticated than the other conversions.
It is both fast and yields good results which is verified in the next section.
The theoretical analysis of this conversion is somewhat complicated, but the
implementation is straightforward.

36

6 Experiments

Online to batch conversions have been studied by only a handful of people
and there are not many papers of the subject. The latest I am aware of is
from 2009 by Dekel [11]. In this paper, he proposes the Cutoff-Averaging
algorithm, which seems to be still the state-of-the-art conversion from online
to batch.

Some well-performing algorithms studied by Dekel and Singer in 2005
|12| require finding optimal suffixes of the hypothesis sequence H. Their
algorithm searches through and analyzes the whole set of suffixes. One of
our goals is to find sophisticated ways to prune the set of suffixes before
further analysis. One way to achieve this could be by observing the behavior
of the p-value as a function of the suffix length to find useful properties.

We will use MNIST [24] handwritten digits, by Lecun and Cortes, as our
database, because it is well-known set used for classification. Also Dekel and
Singer [12] used MNIST in some of their experiments. The online algorithm
they used is the Passive-aggressive algorithm [10]. In addition to this, we use
the Perceptron algorithm [28].

The MNIST data set consists of 60,000 images of the size 786 pixels.
Some of the conversions have to run through the data several times, which
is quite time consuming. This is especially emphasized with both the Suffix
conversion and the Voting method.

The experiments can be divided into three phases. First, one of the
two online algorithms is applied to the training set consisting of images and
correct labels. As a result, we get the hypothesis sequence H the algorithm
generated.

In the second phase, we run the conversions. This is the task we are mostly
interested in. Picking the last hypothesis serves as the baseline conversion.
We apply the suffix method to H in order to obtain the best hypothesis set
J with respect to small $-value. We experiment with different values of C'
when calculating the [-value in data-driven conversions. This means that
we will have to run through the data multiple times. We study the Voting,
Averaging and stochastic methods applied to the pruned sequence J.

The last conversion we run is Cutoff-Averaging. We also experimented
something we call Cutoff-Voting with this algorithm: we use the Voting
conversion to the hypothesis set constructed by Cutoff-Averaging instead of
the Averaging conversion.

In the last phase we record the error rate and time consumed of the
conversions. We represent the results visually. We use the k-fold cross-
validation, i.e. divide the training set into k£ parts and use one of them in
testing and others for training. The value of k£ will vary from 3 to 10 as in the

37

article by Dekel and Singer [12]. We will then study the standard deviation
of errors of every algorithm used on MNIST.

Next we will go through the results of the previous experiments by Dekel
and Singer.

6.1 Previous Experiments by Dekel and Singer

In the article by Dekel and Singer [12] the Voting and Averaging conversions
are tested. The algorithm used is multiclass version of the Passive-Aggressive
algorithm. The datasets used are MNIST|24|, USPS |23|, ISOLET |7] and
LETTER |2]. The sizes are 70000, 7291, 7792 and 20000, respectively.

The MNIST and USPS are databases of handwritten digits. The LET-
TER is a database of handwritten letters and ISOLET is a database of spoken
letters. So each of these datasets have a discrete output space.

The experiments are done with cross validation where the training set is
split into a k distinct parts and each algorithm is trained on using each of
these parts and tested on remaining k — 1 parts. The value of k varied from
three to ten

The data was applied to (data-independent) Averaging and Voting con-
version and to the three data-driven variants. The number of different data-
driven conversions is six. The parameter C' in the definition of g-function
was set to three. The interval conversion was set to choose an interval con-
taining 500 updates. Then test error of the conversions was calculated and
compared especially to the “pick last hypothesis” conversion.

The results by Dekel and Singer are convincing. The suffix and tree-based
conversions constantly beat their respective data-independent variants. The
interval conversion loses occasionally to the data-independent variants. In
general, the Averaging technique achieves best results while the Voting con-
version is close second. Pick last hypothesis conversion is almost always
inferior.

