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22 Abstract

23 Alphaviruses are typically arthropod-borne, and many are important pathogens such as 

24 chikungunya virus. Alphaviruses encode four nonstructural proteins (nsP1 to 4), initially 

25 produced as a polyprotein P1234. nsP4 is the core RNA-dependent RNA polymerase but all 

26 four nsPs are required for RNA synthesis. The early replication complex (RC) formed by the 

27 polyprotein P123 and nsP4 synthesizes minus RNA strands, and the late RC composed of fully 

28 processed nsP1 to nsP4 is responsible for the production of genomic and subgenomic plus 

29 strands. Different parts of nsP4 recognize the promoters for minus and plus strands but the 

30 binding also requires the other nsPs. The alphavirus polymerase has been purified and is 

31 capable of de novo RNA synthesis only in the presence of the other nsPs. The purified nsP4 

32 also has terminal adenylyltransferase activity, which may generate the poly(A) tail at the 3′ 

33 end of the genome. Membrane association of the nsPs is vital for replication, and alphaviruses 

34 induce membrane invaginations called spherules, which form a microenvironment for RNA 

35 synthesis by concentrating replication components and protecting double-stranded RNA 

36 intermediates. The RCs isolated as crude membrane preparations are active in RNA synthesis 
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37 in vitro, but high-resolution structure of the RC has not been achieved, and thus the 

38 arrangement of viral and possible host components remains unknown. For some 

39 alphaviruses, Ras-GTPase-activating protein (Src-homology 3 (SH3) domain)-binding proteins 

40 (G3BPs) and amphiphysins have been shown to be essential for RNA replication and are 

41 present in the RCs. Host factors offer an additional target for antivirals, as only few alphavirus 

42 polymerase inhibitors have been described.

43
44

45 1. Alphavirus genome structure and replicase proteins

46

47 Alphaviruses belong to the family Togaviridae together with the genus Rubivirus, which 

48 contains only one member, rubella virus (Table 1). Most alphaviruses are arthropod-borne 

49 viruses, and several are important human and/or animal pathogens, causing either fever, rash 

50 and arthritis (Old World alphaviruses, including chikungunya virus (CHIKV), Ross River virus 

51 (RRV) and Sindbis virus (SINV)), or encephalitis (New World alphaviruses, e.g. Venezuelan 

52 equine encephalitis virus (VEEV)). The alphavirus genome is a single positive-strand RNA of 

53 ~11-12 kb with a 5′ cap0 structure and 3′ poly(A). The two open reading frames encode the 

54 nonstructural (ns) or replicase polyprotein, and the structural polyprotein expressed via a 

55 subgenomic RNA (Fig. 1) (Strauss and Strauss, 1994). The ns polyprotein is processed in a 

56 highly regulated sequence to four final products, the nonstructural proteins (nsPs) 1-4 

57 (Kääriäinen and Ahola, 2002). nsP1 is the viral capping enzyme and membrane anchor of the 

58 replication complex (RC) (Ahola and Kääriäinen, 1995; Spuul et al., 2007), while nsP2 is an 

59 RNA helicase and the protease responsible for the ns polyprotein processing (Das et al., 2014; 

60 Hardy and Strauss, 1989; Vasiljeva et al., 2003). nsP3 interacts with several host proteins and 

61 may modulate protein poly- and mono-ADP-ribosylation (Kim et al., 2016; Li et al., 2016), and 

62 nsP4 is the core viral RNA-dependent RNA polymerase (RdRp) (Rubach et al., 2009). Structural 

63 information is only available for the protease region of nsP2 and the folded N-terminal 

64 portions of nsP3 (Shin et al., 2012).

65 The nsP4 polymerase is the most highly conserved protein in alphaviruses. Even nsP4s 

66 of the most diverged alphaviruses, the salmonid alphaviruses, are ≥50 % identical in amino 

67 acid sequence with the other alphaviral nsP4s (Forrester et al., 2012; Weston et al., 2002). 
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68 Within the mammalian/avian alphaviruses, the identities are even higher, e.g CHIKV nsP4 

69 identity varying from 71% (with Barmah Forest virus, BFV) to 91% (with O'nyong-nyong virus, 

70 ONNV) (Khan et al., 2002). Alphavirus nsP4 is ~610 amino acids in length, containing a large 

71 C-terminal domain related to other viral RdRps, and an alphavirus-specific ~150 amino acid 

72 N-terminal domain. The N-terminal domain is crucial for virus replication. It may be partially 

73 disordered structurally and it appears to interact with the other nsPs in the RCs (Rupp et al., 

74 2011). Beyond the family Togaviridae, the alphaviruses belong to the large alphavirus-like 

75 superfamily that contains the animal hepeviruses and numerous genera of plant viruses 

76 (Koonin et al., 2015). All of these possess within their replicase proteins domains related to 

77 the capping enzyme nsP1, the helicase domain of nsP2 and the polymerase nsP4. When the 

78 predicted secondary structures of the RdRps from bromo- and tobamoviruses were compared 

79 to the partial crystal structure of poliovirus polymerase, these alphavirus superfamily 

80 members showed the typical RdRp structure with fingers, palm containing the GDD motif, and 

81 thumb domains (O'Reilly and Kao, 1998). In addition, comparison revealed a region preceding 

82 the fingers domain, which is unique to the RdRps and might be essential for the 

83 oligomerization of the polymerase. There are no structures available for the alphavirus nsP4, 

84 nor for any of the polymerases within the alphavirus-like superfamily. Now that structures 

85 have been solved for some of the negative-strand RNA virus polymerases (Pflug et al., 2017), 

86 the alphavirus superfamily may be the most significant branch of RdRps entirely lacking 

87 structural information. The biochemical characterization of nsP4 has also been challenging, 

88 as discussed in the next section. Therefore, much of this review will focus on the activities and 

89 properties of the alphavirus RC as a whole. 

90

91

92 2. Biochemical characteristics of nsP4: RNA synthesis and polyadenylation

93 Most of the work on the replication and RNA synthesis of alphaviruses has been done with 

94 SINV and Semliki Forest virus (SFV) (Rupp et al., 2015). Together with the distant sequence 

95 relationship to other RdRps, analysis of temperature-sensitive (ts) mutants defective in RNA 

96 synthesis indicated that nsP4 is the catalytically active core polymerase subunit (Barton et al., 

97 1988; Hahn et al., 1989a; Sawicki et al., 1990). 
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98 SINV mutants ts6 and ts110 each have a single base substitution in nsP4 causing glycine 

99 to glutamic acid change at position 153 or 324, respectively. These substitutions are located 

100 within highly conserved regions of nsP4 (Hahn et al., 1989a). In vitro RNA synthesis of ts6 

101 shows that the RCs are stable at nonpermissive temperature but fail to elongate RNA strands 

102 indicating that the elongation capacity of the polymerase is inactivated (Barton et al., 1988). 

103 The in vitro RNA synthesis of the RCs is reactivated when they are returned to the permissive 

104 temperature.

105 SINV nsP4 has been expressed in E. coli and purified resulting in the full-length 

106 polymerase with an authentic N-terminal tyrosine and de novo RNA-synthesis activity but only 

107 when supplied with the polyprotein P123 (Rubach et al., 2009). Remarkably, the purified nsP4 

108 is capable of forming the RCs with P123 resulting in the synthesis of discrete template-length 

109 minus strands from the provided plus-strand templates. Furthermore, nsP4 produced in 

110 bacteria has the same template requirements as the mammalian nsP4. The core catalytic 

111 domain (Δ97nsP4, in which the N-terminal 97 amino acids are deleted) has also been 

112 expressed in E. coli and purified as a monomer (Tomar et al., 2006). Interestingly, Δ97nsP4 

113 lacks de novo copying activity, even when combined with the polyprotein P123 (Rubach et al., 

114 2009; Tomar et al., 2006). Thus, the 97 N-terminal residues seem to be crucial for the RdRp 

115 activity. The polyprotein P123 might be required in the template recognition or it may activate 

116 nsP4 through protein-protein interactions.

117 It is intriguing that nsP4 has also been shown to synthesize RNA in vitro in the absence 

118 of the other viral nsPs (Thal et al., 2007). SINV nsP4 was purified using detergent solubilisation 

119 of the membrane fraction from cells expressing uncleavable P123 and nsP4. The soluble form 

120 of nsP4 was able to synthesize template-length RNA from both minus- and plus-strand 

121 transcripts in the absence of the other nsPs. The authors suggest that the other components 

122 in the RC, determine the polarity of the RNA synthesized by nsP4. However, the ability of the 

123 detergent-solubilized nsP4 to synthesize RNA without the other nsPs is in conflict with the 

124 result that nsP4 purified from a bacterial expression system requires the polyprotein P123 for 

125 de novo RNA synthesis (Rubach et al., 2009). It is speculated that host proteins remaining in 

126 the same fraction as the soluble nsP4 may affect the RNA synthesis, but the bacterially 

127 produced nsP4 was unable to synthesize RNA even when combined with animal cell extracts 

128 (Rubach et al., 2009; Thal et al., 2007).  
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129 Both the full-length and N-terminally truncated nsP4 possess terminal, divalent cation-

130 dependent adenylyltransferase (TATase) activity, independent of P123, nsP1, nsP2, or nsP3 

131 (Rubach et al., 2009; Tomar et al., 2006). At least 11-12 adenylate residues in the poly(A) tail 

132 next to the 3’ conserved sequence element (CSE) are required for SINV RNA replication and 

133 efficient production of full-length minus strands (Hardy and Rice, 2005), and the TATase 

134 activity of nsP4 may play an important role in generating genome poly(A). However, it is not 

135 known if the poly(A) tail is added in a template-dependent or independent manner and if 

136 cellular and/or viral factors are responsible for the polyadenylation. Previously, it was 

137 suggested that the 5’ end of the minus strand is a poly(U) tract and the initiation of the plus-

138 strand synthesis occurs within this poly(U) tail resulting in the poly(A) tail (Frey and Strauss, 

139 1978; Sawicki and Gomatos, 1976). However, more recent evidence shows that the initiation 

140 of the minus-strand synthesis occurs immediately after the poly(A) tail (Hardy, 2006) 

141 indicating that a template-independent mechanism is used to add the poly(A) tail. 

142 Furthermore, it has been observed that SINV poly(A) tail is regenerated in vivo when RNA 

143 without the poly(A) tail is transfected into cells (Hill et al., 1997; Raju et al., 1999). A signal for 

144 this polyadenylation is located within the 29 3’-terminal nucleotides of the SINV genome (Raju 

145 et al., 1999).

146 Altogether, data imply that the TATase activity of nsP4 has a potential role in 

147 maintenance and repair of the poly(A) tail, and the work by Tomar et al. (2006) and Rubach 

148 et al. (2009) indicate that the poly(A) tail is added by a non-templated mechanism. The N-

149 terminally truncated nsP4 (Δ97nsP4) adds adenine to the 3’ end of an acceptor RNA in the 

150 presence of different divalent cations, and mutations have confirmed the role of the 

151 alphavirus GDD motif in metal binding (Tomar et al., 2006). Other viral or host factors, or the 

152 97 N-terminal residues, might be needed for the template recognition as Δ97nsP4 shows no 

153 sequence specificity in the TATase activity. Participation of other factors in nsP4 TATase 

154 activity is further supported by the observation that Δ97nsP4 adds only two to four adenylate 

155 residues while the alphavirus poly(A) tail is ~70 nt. Furthermore, the full-length nsP4 shows 

156 more robust TATase activity than Δ97nsP4 demonstrating the importance of the 97 N-

157 terminal residues (Rubach et al., 2009). However, it remains to be studied whether nsP4 

158 TATase activity is responsible for the in vivo polyadenylation of alphavirus RNA.

159 Mutations in nsP4 enable SINV to replicate in cells with lowered levels of rNTPs (Li et 

160 al., 2004; Lin et al., 2002; Lin et al., 2000). Pyrazofurin (PFZ), which is a cytidine analog 
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161 decreasing UTP and CTP levels, inhibits SINV replication (Lin et al., 2000). Three amino acid 

162 substitutions in nsP4 (Met287 to Leu, Lys592 to Ile, and Pro609 to Thr) are required for the 

163 PFZ-resistant phenotype of SINV. One of the substitutions (M287L) is located in the predicted 

164 fingers domain and the two others in the thumb domain of the polymerase, and it is suggested 

165 that these three substitutions, especially in the fingers, alter the rNTP-binding pocket 

166 increasing affinity for UTP and CTP. There is also a SINV mutant resistant to 

167 cyclopentenylcytosine (CPC), which reduces the level of CTP. One substitution in nsP4 (Leu585 

168 to Phe) confers the resistance against CPC. This mutant has a lower Km for CTP compared to 

169 the wild type. The CPC-resistant mutant is sensitive to PFZ while the PFZ-resistant mutant is 

170 also resistant to CPC. As these two mutants have amino acid substitutions at different 

171 positions, it is suggested that the polymerase uses different amino acids to bind different 

172 nucleotides (Li et al., 2004).

173 High-fidelity variants of nsP4 as well as nsP2 are more resistant to inhibitors of 

174 nucleoside biosynthesis indicating that viruses could use fidelity changes to adapt to 

175 intracellular nucleotide depletions (Stapleford et al., 2015). Passaging of CHIKV in the 

176 presence of ribavirin, which is an RNA nucleoside analog, resulted in a mutant with a cysteine-

177 to-tyrosine substitution at position 483 of nsP4 (Coffey et al., 2011). This substitution of the 

178 conserved cysteine increased replication fidelity of the polymerase and thus decreased 

179 genetic diversity and fitness of the virus. The mutant is moderately attenuated in mammalian 

180 and mosquito hosts. A ribavirin- and 5-fluorouracil-resistant variant of CHIKV nsP2 has also 

181 been shown to increase the fidelity of the polymerase. This nsP2 variant exhibits delayed 

182 helicase activity, yet replication kinetics is increased (Stapleford et al., 2015). Thus, nsP2 and 

183 nsP4 may interact in the RCs to regulate the fidelity of the polymerase, and the interaction 

184 between these proteins has been observed in yeast-two hybrid and ELISA experiments 

185 (Sreejith et al., 2012; Stapleford et al., 2015). 

186 Further substitutions at the Cys483 of CHIKV nsP4 have been generated to decrease the 

187 replication fidelity (Rozen-Gagnon et al., 2014). Polymerase variants with higher mutation 

188 frequencies were attenuated in vivo but showed no major replication defects in mammalian 

189 cells. On the other hand, these mutants had major defects in RNA synthesis in mosquito cells. 

190 The same effects were also observed with analogous mutations in SINV. Thus, manipulation 

191 of the polymerase fidelity offers a tool to attenuate alphaviruses in both mammalian and 
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192 insect cells for example in order to develop vaccines (Coffey et al., 2011; Rozen-Gagnon et al., 

193 2014).

