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1 INTRODUCTION 

 

MicroRNAs (miRNAs) are 22 nucleotide (nt) long strands of RNA which post-

transcriptionally regulate gene expression (Bartel 2004). They are crucial to the 

development of plants and animals and are expressed in response to cellular stressors. One 

important part of miRNA biogenesis is the cleaving of precursor (pre-)miRNAs into mature 

miRNAs by the type III RNase Dicer (Bernstein et al. 2001; Hutvagner et al. 2001; Ketting 

et al. 2001; Carmell and Hannon 2004; Cullen 2004). 

Dicer dysfunctions and abnormal miRNA processing have been linked to various 

neurodegenerative diseases (Shin et al. 2009; Emde et al. 2015; Chmielarz et al. 2017; Varol 

et al. 2017). In particular, Dicer levels are downregulated in patients suffering from aging-

related disorders, such as Parkinson’ disease (PD) and amyotrophic lateral sclerosis (ALS). 

Neurodegenerative diseases are an increasing burden not only on patients and their 

families, but also on society since considerable resources is spent on the healthcare of 

patients suffering from neurodegeneration (Rodriguez-Blazquez et al. 2015; McDade and 

Bateman 2017). 

Activating Dicer with a small-molecule compound, enoxacin, has neuroprotective effects 

on midbrain dopaminergic neurons (Chmielarz et al. 2017). Enoxacin is not an optimal 

drug for enhancing RNA interference (RNAi) in vivo since it only activates Dicer in high 

cellular concentrations and, thus, may lead to a plethora of detrimental side effects e.g. 

convulsions (Delon et al. 1999). 

Therefore, there is a need for better compounds to be developed as drugs which could 

activate Dicer and possibly slow down or cure neurodegeneration reducing the cumulating 

burden on society. Current assays for measuring Dicer activity are not optimal for screening 

compounds in high-throughput (Chiu et al. 2005; Davies and Arenz 2006; Shan et al. 2008; 

Li et al. 2012; Podolska et al. 2014). The disadvantages are that some of them are 

biochemical disregarding Dicer in its native context, thus, not taking its interactome into 

account. Those that are cell-based don’t have an additional reporter to account for other 

factors, which may affect the reporter protein e.g. cell death, to rule out false positives. The 

assays measure double-stranded (ds)RNA or short hairpin (sh)RNA processing instead of 

primary (pri-)miRNA which are more relevant to human diseases. Moreover, most assays 
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use transiently transfected reporters which is more problematic compared to stably 

expressing cell lines when screening thousands of compounds and may cause variation in 

results due to variation in transfection efficiency.  

The purpose of this M.Sc. thesis was to discuss Dicer as a drug target and to develop a 

sensitive and scalable, high-throughput enabling, cell-based fluorescent assay for measuring 

Dicer activity and use it to screen for compounds which could stimulate Dicer activity. 

 

 

2 REVIEW OF THE LITERATURE 

 

2.1 RNA interference 

 

The first miRNAs were discovered in the early 1990s but their function remained unclear 

for many years (Lee et al. 1993; Wightman et al. 1993). A midst the turn of the millennia, 

RNAi, by dsRNA, was elucidated and subsequently many classes of short non-coding 

(snc)RNAs, such as miRNAs, were discovered to be mediated by the same RNAi 

processing machinery (Fire et al. 1998; Reinhart et al. 2000; Elbashir et al. 2001; Lee and 

Ambros 2001). This evolutionarily conserved mechanism has been found in many 

eukaryotes, and sncRNAs in all their endogenous forms have been shown to be very 

important in the development and homeostasis of plants and animals, regulating many 

cellular functions such as differentiation and maintenance of stem cells (Bartel 2004; 

Wilson and Doudna 2013; Wang et al. 2017). 

RNAi has also been harnessed to research and medical applications (Rossbach 2010). 

RNAi can be achieved with many types of sncRNAs e.g. artificial short interfering (si)RNAs 

to control expression of any gene despite of whether it is regulated by endogenous sncRNAs 

or not. For example, many siRNAs are being studied as therapeutics for central nervous 

system disorders, although are still in early stages of development (Boudreau and Davidson 

2010). However, a siRNA-based therapeutic, patisiran, targeting transthyretin (TTR) for 

the treatment of hereditary ATTR amyloidosis has already undergone Phase III trials and 

may be the first siRNA-based therapeutic to reach the market (Adams et al. 2017). In 
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addition, siRNA-mediated RNAi screens are a useful tool to screen for drugs, find out 

functions of genes and to figure out signaling pathways (Ghosh et al. 2017). 

 

2.1.1 RNAi mechanism 

 

RNAi functions by sncRNAs which interfere with messenger (m)RNAs. The biogenesis of 

endogenous miRNAs involves many steps before interfering can occur (Figure 1). First, the 

miRNA is transcribed, either mono- or polycistronically, from the genome, by polymerase 

(pol) II, or in some cases by pol III, as a capped and polyadenylated (pA) pri-miRNA form 

(Cai et al. 2004; Lee et al. 2004; Borchert et al. 2006). The pri-miRNA is processed in the 

nucleus by the Drosha/DGCR8 (DiGeorge syndrome critical region 8) microprocessor 

complex to a 70 nt pre-miRNA hairpin structure (Lee et al. 2003; Gregory et al. 2004). 

Subsequently, the pre-miRNA is transported by the exportin-5/RanGTP (exp5) pore 

complex to the cytoplasm where it is processed by Dicer to produce a mature miRNA 

consisting of a passenger strand and a guide strand (Bernstein et al. 2001; Hutvagner et al. 

2001; Ketting et al. 2001; Zhang et al. 2002; Yi et al. 2003; Lund et al. 2004). The passenger 

strand is, in most cases, degraded and the guide strand is required for the actual interfering. 