The Cutoff-Averaging algorithm by Dekel is tested in his article [11] with
the Reuters Corpus Vol. 1 (RCV1) dataset. This set has over 800k news
articles. Each article is associated with one or more high level label, which
are: Markets (MCAT), Government/Social (GCAT), Economics (ECAT),
Corporate/industrial (CCAT), and Other (OTHER). Roughly 20% of the
articles has more than one high level label. After removing those Dekel was
left with over 600k articles. The results are shown in the Figure 7.

The algorithm was used with regular Perceptron and Margin-based Per-
ceptron. Here margin-based means that the algorithm is minimizing the
hinge-loss instead of zero-one loss. Each of the experiments was performed

38

last average average-sfx || voting voting-sfx
LETTER 5-fold 20.9+£1.8 21.2+0.5 | 20.5+0.6 23.4+£08 | 21.5+0.8
LETTER 10-fold || 37.3£2.1 || 26.94+0.7 | 26.5+0.6 || 30.2+1.0 | 279+ 0.6
MNIST 5-fold 7.2+£0.5 59+0.4 5.3 +£0.6 7.0£0.5 6.5+ 0.5
MNIST 10-fold 13.8 £2.3 9.5£0.8 9.1+0.8 87+05 | 8.0£05
USPS 5-fold 9.7+1.0 7.5+0.4 7.1+£04 9.4+0.4 8.8+0.3
USPS 10-fold 12.74+4.7 || 10.1£0.7 9.5+0.8 || 1256+1.0 | 11.3£0.6
ISOLET 5-fold 20.1 £3.8 176 £4.1 | 16.7+3.3 206 £3.4 | 183+39
ISOLET 10-fold | 28.6 £3.6 || 25.8 2.8 | 22.7+3.3 || 29.3+3.1 | 26.7+4.0

Table 2: The results of pick last conversion, average conversion, voting con-
version and the suffix method testing by Dekel and Singer [12]. The best
performance is bolded. The figure is adapted from Dekel and Singer [12].

10 times with new permutation of the data and a new split into a training set
and a test set. For a more detailed explanation of the experiments performed
by Dekel, please see the article [11].

In the Figure 7, the pick last hypothesis conversion gives unstable results
and is not as accurate as the Cutoff-Averaging technique when the standard
Perceptron is used.

With the Margin-Based Perceptron, the pick last hypothesis gives better
results and the simple Averaging technique does not perform as well. The
Cutoff-Averaging starts to perform better than the pick last hypothesis after
some online rounds.

This is expected as the performance of the Cutoff-Averaging relies on
tail-bounds with enough samples. When the training set is big enough, the
Cutoff-Averaging algorithm will see that a small set will be best and adjust
its parameters automatically. More detailed experimentation can be found
from Dekel’s article and my following experiments.

6.2 Results

We have performed experiments on the MNIST database of handwritten
digits by Lecun and Cortes [24]. The dataset consists of a training set of
60,000 examples and a test set of 10,000 examples. Each example is a 28x28
pixel picture of a handwritten digit. Each pixel has a value between 0 and
255 to describe the intensity of the picture in that pixel. An example of 100
handwritten digits from this dataset is shown in Figure 8.

The conversions only need the hypothesis sequence, and they do not have
any prior knowledge of the algorithms used. We chose the Perceptron and
Passive Aggressive algorithms for two reasons. First of all, they are easy to
implement and they give fairly good results on the MNIST dataset. Secondly,

39

CCAT vs. GCAT CCAT vs. MCAT CCAT vs. ECAT CCAT vs. OTHER GCAT vs. MCAT
0.5 0.5 . 05

1 3 5

10 10 10
ECAT vs. OTHER

% 01

Figure 7: The test error of the Cutoff-Averaging compared to the pick last
hypothesis method. These two conversions are applied to the standard Per-
ceptron on ten binary classification from the Reuters Corpus Vol. 1 (RCV1)
dataset. The x-axis represents the training set size on log-scale. Each plot
shows the average over 10 random training and testing splits. The picture is
from Dekel [11]

EHIEIIEII

Figure 8: A visualization of 100 handwritten digits from the MNIST dataset.