194 The study of SINV RdRp mutators by Poirier et al. (2016) suggests a tight link between 

195 fidelity, recombination and defective interfering particle (DI) production. The mutators 

196 contain point mutations in viral polymerase and it was shown that the mutators have the 

197 ability to recombine in higher rate than wild-type viruses, leading to overproduction of DIs 

198 (Poirier et al., 2016). Recombination in alphaviruses was originally shown by the formation of 

199 DIs, virions with truncated viral genomes that accumulate during replication. They utilize full-

200 length viruses for multiplication and thus interfere with their replication (Poirier et al., 2016). 

201 The alphavirus DIs may contain duplicated, deleted or rearranged sequences and even cellular 

202 RNAs (Monroe and Schlesinger, 1983, 1984), but retain cis-acting sequence elements that are 

203 necessary for replication and packaging. Analyses of SFV and SINV DI genomes have provided 

204 important information on these critical elements needed for virus multiplication (reviewed in 

205 (Strauss and Strauss, 1994, 1997)). 

206 Recombination seems to be somewhat less common in alphaviruses as compared to other 

207 groups of positive-strand RNA viruses, and both homologous as well as nonhomologous 

208 recombination has been described (Raju et al., 1995; Strauss and Strauss, 1997). In laboratory 

209 experiments, SINV constructs that were defective when introduced to the cells alone, were 

210 able to complement each other, giving rise to infectious recombinants (Weiss and Schlesinger, 

211 1991). The recombination studies have given information especially on the 3´ end of the 

212 genome and its minimal requirements for minus strands synthesis (Hill et al., 1997) and on 

213 recombination hot spots (Hajjou et al., 1996). 

214 Viruses must be able to repair their genomes and a mechanism for the 3'-end repair 

215 pathway of alphaviruses has been suggested. Alphaviruses are able to add in vivo AU-rich 

216 sequences next to the poly(A) tail in genomes lacking the 3’ CSE and infectious progeny viruses 

217 are made (Hill et al., 1997; Raju et al., 1999). The poly(A) tail is the prerequisite for these AU 

218 additions. It has been proposed that the polymerase stammers on AU-rich sequences and 

219 sliding, jumping, and stammering of the polymerase result in addition of such motifs to newly 

220 synthesized minus strands. 

221 Alphavirus polymerases are considered to be viral template specific. SFV nsP4 is, 

222 however, at least to some extent, able to use other than viral RNA as a template to make 

223 double-stranded RNA (dsRNA) as it makes 5’-ppp dsRNA using host cell RNA as a template.  
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224 (Nikonov et al., 2013). This, on the other hand, induces interferon-beta production mediated 

225 by retinoic acid-inducible gene I (RIG-I)-like receptors, and thus, this unspecific activity of the 

226 polymerase may be utilized by the host to restrict viral replication. 

227 Alphavirus polymerase nsP4 has two major biochemical characteristics, de novo RNA 

228 synthesis and TATase activity. The former one requires the other nsPs and the latter one may 

229 generate the poly (A) tail typical of alphaviral genomes. The polymerase fidelity can be altered 

230 and mutations can also result in more frequent recombination. If a crystal structure of 

231 alphaviral polymerase is obtained, it would allow more robust comparison of this polymerase 

232 to other viral RdRps, beyond the sequence level. As the structures are more conserved than 

233 sequences (Mönttinen et al., 2014), new relationships between RdRp-encoding viruses could 

234 be formed.

235

236

237 3. Minus-strand and plus-strand synthesizing replicases  

238 The core function of the viral polymerase lies in the genome replication but it is not the only 

239 element needed. The replication of alphaviruses is carefully orchestrated and requires all four 

240 nonstructural proteins that are processed from a polyprotein in a precise order during RNA 

241 synthesis (Fig. 2). The nonstructural proteins are translated as a polyprotein in the cytoplasm 

242 from the RNA genome released after virus entry. For most alphaviruses such as SINV, there is 

243 an opal (UGA) termination codon close to the C-terminus of nsP3 and thus two types of 

244 polyproteins, P123 and P1234, are produced. Of these only ~10 % is full-length polyprotein 

245 and P123 is produced in excess (Li and Rice, 1993). In contrast, SFV and ONNV have the stop 

246 codon replaced by arginine and only P1234 is produced (Strauss and Strauss, 1994; Takkinen, 

247 1986). After translation, nsP4 is promptly cleaved by the protease activity residing in the C-

248 terminus of nsP2 (de Groot et al., 1990). This cleavage is obligatory as the full-length form 

249 P1234 is not capable of any RNA synthesis (Kallio et al., 2016; Shirako and Strauss, 1994). 

250 It has been demonstrated that nsP4 can also be provided separately by expressing it as an 

251 ubiquitin-fusion, which is rapidly cleaved to provide authentic nsP4 (Lemm et al., 1994; Spuul 

252 et al., 2011). The N-terminal amino acid of nsP4 has a critical role in its functionality. In the 

253 wild type form, nsP4 contains tyrosine as the N-terminal amino acid (Strauss and Strauss, 

254 1994) and excess nsP4 is rapidly degraded by the N-end rule pathway, a ubiquitin-dependent 
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255 proteolysis (de Groot et al., 1991). In this process the protein’s N-terminal amino acid plays a 

256 key role and tyrosine acts as a destabilizing residue (Varshavsky, 1992). Changing the N-

257 terminal amino acid to a nonaromatic residue in nsP4 is lethal for the virus, but an aromatic 

258 amino acid (Phe or Trp) or histidine rescues replication close to wild type level (Shirako and 

259 Strauss, 1998). An N-terminal Met results in viable virus with attenuated replication (Shirako 

260 and Strauss, 1998). Three second-site suppressor mutations resulting in amino acid 

261 substitutions allow the mutant SINV nsP4 with an N-terminal nonaromatic amino acid (Ala, 

262 Leu or Arg), to be functional. One suppressor mutation is located in nsP1  and two in nsP4 

263 (Shirako et al., 2000). These results suggest that the role of the conserved tyrosine at the N-

264 terminus of nsP4 is to interact with nsP1 and other nsP4 residues to allow proper folding 

265 and/or to interact with other viral or cellular factors to recognize the promoter and thus allow 

266 efficient initiation of the minus-strand synthesis. The ring structure of the aromatic amino 

267 acids may allow the right conformation for proper protein folding and protein-protein 

268 interactions (Shirako et al., 2000; Shirako and Strauss, 1998). 

269 The early polymerase complex formed by P123 and nsP4 is dedicated to the synthesis of 

270 minus strand, using the viral genome as template (Lemm et al., 1994; Shirako and Strauss, 

271 1994). This form of the complex is able to synthesize some plus-strand RNAs, but very 

272 inefficiently (Kallio et al., 2016; Lemm and Rice, 1993b). The following cleavage of nsP1 from 

273 P123 switches the complex in such a way that for a very short period, a complex of 

274 nsP1+P23+nsP4, seems to be capable of both minus and plus strand synthesis, but not 

275 subgenomic RNA synthesis (Jose et al., 2009; van der Heijden and Bol, 2002). The site between 

276 nsP2 and nsP3 is then cleaved in trans, leading to fully processed nonstructural proteins, 

277 forming the late RC. The switch to the late complex irreversibly “locks” the complex and it can 

278 only synthesize full length and subgenomic plus-strand RNAs from the minus strand. Thus in 

279 order to produce more minus strands, more polyprotein precursors should be translated. This 

280 has been demonstrated by treatment of cells with cyclohexamide which quickly shuts off the 

281 minus strand RNA synthesis (Sawicki and Sawicki, 1980; Sawicki and Sawicki, 1986). In infected 

282 mammalian cells, minus-strand synthesis occurs efficiently until 3 to 4 hours post infection 

283 (p.i.) and is then shut down as polyprotein cleavage becomes so rapid that new RCs can no 

284 longer be formed (Sawicki and Sawicki, 1980). 

285 The polyprotein cleavage and its relation to strand-preference has been widely studied 

286 with the classic alphaviruses SFV and SINV. Different experimental strategies, such as 
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287 cleavage-defective polyproteins and proteases (Lemm et al., 1998; Lemm and Rice, 1993b; 

288 Lemm et al., 1994; Shirako and Strauss, 1994; Vasiljeva et al., 2003), temperature-sensitive 

289 mutants (Hahn et al., 1989b; Sawicki et al., 1990; Sawicki and Sawicki, 1993; Sawicki et al., 

290 1981; Wang et al., 1994) and reconstituted systems (Lemm and Rice, 1993a, b; Lemm et al., 

291 1994; Spuul et al., 2011), have been used to gain a comprehensive set of results. It has been 

292 clearly shown that in order to synthetize minus-strands, the nonstructural proteins nsP1, nsP2 

293 and nsP3 cannot be expressed separately but are needed as a polyprotein P123 (Lemm and 

294 Rice, 1993a; Lemm et al., 1994; Shirako and Strauss, 1994). In fact, even if P123 is expressed 

295 but is processed to individual proteins too fast, no RNA synthesis is detected (Lemm et al., 

296 1994). A specific role for nsP1 in the minus-strand synthesis has been detected with SINV 

297 mutant ts11, which contains Ala-348 to Thr substitution in the nsP1 (Hahn et al., 1989b) and 

298 SFV mutants ts10 and ts14 (Lulla et al., 2008). Similarly, another mutant ts4 in SINV, mapping 

299 to nsP3 (Ala268 to Val), plays a role in minus-strand synthesis (Wang et al., 1994). All these 

300 mutants fail to synthesize minus-strand when infected cells are shifted from permissive to 

301 nonpermissive temperature. 

302 Subsequent robust plus-strand RNA synthesis happens in the late RCs containing cleaved 

303 polyproteins, when subgenomic RNAs are produced in higher quantities than genomic RNAs 

304 (Keränen and Kääriäinen, 1979). Studies with uncleavable P123 or P23 have demonstrated 

305 that production of subgenomic RNA is impaired when fully processed nsPs are not present 

306 (Gorchakov et al., 2008a; Lemm and Rice, 1993b; Lemm et al., 1994; Shirako and Strauss, 

307 1994). Interestingly, it has been possible to reactive minus-strand synthesis with a number of 

308 ts mutants in the absence of new protein synthesis (Sawicki and Sawicki, 1993; Suopanki et 

309 al., 1998), implying that the conformational changes is the nsPs between early and late RCs 

310 are so subtle that cleaved nsPs are able to switch back to the early complex form (reviewed 

311 in (Kääriäinen and Ahola, 2002)). A replicase containing uncleavable P123, with additional 

312 adaptive mutations, can also convert to the late form making only positive-strand RNAs 

313 (Gorchakov et al., 2008a).

314 The delicate interactions between the nsPs in the replication complex at the early and 

315 late stages are poorly understood due to the lack of structural data. A number of studies have 

316 addressed the role of nsP4 amino acid substitutions both in replication and in protein-protein 

317 interactions.  It has been suggested that the conserved arginine 183 of SINV nsP4, which is 

318 predicted to be in the fingers domain, plays an important role in the initiation of the minus-
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319 strand synthesis and the interaction with host factors (Fata et al., 2002a). In addition, Gly83 

320 to Leu substitution in the N-terminal domain of nsP4 also affects minus-strand RNA synthesis 

321 (Rupp et al., 2011). These minus-strand deficient mutants can be suppressed by second-site 

322 mutations in nsP1 indicating that nsP1 and nsP4 interact (Fata et al., 2002b; Rupp et al., 2011). 

323 Physical connection identified between nsP1 and nsP4 further confirms their interaction (Fata 

324 et al., 2002b; Lulla et al., 2008; Salonen et al., 2003; Shirako et al., 2000; Shirako and Strauss, 

325 1998; Sreejith et al., 2012). Furthermore, second-site mutations in nsP2 and nsP3 suppress 

326 Asp41 to Ala substitution in nsP4, which results in defects in subgenomic RNA synthesis (Rupp 

327 et al., 2011). Altogether, the suppressor mutations imply that the N-terminal domain of nsP4 

328 interacts with all three other nsPs to activate RNA synthesis (Fata et al., 2002b; Rupp et al., 

329 2011). It is suggested that this domain, due to its flexible nature, forms different contacts at 

330 different steps during the replication to allow the synthesis of different RNA species (Rupp et 

331 al., 2011).

332 A different type of experimental approach, relying on vaccinia virus based replication 

333 systems, has been very useful in understanding the different stages of RNA synthesis and the 

334 role of polyprotein cleavage (Lemm et al., 1994). More recently, a plasmid-based trans-

335 replication system was created for SFV (Spuul et al., 2011). The expression of polyprotein and 

336 template RNA takes place in T7 polymerase expressing cells from transfected DNAs. Thus the 

337 polyprotein or RNA expression is not dependent on replication, allowing studies with a range 

338 of modifications, including lethal ones (Kallio et al., 2016). It has been shown that capping 

339 activity, residing in nsP1, is not needed for negative strand synthesis, while many other 

340 enzymatic functions of the nsPs (helicase, protease and polymerase activities) and failure to 

341 bind to membranes totally abolished replication (Kallio et al., 2016). Similar systems have also 

342 been published for SINV (Frolova et al., 2010) and CHIKV (Utt et al., 2016). The latter has also 

343 been constructed as a cytomegalovirus-promoter driven system, allowing expression in wide 

344 range of cell types (Utt et al., 2016). 

345 Several studies have shown that the positive-strand RNA template can be provided to the 

346 replicase in trans and is efficiently replicated (Lemm and Rice, 1993a, b; Spuul et al., 2011). 

347 However, attempts to similarly introduce minus-strand RNA templates have not succeeded 

348 (Hellström et al., 2016; Lemm et al., 1998), indicating that the replication can start only from 

349 plus-strand RNA. According to recent findings, minus strands are protected from RNase inside 

350 the spherules when RCs are isolated as membrane preparations (Kallio et al., 2016). This 
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351 suggests that the minus strands are strictly segregated inside the spherules. Therefore, in 

352 normal situations, the minus strands would not be available as starting points for replication 

353 and there would be no advantage in having a mechanism to directly recruit the minus strand 

354 (Hellström et al., 2016).