Next, the guide strand is incorporated into a RNA-induced silencing complex (RISC) 

composed of argonaute proteins capable of cleaving RNA (Hammond et al. 2000; Liu et 

al. 2004; Gregory et al. 2005; Haase et al. 2005; Fabian et al. 2009). Loading of the guide 

strand is mediated by the RISC loading complex (RLC) which is composed of Dicer, 

argonaute 2 (Ago2) and the human immunodeficiency virus transactivating response RNA-

binding protein (TRBP). RISC, with the loaded miRNA (miRISC), then proceeds to 

deadenylate, repress the translation of, or degrade mRNAs, by targeting mainly the 

complementary 3’UTRs of mRNAs. Blocking translation can be achieved similarly through 

various sncRNAs or miRNA mimicking intermediate RNAs, i.e. artificial shRNAs and 

siRNAs, which will be covered in section 2.2 of this thesis. 

Despite that the biogenesis and production of miRNAs is very well characterized, 

elimination and disposal of miRNAs is not as thoroughly studied. MiRNA turnover is 

regulated, in part, by the Translin/Trax complex which competes with pre-miRNA 

processing, and degrades pre-miRNA instead of producing mature miRNAs (Taira et al. 
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1998; Chennathukuzhi et al. 2001; Asada et al. 2014). MiRNA repression can also be 

regulated by other RNA-binding proteins (RBP), such as Lin28, which uridylates let-7 

family pre-miRNAs and certain other miRNAs, such as the brain-specific miR-9, preventing 

their processing by Dicer. In contrast, other RBPs may assist with processing, such as 

protein activator of PKR (PACT), which assists Dicer similarly to TRBP (Lee et al. 2006). 

Additionally, there is some evidence that PCBP2, a poly(C)-binding RBP, may promote 

pre-miRNA processing by catalysing their interaction with Dicer (Li et al. 2012) 

Even though miRNA-mediated RNAi is one of the most studied RNAi pathways, it is 

important to note that not all RNAi are processed in this manner. For example, there are 

also non-canonical pathways of RNAi which bypass Dicer cleavage, e.g. using Ago2 to 

execute silencing by AgoshRNA complexes (Harwig et al. 2017). 

 

Figure 1. microRNA and short interfering RNA biogenesis from the genome or an artificial 

pri-miRNA, or their intermediates, respectively. Pri-miRNA, artificial or the natural, which 
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is transcribed from the genome, gets processed by Drosha/DGCR8 complex into a pre-

miRNA/shRNA which is transported by the exp5/Ran pore complex into the cytosol where 

it is processed by Dicer into a mature miRNA/sirRNA that gets loaded into RISC to 

perform complementary mediated silencing. (Cullen 2006). DGCR8 = DiGeorge 

syndrome critical region 8 Exp5 = exportin 5, miRNA = microRNA, pre = precursor, pri = 

primary, Ran = Ras-related nuclear protein, RISC = RNA-induced silencing complex, 

shRNA = short hairpin RNA, siRNA = short interfering RNA, TRBP = human 

immunodeficiency virus transactivating response RNA-binding protein. 

 

2.1.2 RNAi significance 

 

In mammals, RNAi is involved in various cellular functions, mostly silencing genes through 

endogenous siRNA, miRNA and piwi-interacting-(pi)RNA pathways regulating many 

biological processes, such as stem cell maintenance and differentiation, embryogenesis and 

heterochromatin formation (Carmell and Hannon 2004; Cullen 2006; Wilson and Doudna 

2013; Wang et al. 2017). Although its role in immune responses is clear in plants and 

invertebrates, it has not been very well characterized in mammals. However, recent studies 

suggest that in addition to the aforementioned processes, RNAi may have a role in 

mammalian immunity and is induced and suppressed by human viruses (Qiu et al. 2017).  

 

2.1.3 Kinetics and stoichiometry of RNAi in mammals 

 

Modelling RNAi kinetics mathematically and experimentally has been done to some 

extent. For example, a study published in 2011 by Cucatto et al. presents four different 

models to measure dsRNA produced siRNA-mediated RNAi kinetics in mammalian cells 

(Figure 2). One proposed model (model 3 on Figure 2) takes into account the rate of 

mRNA-siRNA complex formation (k3), the cleavage and dissociation rate of the complex 

(c3) and the number of siRNA target sites (h3). The other proposed model (model 4 on 

Figure 2) considers the changes (δ) in mRNA concentration (Xm) and siRNA concentration 

(Xs) which factors the maximal degradation rate of mRNA due to RNAi, has a Michaelis-

Menten like constant and the number of siRNA target sites (h4). The authors also 

performed real-world experiments to see which one would be most precise in modelling 
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interference and found out that the fourth, a phenomenological, Hill-kinetic model was the 

most efficient way to model siRNA-mediated RNAi. 

Regarding miRNA kinetics, in another study form the same year by Mukherji et al., and 

further adapted by Lemus-Diaz et al. in 2017, the proposed model considers targeted 

mRNA transcription rate, its decay rate, forming miRNA-mRNA complexes and free 

mRNA interaction with miRNAs. The model assumes the concentration of miRNA to be 

constant, and also takes into account the number of binding sites. These models show some 

of the differences, mainly in complex formation and in assumptions of concentration shifts, 

in modelling the kinetics of siRNA- and miRNA-based mRNA silencing. The best way to 

model RNAi quantitatively, regardless of the interference-mediating RNA type, is still very 

much under debate.  

Furthermore, what complicates matters in terms of miRNA kinetics, is that the exact ratios 

of the outcomes miRNAs exert to mRNA — deadenylation, repression and degradation —

are not known and depends on the complementarity of the sequences. However, it has 

been shown that translational repression outweighs the degradation in new mRNA 

synthesis, but at a steady state, deadenylation followed by degradation is more prominent 

(Bethune et al. 2012). This is important when considering situations, where endogenous 

gene expression is enhanced, and/or an exogenous gene is introduced to the cell. 