40

the PA algorithm is used in the experiments in the original article by Dekel
and Singer [12], so comparison of the results are easier.

Note that the error percentage of our implementation might be larger
than those reported by Dekel and Singer. This is probably because we have
implemented only very simple versions of the Perceptron and PA and no
optimization is done for these. Tuning these algorithms was not relevant as
we are interested of the actual conversions, not online learning algorithms
themselves.

We focus on the difference between the error percentages of the various
conversions rather than the actual error percentage. There was no notice-
able difference in terms of error between the hypothesis sequences generated
by the Perceptron algorithm and the PA algorithm. In the following 4 test
scenarios we have constructed each of the hypothesis sequence with the Per-
ceptron algorithm, so that the scenarios are comparable with each other.

Our experiments are done with Matlab by Mathworks [34]. First, the data is
loaded and the pictures and corresponding labels are extracted to separate
matrices. We shuffle the data between each iteration, but save the seed of
random so we can rerun any experiment if needed. Then, we choose the
size of the training and testing sets and pass the pictures and labels to the
Perceptron algorithm, which will return a hypothesis sequence.

This sequence is then used with various conversions. Of data-independent
conversions, we have implemented the pick last hypothesis (from now on
PLH), Sampling, Averaging and Voting conversions. These conversions use
the whole hypothesis sequence in the conversion, as discussed earlier. The
batch hypotheses generated with these conversions are then tested with un-
seen data and the error percentages are recorded.

After these conversions, we introduce the S-function and extract a subset
of the hypothesis sequence that minimizes the function. The suffix and the
tree-based conversion are used and the subsets are saved. Then we run the
Sampling, Averaging and Voting conversions again, but only using the chosen
set of hypotheses.

Error percentages of the conversions are saved and the process is ran
multiple times with different training and test sets. The sizes of these sets
vary. Last, we compare all error percentages and variance of these multiple
conversions. The results are presented in boxplots.

The last conversion we test is the Cutoff-Averaging. At first we imple-
mented the idea behind the algorithm as follows. We chose the survival time
k by hand and tried it with different values. Then we chose the hypotheses
that survived k£ or more times and used these with Voting conversion. The
amount of votes a hypothesis have in this model is proportional to the time

41

it survived. We call this conversion Cutoff-Voting.

This conversion is accurate, but it leads to bigger memory consumption
than the Cutoff-Averaging conversion. The upside is that it was easy to
implement. Implementing the Cutoff-Averaging conversion as described in
the article by Dekel was more laborious.

The following notes were taken during multiple iterations of this test
framework: Loading the data, shuffling, and running one epoch of the Per-
ceptron algorithm take only seconds even on a big training set. The Voting
method is noticeably slower than other methods as each hypothesis in the
sequence casts a vote for each picture in the test set. This means that the
running time is proportional to the size of training set multiplied by the size
of the test set. In most cases, this is quadratic.

The suffix conversion is an other slow part of one iteration, as we have to
calculate the p-value for each suffix. This is also quadratic. The data driven
Voting and Averaging are faster than their data-independent counterparts as
the hypothesis set is smaller. In a sense, this mimics the training with batch
methods as the training takes time, but once we have the batch hypothesis
the testing is very fast.

We will illustrate four test cases. The sizes of the training sets are relatively
small, as we are especially interested of the performance of the conversions
when training is hard. Other reason is that running the whole test case with
multiple iterations takes time and the resulting batch hypotheses perform
close to each other.

In the following figures we have used boxplot to illustrate the accuracy
of the resulting batch hypothesis, constructed by different conversions. In
the y-axis we plot the success percentage of predicting a label of a given
conversion, when presented a batch of unseen pictures of handwritten digits.

We start by looking at a rather small case, where the size of the training
set, is 600 and the size of the test set is 900. We have run this test scenario 30
times, every time with a different training and test sets while keeping their
size the same.