355

356

357 4. Promoter recognition by the polymerase

358 A determining step of replication is when the polymerase recognizes and binds to the 

359 promoters. CSEs in the genome are thought to be recognized by the polymerase complex in 

360 the different stages of RNA replication (Rupp et al., 2015). The 5′ end of the genome contains 

361 two CSEs, one in the 5′ untranslated region (UTR) and the other one within the nsP1 coding 

362 region, both forming stem-loop secondary structures (Frolov et al., 2001; Nickens and Hardy, 

363 2008; Niesters and Strauss, 1990a, b; Ou et al., 1983). The two stem-loops formed by the 51-

364 nt CSE within the nsP1 region enhance both minus- and plus-strand RNA synthesis but they 

365 are dispensable for RNA replication. In contrast, the 5’ UTR CSE contains essential promoter 

366 elements for both minus- and plus-strand synthesis. However, different alphaviruses might 

367 use different 5’ elements for RNA synthesis as well as bind different host factors needed for 

368 RNA synthesis (Frolov et al., 2001; Gorchakov et al., 2004). The subgenomic promoter forms 

369 the third CSE, and a short CSE is located at the very 3′ end of the genome immediately 

370 preceding the poly(A) tail. The core promoter of the minus-strand RNA synthesis is composed 

371 of the 3’ CSE and poly(A) tail (Hardy and Rice, 2005; Rupp et al., 2015). 

372 4.1. Minus-strand RNA synthesis

373 Efficient minus-strand RNA synthesis of SINV requires that 1) the length of the poly(A) tail is 

374 at least 11-12 residues, 2) the 3’ CSE immediately precedes the poly(A) tail, and 3) the 3’ 13 

375 nucleotides of the 3’ CSE are not changed (Hardy and Rice, 2005). It still remains unclear how 

376 alphaviruses initiate the minus-strand synthesis, but is has been suggested that they employ 

377 poly(A)-binding protein (PABP) and a similar genome-circularization mechanism as poliovirus, 

378 which uses a protein primer-dependent initiation on the 3’ poly(A) tail (Frolov et al., 2001; 

379 Hardy and Rice, 2005; Peersen, 2017). It has been shown that the minimal length requirement 

380 of the SINV poly(A) tail is the same as that required for efficient binding of PABP (Deo et al., 

381 1999; Hardy and Rice, 2005). Frolov et al. (2001) have suggested a model of how the 5’ and 3’ 
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382 ends of the alphavirus genome interact to initiate minus-strand RNA synthesis. It is 

383 hypothesized that the viral RCs assemble on the 5’ end of the genome with translational 

384 machinery and possibly other host factors, and the interaction between the translation 

385 factors with PABP brings the 5’ and 3’ ends together. This is supported by competition assays 

386 where the 5’ competitor RNA strongly inhibits minus-strand RNA synthesis, indicating that the 

387 5’ end binds limiting viral or cellular factors needed for the minus-strand RNA synthesis 

388 (Frolov et al., 2001). 

389 Initiation site localization of the minus-strand RNA synthesis is dependent on the 

390 poly(A) tail and the last three 3’ residues of the 3’ CSE (Hardy, 2006). The predominant 

391 initiation site of the minus-strand synthesis is the cytidylate residue immediately preceding 

392 the poly(A) tail, and this cytidylate is conserved among the alphaviruses (Adkins et al., 1998; 

393 Hardy, 2006). The following residues up to +12 from the initiating residue are hypothesized 

394 to be important for the transition from initiation to elongation and/or promoter recognition 

395 (Hardy, 2006).

396 4.2. Plus-strand RNA synthesis

397 The initiation site for the plus-strand RNA synthesis, both genomic and subgenomic, is highly 

398 conserved in the alphavirus genomes, and always starts with adenylate-uridylate, except that 

399 BFV has an extra uridylate residue at the 3’ end of the minus strand (Adkins et al., 1998). The 

400 promoter for the genomic RNA synthesis is located at the 3’ end of the minus strand within 

401 the region corresponding to the 5’ UTR stem loop sequence, and a complementary stem-loop 

402 structure has been predicted for the minus strand as well. The critical nucleotides for the SINV 

403 genomic promoter include those at positions 2 to 5 from the 3’ end of the minus strand 

404 (Frolov et al., 2001; Gorchakov et al., 2004; Li and Stollar, 2007; Niesters and Strauss, 1990a; 

405 Ou et al., 1983; Thal et al., 2007). The minimal promoter sequence required for the synthesis 

406 of SINV subgenomic RNA includes -19 to +5 nucleotides from the initiation site (Levis et al., 

407 1990; Li et al., 2005), and nucleotides -17, -14, -13, and -11 relative to the initiation site are 

408 highly conserved among alphaviruses (Siegel et al., 1997).

409 Regulation of positive-strand RNAs synthesis, both genomic and subgenomic, is 

410 dependent on nsP4 as different sites of nsP4 bind the respective promoters (Li and Stollar, 

411 2004, 2007; Li et al., 2010). Crosslinking and gel mobility-shift assays revealed that the peptide 

412 corresponding to residues 329-334 of nsP4 binds to the subgenomic promoter of SINV. This 

413 fragment is predicted to be on a β-strand in the fingers domain. Furthermore, nsP4 is able to 
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414 bind to the subgenomic promoter only when all four nsPs are present suggesting that the 

415 other nsPs affect the conformation of nsP4 (Li and Stollar, 2004). The peptide corresponding 

416 to residues 531-538 of nsP4 binds the promoter for the genomic RNA synthesis (Li and Stollar, 

417 2007; Li et al., 2010). Furthermore, mutations in nsP4, which abolish the subgenomic RNA 

418 synthesis, have no effect on the genomic RNA synthesis and vice versa (Li and Stollar, 2007; 

419 Li et al., 2010).

420 Alphaviruses typically make more subgenomic than genomic RNA in infected cells 

421 (Keränen and Kääriäinen, 1979). However, the PFZ- and CPC-resistant mutants of SINV 

422 synthesize more genomic than subgenomic RNA, and except for one, the mutations are in the 

423 region of both nsP4-coding sequence and subgenomic promoter (Li et al., 2008; Li et al., 2004; 

424 Li et al., 2010; Lin et al., 2002; Lin et al., 2000). It has been shown that the changed RNA ratio 

425 is mainly due to the changes in the promoter sequence (Li et al., 2010). The genomic / 

426 subgenomic RNA ratio made by these mutants in vitro is also affected by the nucleotide 

427 concentrations used in the reaction mixture indicating that the NTP concentrations affect 

428 which promoter the polymerase chooses. Thus, the cytoplasmic NTP concentration may 

429 affect the activity of the viral polymerase (Li et al., 2008; Li et al., 2010). Additionally, defects 

430 in subgenomic RNA synthesis are detected with some ts mutants like SFV ts4 and SINV ts15, 

431 ts17, ts18, ts24 and ts133 (Kääriäinen and Ahola, 2002; Sawicki and Sawicki, 1985; Suopanki 

432 et al., 1998) which all map to nsP2. Therefore, nsP2 may be required to recognize the 

433 subgenomic promoter in the minus strand RNA.

434 The requirement for an aromatic amino acid at the N-terminus of nsP4 is also interesting 

435 with respect to the plus-strand RNA synthesis. Besides suppressor mutations in nsP1 or nsP4, 

436 addition of AU, AUA, or AUU to the 5’ terminus of the genome or substitution of the third 

437 nucleotide of the genome, A for U, restore the activity of the SINV polymerase mutant with 

438 an N-terminal nonaromatic amino acid (Ala, Leu, or Met) (Shirako et al., 2003). It is speculated 

439 the polymerase mutants with a nonaromatic amino acid at the N-terminus are unable to open 

440 the stem-loop structure at the 3’ terminus of the minus strand to initiate plus-strand RNA 

441 synthesis, and the addition of AU-rich sequences or the A-U substitution enables the 

442 polymerase mutants to work. Thus, it is proposed that the N-terminus of the polymerase 

443 forms direct contacts with the 3’ terminus of the minus strand to initiate plus-strand RNA 

444 synthesis (Shirako et al., 2003). However, minus-strand synthesis of the polymerase mutant 
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445 must also be restored, and consequently the addition of these AU-rich sequences to the 5’ 

446 terminus of the genome most likely play a role also in minus-strand synthesis.

447 To summarize, the initiation sites of RNA synthesis are highly conserved in the 

448 alphavirus genomes. The 3’ CSE and poly(A) tail form the core promoter of the minus-strand 

449 RNA, and the minus strand region corresponding to the 5’ UTR stem loop forms the promoter 

450 for the genomic RNA. The CSE within the 5’ UTR is important also for minus-strand RNA 

451 synthesis. Different sites of nsP4 bind the genomic and subgenomic promoters, and nsP2 may 

452 also play a role in subgenomic promoter recognition.

453

454

455 5. Membrane association of replication – spherules 

456 Early studies with SFV by Grimley et al. already suggested that the replication of alphaviruses 

457 takes place in membrane-associated structures called spherules, located either on the plasma 

458 membrane or on the limiting membranes of type I cytopathic vacuoles (CPV-I), which are 600-

459 2000 nanometres in diameter (Grimley et al., 1968; Grimley et al., 1972). Spherules 

460 themselves are about 50-60 nm membrane invaginations that are connected to the cytoplasm 

461 by a narrow neck, allowing export of the nascent RNA (Fig. 3). The spherules contain dense 

462 material, presumably representing RNA (Froshauer et al., 1988). The association of nsPs 

463 (Froshauer et al., 1988; Kujala et al., 2001) and localization of dsRNA staining with spherules 

464 (Frolova et al., 2010; Spuul et al., 2010) have been nicely demonstrated, strengthening the 

465 view that they are the site of viral replication. The composition of the spherules is, however, 

466 poorly understood, and the amount of the nsPs in each spherule is unknown but has been 

467 estimated to be quite low (Frolova et al., 2010).

468 In addition to spherules, nsPs are found in different, but specific places, within the cells. 

469 Characteristic localization of nsP1 on the inner surface of the plasma membrane (Spuul et al., 

470 2007) results from its palmitoylation (Laakkonen et al., 1996; Peränen et al., 1995) and 

471 membrane binding amphipathic peptide (Ahola et al., 2000; Ahola et al., 1999; Lampio et al., 

472 2000). By contrast, nsP2 is found in the nucleus due to the nuclear localization signal in its C-

473 terminus (Peränen et al., 1990; Rikkonen et al., 1992). The C-terminal motif of nsP3 on the 

474 other hand is responsible for binding cellular proteins such as Ras-GTPase-activating protein 

475 (SH3 domain)-binding proteins 1 and 2 (G3BP1 and G3BP2) (Fros et al., 2012; Panas et al., 
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476 2012; Scholte et al., 2015) for Old World alphaviruses and Fragile X syndrome family (FXR) 

477 proteins for New World alphaviruses like VEEV (Foy et al., 2013; Kim et al., 2016), leading to 

478 formation of cytoplasmic aggregates where nsP3 accumulates (Frolova et al., 2006; 

479 Gorchakov et al., 2008b). nsP4 is detected diffusely in the cytoplasm (Kujala et al., 2001), 

480 though most of it is quickly degraded as mentioned in above. However, a resistant, stable 

481 fraction of nsP4 has been detected and is postulated to be the one that is associated with RCs 

482 and is thus protected from degradation (de Groot et al., 1991). SINV nsP4 synthesized early 

483 in infection is more stable than the one made late in infection. This would be consistent with 

484 the hypothesis that assembly of nsP4 in the RCs protects the protein (de Groot et al., 1990; 

485 de Groot et al., 1991; Hardy et al., 1990; Hardy and Strauss, 1988). When lysates from SFV-

486 infected cells are separated into a nuclear pellet and post-nuclear supernatant  and the 

487 supernatant is further separated into a membrane and cytosolic fractions, most of SFV nsP4 

488 is found in the membrane fraction (Peränen et al., 1988),indicating that the stable fraction of 

489 nsP4 is associated with membranes.

490 Spherules are part of the cellular membrane trafficking network. For example, SFV 

491 spherules are originally formed at the plasma membrane and are then internalized (Spuul et 

492 al., 2010), leading to spherule-lined, modified late endosomal/lysosomal CPVs that are often 

493 in the vicinity of rough endoplasmic reticulum (Froshauer et al., 1988). In a recent study, it 

494 was observed that in contrast to SFV, only a fraction of SINV spherules are internalized. 

495 However, some CPVs can be detected later during the SINV infection (Frolova et al., 2010). 

496 The internalization has been extensively studied with SFV and has been shown to be 

497 dependent on the activity of phosphatidylinositol-3-kinase (PI3K) (Spuul et al., 2010). In a 

498 recent study by Thaa et al. (2015) the RC internalization was compared between SFV and 

499 CHIKV and was further linked to the activation of PI3K-Akt-mTOR pathway. The study showed 

500 that the hyperphosphorylated/acidic domain of nsP3 is responsible for the pathway activation 

501 and that SFV and CHIKV greatly differed in this respect; while SFV boosted the pathway and 

502 showed efficient spherule internalization, CHIKV RCs stayed mostly at the plasma membrane. 

503 By exchanging the responsible domain from SFV to CHIKV, it was possible to obtain pathway 

504 boosting and RC internalization also with CHIKV (Thaa et al., 2015). In addition, the early steps 

505 during SFV spherule internalization need an intact actin network, while microtubules are 

506 necessary for later CPV accumulation in the perinuclear region. However, it has been shown 

507 that the internalization from the plasma membrane is not necessary for active replication, but 
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508 is rather speculated to be involved in protecting virus production from cellular defence 

509 mechanisms (Spuul et al., 2010). 

510 How the spherules are formed is still under study. For example, the exact mechanism 

511 and place of the RNA recruitment is not known but the RC needs to be membrane associated 

512 (Salonen et al., 2003; Spuul et al., 2007). It has been shown that all four replicase proteins 

513 need to be present for spherules to form. Active replication, or at least minus-strand synthesis 

514 is a prerequisite for spherule formation (Frolova et al., 2010; Hellström et al., 2016; Kallio et 

515 al., 2016; Spuul et al., 2011), in accordance with the studies where the inactivation of the 

516 polymerase nsP4  abolishes spherules (Kallio et al., 2016; Spuul et al., 2011; Utt et al., 2016). 

517 In a recent study, it was demonstrated that the spherule size could be manipulated by 

518 changing the template length (Kallio et al., 2013), thus indicating that the spherule is not a 

519 rigid structure but can be somewhat flexible. The role of host proteins in the spherule 

520 formation is largely unknown, but amphiphysins have been shown to participate in replication 

521 through nsP3 interactions. Since they are membrane binding proteins inducing positive 

522 curvature, it is possible that they participate in spherule formation where positive curvature 

523 is found on the neck structure (Neuvonen et al., 2011). 