In a study specifically focusing on Dicer kinetics, it was shown that mammalian Dicer 

cleaves pre-miRNA duplexes more than 100 times faster than long dsRNA under multiple 

turnover conditions (Chakravarthy et al. 2010). 

 

Figure 2. Two different mathematical models of siRNA-mediated RNAi kinetics. Model 3 

takes into account rate of mRNA-siRNA complex formation (k3), the cleavage and 

dissociation rate of the complex (c3) and the number of siRNA target sites (h3). Model 4 

takes into account the maximal degradation rate of mRNA due to RNAi, has a Michaelis-

Menten like constant and the number of siRNA target sites (h4). (Adapted from Cuccato et 

al. 2011). Xm = mRNA concentration, Xs = siRNA concentration. 
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2.2 Short non-coding RNAs 

 

The human genome is regulated by many non-coding RNAs, such as long (>200 nt) non-

coding RNAs e.g. lincRNAs and circular RNAs, and various sncRNAs (<30 nt) e.g. the 

aforementioned miRNAs and small neucleolar RNAs such as small Cajal body-specific 

RNAs (Wang et al. 2017). The landscape of non-coding RNAs is vast, and therefore this 

thesis covers only those which are processed or associated with Dicer, namely miRNAs and 

siRNAs, or are in some other way relevant to the work (piRNAs). Even so, Dicer can bind 

certain small neucleolar RNAs as substrates, for example the human small Cajal body-

specific RNA ACA45, acting like miRNAs (Ender et al. 2008). 

Generally, sncRNAs can be studied by using genome-wide bioinformatic screening and/or 

microarray analysis in combination with experimental data to validate predictions 

(Krutzfeldt et al. 2005; Lim et al. 2005; Minones-Moyano et al. 2011; Jvsinek Skok et al. 

2013). Exeperimental data can be acquired, using for example sncRNA agonists (e.g. 

antagomiRs), or antisense morpholinos followed by quantitative polymerase chain reaction 

(PCR) for assessing effects of specific sncRNAs on levels of their predicted targets. 

 

2.2.1 MicroRNAs and piwi-interacting RNAs 

 

MiRNAs are abundant in mammals, and there are over 5000 miRNAs in the human 

genome, of which at least 50% are specific to humans (Londin et al. 2015). A single miRNA 

can regulate hundreds of genes and conversely a single gene can be regulated by hundreds 

of miRNAs (Krek et al. 2005; Lim et al. 2005). This is partly due to miRNAs being, in most 

cases, only partially complementary to mRNAs and therefore most miRNA’s effects are 

subtle and don’t completely knockdown the expression of a gene, but rather fine tune its 

expression (Lim et al. 2005; Mukherji et al. 2011). Expression can thus be further 

downregulated by compounding miRNAs. However, miRNAs may additionally regulate 

each other, making the fine tuning process even more sophisticated (Lai et al. 2004). 

Moreover, high-throughput screening (HTS) of miRNA function has revealed that many 

miRNAs are not active, and only abundant miRNAs repress their target(s) adding to the 
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complexity of their nature of regulators of the proteome (Mullokandov et al. 2012). 

Although a singular miRNA’s effects may be weak, it is a non-sequitur to assume that it is 

only due to the binding of the miRNA itself, since it may also be dependent on their 

expression. Many experiments have shown that overexpression of individual miRNAs can 

have profound effects if they target the right genes in the right setting. For example, 

overexpression of miR-185 in and in vitro model of PD suppresses autophagy and 

apoptosis, showing that singular miRNAs may be useful therapeutics or research tools 

(Wen et al. 2018). 

MiRNAs are predicted to affect the expression of more than half of all the protein-coding 

genes in the human genome (Lewis et al. 2005). Thus, one overarching function of miRNAs 

seems to be that they control protein expression noise (Schmiedel et al. 2015). Another, 

further adding to their multi-faceted regulatory roles, is the seemingly contradictory 

property that they do not just repress and degrade mRNAs regulating only translation, but 

may in fact (up)regulate translation, at least during cell cycle arrest (Vasudevan et al. 2007). 

This may be mediated by binding to the 5’UTRs, and thus, although main binding sites of 

miRNAs are 3’UTRs, they can also bind on the coding-region of transcript, possibly 

regulating splicing, adding yet another layer of regulation in the functionality of miRNAs 

(Lewis et al. 2005; Ellwanger et al. 2011). It has also been discovered, that there are plenty 

of brain-specific miRNAs which are crucial for higher cognitive functions and learning, 

regulating translation locally in the synapses, for example by stabilizing a transcript and thus 

increasing its half-life (Schratt 2009). 

When pri-miRNAs are transcribed they usually fold into a hairpin structure composing of 

a stem containing the mature miRNA guide strand and a loop structure which then adjoins 

the complimentary stem strand, including the passenger strand of the miRNA (Figure 3). 

The selection of passenger strand is not very clear and either -5´ or -3´ can be mature, 

depending on the particular miRNA. Pri-miRNAs additionally contain mismatches in their 

stems, and wobble pairs. MiRNAs can also be differently processed (miRNA biogenesis is 

covered in section 2.1.1) by Drosha or Dicer due to varying cleavage sites to form isomiRs 

(Morin et al. 2008). They may additionally be edited by adenosine deaminase enzymes 

(Yang et al. 2006). MiRNAs don’t require full complementarity of strands to exert their 

function and only the seed region (6-8 nt) is enough to recognize their target (Lewis et al. 

2005; Ellwanger et al. 2011). Besides the Translin/Trax mediated degradation of pre-
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miRNAs, the levels of miRNAs may also be controlled for example by circular RNAs which 

can act as sponges for certain miRNAs suppressing their activity, and possibly acting as 

stabilizers (Hansen et al. 2013). 