As seen in the boxplot in Figure 9, the Sampling conversion is the worst
in terms of accuracy. The PLH conversion gives better results, but still loses
to other conversions. The most notable thing in this setting is that the PLH
conversions performance varies noticeably: the worst performing classifier
produced by PLH got under 60% of the labels right in the test set, whereas
for example all the 30 classifiers produced by Voting conversion got over 75%
of the labels right.

Other conversions are quite stable with good accuracy. It is worth to
note that all the other conversions give better results than PLH even in this

42

0.85

08

=[]~
il
il
o

0751

07 == 4

0651

=
|
|
|

= _

|
|
0851 - B

06

Pick Last ~ Sampling Averaging Yoting Data Sampling Data Yoting Cutoff Voting

Figure 9: The success percentages of seven different conversions over 30
iterations. Data-driven conversions are done with suffix conversion. The size
of the training set is 600 and the size of the test set is 900.

small test scenario except the Sampling conversion, both data-independent
and data-driven one. But the performance of the Sampling conversion is
more predictable than the performance of the PLH conversion.

With this small training set of only 600 examples, the data-driven con-
versions do not perform any better than the data-independent ones, except
for Sampling conversion. This is because the conversion chooses the hy-
pothesis randomly, but when we have constructed the set by minimizing the
[S-function, all the hypotheses in that set are fairly accurate.

In Figure 10, we have a test scenario with more training data, so the
hypothesis sequence generated by online algorithm is longer. The size of
the training set is 1000 and the size of the test set is 2000. This is iterated
10 times. In table 3 the actual success percentages of each conversion per
iteration are shown. The best performing conversion per iteration is shown
in bold.

With this setting, the Cutoff-Voting is gaining edge. This accuracy is not
much more than with the data-independent ones though. Picking the last
hypothesis has again lots of variance and does not give as accurate results as
the other conversions excluding Sampling.

The performance of data-independent Voting seems to be better than

43

Pick Last Sampling Averaging Voting Data Sampling Data Voting Cutoff Voting

Figure 10: The size of the training set is 1000 and the test set is 2000. The
Cutoff-Averaging is most accurate and data-driven conversions give better
results than their data-independent counterparts.

that of data-driven one. This is curious, as the data-driven sampling is
clearly better than data-independent sampling. We have not studied this
phenomenon further in this thesis.

The boxplot in Figure 11 is generated from a small training set of size 100,
and the size of the test set is 200. We repeated this 100 times. This scenario
emphasized the observation that the performance of the PLH conversion
varies lot from run to run. The best result was approximately 0.71 of right
predictions whereas in the worst run it managed to predict only 0.29 of
the test samples correctly. This highlights the fact that picking the last
hypothesis as the batch hypothesis is risky and can give inferior results.

With this small training set, it is not really feasible to implement the
data-driven conversions, as they perform roughly the same, or even worse,
than their data-independent counterparts.

When the size of the training set is increased, the suffix conversion be-
comes slow. This is expected as it is quadratic. Also the Voting conversion is
noticeably slow with a training set size of 9000 as in Figure 12. The Averaging
and Voting, both data-independent and data-driven versions are performing
well compared to other conversions. The free parameter C should be tuned
to achieve better results with data-driven conversions in this setting.

44

Table 3: The success percentage of conversions in Figure 10
PLH Sample Average Voting D-sample D-Voting Cut-Off

0.7845 0.65 0.8405 0.8395 0.7365 0.831 0.8405
0.7795 0.672 0.835 0.8385 0.737 0.83 0.836
0.7445 0.657 0.8335 0.837 0.7385 0.838 0.835
0.7875 0.6525 0.8465 0.849 0.765 0.8405 0.85
0.741 0.6605 0.831 0.8385 (.755 0.8325 0.837
0.693 0.672 0.841 0.837 0.762 0.8355 0.84
0.793 0.658 0.839 0.842 0.75 0.839 0.8415
0.729 0.663 0.8535 0.8595 0.77 0.851 0.8605
0.757 0.652 0.836 0.8405 0.719 0.834 0.841
0.7925 0.671 0.8335 0.8395 0.7735 0.837 0.842

The Voting conversion is faster with data-driven version. Even though
calculating the (-value for all suffixes takes time, after we have the set of
best suffixes the Voting is faster, as there are fewer hypotheses casting vote.
We expect that this speed-up would be even noticeable if we used larger test
set.