524 While the spherules are shown to locate on plasma membrane and CPVs for 

525 alphaviruses, the other positive-strand RNA viruses use other membrane types for their 

526 replication. Rubella virus, the only member of the genus Rubivirus is replicating on the 

527 lysososomal-originated CPVs as do alphaviruses, but not on the plasma membrane (Kujala et 

528 al., 1999). Brome mosaic virus, belonging to the alphavirus-like superfamily, induces 

529 spherules at the endoplasmic reticulum, which is also the site of invaginated vesicles formed 

530 by flaviviruses, e.g. dengue and West Nile virus. Instead, the spherules of the nodavirus Flock 

531 House virus are found on the outer mitochondrial membrane. Some plant viruses employ 

532 plant-specific membranes such as chloroplasts (turnip yellow mosaic virus) and peroxisomes 

533 (tomato bushy stunt virus) for the membranous RC formation (reviewed in (Paul and 

534 Bartenschlager, 2013; Romero-Brey and Bartenschlager, 2014; Stapleford and Miller, 2010)). 

535 Thus it is likely that even though the RC structures of these viruses resemble each other, the 

536 required cellular components significantly differ due to the variable intracellular location.

537 In spite of the development of advanced electron microscopy techniques and the 

538 extensive studies of many plus-strand viruses, the ultrastructure, molecular components or 

539 formation process of RCs are still largely unknown and many details are missing. The role of 
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540 host proteins, cellular lipids and viral proteins and RNA in cellular membrane rearrangements 

541 for replication purposes are studied by several groups but clearly much is still to be found 

542 (reviewed in (Miller and Krijnse-Locker, 2008; Reid et al., 2015a; Stapleford and Miller, 2010). 

543 In addition, the critical information of nonstructural protein interactions and their 

544 conformational changes within RCs during replication are mainly uncharacterized (Rupp et 

545 al., 2015). However, the reasons for membrane-associated replication seem to be generally 

546 accepted to be the concentration of necessary components to a restricted, specific 

547 cytoplasmic location, to provide scaffold of RC anchorage, to protect the viral RNA from 

548 cellular defence mechanisms and in some cases to link replication and subsequent virus 

549 assembly (Lorizate and Krausslich, 2011; Miller and Krijnse-Locker, 2008; Neufeldt et al., 2016; 

550 Salonen et al., 2005).

551

552  6. Purification of replication complexes and in vitro RNA synthesis

553 One of the outstanding questions in the alphavirus field is the structure and organization of 

554 the RCs as no high-resolution structure is available for the polymerase or the RC. As nsP4 

555 recognizes and binds to the promoter sequences and is active in de novo RNA synthesis only 

556 in the presence of the other nsPs (Li and Stollar, 2004; Rubach et al., 2009), it is necessary to 

557 determine the structure of the active polymerase in association with the other nsPs, i.e. to 

558 determine the RC structure. Although no structure is yet available, several attempts have 

559 been made to purify the active RCs, and the polymerase functions have been studied using in 

560 vitro assays (Albulescu et al., 2014; Barton et al., 1991; Clewley and Kennedy, 1976; Gomatos 

561 et al., 1980; Lemm et al., 1998).

562 Most of the in vitro RNA-synthesizing activity is found in the membrane fraction 

563 prepared from infected cells. All four nsPs are also found in this fraction as well as most of the 

564 minus-strand RNA made in vivo as expected based on its most likely location in the 

565 membranous RCs (Albulescu et al., 2014; Barton et al., 1991; Clewley and Kennedy, 1976; 

566 Gomatos et al., 1980; Peränen et al., 1990; Peränen et al., 1988). Immunoprecipitation assays 

567 with SINV RCs showed that each anti-nsP antibody is able to pull down all four nsPs indicating 

568 that they form a tight complex (Barton et al., 1991). Most of the positive-strand RNA in cells 

569 is released from the RCs during the replication as it is mainly found in the cytosolic fraction 

570 (Albulescu et al., 2014). 
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571 The activity of the RCs in crude membrane fractions also indicates that all the host 

572 factors required for the RNA synthesis are present in the membrane fraction and no soluble 

573 factors are needed. The in vitro RNA synthesis of CHIKV, SINV, and SFV results in the same 

574 RNA species as made in vivo; genomic and subgenomic single-stranded RNA (ssRNA) as well 

575 as dsRNA, which is in replicative form (RF) and/or replicative intermediates (RI) (Fig. 4) 

576 (Albulescu et al., 2014; Clewley and Kennedy, 1976; Michel and Gomatos, 1973; Sreevalsan 

577 and Yin, 1969). The majority of the in vitro synthesized RNA is in a single-stranded form, and 

578 CHIKV virus synthesizes three ssRNA species, all of positive-polarity: subgenomic and genomic 

579 RNA as well as RNA II which is a ~7.5-kb fragment preceding the subgenomic promoter 

580 (Albulescu et al., 2014; Clewley and Kennedy, 1976). Kinetics studies with SFV have shown 

581 that RF and RI dsRNA are synthesized first and serve as precursors for 26S and 42S ssRNAs, 

582 which are then synthesized at a linear rate (Michel and Gomatos, 1973). Both 26S and 42S 

583 ssRNAs synthesized in vitro are also methylated. The methylation occurs at the 5’ terminus of 

584 the RNA strands and the cap structure is the same as in cells. Furthermore, the methylation 

585 activity co-purifies with the polymerase activity although the in vitro synthesis of ssRNAs is 

586 not dependent on the methylation (Cross and Gomatos, 1981).

587 The in vitro polymerase activity of CHIKV is relatively stable between 20 and 37°C 

588 reflecting the need of alphaviruses to replicate both in mosquito and mammalian cells. One 

589 third of the in vitro ssRNA made by CHIKV is in RIs and the rest is released from the RCs. The 

590 newly made RNA is rather stable indicating some mode of protection, and it is suggested that 

591 membrane association, polysomes, RNA structure, or its encapsidation provide this 

592 (Albulescu et al., 2014). For SFV, it has also been indicated that the RNA species synthesized 

593 in vitro are associated with some structures and do not occur in a free form (Michel and 

594 Gomatos, 1973). 

595 Ultracentrifugation in sucrose-density gradients has been the main method to purify 

596 the alphavirus RCs. A cytoplasmic complex isolated from SINV-infected cells synthesized in 

597 vitro ssRNA, RF, and maybe also RIs, and membrane association of the structure was proposed 

598 based on the detergent and nuclease treatments (Sreevalsan and Yin, 1969). A similar 

599 approach was used to show that SFV polymerase activity, viral RNA, and CPVs enrich in the 

600 same fraction. Furthermore, as the isolated CPVs contained viral RNA, their central role in 

601 RNA replication was indicated (Friedman et al., 1972). In another SFV study, in vivo pulse-

602 labeled RNA and polymerase activity enriched in the smooth-membrane fraction, which 
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603 synthesized and released 26S and 42S ssRNA. Addition of the cytosolic fraction to the smooth-

604 membrane fraction did not increase the polymerase activity indicating that no soluble factors 

605 are needed for the in vitro RNA synthesis (Gomatos et al., 1980). 

606 Detergent solubilisation has also been used in many approaches to purify the alphavirus 

607 RCs (Barton et al., 1991; Clewley and Kennedy, 1976; Gomatos et al., 1980; Ranki and 

608 Kääriäinen, 1979). However, all these protocols seem to affect the activity of the polymerase 

609 demonstrating the central role of membrane association. First, Clewley and Kennedy (1976) 

610 developed a multi-step purification scheme to purify SFV RCs by ultracentrifugation in density 

611 gradients, detergent solubilisation, and affinity chromatography. Although the polymerase 

612 was purified over 300-fold, the recovery of activity was only about 5%. Furthermore, 

613 purification products incorporated label only into RI or RF indicating that the release of ssRNA 

614 was affected and the polymerase was unable to initiate new strands during the in vitro 

615 synthesis (Clewley and Kennedy, 1976). The same inhibition of ssRNA release was observed 

616 when SFV RCs were solubilized from the smooth-membrane fraction, and the polymerase 

617 activity was reduced (Gomatos et al., 1980). Besides, only some of the nsPs were detected in 

618 the solubilized RCs (Clewley and Kennedy, 1976; Gomatos et al., 1980; Ranki and Kääriäinen, 

619 1979). Detergent-solubilized RCs of SINV purified by ultracentrifugation in glycerol and 

620 sucrose gradients have been shown to contain all four nsPs but also these RCs incorporated 

621 label only into RIs (Barton et al., 1991).

622 It is clear that new approaches are needed to obtain highly purified RCs, which remain 

623 active in RNA synthesis. One such approach could be in vitro assembly as alphavirus nsPs are 

624 able to assemble into functional RCs in vitro, and the presence of an endogeonous template 

625 is not a prerequisite for the in vitro RNA synthesis. The membrane fraction containing the 

626 uncleavable polyprotein P123 and polymerase nsP4 of SINV is able to initiate and synthesize 

627 the minus-strand RNA when provided with an exogenous plus-strand RNA template (Lemm 

628 et al., 1998). Expression of nsP1 + uncleavable P23 + nsP4 also enables the in vitro minus-

629 strand synthesis while cleavable P123 + nsP4 results in decreased RNA synthesis confirming 

630 that the polyprotein P23 is necessary for the minus-strand initiation complex. If soluble nsP4 

631 is combined with the membrane fraction containing P123 and an exogenous template is 

632 added, in vitro RNA synthesis is also observed. In addition, nsP4 expressed and purified from 

633 E. coli is able to synthesize RNA in vitro when combined with the P123-membrane fraction 

634 and template (Rubach et al., 2009). Thus, in vitro assembled RCs might represent an 
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635 interesting starting point to solve the structure. Activity-preserving purification method 

636 would then provide a tool to resolve the components, organization, and functional details of 

637 alphavirus RCs. Especially, such an approach would be invaluable in order to determine host 

638 factors crucial for the formation of functional RCs.

639

640

641 7. Host factors and alphavirus polymerase complex

642 Identities and exact roles of host proteins in alphavirus RNA synthesis remains an open 

643 question. Host proteins co-purify with the RCs (Barton et al., 1991; Clewley and Kennedy, 

644 1976), and several host factors interact with alphavirus RNA or nsP-containing complexes (Fig. 

645 5). Mass spectrometry has revealed that SINV nsP2-, nsP3-, or nsP4-containing complexes are 

646 rich in cytoskeleton proteins, chaperons, elongation factors, heterogeneous nuclear 

647 ribonucleoproteins (hnRNPs), tyrosine 3-monooxygenase/tryptophan 5-monooxygenase 

648 activation proteins (14-3-3 proteins), and ribosomal proteins (Atasheva et al., 2007; Cristea et 

649 al., 2006; Cristea et al., 2010; Frolova et al., 2006; Gorchakov et al., 2008b). A similar set of 

650 proteins, including RNA-binding (e.g. hnRNPs and G3BPs), cytoskeleton (e.g. tubulins), 

651 translation (e.g. eukaryotic translation elongation factors), folding (e.g. heat shock proteins), 

652 and 14-3-3 proteins, were enriched with CPVs isolated from SFV-infected cells (Ahlquist, 

653 2006). The interaction with the host proteins is time-dependent suggesting that different host 

654 proteins are required for the multiple functions of nsP4 at different phases of infection such 

655 as the minus-strand synthesis early, and plus-strand synthesis later in infection (Cristea et al., 

656 2006; Cristea et al., 2010). However, some of the identified host proteins may interact with 

657 nsPs which are not located in the RCs and thus do not affect the polymerase activity.

658 The number of the identified host factors in the SINV nsP3-containing complexes after 

659 a strong detergent treatment was considerably lower than in the other studies (Gorchakov et 

660 al., 2008b). G3BP1 and G3BP2, nucleic acid-binding protein YBX1, and heat shock protein 

661 HSC70 were detected in these samples (Fig. 5). The same nucleic acid-binding and heat shock 

662 proteins have also been detected in SINV nsP2-containing complexes (Atasheva et al., 2007). 

663 In addition, the heat shock protein HSP-90 has been identified in CHIKV nsP3- or nsP4-

664 containing complexes as well as in SINV nsP4-containing complexes (Fig. 5) (Cristea et al., 
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665 2010; Rathore et al., 2014). Furthermore, silencing of HSP-90 inhibits CHIKV replication 

666 (Rathore et al., 2014).

667 In addition to the SINV nsP3-containig complexes, G3BPs have been detected in the 

668 SINV nsP2- and nsP4-containing complexes as well as in the SFV and CHIKV nsP3-containing 

669 complexes (Fig. 5) (Atasheva et al., 2007; Cristea et al., 2006; Cristea et al., 2010; Frolova et 

670 al., 2006; Gorchakov et al., 2008b; Kim et al., 2016; Panas et al., 2014; Panas et al., 2012). The 

671 role of G3BPs in SINV infection has been studied by their knockdown resulting in enhanced 

672 expression of the polyprotein but with minimal effects on RNA synthesis (Cristea et al., 2010). 

673 On the contrary, is has been shown for CHIKV that the depletion of G3BPs results in 

674 significantly reduced levels of the minus-strand RNA, and consequently the plus-strand RNA, 

675 and in reduced replication (Scholte et al., 2015). It was suggested that early in CHIKV infection 

676 G3BPs are essential in the switch from translation to genome replication by possibly removing 

677 the ribosomes from the viral RNA. The authors also show that late in CHIKV infection G3BPs 

678 are found in nsP3 aggregates which are proposed to prevent the formation of typical stress 

679 granules. Interestingly, the same authors also observed reduction in SINV replication in G3BP-

680 depleted cells. It was speculated that G3BP2 levels may not have been low enough in previous 

681 studies to observe the inhibition of replication as it was shown that the knockdown of G3BP2 

682 alone is enough to significantly reduce replication of both CHIKV and SINV. A recent study by 

683 Kim et al. demonstrated how New World and Old World alphaviruses differ in their host 

684 protein selection even though in both groups the stress-granule related proteins are used for 

685 RNA replication and RC assembly. While SINV and CHIKV replication were clearly reduced 

686 when both G3BP homologs were knocked out, similar effect was not seen with VEEV. Instead, 

687 the knockout of FXR family members was specifically affecting VEEV (Kim et al., 2016).

688 The complex formed by nsP3 and G3BP has shown to recruit sphingosine kinase 2 (SK2) 

689 (Fig. 5) (Reid et al., 2015b). In addition, SK2 co-localizes with dsRNA in the infected cells 

690 indicating its presence in the RCs, and most likely nsP3 is responsible for its recruitment to 

691 the RCs. Knockdown of SK2 inhibits CHIKV replication, and during infection SK2 has been 

692 shown to interact with proteins involved in mRNA processing and gene expression such as 

693 poly(C)-binding proteins (PCBPs) 1 and 2. The carboxy-terminal proline-rich motif of SFV, 

694 SINV, and CHIKV nsP3 binds SH3-domains of amphiphysin-1 and -2 (Fig. 5) (Neuvonen et al., 

695 2011). The interaction is important for viral RNA replication, and as amphiphysins work in 
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696 membrane dynamics (Graham and Kozlov, 2010), they might be important for spherule 

697 formation in alphavirus-infected cells (Neuvonen et al., 2011).  