 

 

Figure 3. Structure of a primary microRNA. It is composed of -5´ capped and -3´ 

polyadenylated ends folding into a hairpin structure with the mature miRNA strand in the 

stem. The stem may contain mismatches and wobble pairs. Drosha cleaves off the cap and 

polyA ends and Dicer cleaves off the loop (Jevsinek Skok et al. 2013). miRNA = 

microRNA, pre / pri = primary / precursor. 

 

PiRNAs are 24–32 nt long endogenous sncRNAs (Ross et al. 2014; Weick and Miska 

2014). The etymology behind piRNAs derives from the finding that they interact with the 

PIWI (P-element-induced wimpy testis) subfamily of Ago proteins. They are best known 

for regulating transposable elements in germline cells. More specifically, piRNAs target 

transposons and cleave them in complexes with PIWI-proteins. The cleavage may generate 

additional piRNAs cleaving additional transposons, thus keeping transposon at bay from 

making detrimental mutations to the genome. Additionally, they are important regulators 

of chromatin. Recently the function of piRNAs in somatic cells has been further elucidated 

and they may have important functions in gene regulation and various biological roles, for 

example in memory formation and cancer (Ross et al. 2014; Abell et al. 2017). 
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2.2.2 Short interfering RNAs 

 

RNAi can also be achieved with classes of artificial RNA which mimic an intermediate step 

in the RNAi pathway biogenesis (Cullen 2006). These include siRNA duplexes and ss 

siRNAs incorporated into pri/pre-miRNA backbones, or shRNAs.  

The function of siRNAs, as well as miRNAs, was discovered around two decades ago 

(Elbashir et al. 2001). They are 20-25 nt in length and can efficiently silence genes in 

mammalian cells. This is because, in contrast to miRNAs, they mostly degrade mRNA 

instead of deadenylating or repressing it. In particular, the reason behind this lies in 

differences between the complementarity of siRNA/miRNA and mRNA sequences (Piatek 

and Werner 2014). Another significant difference of endogenous miRNAs and siRNAs is 

the biogenesis, miRNAs are transcribed as capped and polyadenylated pri-miRNA 

transcripts, siRNAs are usually transcribed as part of various length non-hairpin dsRNAs 

(Cai et al. 2004; Yuan et al. 2006; Piatek and Werner 2014). In mammals, endogenous 

siRNAs are not as common as miRNAs and piRNAs due to evolutionary divergence in 

these different sncRNA classes. 

Artificial siRNAs, however, are widely used in biotechnological or medical applications 

where efficient silencing and high target specificity are desired and thus they are designed 

to have perfect, or close to perfect, complementarity to target sequence (Boudreau and 

Davidson 2010; Rossbach 2010). SiRNAs can be designed using various web-based tools 

optimising for specificity and knockdown efficiency. Besides used as ss siRNA strands, 

siRNAs can be expressed as duplexes or in a pri/pre-miRNA or shRNA backbone. Even 

though artificial shRNAs are usually expressed by pol III promoters, such as the U6 

promoter, they can also be designed to be transcribed by pol II (Yuan et al. 2006).  

MiRNAs, as pri-miRNAs, are designed to be expressed usually with pol II promoters such 

as cytomegalovirus (CMV) promoter. 
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2.3 Dicer: a central enzyme in the miRNA biogenesis pathway 

 

Dicer, encoded in humans by the DICER1 gene, is a multidomain RNA-binding protein 

(Foulkes et al. 2014). It belongs to the family of type III RNase enzymes (Carmell and 

Hannon 2004). Type III RNase enzymes are categorized into three groups according to 

their structure. The first group includes the Escherichia coli (E. coli) RNase III, the second 

Drosha, and the third Dicer. The common feature of RNase III enzymes is their specificity 

towards dsRNA. 

Many factors may regulate Dicer levels (Figure 7), but the precise mechanisms and 

transcription factors regulating DICER1 transcription are poorly known. However, at least 

in adult T-cell leukemia cells, Dicer transcription is regulated by two AP-1 transcription 

factors, c-Jun and JunD (Gazon et al. 2016). 

As the significance of sncRNAs processed by Dicer was earlier established, it is conceivable 

that levels of Dicer are tightly regulated e.g. in development. Alas, Dicer1 is regulated by 

let-7a, which as a miRNA forms a negative feedback loop on the regulation of all miRNAs 

by downregulating Dicer (Mayr and Bartel 2009). In general, factors which affect the 

lin28/let-7 axis affect Dicer, as has been demonstrated by the rapid elevation in Dicer levels 

and inducing of lin28 by brain-derived neurotrophic factor (BDNF) (Huang et al. 2012). 

Moreover, the levels of Dicer and its transcript do not always correlate, suggesting additional 

regulation. For example, treatment with a histone deacetylase inhibitor, trichostatin A, 

downregulates Dicer protein levels but not the transcript (Wiesen and Tomasi 2009). 

However, valproate, another histone deacetylase inhibitor, did not reduce Dicer levels, and 

was, in contrast, shown in another study to rescue low Dicer expression (Gazon et al. 2016) 

 

2.3.1 Structure, localization and function of Dicer 

 

Dicer’s main function in RNAi is the cleaving of pre-miRNAs into mature miRNAs. More 

specifically, Dicer cleaves dsRNA and pre-miRNA hairpin structures into short siRNAs or 

miRNAs (Hutvagner et al. 2001; Ketting et al. 2001). As a part of the RLC, it helps with 

loading the processed single-stranded (ss)RNAs into RISC (Figure 4). 
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Figure 4. Three dimensional density map of a reconstituted RISC-loading complex from 

single particle image analysis and cryo electron microscopy data of the DE×H/D domain 

(red ribbon), the Giardia Dicer atomic model (gray-yellow-green-orange ribbon) and the 

Thermus thermophilus Argonaute (gray-cyan-orange-pink-blue). TRBP is presented as a 

string of three yellow spheres with a linker connecting it to the DE×H/D domain of Dicer. 