On very big sample sizes the same behaviour continues: the PLH conver-
sion has still plenty of variance compared to other conversions. The ensemble
methods give reliability and confidence on both big and small training sets.

All of these experiments highlight the fact that the PLH conversion can
give inferior results from time to time. The advantage of the data-driven
versions compared to their data-independent counterparts is not so clear.
Sometimes they seem to perform a bit better and sometime there is no real
difference between the data-independent and the data-driven ones.

I am, however, quite sure that the implementation of the tree and suffix
conversion work. Even if it is not so clear with the Voting and Averaging
conversion, we can see it from the performance of the Sampling conversion.
The data-driven Sampling conversion is always noticeably better than the
data-indepent counterpart. This is because some of the hypotheses at the
start of the hypothesis sequence are basically just guessing, or they recognize
only a class or two, but have not seen any example of most of the classes.

The poor performance of the data-driven Voting and Averaging conver-
sions could be because of the MNIST dataset itself. Some of the hand-written
digits are easily recognized, whereas others are hard. For example, the digit
7 get often confused with digit 9. Nevertheless, the speed-up in predicting is
often so significant that one should consider the data-driven versions.

In Table 4, we have listed both the running times of some of the con-
versions as well as the size of the suffix conversion from the test scenario

45

065

o7k T
|
|
|

06

055

+ |-—-
|___

051

0451

I
04 I

Al
0351

+ 4| m—

i
: +
03} =

Pick Last Sampling Averaging Yoting Data Sampling Data Voting Cutoff Voting

Figure 11: Here the size of the training set is only 100 and the test set size
is 200. The performance is tracked over 100 iterations. The PLH methods
unstability is clearly seen and we can also see that the Cutoff-Voting does
not perform very well as there are not enough samples. Data-driven Voting
performs roughly as well as the data-independent version, which is expected
with a small training set.

09t @ E El E _

088 4

0.86 ~
Tz
0.84 E| 4
082} T | .
E' .
|
|
|
|
|
|

08
|

0781

Pick Last Sampling Averaging Yoting Data Sampling Data Voting Cutoff Voting

Figure 12: The size of the training set is 9000 and the size of the test set is
1000. The number of iterations is 4. With this large size of the training set,
the Voting method and suffix conversion are infeasible. The other conversions
run fast enough.

46

Table 4: Runtimes
Iter. 1 Iter. 2 Iter. 3 Iter. 4

Perceptron (seconds) 1.41 1.39 1.42 1.44
PLH (seconds) 0.088 | 0.092 | 0.087 | 0.087
Sampling (seconds) 0.21 0.22 0.21 0.22
Voting (seconds) 705 684 677 675
Averaging (seconds) 581 505 548 536
Suffix Size 4891 2808 4719 4374
Suffix (seconds) 3580 | 3540 | 3500 | 3510
Data Driven Sampling (seconds) | 0.119 | 0.119 | 0.12 0.122
Data Driven Voting (seconds) 368 206 357 353

illustrated in Figure 12. We chose this extreme scenario, as it shows best
how long some of these conversions take. The online algorithm itself takes
mere seconds to run, and the PLH and Sampling are both run in under a
second. Finding the optimal suffix is the most time consuming part, and it
took almost an hour.

After finding the optimal suffix, the Data Driven Voting is faster than
the data-independent version. The speed-up is directly proportional to the
size of the suffix.

47

7 Conclusion

We have studied a few conversions, both data-independent and data-driven
ones, so we have some insight of the bottlenecks in implementation and run-
ning speed as well as some suggestions for improvement.