698 Several hnRNPs have been shown to relocalize during alphavirus infections and to 

699 interact with viral components (Ahlquist, 2002, 2006; Ahlquist et al., 2003; Balistreri et al., 

700 2007; Cristea et al., 2006; Frolova et al., 2006; Gui et al., 2010). SINV nsP1, nsP2, and nsP3 as 

701 well as subgenomic RNA but not the genomic RNA co-immunoprecipitate with hnRNP K (Fig. 

702 5), and based on the knockdown of hnRNP K it was speculated that hnRNP K facilitates 

703 transcription of the subgenomic RNA (Ahlquist et al., 2003). Knockdown of hnRNP A1 also 

704 results in reduced SINV replication (Balistreri et al., 2007). It was suggested that hnRNP A1 

705 plays a role in SINV minus-strand RNA synthesis and viral RNA translation as it interacts with 

706 the 5’ UTR. Furthermore, hnRNP A1 interacts with both SINV genomic and subgenomic 

707 promoters, and it has been shown that hnRNP A1 is required for the plus-strand, both 

708 genomic and subgenomic, RNA synthesis (Gui et al., 2010). Several hnRNPs were also 

709 recognized in the CPVs isolated from SFV-infected cells (Ahlquist, 2006). Silencing of RNA-

710 binding proteins hnRNP M and C facilitated SFV, CHIKV, and SINV replication, while silencing 

711 of hnRNP K increased SFV translation but decreased CHIKV and SINV translation. Silencing of 

712 PCBP 1, on the other hand, decreased SFV translation.

713 In addition to hnRNPs, a number of host proteins have been shown to co-purify with 

714 the viral RNA and indicated to play role in the initiation of RNA synthesis. Short 

715 oligonucleotides corresponding to the 3’ end of SINV, SFV, and RRV minus strand bind cellular 

716 proteins, and these might be needed for the initiation of the plus-strand RNA synthesis (Bruce 

717 et al., 2008; Bruce et al., 2010). Mosquito homolog of the La autoantigen binds to the 3’ end 

718 of the SINV minus strands, and it may also play a role in the initiation of the plus-strand RNA 

719 synthesis as the La autoantigen is known to bind to the 3’ oligo(U) terminus of the transcripts 

720 made by RNA polymerase III and to control transcription termination as well as reinitiation by 

721 the polymerase (Buchholz et al., 1999; Chen and Ahlquist, 2000). In addition, mutations in the 

722 5’ cis elements or 3’ UTR of the SINV genome have host-specific effects indicating that these 

723 elements interact with cellular factors (Chen et al., 2001; Frolov et al., 2001; Gorchakov et al., 

724 2004; Niesters and Strauss, 1990a, b). It has been speculated that alphaviruses use PABP in 

725 the genome circularization and thus in the initiation of the minus-strand RNA synthesis, and 

726 PABP has been detected in the nsP2-containing complexes isolated from SINV-infected cells 

727 (Atasheva et al., 2007; Frolov et al., 2001). However, interaction between the poly(A) tail of 
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728 the genome and PABP remains to be studied. In addition to the initiation, host proteins might 

729 be important in the switch from the minus- to plus-strand RNA synthesis. It has been 

730 suggested that RNase L has a role in the shutoff of the minus-strand RNA synthesis and 

731 formation of stable RCs with transcriptional activity as knockout of RNase L results in 

732 continuous synthesis of the SINV minus- and plus-strand RNA (Sawicki et al., 2003). 

733 To date, no host proteins has been shown to directly interact with the alphavirus polymerase 

734 and affect its activity. Once the structure of the RCs is resolved, we will be able to understand 

735 which host proteins play the most important roles in the function of the polymerase and the 

736 entire RC.

737

738 8. Antivirals and alphavirus polymerase complex

739 CHIKV and related alphaviruses cause febrile illness accompanied by myalgia, arthralgia, and 

740 rash. Although mortality is low, symptoms can last from weeks to months, or even years 

741 (Weaver and Lecuit, 2015). Recent emergence of CHIKV in the Caribbean was followed by 

742 epidemics (Leparc-Goffart et al., 2014) exemplifying the threat that vector-borne alphaviruses 

743 currently have on human health. Consequently, most of the antiviral work on alphaviruses 

744 has focused on CHIKV. Nevertheless, there are no approved, effective antivirals or vaccines 

745 against any human alphavirus (Abdelnabi et al., 2015; Ahola et al., 2015). Here, we focus on 

746 those antivirals which may target viral nsPs or host factors interacting with them.

747 The RNA-dependent RNA polymerase, or the RC, offers a good target for antivirals, and 

748 there are several modified nucleosides against alphaviruses. Nucleoside analog ribavirin, 

749 which causes inhibition of genome replication by depletion of GTP pools, has antiviral activity 

750 against several alphaviruses (Briolant et al., 2004; Leyssen et al., 2006). However, 6-aza-

751 uridine, which causes intracellular UTP depletion, is a more effective antiviral against CHIKV 

752 and SFV than ribavirin (Briolant et al., 2004; Rada and Dragun, 1977; Scholte et al., 2013) 

753 although ribavirin and interferon-α2b have a subsynergistic effect on both viruses (Briolant et 

754 al., 2004). Furthermore, combination of ribavirin and doxycycline, which is a semi-synthetic 

755 tetracycline antibiotic and predicted to bind to nsP2 protease active site and E2 glycoprotein, 

756 gives good antiviral effect on CHIKV by inhibiting both entry and replication (Rothan et al., 

757 2015). Ribavirin 5’-sulfamate, which is a close analog of ribavirin, is also active against SFV but 
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758 it is highly cytotoxic (Smee et al., 1988). Mycophenolic acid inhibits CHIKV replication, even 

759 more efficiently than ribavirin, and the most likely mechanism is also GTP-pool depletion 

760 (Khan et al., 2011; Scholte et al., 2013). A SINV mutant resistant to both mycophenolic acid 

761 and ribavirin has three amino acid changing mutations in nsP1 indicating that these 

762 compounds affect the guanine 7-methyltransferase activity of nsP1 (Scheidel and Stollar, 

763 1991). In contrast, a Gly641 to Asp substitution in nsP2 or a Cys483 to Tyr substitution in nsP4 

764 renders CHIKV resistant to ribavirin and at the same time increases replication fidelity (Coffey 

765 et al., 2011; Stapleford et al., 2015). In contrast to their in vivo effects, ribavirin, 6-aza-uridine, 

766 or mycophenolic acid have no measurable effects on the CHIKV in vitro RNA-synthesizing 

767 activity. It might be that these nucleoside analogs are unable to inhibit CHIKV replication in 

768 vitro as they affect cellular NTP pools and the in vitro assay contains NTPs supplied in excess. 

769 In addition, some of the drugs may not be converted to their active, phosphorylated form 

770 during the in vitro replication assay (Albulescu et al., 2014).

771 Besides the polymerase activity, nsP1 is a promising target of alphavirus antivirals. In 

772 addition to mycophenolic acid and ribavirin, 3-deaza-adenosine inhibits CHIKV replication and 

773 most likely affect nsP1 by interfering of S-adenosylmethionine-dependent methylation (De 

774 Clercq, 1998; Scholte et al., 2013). In addition to nucleotide analogs, a novel class of small 

775 molecules have been observed to inhibit CHIKV, and the resistant variants have a Pro34 to 

776 Ser substitution in nsP1. Using VEEV nsP1, the authors showed that these molecules inhibit 

777 the guanylylation activity of nsP1 (Delang et al., 2016; Gigante et al., 2014).

778 Favipiravir (T-705) is a broad-spectrum antiviral and inhibits RNA viruses most likely by 

779 competing with the incorporation of ATP and GTP (Furuta et al., 2013). Two mechanisms have 

780 been proposed; chain termination or lethal mutagenesis. Favipiravir has been shown to block 

781 replication of both New and Old World alphaviruses, including CHIKV, SFV, SINV, Eastern 

782 equine encephalitis virus, Western equine encephalitis virus, VEEV, ONNV, RRV, and BFV 

783 (Delang et al., 2014; Julander et al., 2009). In addition, defluorinated analogue of favipiravir, 

784 T-1105, has the same effect (Delang et al., 2014). Favipiravir inhibits CHIKV RNA synthesis, 

785 and correlation between CHIKV RNA amount and infectivity decrease indicates that the 

786 mechanism of action is different than the induction of lethal mutagenesis. Low-level 

787 favipiravir-resistant CHIKV variants have a Lys291 to Arg mutation in nsP4, and this lysine is 

788 highly conserved in positive-strand RNA viruses. This suggests that the target site of favipiravir 

789 is the well-conserved region of the RdRp (Delang et al., 2014). 
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790 As mentioned in the previous section, CHIKV and SINV nsP4-containing complexes 

791 interact with HSP-90, and drugs against HSP-90 have been shown inhibit CHIKV replication 

792 (Rathore et al., 2014). A virtual screening simulation was used to find compounds against 

793 CHIKV nsP2, and one of the hits targeting the central part of the protease active site inhibited 

794 CHIKV replication (Bassetto et al., 2013). Continuing from these lead compounds, Das et al. 

795 described a set of related compounds, some of which were shown both to inhibit the nsP2 

796 protease as well as virus replication (Das et al., 2016). Collectively, the number of potential 

797 antivirals against alphaviruses has increased in recent years and it seems that the possibility 

798 to (pre)treat humans is soon at hand. Furthermore, recognition of host factors essential for 

799 the formation and function of the alphaviruses RCs will open more avenues to explore new 

800 antivirals. 

801

802 9. Concluding remarks

803 In spite of the extensive studies on alphavirus replication strategies, the knowledge of the 

804 biochemical and structural properties of the viral polymerase nsP4 is surprisingly limited. This 

805 unusual polymerase apparently cannot act alone but needs the co-operation of and 

806 interaction with the other nonstructural proteins. Many types of experiments have given 

807 important information concerning the activities of both nsP4 and the other nsPs and defined 

808 their roles during RNA synthesis and replication complex assembly.

809 The RCs form membranous invaginations (spherules) on cellular membranes 

810 and are thought to restrict the replication to a protected environment inaccessible to cellular 

811 defence mechanisms. At the same time, spherules gather all the necessary components to a 

812 compact structure, which may limit the activities of the polymerase complex in important 

813 ways. However, very little is still known concerning the cellular proteins that may participate 

814 in spherule formation or function, and how and in what numbers both viral nonstructural 

815 proteins and host proteins are structurally arranged in the RCs. All these details would be 

816 invaluable in order to fully understand how different RNA species are produced, how the RC 

817 switches the strand-specificity and what the exact roles of each nonstructural protein within 

818 a spherule are. It has been shown that the polymerase activity together with the presence of 

819 other nsPs is necessary for spherule formation and that the spherule size is determined by 

820 the length of the RNA template (Kallio et al., 2013). Yet the chronological order of spherule 
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821 formation steps, including the timing of RNA recruitment and complex assembly are 

822 unresolved. 

823 Alphaviruses are emergently causing epidemics on several continents, but there 

824 are no approved antivirals or vaccines available. The vulnerable replication steps involving 

825 both the nonstructural proteins and the participating host components would be ideal targets 

826 in the fight against these viruses, making it clear that more precise structural and functional 

827 knowledge of the RC is required.
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835 Tables

836 Table 1. Summary of the viruses discussed in this review.

Genus / Family Virus species Abbreviation

Barmah Forest virus BFV

Chikungunya virus CHIKV

Eastern equine encephalitis virus EEEV

O’nyong-nyong virus ONNV

Ross River virus RRV

Semliki Forest virus SFV

Sindbis virus SINV

Venezuelan equine encephalitis virus VEEV

Alphavirus / Togaviridae

Western equine encephalitis virus WEEV

Rubivirus / Togaviridae Rubella virus RUBV

Bromovirus / Bromoviridae Brome mosaic virus BMV

Alphanodavirus / Nodaviridae Flock House virus FHV

837
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838 Figure legends

839 Figure 1. 

840 Alphavirus genome structure. The positive-sense RNA genome is about 11,5 kilobases in 

841 length and contains two open reading frames; first encoding for the nonstructural proteins 

842 (nsPs) 1-4 and second for structural proteins (C, capsid; E1/2/3, envelope glycoproteins and 

843 6K, a 6 kDa protein). UTR, untranslated region; SGP, subgenomic promoter; A(n), polyA.

844

845 Figure 2. 

846 Schematic of the polyprotein processing and RNA synthesis. After disassembly of the 

847 incoming virus particles, the viral plus-strand RNA is released and the nonstructural proteins 

848 are translated as a polyprotein. After cleavage of nsP4, the RC synthesizes minus strand from 

849 the genomic RNA. Further cleavage of all nsPs to individual proteins switches synthesis to 

850 genomic and subgenomic positive-strand RNA. The structural proteins are translated from 

851 subgenomic RNA, leading to the packaging of viral genomic RNA to the forming nucleocapsid.

852

853 Figure 3. 

854 Membranous replication complexes of SFV. A) Spherules located at the plasma membrane at 

855 an early time point. B) Type I cytopathic vacuole (CPV-I) of an infected cell, containing 

856 numerous spherules lining the membrane. C) 3D reconstruction of a single spherule. D) 

857 Schematic of a spherule with replication complex proteins located hypothetically on the neck 

858 region and newly synthesized RNA coming out. The scale bars in A and B are 200 nm and 100 

859 nm, respectively.

860

861 Figure 4. 

862 A schematic model of the replicative form (RF) and replicative intermediate (RI). Purple 

863 indicates the polymerase complex. RI contains several unfinished plus strands. Minus strands 

864 are shown as blue and plus strands as pink.