It is hypothesized that the flexibility of TRBP enhances transfer efficiency and selection of 

correct strands. (Wang et al. 2009). AGO2 = Argonaute2, TRBP = the human 

immunodeficiency virus transactivating response RNA-binding protein. 

 

The crystal structure of Giardia intestinalis Dicer has been determined, and a three-

dimensional model of human Dicer based on electron microscopy (Figure 5). The 

molecular weight of G. intestinalis Dicer is 82 kilodaltons (kDa) while the human Dicer is 

219 kDa (Macrae et al. 2006; Lau et al. 2012). Human Dicer is composed of different 

functional subunits: a platform domain, a PAZ-domain (Piwi-Argonaute-Zwille), an amino 

(N)-terminal helicase (homologous to ATPase/DExD helixes) domain, a DUF283 (domain 

of unknown function) domain, a dsRNA-binding domain and two conserved RNase III 

domains, IIIa and IIIb (Carmell and Hannon 2004; Macrae et al. 2006; Wang et al. 2009; 

Park et al. 2011). The Giardia Dicer lacks the helicase and DUF283 domains, but is quite 

similar in structure regarding the platform-, PAZ- and RNase III domains (Macrae et al. 

2006; Lau et al. 2012). The PAZ-domain binds the ends of pre-miRNAs, adjusting the pre-

miRNA to be cleaved by the RNase domains thus acting as a 22 nt molecular ruler between 

these domains (Lau et al. 2009; Wang et al. 2009; Lau et al. 2012). Dicer cleavage is 

magnesium-dependent and human Dicer does not require adenosine triphosphate 



13 

 

compared to e.g. Drosophila Dicer (Zhang et al. 2002). Dicer’s function is assisted by 

additional RBPs, mainly the two already mentioned, TRBP and PACT (Lee et al. 2006). 

Dicer binding to TRBP and PACT is mediated by the helicase domain (MacRae et al. 

2008; Lau et al. 2009). The helicase domain is additionally important for repressing 

catalysis by attenuating the rate of dsRNA cleavage, and mutations and/or deletion of the 

helicase domain in human Dicer increases cleaving activity of non-hairpin dsRNAs up to 

65-fold compared to the intact enzyme (Ma et al. 2008). 

 

 

Figure 5. Above is a crystal structure of eukaryotic Dicer from Giardia intenstinalis. The 

structure is about 82 kDA and is composed of two type III RNase domains, a platform 

(helix) domain and a PAZ-domain. The distance (65 Å) between the PAZ-domain and the 

RNAse domains is perfectly suited for positioning the dsRNA to be correctly cleaved 

(Macrae et al. 2006). Below is a schematic sequence annotating the different domains of 

human Dicer. The main difference to Giardia Dicer is the additional helicase and DUF283 
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domains (Lau et al. 2012). dsRBD = double-stranded RNA-binding domain, DUF283 = 

domain of unknown function, PAZ = Piwi-Argonaute-Zwille, Å = Ångström. 

 

In addition, recent studies suggest that the helicase of Drosophila Dicer may be involved in 

antiviral responses, binding viral dsRNA differently than endogenous dsRNA (Sinha et al. 

2017). Indeed, Dicer’s role in viral defence has also been demonstrated in mammalian cells 

(Machitani et al. 2016). 

Dicer can also bind ssRNAs. Although the function of the DUF283 domain is still quite 

unknown, as the name states, recent studies have shown that the DUF283 domain is 

responsible for binding ssRNA, acting as an annealer of strands enhancing base-pairing and 

may facilitate the hybridization of sncRNAs and their targets (Kurzynska-Kokorniak et al. 

2016). 

Dicer processes pre-miRNAs in the cytosol, and thus its steady-state localization is 

cytoplasmic (Doyle et al. 2013). However, Dicer can also shuttle to the nucleus and its C-

terminal dsRNA-binding domain acts as a nuclear localization sequence. This is further 

supported by the finding that Dicer is involved in chromatin remodelling in mammals, 

which additionally links RNAi regulation of heterochromatin to Dicer (Sinkkonen et al. 

2010). 

 

2.3.2 Significance of Dicer in diseases 

 

As Dicer is highly important in many cellular processes, it is not surprising that Dicer 

deficiencies have been associated with many diseases. Global miRNA loss promotes 

tumorigenesis and DICER1 dysregulation, mutations or even hemizygous deletion is found 

in a number of tumours (Kumar et al. 2007; Foulkes et al. 2014; Jiang et al. 2015). In 

contrast, upregulation of Dicer is found in certain tumours (Chiosea et al. 2006). DICER1 

deficit can cause retinal cell degeneration in an advanced form of age-related macular 

degeneration in humans, and conditional ablation of Dicer, but not seven other miRNA-

processing enzymes, causes degeneration of the same cells in mice (Kaneko et al. 2011). 

Dicer is additionally downregulated in aged tissue, such as adipocytes (Mori et al. 2012). 
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Dicer dysfunction or downregulation are also apparent in many central nervous system 

related disorders and diseases. Decreased DICER1 in the blood has been detected in 

psychiatric conditions e.g. post-traumatic stress disorder and depression patients (Wingo et 

al. 2015). Particularly neurodegenerative diseases have been linked to Dicer deficiencies. 