As online to batch conversion is little studied, there are many aspects
where we can improve. The practice of picking the last online hypothesis
to a batch hypothesis has one advantage and that is speed. Many of the
conversions described in this thesis lack the speed and are even unusable on
big datasets.

The high variance of the error with PLH is still something that one can
not ignore. One possibility could be to just choose a relatively small constant
suffix of the hypothesis sequence and use some ensemble method on that set.
This way, the probability that the resulting batch hypothesis is performing
poor should should be lower than with PLH.

One could also study heuristics for picking an optimal subset of hypothe-
ses from the hypothesis sequence. Especially the suffix conversion is very
slow when the hypothesis sequence is long and our experiments suggest that
calculating the S-value for a small set of suffixes provides a set of hypotheses
that work roughly as good as the slow suffix conversion. So far this is seen
only in practice and we do not present any theoretical guarantees of this
phenomenon.

The Voting conversion is also impractical when there are many hypothe-
ses casting a vote. This is seen clearly with the data-independent Voting
conversion as every hypothesis in the sequence casts a vote. Nevertheless,
this conversion gives good results in our experiments even when the voting-
set is rather small and it is accurate with the MNIST dataset. The smaller
the set of hypotheses giving the vote, the faster the resulting predictor is. If
we can extract only few hypotheses to this set, we expect it to be suitable
even for big data masses.

The Cutoff-Averaging algorithm seems to capture the idea of online to
batch conversions. It gives accurate results and can adapt by choosing a large
or small set of hypotheses to be used in constructing the batch hypothesis.
It is also considerably faster than the other data-driven conversions in this
thesis. The idea of using hypotheses with large enough survival time can also
be used with for example Voting conversion, but then the algorithm is not
as fast as with Averaging.

The downside of Cutoff-Averaging is that it does not perform as well as
other conversions when the training set is very small. This makes sense as
bad hypotheses may survive a few rounds in the beginning just by guessing
right. The performance of this conversion grows rapidly with the training

48

set size. Also certain assumptions of the data have to be fulfilled, so this
conversion cannot be used for all learning tasks.

The idea of using the actual data in the conversion makes sense. This
should be studied more, whilst keeping in mind that the big idea behind the
conversions is simplicity. The algorithms should be both easy to implement
and fast to run. If the conversion lacks either of these two, picking the last
hypothesis is still tempting.

49

References

[1]

2]

3]

4]

[5]

(6]

17l

8]

9]

[10]

[11]

[12]

Azuma, Kazuoki. “Weighted sums of certain dependent random vari-
ables.” Tohoku Mathematical Journal, Second Series 19.3, 357-367. 1967

Blake, Catherine L., and Christopher J. Merz. “UCI repository of ma-
chine learning databases.” . 1998

Boser, Bernhard E., Isabelle M. Guyon, and Vladimir N. Vapnik. “A
training algorithm for optimal margin classifiers.” Proceedings of the fifth
annual workshop on Computational learning theory. ACM. 1992

Campbell, Murray, A. Joseph Hoane, and Feng-hsiung Hsu. “Deep blue.”
Artificial intelligence 134.1-2: 57-83. 2002

Cesa-Bianchi, Nicolo, Alex Conconi, Claudio Gentile. “On the Gener-
alization Ability of On-Line Learning Algorithms.” IEEE TRANSAC-
TIONS ON INFORMATION THEORY, VOL. 50, NO. 9. September
2004

Chan, Philip K., and Salvatore J. Stolfo. “Toward Scalable Learning with
Non-Uniform Class and Cost Distributions: A Case Study in Credit
Card Fraud Detection.” KDD (pp. 164-168). 1998

Cole, Ron. “The ISOLET spoken letter database.” CSETech. 205.
hitp://digitalcommons.ohsu.edu/csetech,/205. 1990

Collins, Michael. “Discriminative training methods for hidden markov
models: Theory and experiments with perceptron algorithms.” Proceed-
ings of the ACL-02 conference on Empirical methods in natural language
processing-Volume 10. Association for Computational Linguistics. 2002