865

866 Figure 5. 

867 Examples of host proteins identified in alphavirus nsP-containing complexes. nsP1-, nsP2-, 

868 nsP3- and nsP4-containing complexes and their interactions with membrane-curvature 
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869 proteins amphiphysins, poly(A)-binding protein (PABP), heterogeneous nuclear 

870 ribonucleoprotein K (hnRNP K), nucleic acid-binding protein YBX1, heat shock proteins HSC70 

871 and HSP-90, Ras-GTPase-activating protein (SH3 domain)-binding proteins G3BP1 and 2, and 

872 Sphingosine kinase 2 (SK2).

873
874

875 References

876 Abdelnabi, R., Neyts, J., Delang, L., 2015. Towards antivirals against chikungunya virus. Antiviral Res 
877 121, 59-68.
878 Adkins, S., Stawicki, S.S., Faurote, G., Siegel, R.W., Kao, C.C., 1998. Mechanistic analysis of RNA 
879 synthesis by RNA-dependent RNA polymerase from two promoters reveals similarities to DNA-
880 dependent RNA polymerase. RNA 4, 455-470.
881 Ahlquist, P., 2002. RNA-dependent RNA polymerases, viruses, and RNA silencing. Science 296, 1270-
882 1273.
883 Ahlquist, P., 2006. Parallels among positive-strand RNA viruses, reverse-transcribing viruses and 
884 double-stranded RNA viruses. Nature reviews. Microbiology 4, 371-382.
885 Ahlquist, P., Noueiry, A.O., Lee, W.M., Kushner, D.B., Dye, B.T., 2003. Host factors in positive-strand 
886 RNA virus genome replication. J Virol 77, 8181-8186.
887 Ahola, T., Couderc, T., Ng, L.F., Hallengard, D., Powers, A., Lecuit, M., Esteban, M., Merits, A., 
888 Roques, P., Liljestrom, P., 2015. Therapeutics and vaccines against chikungunya virus. Vector Borne 
889 Zoonotic Dis 15, 250-257.
890 Ahola, T., Kujala, P., Tuittila, M., Blom, T., Laakkonen, P., Hinkkanen, A., Auvinen, P., 2000. Effects of 
891 palmitoylation of replicase protein nsP1 on alphavirus infection. J Virol 74, 6725-6733.
892 Ahola, T., Kääriäinen, L., 1995. Reaction in alphavirus mRNA capping: formation of a covalent 
893 complex of nonstructural protein nsP1 with 7-methyl-GMP. Proc Natl Acad Sci U S A 92, 507-511.
894 Ahola, T., Lampio, A., Auvinen, P., Kääriäinen, L., 1999. Semliki Forest virus mRNA capping enzyme 
895 requires association with anionic membrane phospholipids for activity. EMBO J 18, 3164-3172.
896 Albulescu, I.C., Tas, A., Scholte, F.E., Snijder, E.J., van Hemert, M.J., 2014. An in vitro assay to study 
897 chikungunya virus RNA synthesis and the mode of action of inhibitors. J Gen Virol 95, 2683-2692.
898 Atasheva, S., Gorchakov, R., English, R., Frolov, I., Frolova, E., 2007. Development of Sindbis viruses 
899 encoding nsP2/GFP chimeric proteins and their application for studying nsP2 functioning. J Virol 81, 
900 5046-5057.
901 Balistreri, G., Caldentey, J., Kaariainen, L., Ahola, T., 2007. Enzymatic defects of the nsP2 proteins of 
902 Semliki Forest virus temperature-sensitive mutants. J Virol 81, 2849-2860.
903 Barton, D.J., Sawicki, S.G., Sawicki, D.L., 1988. Demonstration in vitro of temperature-sensitive 
904 elongation of RNA in Sindbis virus mutant ts6. J Virol 62, 3597-3602.
905 Barton, D.J., Sawicki, S.G., Sawicki, D.L., 1991. Solubilization and immunoprecipitation of alphavirus 
906 replication complexes. J Virol 65, 1496-1506.
907 Bassetto, M., De Burghgraeve, T., Delang, L., Massarotti, A., Coluccia, A., Zonta, N., Gatti, V., 
908 Colombano, G., Sorba, G., Silvestri, R., Tron, G.C., Neyts, J., Leyssen, P., Brancale, A., 2013. 
909 Computer-aided identification, design and synthesis of a novel series of compounds with selective 
910 antiviral activity against chikungunya virus. Antiviral Res 98, 12-18.
911 Briolant, S., Garin, D., Scaramozzino, N., Jouan, A., Crance, J.M., 2004. In vitro inhibition of 
912 Chikungunya and Semliki Forest viruses replication by antiviral compounds: synergistic effect of 
913 interferon-alpha and ribavirin combination. Antiviral Res 61, 111-117.
914 Bruce, J.W., Ahlquist, P., Young, J.A., 2008. The host cell sulfonation pathway contributes to 
915 retroviral infection at a step coincident with provirus establishment. PLoS Pathog 4, e1000207.



30

916 Bruce, J.W., Hierl, M., Young, J.A., Ahlquist, P., 2010. Cellular transcription factor ZASC1 regulates 
917 murine leukemia virus transcription. J Virol 84, 7473-7483.
918 Buchholz, U.J., Finke, S., Conzelmann, K.K., 1999. Generation of bovine respiratory syncytial virus 
919 (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human 
920 RSV leader region acts as a functional BRSV genome promoter. J Virol 73, 251-259.
921 Chen, J., Ahlquist, P., 2000. Brome mosaic virus polymerase-like protein 2a is directed to the 
922 endoplasmic reticulum by helicase-like viral protein 1a. J Virol 74, 4310-4318.
923 Chen, J., Noueiry, A., Ahlquist, P., 2001. Brome mosaic virus Protein 1a recruits viral RNA2 to RNA 
924 replication through a 5' proximal RNA2 signal. J Virol 75, 3207-3219.
925 Clewley, J.P., Kennedy, S.I., 1976. Purification and polypeptide composition of Semliki Forest virus 
926 RNA polymerase. J Gen Virol 32, 395-411.
927 Coffey, L.L., Beeharry, Y., Borderia, A.V., Blanc, H., Vignuzzi, M., 2011. Arbovirus high fidelity variant 
928 loses fitness in mosquitoes and mice. Proc Natl Acad Sci U S A 108, 16038-16043.
929 Cristea, I.M., Carroll, J.W., Rout, M.P., Rice, C.M., Chait, B.T., MacDonald, M.R., 2006. Tracking and 
930 elucidating Alphavirus-host protein interactions. J Biol Chem 281, 30269-30278.
931 Cristea, I.M., Rozjabek, H., Molloy, K.R., Karki, S., White, L.L., Rice, C.M., Rout, M.P., Chait, B.T., 
932 MacDonald, M.R., 2010. Host factors associated with the Sindbis virus RNA-dependent RNA 
933 polymerase: role for G3BP1 and G3BP2 in virus replication. J Virol 84, 6720-6732.
934 Cross, R.K., Gomatos, P.J., 1981. Concomitant methylation and synthesis in vitro of Semliki Forest 
935 virus (SFV) ss RNAs by a fraction from infected cells. Virology 114, 542-554.
936 Das, P.K., Merits, A., Lulla, A., 2014. Functional crosstalk between distant domains of Chikungunya 
937 virus non-structural protein 2 is decisive for its RNA-modulating activity. J Biol Chem 289, 5635-5653.
938 Das, P.K., Puusepp, L., Varghese, F.S., Utt, A., Ahola, T., Kananovich, D.G., Lopp, M., Merits, A., 
939 Karelson, M., 2016. Design and Validation of Novel Chikungunya Virus Protease Inhibitors. 
940 Antimicrob Agents Chemother 60, 7382-7395.
941 De Clercq, E., 1998. Carbocyclic adenosine analogues as S-adenosylhomocysteine hydrolase 
942 inhibitors and antiviral agents: recent advances. Nucleosides Nucleotides 17, 625-634.
943 de Groot, R.J., Hardy, W.R., Shirako, Y., Strauss, J.H., 1990. Cleavage-site preferences of Sindbis virus 
944 polyproteins containing the non-structural proteinase. Evidence for temporal regulation of 
945 polyprotein processing in vivo. EMBO J 9, 2631-2638.
946 de Groot, R.J., Rumenapf, T., Kuhn, R.J., Strauss, E.G., Strauss, J.H., 1991. Sindbis virus RNA 
947 polymerase is degraded by the N-end rule pathway. Proc Natl Acad Sci U S A 88, 8967-8971.
948 Delang, L., Li, C., Tas, A., Querat, G., Albulescu, I.C., De Burghgraeve, T., Guerrero, N.A., Gigante, A., 
949 Piorkowski, G., Decroly, E., Jochmans, D., Canard, B., Snijder, E.J., Perez-Perez, M.J., van Hemert, 
950 M.J., Coutard, B., Leyssen, P., Neyts, J., 2016. The viral capping enzyme nsP1: a novel target for the 
951 inhibition of chikungunya virus infection. Sci Rep 6, 31819.
952 Delang, L., Segura Guerrero, N., Tas, A., Querat, G., Pastorino, B., Froeyen, M., Dallmeier, K., 
953 Jochmans, D., Herdewijn, P., Bello, F., Snijder, E.J., de Lamballerie, X., Martina, B., Neyts, J., van 
954 Hemert, M.J., Leyssen, P., 2014. Mutations in the chikungunya virus non-structural proteins cause 
955 resistance to favipiravir (T-705), a broad-spectrum antiviral. J Antimicrob Chemother 69, 2770-2784.
956 Deo, R.C., Bonanno, J.B., Sonenberg, N., Burley, S.K., 1999. Recognition of polyadenylate RNA by the 
957 poly(A)-binding protein. Cell 98, 835-845.
958 Fata, C.L., Sawicki, S.G., Sawicki, D.L., 2002a. Alphavirus minus-strand RNA synthesis: identification of 
959 a role for Arg183 of the nsP4 polymerase. J Virol 76, 8632-8640.
960 Fata, C.L., Sawicki, S.G., Sawicki, D.L., 2002b. Modification of Asn374 of nsP1 suppresses a Sindbis 
961 virus nsP4 minus-strand polymerase mutant. J Virol 76, 8641-8649.
962 Forrester, N.L., Guerbois, M., Seymour, R.L., Spratt, H., Weaver, S.C., 2012. Vector-borne 
963 transmission imposes a severe bottleneck on an RNA virus population. PLoS Pathog 8, e1002897.
964 Foy, N.J., Akhrymuk, M., Akhrymuk, I., Atasheva, S., Bopda-Waffo, A., Frolov, I., Frolova, E.I., 2013. 
965 Hypervariable domains of nsP3 proteins of New World and Old World alphaviruses mediate 
966 formation of distinct, virus-specific protein complexes. J Virol 87, 1997-2010.



31

967 Frey, T.K., Strauss, J.H., 1978. Replication of Sindbis virus. VI. Poly(A) and poly(U) in virus-specific 
968 RNA species. Virology 86, 494-506.
969 Friedman, R.M., Levin, J.G., Grimley, P.M., Berezesky, I.K., 1972. Membrane-associated replication 
970 complex in arbovirus infection. J Virol 10, 504-515.
971 Frolov, I., Hardy, R., Rice, C.M., 2001. Cis-acting RNA elements at the 5' end of Sindbis virus genome 
972 RNA regulate minus- and plus-strand RNA synthesis. RNA 7, 1638-1651.
973 Frolova, E., Gorchakov, R., Garmashova, N., Atasheva, S., Vergara, L.A., Frolov, I., 2006. Formation of 
974 nsP3-specific protein complexes during Sindbis virus replication. J Virol 80, 4122-4134.
975 Frolova, E.I., Gorchakov, R., Pereboeva, L., Atasheva, S., Frolov, I., 2010. Functional Sindbis virus 
976 replicative complexes are formed at the plasma membrane. J Virol 84, 11679-11695.
977 Fros, J.J., Domeradzka, N.E., Baggen, J., Geertsema, C., Flipse, J., Vlak, J.M., Pijlman, G.P., 2012. 
978 Chikungunya virus nsP3 blocks stress granule assembly by recruitment of G3BP into cytoplasmic foci. 
979 J Virol 86, 10873-10879.
980 Froshauer, S., Kartenbeck, J., Helenius, A., 1988. Alphavirus RNA replicase is located on the 
981 cytoplasmic surface of endosomes and lysosomes. The Journal of cell biology 107, 2075-2086.
982 Furuta, Y., Gowen, B.B., Takahashi, K., Shiraki, K., Smee, D.F., Barnard, D.L., 2013. Favipiravir (T-705), 
983 a novel viral RNA polymerase inhibitor. Antiviral Res 100, 446-454.
984 Gigante, A., Canela, M.D., Delang, L., Priego, E.M., Camarasa, M.J., Querat, G., Neyts, J., Leyssen, P., 
985 Perez-Perez, M.J., 2014. Identification of [1,2,3]triazolo[4,5-d]pyrimidin-7(6H)-ones as novel 
986 inhibitors of Chikungunya virus replication. J Med Chem 57, 4000-4008.
987 Gomatos, P.J., Kääriäinen, L., Keränen, S., Ranki, M., Sawicki, D.L., 1980. Semliki Forest virus 
988 replication complex capable of synthesizing 42S and 26S nascent RNA chains. J Gen Virol 49, 61-69.
989 Gorchakov, R., Frolova, E., Sawicki, S., Atasheva, S., Sawicki, D., Frolov, I., 2008a. A new role for ns 
990 polyprotein cleavage in Sindbis virus replication. J Virol 82, 6218-6231.
991 Gorchakov, R., Garmashova, N., Frolova, E., Frolov, I., 2008b. Different types of nsP3-containing 
992 protein complexes in Sindbis virus-infected cells. J Virol 82, 10088-10101.
993 Gorchakov, R., Hardy, R., Rice, C.M., Frolov, I., 2004. Selection of functional 5' cis-acting elements 
994 promoting efficient sindbis virus genome replication. J Virol 78, 61-75.
995 Graham, T.R., Kozlov, M.M., 2010. Interplay of proteins and lipids in generating membrane 
996 curvature. Curr Opin Cell Biol 22, 430-436.
997 Grimley, P.M., Berezesky, I.K., Friedman, R.M., 1968. Cytoplasmic structures associated with an 
998 arbovirus infection: loci of viral ribonucleic acid synthesis. J Virol 2, 1326-1338.
999 Grimley, P.M., Levin, J.G., Berezesky, I.K., Friedman, R.M., 1972. Specific membranous structures 

1000 associated with the replication of group A arboviruses. J Virol 10, 492-503.
1001 Gui, H., Lu, C.W., Adams, S., Stollar, V., Li, M.L., 2010. hnRNP A1 interacts with the genomic and 
1002 subgenomic RNA promoters of Sindbis virus and is required for the synthesis of G and SG RNA. J 
1003 Biomed Sci 17, 59.
1004 Hahn, Y.S., Grakoui, A., Rice, C.M., Strauss, E.G., Strauss, J.H., 1989a. Mapping of RNA- temperature-
1005 sensitive mutants of Sindbis virus: complementation group F mutants have lesions in nsP4. J Virol 63, 
1006 1194-1202.
1007 Hahn, Y.S., Strauss, E.G., Strauss, J.H., 1989b. Mapping of RNA- temperature-sensitive mutants of 
1008 Sindbis virus: assignment of complementation groups A, B, and G to nonstructural proteins. J Virol 
1009 63, 3142-3150.
1010 Hajjou, M., Hill, K.R., Subramaniam, S.V., Hu, J.Y., Raju, R., 1996. Nonhomologous RNA-RNA 
1011 recombination events at the 3' nontranslated region of the Sindbis virus genome: hot spots and 
1012 utilization of nonviral sequences. J Virol 70, 5153-5164.
1013 Hardy, R.W., 2006. The role of the 3' terminus of the Sindbis virus genome in minus-strand initiation 
1014 site selection. Virology 345, 520-531.
1015 Hardy, R.W., Rice, C.M., 2005. Requirements at the 3' end of the sindbis virus genome for efficient 
1016 synthesis of minus-strand RNA. J Virol 79, 4630-4639.