For example, Dicer ablation in oligodendrocytes promotes neuronal degeneration in mice 

and Dicer is downregulated in the blood of multiple sclerosis patients (Shin et al. 2009; 

Magner et al. 2016). Moreover, miRNAs are downregulated in motor neurons of ALS 

patients and Dicer stimulation treatment delays the onset of symptoms in mouse ALS 

models (Emde et al. 2015). Additionally, DICER1 was found to be downregulated in an 

mRNA profiling on post-mortem laser-microdissected dopaminergic neurons of PD 

patients (Simunovic et al. 2010). Furthermore, at least in two separate studies, conditional 

Dicer knockout (CKO) mice have been shown to cause severe nigrostriatal dopaminergic 

cell loss, demonstrating the importance of Dicer for the survival of these dopaminergic 

neurons (Pang et al. 2014; Chmielarz et al. 2017). The 2017 study by Chmielarz et al., also 

demonstrated that 87-weeks old mice show a significant reduction in Dicer1 in the ventral 

midbrain compared to 6.5-weeks old mice (Figure 6).  

 

 

Figure 6. Immunohistochemical analysis of conditional Dicer knockout mice. Dicer 

knockout induced with tamoxifen in adult dopaminergic neurons causes nigral TH+ cell 
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death and loss of striatal innervation. A) Dicer1 mRNA levels in the ventral midbrain of 

6.5-weeks old (young) and 87-weeks old (old) mice (Chmielarz et al. 2017). TH = tyrosine 

hydroxylase, tdTomato = tandem dimer Tomato. 

 

Dicer also seems to be critically involved in stress responses and, in turn, is subject to stress 

conditions itself. Certain cellular stressors such as reactive oxygen species, hypoxia and 

ultraviolet light, may downregulate Dicer (Figure 7) (Wiesen and Tomasi 2009). In contrast, 

Dicer protein levels are elevated in response to mild hyperthermia (Devasthanam and 

Tomasi 2017). Beta-catenin, which is implicated in stress-related psychiatric disorders, has 

been shown to interact with Dicer and mediate pro-resilient effects (Dias et al. 2014). 

 

2.3.3 Small-molecule modulators of Dicer 

 

 

Figure 7. Factors affecting RNAi. Factors which enhance Dicer are marked green, such as 

enoxacin and metformin, and factors which inhibit RNAi or Dicer are marked red such as 

ellagic acid and ultraviolet light. Detailed miRNA biogenesis is covered in section 2.1.1. 

(Vinnikov and Domanskyi 2017). BDNF = Brain-derived neurotrophic factor, ORF = open 
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reading frame, RISC = RNA-induced silencing complex, ROS = reactive oxygen species, 

3’UTR = untranslated region of the -OH end of and RNA, UV = ultraviolet. 

 

There are many factors and compounds shown to affect RNAi and a few known 

compounds which modulate Dicer activity (Figure 7). A good example of an RNAi 

enhancing compound is Ellagic acid. It is a natural compound found in many fruits which 

has antioxidative and pro-apopotic effects and was recently found to rescue miRNA 

biogenesis through inhibiting the pre-miRNA degrading complex, Translin/Trax (Salimi et 

al. 2015; Asada et al. 2016). RNAi inhibitors on the other hand, such as polylysine and 

trypaflavine, can function by suppressing miRISC activity (Watashi et al. 2010). However, 

this sub-section will focus on small-molecule compounds which have a clear association 

with Dicer activity. 

One of the best studied small-molecule compounds which activates Dicer is the 

fluoroquinolone antibiotic enoxacin (Figure 8). Enoxacin is a bacterial DNA gyrase and 

topoisomerase IV inhibitor, which was one of the main reasons it was chosen to be studied 

for its RNAi enhancing abilities, since inhibiting RNA helicases may stabilize dsRNAs and 

thus enhance RNAi (Zhang et al. 2008). Enoxacin activates Dicer indirectly through 

enhancing the interaction with TRBP (Shan et al. 2008). Enoxacin has neuroprotective 

effects on midbrain dopaminergic neurons and protects them against endoplasmic 

reticulum (ER) stress (Chmielarz et al. 2017). Additionally, it corrects ALS-associated 

miRNA-defects in vitro and is beneficial for neuromuscular function in mouse ALS models 

(Emde et al. 2015). Furthermore, an orphan designation for enoxacin in the treatment of 

ALS was granted by the European Medicines Agency (Public summary of opinion on 

orphan designation EMA/COMP/125722/2015). Enoxacin also prevents learned 

helplessness in the rat supporting the hypothesis that the correction of miRNA 

dysregulation by activating Dicer could be beneficial in treating psychiatric disorders 

(Smalheiser et al. 2014). 

Enoxacin has many targets and activates Dicer at relatively high concentrations compared 

to its antibiotic activity, so it is prone to causing many unwanted side effects reducing its 

usability as an RNAi enhancer. These side effects include not only convulsions, but 

enoxacin may also affect bone formation by inhibiting c-Jun-N-terminal kinase (JNK) 

signaling, for example (Delon et al. 1999; Liu et al. 2014). Furthermore, due to its antibiotic 
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activity, throwing the microbiome out of balance can have many secondary adverse effects 

such as possibly causing neurodegeneration, as a dysfunctional microbiome in the gut has 

been linked to PD (Sampson et al. 2016). 

Metal chelators, mainly pyridine-based ligands and some salen ligands, can also significantly 

enhance RNAi (Li et al. 2012). Metal chelating compounds which enhance RNAi include 

deferoxamine mesylate, thiosemicarbazide and 2,2´-dipyridyl, for example. In the same 

study, the authors showed that intracellular iron can inhibit RNAi and that cytosolic iron 

disrupts the interactions between PCBP2, pre-miRNAs and Dicer. Therefore, the effect of 

metal chelators in enhancing RNAi is mediated indirectly by promoting Dicer processing 

of pre-miRNAs.  