Cortes, Corinna, and Vladimir Vapnik. “Support-vector networks.” Ma-
chine learning 20.3: 273-297. 1995

Crammer, Koby et al.. “Online passive-aggressive algorithms.” The Jour-
nal of Machine Learning Research 7: 551-585. 2006

Dekel, Ofer. “From online to batch learning with cutoff-averaging.” Ad-
vances in Neural Information Processing Systems. 2009

Dekel, Ofer, and Yoram Singer. “Data-driven online to batch conver-
sions.” Advances in Neural Information Processing Systems. 2005

20

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

Domingos, Pedro. “A few useful things to know about machine learning.”
Communications of the ACM 55.10: 78-87. 2012

Freedman, David A. “On tail probabilities for martingales.” the Annals
of Probability: 100-118. 1975

Freund Yoav, and Robert E. Schapire. “Large margin classification using
the perceptron algorithm.” Machine Learning, 37(3):277-296. 1999

Gallant, Stephen I. “Optimal linear discriminants.” Eighth International
Conference on Pattern Recognition. 1986

Gallant, Stephen 1. “Perceptron-based learning algorithms.” Neural Net-
works, IEEE Transactions on 1.2, 179-191. 1990

Guzella, Thiago S., and Walmir M. Caminhas. “A review of machine
learning approaches to spam filtering.” Fxpert Systems with Applications
36.7: 10206-10222. 2009

Helmbold, David P., and Manfred K. Warmuth. “On weak learning.”
Journal of Computer and System Sciences 50.5, 551-575. 1995

Helmbold, David P., Jyrki Kivinen, and Manfred K. Warmuth. “Relative
loss bounds for single neurons.” IEEE Transactions on Neural Networks
10.6: 1291-1304. 1999

Joulin, Armand, et al.. “Bag of Tricks for Efficient Text Classification.”
arXiv preprint arXiw:1607.01759. 2016

Lai, Matthew. “Giraffe: Using deep reinforcement learning to play
chess.” arXwv preprint arXw:1509.01549. 2015

LeCun, Yann, et al. “Handwritten digit recognition with a back-
propagation network.” In Advances in neural information processing sys-
tems (pp. 396-404). 1990

Lecun, Yann, and Corinna Cortes. The MNIST database of handwritten
digits.

Li, Yi. “Selective voting for perceptron-like online learning.” ICML 17.
2000

Littlestone, Nick. “From on-line to batch learning.” COLT 2, pages
269-284. July 1989

o1

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Rieck, Konrad, et al.. “Learning and classification of malware behav-
ior.” International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment (pp. 108-125). Springer Berlin Heidelberg.
2008

Rosenblatt, Frank. “The perceptron: a probabilistic model for infor-
mation storage and organization in the brain.” Psychological review
65.6:386. 1958

Samuel, Arthur L. “Some studies in machine learning using the game of
checkers.” IBM Journal of research and development 3.3:210-229. 1959

Senator, Ted E., et al.. “Financial Crimes Enforcement Network Al Sys-
tem (FAIS) Identifying Potential Money Laundering from Reports of
Large Cash Transactions.” AI magazine 16.4: 21. 1995

Tesauro, Gerald. “T'D-Gammon, a self-teaching backgammon program,
achieves master-level play.” Neural computation 6.2: 215-219. 1994

Tesauro, Gerald. “Temporal difference learning and TD-Gammon.”
Communications of the ACM 38.3: 58-68. 1995

Tesauro, Gerald Programming backgammon using self-teaching neural
nets Artificial Intelligence 134.1: 181-1992002

The MathWorks, Inc., Natick, Massachusetts, United States. “Matlab.”
. 2009

Vapnik, Vladimir, and Alexey Chervonenkis. “A note on one class of
perceptrons.” Automation and remote control 25.1: 103. 1964

Viola, Paul, and Michael Jones. “Rapid object detection using a boosted
cascade of simple features.” Computer Vision and Pattern Recognition,
2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society
Conference on. Vol. 1. IEEE. 2001

02

8 Appendix

In this appendix, we present some definitions, lemmas and theorems that are
used in the thesis.