32

1017 Hardy, W.R., Hahn, Y.S., de Groot, R.J., Strauss, E.G., Strauss, J.H., 1990. Synthesis and processing of 
1018 the nonstructural polyproteins of several temperature-sensitive mutants of Sindbis virus. Virology 
1019 177, 199-208.
1020 Hardy, W.R., Strauss, J.H., 1988. Processing the nonstructural polyproteins of Sindbis virus: study of 
1021 the kinetics in vivo by using monospecific antibodies. J Virol 62, 998-1007.
1022 Hardy, W.R., Strauss, J.H., 1989. Processing the nonstructural polyproteins of sindbis virus: 
1023 nonstructural proteinase is in the C-terminal half of nsP2 and functions both in cis and in trans. J 
1024 Virol 63, 4653-4664.
1025 Hellström, K., Kallio, K., Meriläinen, H.M., Jokitalo, E., Ahola, T., 2016. Ability of minus strands and 
1026 modified plus strands to act as templates in Semliki Forest virus RNA replication. J Gen Virol 97, 
1027 1395-1407.
1028 Hill, K.R., Hajjou, M., Hu, J.Y., Raju, R., 1997. RNA-RNA recombination in Sindbis virus: roles of the 3' 
1029 conserved motif, poly(A) tail, and nonviral sequences of template RNAs in polymerase recognition 
1030 and template switching. J Virol 71, 2693-2704.
1031 Jose, J., Snyder, J.E., Kuhn, R.J., 2009. A structural and functional perspective of alphavirus 
1032 replication and assembly. Future Microbiol 4, 837-856.
1033 Julander, J.G., Smee, D.F., Morrey, J.D., Furuta, Y., 2009. Effect of T-705 treatment on western 
1034 equine encephalitis in a mouse model. Antiviral Res 82, 169-171.
1035 Kääriäinen, L., Ahola, T., 2002. Functions of alphavirus nonstructural proteins in RNA replication. 
1036 Progress in nucleic acid research and molecular biology 71, 187-222.
1037 Kallio, K., Hellström, K., Balistreri, G., Spuul, P., Jokitalo, E., Ahola, T., 2013. Template RNA length 
1038 determines the size of replication complex spherules for Semliki Forest virus. J Virol 87, 9125-9134.
1039 Kallio, K., Hellström, K., Jokitalo, E., Ahola, T., 2016. RNA Replication and Membrane Modification 
1040 Require the Same Functions of Alphavirus Nonstructural Proteins. J Virol 90, 1687-1692.
1041 Keränen, S., Kääriäinen, L., 1979. Functional defects of RNA-negative temperature-sensitive mutants 
1042 of Sindbis and Semliki Forest viruses. J Virol 32, 19-29.
1043 Khan, A.H., Morita, K., Parquet Md Mdel, C., Hasebe, F., Mathenge, E.G., Igarashi, A., 2002. Complete 
1044 nucleotide sequence of chikungunya virus and evidence for an internal polyadenylation site. J Gen 
1045 Virol 83, 3075-3084.
1046 Khan, M., Dhanwani, R., Patro, I.K., Rao, P.V., Parida, M.M., 2011. Cellular IMPDH enzyme activity is a 
1047 potential target for the inhibition of Chikungunya virus replication and virus induced apoptosis in 
1048 cultured mammalian cells. Antiviral Res 89, 1-8.
1049 Kim, D.Y., Reynaud, J.M., Rasalouskaya, A., Akhrymuk, I., Mobley, J.A., Frolov, I., Frolova, E.I., 2016. 
1050 New World and Old World Alphaviruses Have Evolved to Exploit Different Components of Stress 
1051 Granules, FXR and G3BP Proteins, for Assembly of Viral Replication Complexes. PLoS Pathog 12, 
1052 e1005810.
1053 Koonin, E.V., Dolja, V.V., Krupovic, M., 2015. Origins and evolution of viruses of eukaryotes: The 
1054 ultimate modularity. Virology 479-480, 2-25.
1055 Kujala, P., Ahola, T., Ehsani, N., Auvinen, P., Vihinen, H., Kääriäinen, L., 1999. Intracellular distribution 
1056 of rubella virus nonstructural protein P150. J Virol 73, 7805-7811.
1057 Kujala, P., Ikaheimonen, A., Ehsani, N., Vihinen, H., Auvinen, P., Kääriäinen, L., 2001. Biogenesis of 
1058 the Semliki Forest virus RNA replication complex. J Virol 75, 3873-3884.
1059 Laakkonen, P., Ahola, T., Kääriäinen, L., 1996. The effects of palmitoylation on membrane association 
1060 of Semliki forest virus RNA capping enzyme. J Biol Chem 271, 28567-28571.
1061 Lampio, A., Kilpeläinen, I., Pesonen, S., Karhi, K., Auvinen, P., Somerharju, P., Kääriäinen, L., 2000. 
1062 Membrane binding mechanism of an RNA virus-capping enzyme. J Biol Chem 275, 37853-37859.
1063 Lemm, J.A., Bergqvist, A., Read, C.M., Rice, C.M., 1998. Template-dependent initiation of Sindbis 
1064 virus RNA replication in vitro. J Virol 72, 6546-6553.
1065 Lemm, J.A., Rice, C.M., 1993a. Assembly of functional Sindbis virus RNA replication complexes: 
1066 requirement for coexpression of P123 and P34. J Virol 67, 1905-1915.



33

1067 Lemm, J.A., Rice, C.M., 1993b. Roles of nonstructural polyproteins and cleavage products in 
1068 regulating Sindbis virus RNA replication and transcription. J Virol 67, 1916-1926.
1069 Lemm, J.A., Rumenapf, T., Strauss, E.G., Strauss, J.H., Rice, C.M., 1994. Polypeptide requirements for 
1070 assembly of functional Sindbis virus replication complexes: a model for the temporal regulation of 
1071 minus- and plus-strand RNA synthesis. EMBO J 13, 2925-2934.
1072 Leparc-Goffart, I., Nougairede, A., Cassadou, S., Prat, C., de Lamballerie, X., 2014. Chikungunya in the 
1073 Americas. Lancet 383, 514.
1074 Levis, R., Schlesinger, S., Huang, H.V., 1990. Promoter for Sindbis virus RNA-dependent subgenomic 
1075 RNA transcription. J Virol 64, 1726-1733.
1076 Leyssen, P., De Clercq, E., Neyts, J., 2006. The anti-yellow fever virus activity of ribavirin is 
1077 independent of error-prone replication. Mol Pharmacol 69, 1461-1467.
1078 Li, C., Debing, Y., Jankevicius, G., Neyts, J., Ahel, I., Coutard, B., Canard, B., 2016. Viral Macro 
1079 Domains Reverse Protein ADP-Ribosylation. J Virol 90, 8478-8486.
1080 Li, G., Rice, C.M., 1993. The signal for translational readthrough of a UGA codon in Sindbis virus RNA 
1081 involves a single cytidine residue immediately downstream of the termination codon. J Virol 67, 
1082 5062-5067.
1083 Li, M.L., Kwan, T.Y., Simmonds, H.A., Stollar, V., 2008. Synthesis of genomic and subgenomic RNA in 
1084 mosquito cells infected with two Sindbis virus nsP4 mutants: influence of intracellular nucleoside 
1085 triphosphate concentrations. J Virol 82, 6880-6888.
1086 Li, M.L., Lin, Y.H., Simmonds, H.A., Stollar, V., 2004. A mutant of Sindbis virus which is able to 
1087 replicate in cells with reduced CTP makes a replicase/transcriptase with a decreased Km for CTP. J 
1088 Virol 78, 9645-9651.
1089 Li, M.L., Lin, Y.H., Stollar, V., 2005. A cell-free system for the synthesis of Sindbis virus subgenomic 
1090 RNA: importance of the concentration of the initiating NTP. Virology 341, 24-33.
1091 Li, M.L., Stollar, V., 2004. Identification of the amino acid sequence in Sindbis virus nsP4 that binds to 
1092 the promoter for the synthesis of the subgenomic RNA. Proc Natl Acad Sci U S A 101, 9429-9434.
1093 Li, M.L., Stollar, V., 2007. Distinct sites on the Sindbis virus RNA-dependent RNA polymerase for 
1094 binding to the promoters for the synthesis of genomic and subgenomic RNA. J Virol 81, 4371-4373.
1095 Li, M.L., Wang, H., Stollar, V., 2010. In vitro synthesis of Sindbis virus genomic and subgenomic RNAs: 
1096 influence of nsP4 mutations and nucleoside triphosphate concentrations. J Virol 84, 2732-2739.
1097 Lin, Y.H., Simmonds, H.A., Stollar, V., 2002. Restriction of a Sindbis virus mutant in BHK cells and 
1098 relief of the restriction by the addition of adenosine. Virology 292, 78-86.
1099 Lin, Y.H., Yadav, P., Ravatn, R., Stollar, V., 2000. A mutant of Sindbis virus that is resistant to 
1100 pyrazofurin encodes an altered RNA polymerase. Virology 272, 61-71.
1101 Lorizate, M., Krausslich, H.G., 2011. Role of lipids in virus replication. Cold Spring Harb Perspect Biol 
1102 3, a004820.
1103 Lulla, V., Sawicki, D.L., Sawicki, S.G., Lulla, A., Merits, A., Ahola, T., 2008. Molecular defects caused by 
1104 temperature-sensitive mutations in Semliki Forest virus nsP1. J Virol 82, 9236-9244.
1105 Michel, M.R., Gomatos, P.J., 1973. Semliki forest virus-specific RNAs synthesized in vitro by enzyme 
1106 from infected BHK cells. J Virol 11, 900-914.
1107 Miller, S., Krijnse-Locker, J., 2008. Modification of intracellular membrane structures for virus 
1108 replication. Nature reviews. Microbiology 6, 363-374.
1109 Monroe, S.S., Schlesinger, S., 1983. RNAs from two independently isolated defective interfering 
1110 particles of Sindbis virus contain a cellular tRNA sequence at their 5' ends. Proc Natl Acad Sci U S A 
1111 80, 3279-3283.
1112 Monroe, S.S., Schlesinger, S., 1984. Common and distinct regions of defective-interfering RNAs of 
1113 Sindbis virus. J Virol 49, 865-872.
1114 Mönttinen, H.A., Ravantti, J.J., Stuart, D.I., Poranen, M.M., 2014. Automated structural comparisons 
1115 clarify the phylogeny of the right-hand-shaped polymerases. Mol Biol Evol 31, 2741-2752.
1116 Neufeldt, C.J., Joyce, M.A., Van Buuren, N., Levin, A., Kirkegaard, K., Gale, M., Jr., Tyrrell, D.L., 
1117 Wozniak, R.W., 2016. The Hepatitis C Virus-Induced Membranous Web and Associated Nuclear 



34

1118 Transport Machinery Limit Access of Pattern Recognition Receptors to Viral Replication Sites. PLoS 
1119 Pathog 12, e1005428.
1120 Neuvonen, M., Kazlauskas, A., Martikainen, M., Hinkkanen, A., Ahola, T., Saksela, K., 2011. SH3 
1121 domain-mediated recruitment of host cell amphiphysins by alphavirus nsP3 promotes viral RNA 
1122 replication. PLoS Pathog 7, e1002383.
1123 Nickens, D.G., Hardy, R.W., 2008. Structural and functional analyses of stem-loop 1 of the Sindbis 
1124 virus genome. Virology 370, 158-172.
1125 Niesters, H.G., Strauss, J.H., 1990a. Defined mutations in the 5' nontranslated sequence of Sindbis 
1126 virus RNA. J Virol 64, 4162-4168.
1127 Niesters, H.G., Strauss, J.H., 1990b. Mutagenesis of the conserved 51-nucleotide region of Sindbis 
1128 virus. J Virol 64, 1639-1647.
1129 Nikonov, A., Molder, T., Sikut, R., Kiiver, K., Mannik, A., Toots, U., Lulla, A., Lulla, V., Utt, A., Merits, 
1130 A., Ustav, M., 2013. RIG-I and MDA-5 detection of viral RNA-dependent RNA polymerase activity 
1131 restricts positive-strand RNA virus replication. PLoS Pathog 9, e1003610.
1132 O'Reilly, E.K., Kao, C.C., 1998. Analysis of RNA-dependent RNA polymerase structure and function as 
1133 guided by known polymerase structures and computer predictions of secondary structure. Virology 
1134 252, 287-303.
1135 Ou, J.H., Strauss, E.G., Strauss, J.H., 1983. The 5'-terminal sequences of the genomic RNAs of several 
1136 alphaviruses. J Mol Biol 168, 1-15.
1137 Panas, M.D., Ahola, T., McInerney, G.M., 2014. The C-terminal repeat domains of nsP3 from the Old 
1138 World alphaviruses bind directly to G3BP. J Virol 88, 5888-5893.
1139 Panas, M.D., Varjak, M., Lulla, A., Eng, K.E., Merits, A., Karlsson Hedestam, G.B., McInerney, G.M., 
1140 2012. Sequestration of G3BP coupled with efficient translation inhibits stress granules in Semliki 
1141 Forest virus infection. Mol Biol Cell 23, 4701-4712.
1142 Paul, D., Bartenschlager, R., 2013. Architecture and biogenesis of plus-strand RNA virus replication 
1143 factories. World journal of virology 2, 32-48.
1144 Peersen, O.B., 2017. Picornaviral polymerase structure, function and fidelity modulation. Virus Res.
1145 Peränen, J., Laakkonen, P., Hyvonen, M., Kääriäinen, L., 1995. The alphavirus replicase protein nsP1 
1146 is membrane-associated and has affinity to endocytic organelles. Virology 208, 610-620.
1147 Peränen, J., Rikkonen, M., Liljestrom, P., Kääriäinen, L., 1990. Nuclear localization of Semliki Forest 
1148 virus-specific nonstructural protein nsP2. J Virol 64, 1888-1896.
1149 Peränen, J., Takkinen, K., Kalkkinen, N., Kääriäinen, L., 1988. Semliki Forest virus-specific non-
1150 structural protein nsP3 is a phosphoprotein. J Gen Virol 69 ( Pt 9), 2165-2178.
1151 Pflug, A., Lukarska, M., Resa-Infante, P., Reich, S., Cusack, S., 2017. Structural insights into RNA 
1152 synthesis by the influenza virus transcription replication machine. Virus Res.
1153 Poirier, E.Z., Mounce, B.C., Rozen-Gagnon, K., Hooikaas, P.J., Stapleford, K.A., Moratorio, G., 
1154 Vignuzzi, M., 2016. Low-Fidelity Polymerases of Alphaviruses Recombine at Higher Rates To 
1155 Overproduce Defective Interfering Particles. J Virol 90, 2446-2454.
1156 Rada, B., Dragun, M., 1977. Antiviral action and selectivity of 6-azauridine. Ann N Y Acad Sci 284, 
1157 410-417.
1158 Raju, R., Hajjou, M., Hill, K.R., Botta, V., Botta, S., 1999. In vivo addition of poly(A) tail and AU-rich 
1159 sequences to the 3' terminus of the Sindbis virus RNA genome: a novel 3'-end repair pathway. J Virol 
1160 73, 2410-2419.
1161 Raju, R., Subramaniam, S.V., Hajjou, M., 1995. Genesis of Sindbis virus by in vivo recombination of 
1162 nonreplicative RNA precursors. J Virol 69, 7391-7401.
1163 Ranki, M., Kääriäinen, L., 1979. Solubilized RNA replication complex from Semliki Forest virus-
1164 infected cells. Virology 98, 298-307.
1165 Rathore, A.P., Haystead, T., Das, P.K., Merits, A., Ng, M.L., Vasudevan, S.G., 2014. Chikungunya virus 
1166 nsP3 & nsP4 interacts with HSP-90 to promote virus replication: HSP-90 inhibitors reduce CHIKV 
1167 infection and inflammation in vivo. Antiviral Res 103, 7-16.