Dicer is upregulated by a common diabetes drug, metformin, and is required for 

metformin’s action in cellular senescence models (Hooten et al. 2016). Metformin is also 

protective in an animal model of PD, however whether this effect is mediated by 

metformin’s ability to upregulate Dicer, is not known, since metformin, as enoxacin, is a 

polypharmacological compound with many effects (Bayliss et al. 2016). 

Thapsigargin, a useful pharmacological research tool is a natural product produced by the 

plant Thapsia garganica and a known regulator of ER stress (Rogers et al. 1995). It acts by 

depleting ER calcium and there is some evidence showing it can inhibit Dicer (Emde et al. 

2015). 
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Figure 8. Structure of enoxacin, its relative RNAi enhancing activity between 0-150 µM 

concentrations and its protective effects in primary dopamine neuron cultures compared 

to GDNF only (A), which is neuroprotective to dopamine neurons, or rescuing from 

thapsigargin induced ER stress (B) (Shan et al. 2008; Chmielarz et al. 2017). GDNF = glial-

derived neurotrophic factor, RNAi = RNA interference. 

 

2.4 Screening assays for RNAi enhancement 

 

Screening assays are usually enzyme- or cell-based but can also be done in whole-organisms 

e.g. C. elegans, D. Melanogaster or D. Rerio (Giacomotto and Segalat 2010; Podolska et 

al. 2014; Xiao et al. 2016). Screening assays can be done in different scales having different 

levels of throughput. The important things to consider in HTS assays are the use of reporter 

proteins, controls and internal normalization, how many replicates to use and the assay set-

up in itself (Bray and Carpenter 2004). In an optimal assay, there is a clear negative and 

positive control, and the positive control is the same type as the screened reagents (small-

molecule for a small-molecule screen etc.). Choosing the right number of replicates is very 

important to reduce false hits. Usually HTS is performed in duplicates and with subsequent 

confirmation assays for the hits but can be done with more replicates depending on the 

quality of the assay. For example, to confirm findings, a three-tiered approach was 

implemented in finding small molecule ER proteostasis regulators by first screening for 
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proteostasis activators, then counterscreening to remove global ER stressors and finally 

multiplex transcriptional profiling was done to find specific regulators (Plate et al. 2016). 

The plate setup used for the screening should take, depending on the used plate, into 

account plate-based edge effects when planning the layout and orientation of screened 

compounds. That is, compounds and controls should be screened as randomly as possible 

and avoid using peripheral wells. This is very important also when choosing the reporter(s), 

as luminescence measurements are typically done in white plates to maximize emission and 

fluorescence in black plates to minimize background. 

Both fluorescent and luminescent proteins have been successfully implemented in high-

throughput screening and neither is generally better than the other, but depends on the 

nature of the assay. For instance, fluorescent proteins can be more toxic but, in contrast, 

more stable than luciferase proteins, which can be beneficial or detrimental depending on 

the purpose and conditions (time) of the assay (Fan and Wood 2007). However, in many 

studies both have been found comparable and engineering of better 

fluorescent/luminescent protein variants is solving issues related to both methods (Fan and 

Wood 2007; Lemus-Diaz et al. 2017; Shen et al. 2017) 

HTS assay results are often analysed and displayed as % of the measured effect 

(inhibition/activation). Statistical parameter for quality control are used such as the Z-factor 

(Z´, number of standard deviations from the mean, see the formula in section 3.2.5 of 

materials and methods) and signal-to-noise (S/N) or signal-to-background ratio (S/B) (Bray 

and Carpenter 2004; Birmingham et al. 2009; Xiao et al. 2016). An assay with a Z-factor of 

0.5-1 is considered an ideal and robust HTS assay, 0-0.5 is considered marginal but doable 

and if the assay scores under 0 it is not useful since there is not enough difference between 

the positive and negative controls. The Z-factor is extremely conservative due to high 

number of tests and screened compounds and may not always be appropriate for small-

scale screening. Variability is measured usually by standard deviations and coefficient of 

variation (CV) (see section 3.2.5). A CV of less than 10 is usually considered as acceptable 

variation. 

RNAi activity has been measured in enzyme- and cell-based assays (Chiu et al. 2005; Davies 

and Arenz 2006; Shan et al. 2008; Li et al. 2013; Podolska et al. 2014). The current assays 

are not optimal to effectively screen for Dicer-activating compounds because they either: 1) 
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measure Dicer activity in vitro, disregarding its natural microenvironment (Davies and 

Arenz 2006; Podolska et al. 2014), 2) measure the dsRNA or shRNA processing by Dicer 

instead of a pri-miRNA, which is more relevant to human disease biology than 

dsRNA/shRNA and the processing of these two classes is significantly different in terms of 

kinetics (Chiu et al. 2005; Chakravarthy et al. 2010; Li et al. 2012), 3) do not have a second 

reporter protein for normalisation to enhance sensitivity and rule out non-specific, and 

potentially toxic, effects (Shan et al. 2008) or 4) they are not optimal for high-throughput 

(HT) screening due to transient transfection of plasmids, which may additionally cause 

variability due to multiple copies of plasmid per cell, instead of stably transfected cells 

(Zhang et al. 2008; Shan et al. 2008). Additionally, in some cases quantification has to be 

done by measuring protein or mRNA levels. Therefore, there aren’t any sensitive, internally 

normalized HT feasible screening assays available which take mammalian Dicer context 

into account. 

 

2.4.1 Biochemical enzyme-based assays 

 

Biochemical enzyme-based Dicer cleaving assays have been used to analyse Dicer function, 

but also to screen for Dicer-activating compounds. A Dicer cleavage assay was developed 

already a year after the characterization of Dicer, but this was a standard cleavage assay 

using radiolabelling and electrophoresis and thus is not suitable for HTS (Zhang et al. 