Theorem 4. (Jensen’s inequality) Let (2, F,P) be a probability space.
Let X : Q — {x; € R|1 < i < n} be a real valued random variable. Note that
this means that X can take n different values. Let D C R be any interval
that contains {x; : 1 < n} and let f : D — R be convex. Then

F(E[X]) < E[f(X)].
Proof. By the convexity of f

flaz, + (1 —a)z;) < af(x;)+ (1 —a)f(z)) (6)

for all z;,z; and 0 < a < 1.

Denote p; := P(X = x;). Note that > .p; = 1 We first prove the case
where n = 2 and then we prove the general case by induction over n. In the
first case po = 1 — p; and the inequality follows directly from the definition
of convexity:

FEIX]) = f(priw1 + pawa) < p1f(a1) + paf(22) = E[f(X)].

Next we assume that the theorem holds when n = k — 1 and we prove
the theorem for n = k. Now

23

k
=f ZZ%%)
i
=f sz’xi + pk%)

i=1

DiZ;

k—1
= f | ey + (1 — pr))

purdh i

Spkf(fck)ﬂl—m)f(- b)

=1

=pkf($k)+(1—l?k)f(' b afz)

— 1 —p
k—1
< pef (o) + (=) 3 2 (@)
= pif(ar) + Zpif(%)
. =1
= sz-f(x»
= E[f(X)].

24

Theorem 5. (Markov’s inequality) If X is a nonnegative random vari-
able, then for all a > 0,

EX]

P(X >a) <
a

Proof. Let a be arbitrary real number. We can calculate and estimate the
expectation of X as follows

E[X]_/Oooxp(lf)dl‘
:/Oaxp(x)dwr/:o wp(z)dx
> / " ap(2)de

a/oop(m)dac
=aP(X > a),

Vv

and dividing the equation by a yields the result. O]

Lemma 4. Let Y € [—1,1] be a random variable and E[Y] = 0. Then for
allt > 0 holds ,

Ele™] <ex.

Proof. By convexity for all y € [—1,1] holds " < 2(1 +y)e’ + 3(1 —y)e .
Now we can take expectations and use power series to obtain our result

Definition 2. Conditional expectation of a discrete random variable Y with
respect to an event W is defined by

E[Y | U] = EMP =y | D).

Lemma 5. Let X and Y be random variables. Let f and g be functions.
Then we have

1. E[X] = E[E[X|Y]].
2. BEE[f(X) - 9(X,Y) | X =z]] = E[f(X) - E[g(X,Y) | X = z]].

Proof. 1. We note that E[X | Y] is a function of Y and that F[X] =
>, EIX Y =y|P(Y =y). Now we can calculate

E[E[X | Y]] ZFNHY—M(Y y) = E[X].

2. Conditioning on any X = a, the function f(X) = f(a) is a constant
and we can take it outside the expectation. So for any value X = a we
get

E[E[f(X)g(X,Y) | X = d]] = E[E[f(a) - g(X,Y) | X = a]]

this holds for any value a.

o6

	Introduction
	Machine Learning
	Basic Concepts in Machine Learning
	Batch Learning
	Online Learning
	Perceptron Algorithm
	Support Vector Machine
	Passive-Aggressive Algorithm
	Conversions
	Loss Functions
	Risk and Regret
	Practical Issues in Machine Learning

	Conversion Algorithms
	Data-Independent Conversions
	Data-Driven Conversions
	Finding a Good Hypothesis Set

	Martingales
	Data-Driven Conversion Algorithms
	Suffix Conversion
	Interval Conversion
	Tree-Based Conversion
	Cutoff-Averaging
	Wrap-up

	Experiments
	Previous Experiments by Dekel and Singer
	Results

	Conclusion
	Appendix