35

1168 Reid, C.R., Airo, A.M., Hobman, T.C., 2015a. The Virus-Host Interplay: Biogenesis of +RNA Replication 
1169 Complexes. Viruses 7, 4385-4413.
1170 Reid, S.P., Tritsch, S.R., Kota, K., Chiang, C.Y., Dong, L., Kenny, T., Brueggemann, E.E., Ward, M.D., 
1171 Cazares, L.H., Bavari, S., 2015b. Sphingosine kinase 2 is a chikungunya virus host factor co-localized 
1172 with the viral replication complex. Emerg Microbes Infect 4, e61.
1173 Rikkonen, M., Peränen, J., Kääriäinen, L., 1992. Nuclear and nucleolar targeting signals of Semliki 
1174 Forest virus nonstructural protein nsP2. Virology 189, 462-473.
1175 Romero-Brey, I., Bartenschlager, R., 2014. Membranous replication factories induced by plus-strand 
1176 RNA viruses. Viruses 6, 2826-2857.
1177 Rothan, H.A., Bahrani, H., Mohamed, Z., Teoh, T.C., Shankar, E.M., Rahman, N.A., Yusof, R., 2015. A 
1178 combination of doxycycline and ribavirin alleviated chikungunya infection. PLoS One 10, e0126360.
1179 Rozen-Gagnon, K., Stapleford, K.A., Mongelli, V., Blanc, H., Failloux, A.B., Saleh, M.C., Vignuzzi, M., 
1180 2014. Alphavirus mutator variants present host-specific defects and attenuation in mammalian and 
1181 insect models. PLoS Pathog 10, e1003877.
1182 Rubach, J.K., Wasik, B.R., Rupp, J.C., Kuhn, R.J., Hardy, R.W., Smith, J.L., 2009. Characterization of 
1183 purified Sindbis virus nsP4 RNA-dependent RNA polymerase activity in vitro. Virology 384, 201-208.
1184 Rupp, J.C., Jundt, N., Hardy, R.W., 2011. Requirement for the amino-terminal domain of sindbis virus 
1185 nsP4 during virus infection. J Virol 85, 3449-3460.
1186 Rupp, J.C., Sokoloski, K.J., Gebhart, N.N., Hardy, R.W., 2015. Alphavirus RNA synthesis and non-
1187 structural protein functions. J Gen Virol 96, 2483-2500.
1188 Salonen, A., Ahola, T., Kääriäinen, L., 2005. Viral RNA replication in association with cellular 
1189 membranes. Current topics in microbiology and immunology 285, 139-173.
1190 Salonen, A., Vasiljeva, L., Merits, A., Magden, J., Jokitalo, E., Kääriäinen, L., 2003. Properly folded 
1191 nonstructural polyprotein directs the semliki forest virus replication complex to the endosomal 
1192 compartment. J Virol 77, 1691-1702.
1193 Sawicki, D., Barkhimer, D.B., Sawicki, S.G., Rice, C.M., Schlesinger, S., 1990. Temperature sensitive 
1194 shut-off of alphavirus minus strand RNA synthesis maps to a nonstructural protein, nsP4. Virology 
1195 174, 43-52.
1196 Sawicki, D.L., Gomatos, P.J., 1976. Replication of semliki forest virus: polyadenylate in plus-strand 
1197 RNA and polyuridylate in minus-strand RNA. J Virol 20, 446-464.
1198 Sawicki, D.L., Sawicki, S.G., 1980. Short-lived minus-strand polymerase for Semliki Forest virus. J Virol 
1199 34, 108-118.
1200 Sawicki, D.L., Sawicki, S.G., 1985. Functional analysis of the A complementation group mutants of 
1201 Sindbis HR virus. Virology 144, 20-34.
1202 Sawicki, D.L., Sawicki, S.G., 1993. A second nonstructural protein functions in the regulation of 
1203 alphavirus negative-strand RNA synthesis. J Virol 67, 3605-3610.
1204 Sawicki, D.L., Sawicki, S.G., Keränen, S., Kääriäinen, L., 1981. Specific Sindbis virus-coded function for 
1205 minus-strand RNA synthesis. J Virol 39, 348-358.
1206 Sawicki, D.L., Silverman, R.H., Williams, B.R., Sawicki, S.G., 2003. Alphavirus minus-strand synthesis 
1207 and persistence in mouse embryo fibroblasts derived from mice lacking RNase L and protein kinase 
1208 R. J Virol 77, 1801-1811.
1209 Sawicki, S.G., Sawicki, D.L., 1986. The effect of loss of regulation of minus-strand RNA synthesis on 
1210 Sindbis virus replication. Virology 151, 339-349.
1211 Scheidel, L.M., Stollar, V., 1991. Mutations that confer resistance to mycophenolic acid and ribavirin 
1212 on Sindbis virus map to the nonstructural protein nsP1. Virology 181, 490-499.
1213 Scholte, F.E., Tas, A., Albulescu, I.C., Zusinaite, E., Merits, A., Snijder, E.J., van Hemert, M.J., 2015. 
1214 Stress granule components G3BP1 and G3BP2 play a proviral role early in Chikungunya virus 
1215 replication. J Virol 89, 4457-4469.
1216 Scholte, F.E., Tas, A., Martina, B.E., Cordioli, P., Narayanan, K., Makino, S., Snijder, E.J., van Hemert, 
1217 M.J., 2013. Characterization of synthetic Chikungunya viruses based on the consensus sequence of 
1218 recent E1-226V isolates. PLoS One 8, e71047.



36

1219 Shin, G., Yost, S.A., Miller, M.T., Elrod, E.J., Grakoui, A., Marcotrigiano, J., 2012. Structural and 
1220 functional insights into alphavirus polyprotein processing and pathogenesis. Proc Natl Acad Sci U S A 
1221 109, 16534-16539.
1222 Shirako, Y., Strauss, E.G., Strauss, J.H., 2000. Suppressor mutations that allow sindbis virus RNA 
1223 polymerase to function with nonaromatic amino acids at the N-terminus: evidence for interaction 
1224 between nsP1 and nsP4 in minus-strand RNA synthesis. Virology 276, 148-160.
1225 Shirako, Y., Strauss, E.G., Strauss, J.H., 2003. Modification of the 5' terminus of Sindbis virus genomic 
1226 RNA allows nsP4 RNA polymerases with nonaromatic amino acids at the N terminus to function in 
1227 RNA replication. J Virol 77, 2301-2309.
1228 Shirako, Y., Strauss, J.H., 1994. Regulation of Sindbis virus RNA replication: uncleaved P123 and nsP4 
1229 function in minus-strand RNA synthesis, whereas cleaved products from P123 are required for 
1230 efficient plus-strand RNA synthesis. J Virol 68, 1874-1885.
1231 Shirako, Y., Strauss, J.H., 1998. Requirement for an aromatic amino acid or histidine at the N 
1232 terminus of Sindbis virus RNA polymerase. J Virol 72, 2310-2315.
1233 Siegel, R.W., Adkins, S., Kao, C.C., 1997. Sequence-specific recognition of a subgenomic RNA 
1234 promoter by a viral RNA polymerase. Proc Natl Acad Sci U S A 94, 11238-11243.
1235 Smee, D.F., Alaghamandan, H.A., Kini, G.D., Robins, R.K., 1988. Antiviral activity and mode of action 
1236 of ribavirin 5'-sulfamate against Semliki Forest virus. Antiviral Res 10, 253-262.
1237 Spuul, P., Balistreri, G., Hellström, K., Golubtsov, A.V., Jokitalo, E., Ahola, T., 2011. Assembly of 
1238 alphavirus replication complexes from RNA and protein components in a novel trans-replication 
1239 system in mammalian cells. J Virol 85, 4739-4751.
1240 Spuul, P., Balistreri, G., Kääriäinen, L., Ahola, T., 2010. Phosphatidylinositol 3-kinase-, actin-, and 
1241 microtubule-dependent transport of Semliki Forest Virus replication complexes from the plasma 
1242 membrane to modified lysosomes. J Virol 84, 7543-7557.
1243 Spuul, P., Salonen, A., Merits, A., Jokitalo, E., Kääriäinen, L., Ahola, T., 2007. Role of the amphipathic 
1244 peptide of Semliki forest virus replicase protein nsP1 in membrane association and virus replication. 
1245 J Virol 81, 872-883.
1246 Sreejith, R., Rana, J., Dudha, N., Kumar, K., Gabrani, R., Sharma, S.K., Gupta, A., Vrati, S., Chaudhary, 
1247 V.K., Gupta, S., 2012. Mapping interactions of Chikungunya virus nonstructural proteins. Virus Res 
1248 169, 231-236.
1249 Sreevalsan, T., Yin, F.H., 1969. Sindbis virus-induced viral ribonucleic acid polymerase. J Virol 3, 599-
1250 604.
1251 Stapleford, K.A., Miller, D.J., 2010. Role of cellular lipids in positive-sense RNA virus replication 
1252 complex assembly and function. Viruses 2, 1055-1068.
1253 Stapleford, K.A., Rozen-Gagnon, K., Das, P.K., Saul, S., Poirier, E.Z., Blanc, H., Vidalain, P.O., Merits, 
1254 A., Vignuzzi, M., 2015. Viral Polymerase-Helicase Complexes Regulate Replication Fidelity To 
1255 Overcome Intracellular Nucleotide Depletion. J Virol 89, 11233-11244.
1256 Strauss, J.H., Strauss, E.G., 1994. The alphaviruses: gene expression, replication, and evolution. 
1257 Microbiological reviews 58, 491-562.
1258 Strauss, J.H., Strauss, E.G., 1997. Recombination in Alphaviruses. Seminars in VIROLOGY 8, 85-94.
1259 Suopanki, J., Sawicki, D.L., Sawicki, S.G., Kääriäinen, L., 1998. Regulation of alphavirus 26S mRNA 
1260 transcription by replicase component nsP2. J Gen Virol 79 ( Pt 2), 309-319.
1261 Takkinen, K., 1986. Complete nucleotide sequence of the nonstructural protein genes of Semliki 
1262 Forest virus. Nucleic Acids Res 14, 5667-5682.
1263 Thaa, B., Biasiotto, R., Eng, K., Neuvonen, M., Gotte, B., Rheinemann, L., Mutso, M., Utt, A., 
1264 Varghese, F., Balistreri, G., Merits, A., Ahola, T., McInerney, G.M., 2015. Differential 
1265 Phosphatidylinositol-3-Kinase-Akt-mTOR Activation by Semliki Forest and Chikungunya Viruses Is 
1266 Dependent on nsP3 and Connected to Replication Complex Internalization. J Virol 89, 11420-11437.
1267 Thal, M.A., Wasik, B.R., Posto, J., Hardy, R.W., 2007. Template requirements for recognition and 
1268 copying by Sindbis virus RNA-dependent RNA polymerase. Virology 358, 221-232.



37

1269 Tomar, S., Hardy, R.W., Smith, J.L., Kuhn, R.J., 2006. Catalytic core of alphavirus nonstructural 
1270 protein nsP4 possesses terminal adenylyltransferase activity. J Virol 80, 9962-9969.
1271 Utt, A., Quirin, T., Saul, S., Hellström, K., Ahola, T., Merits, A., 2016. Versatile Trans-Replication 
1272 Systems for Chikungunya Virus Allow Functional Analysis and Tagging of Every Replicase Protein. 
1273 PLoS One 11, e0151616.
1274 van der Heijden, M.W., Bol, J.F., 2002. Composition of alphavirus-like replication complexes: 
1275 involvement of virus and host encoded proteins. Arch Virol 147, 875-898.
1276 Wang, Y.F., Sawicki, S.G., Sawicki, D.L., 1994. Alphavirus nsP3 functions to form replication 
1277 complexes transcribing negative-strand RNA. J Virol 68, 6466-6475.
1278 Varshavsky, A., 1992. The N-end rule. Cell 69, 725-735.
1279 Vasiljeva, L., Merits, A., Golubtsov, A., Sizemskaja, V., Kääriäinen, L., Ahola, T., 2003. Regulation of 
1280 the sequential processing of Semliki Forest virus replicase polyprotein. J Biol Chem 278, 41636-
1281 41645.
1282 Weaver, S.C., Lecuit, M., 2015. Chikungunya virus and the global spread of a mosquito-borne 
1283 disease. N Engl J Med 372, 1231-1239.
1284 Weiss, B.G., Schlesinger, S., 1991. Recombination between Sindbis virus RNAs. J Virol 65, 4017-4025.
1285 Weston, J., Villoing, S., Bremont, M., Castric, J., Pfeffer, M., Jewhurst, V., McLoughlin, M., Rodseth, 
1286 O., Christie, K.E., Koumans, J., Todd, D., 2002. Comparison of two aquatic alphaviruses, salmon 
1287 pancreas disease virus and sleeping disease virus, by using genome sequence analysis, monoclonal 
1288 reactivity, and cross-infection. J Virol 76, 6155-6163.

1289













 Alphavirus core polymerase subunit nsP4 is unable to synthesize RNA on its own. 

 Processing of the replicase polyprotein regulates the stages of RNA replication. 

 RNA replication takes place in special membrane invaginations known as spherules. 

 High-resolution structures for polymerase and the membranous complex are lacking.
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