2002). Davies and Arenz (2006) established the first homogenous fluorescence assay for 

Dicer by creating a double labelled pre-let-7 that has a fluorescence emitter and a quencher 

in the 5’ and 3’ ends of the pre-let-7 RNA respectively, to find Dicer inhibitors and/or pre-

miRNA binding compounds. Almost a decade later, Podolska and colleagues (2014) 

revised in vitro fluorescence Dicer assays by creating a similar assay to Davies and Arenz, 

but instead of employing a pre-miRNA construct, they added the fluorescence emitters and 

quenchers on to a 27 nt RNA duplex. The reason was that Dicer cleaves non-hairpin RNA 

duplexes much slower than short hairpin RNAs (pre-miRNA) and therefore it would be 

even better for a HTS assay. 

Although these assays do enable HT screening, they main issue is that they only measure 

Dicer binding in vitro ruling out Dicer’s multi-faceted nature and functions in a cell which 



22 

 

may have compensatory effects. Besides this, they do not give information on other 

properties, such as cytotoxicity, or inhibition of growth, of the compounds. However, this 

is easily solvable with secondary screening for toxicity. 

 

2.4.2 Cell-based assays 

 

Fluorescent assays 

A few notable cell-based assays for measuring RNAi and Dicer activity have been created 

and used to find compounds which inhibit or enhance RNAi. An assay developed by Chiu 

and colleagues (2005) works by transiently co-transfecting EGFP and RFP containing 

plasmids accompanied by a siRNA targeting EGFP into HeLa cell and measuring 

EGFP/RFP fluorescence in the presence of siRNA and normalized to the EGFP/RFP ratio 

of mock-treated cells. The system was able to identify RNAi inhibitors, but the combination 

of co-transfection of plasmids, siRNA and drugs may lead to too much variation and is not 

feasible to be used for high-throughput screening. Later, Shan et al. (2008) configured a live 

HTS applicable assay which was done by selecting HEK-293 clones stably expressing 

EGFP and short hairpin RNA targeting EGFP with modest knockdown to measure 

elevated and decreased EGPF levels, thus being able to screen for inhibitors and enhancers. 

With this assay, the authors found that enoxacin can activate Dicer. They also 

demonstrated that it not only enhanced processing of shRNA to siRNA but promoted 

loading of the siRNA into RISC. The authors also showed that enoxacin may promote 

processing of miRNAs by measuring increased levels of mature miRNA-125a and 

decreased levels of pri- and pre-miRNA-125a, but did not implement them to target EGFP 

and use them as a part of the assay. 

The main problem is the fact that this assay only has one reporter protein and thus the 

reduction cannot be normalized to another factor, showing the specificity of the reduction 

and accounting for other influencing factors. However, they later developed a modified 

version of the assay by infecting the cells stably co-expressing EGFP and shEGP, with RFP 

to create a cell line with an additional reporter (Li et al. 2012). This was used to find the 

relations between metal chelating compounds, PCBP2, pre-miRNAs and Dicer. 
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This assay was the basis of the assay developed in the experimental part of this work, with 

the important difference being the processed construct to be more “physiological” and 

relevant for mammalian Dicer and miRNA dysregulations. 

 

Bioluminescent assays 

Enoxacin was identified by another group also in 2008 independently, using a dual 

luciferase approach (Zhang et al. 2008). They used a siRNA duplex containing a firefly 

luciferase targeting siRNA (siFL867-885). Another study later used a similar system, 

however, they had a shRNA targeting firefly luciferase (sh-Fluc). These systems have a good 

linear range, however, the main problem is, as mentioned, that these assays were done by 

transient transfection possibly causing variability due to different number of plasmids per 

cell and stable cell lines expressing these constructs were not generated. 

 

 

3 EXPERIMENTAL PART 

 

3.1 Aims of the study 

 

The primary aim of this study was to design and develop a functional, sensitive, reliable and 

scalable cell-based fluorescent reporter assay to measure the pre-miRNA processing activity 

of Dicer. The secondary aims were to use the assay to screen for compounds which would 

enhance Dicer activity and optimise the assay for high-throughput screening and in vivo 

studies. To be more precise, the specific aims were (primary aims underlined): 

1) Design the assay in silico 

2) Clone the desired constructs 

3) Validate the assay with Dicer modulating compounds in different cell lines  

4) Optimise the assay for sensitivity if possible 

5) Make stable cell lines, inducible and non-inducible for feasible screening 
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6) Make a lentiviral vector for transducing post-mitotic cells and to be used as an in 

vivo reporter 

7) Screen for Dicer-activating compounds 

 

3.2 Materials and methods 

 

All cell lines, plasmids for cloning, kits, reagents and compounds used in this study are 

commercially available (Table 1 and 3). All PCR primers and other oligonucleotides were 

purchased from Metabion GmbH (Steinkirchen, Germany) (Table 2). 

 

Table 1. Cell-lines, plasmids used as linearized vector backbones or templates for PCR and 

antibiotics for cell culture (incl. bacterial) used in the work. CHO = Chinese hamster 

ovarian cells, FLP-IN 293 T-Rex = FRT site engineered HEK293T cells, HEK293T = 

human embryonic kidney cells, SH-SY5Y = neuroblastoma cells 

 

Cell lines Plasmids Antibiotics 

CHO psiCHECK2 Ampicillin 

FLP-IN 293 T-Rex pLenti-CRISPR-mCherry Blasticidin S 

HEK293T pBlockIT-EmGFP Hygromycin B 

SH-SY5Y pTO-HA-Strep-GW-FRT Normocin™ 

 pCDH-CMV-T2A-GFP 

pCDH-hSYN-T2A-GFP 

Spectinomycin 

 pMDLg/pRRE  

 pRSV/REV  

 pMD2.G  
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3.2.1 Molecular cloning 

 

The reporter construct to measure Dicer activity was first designed in silico and a cloning 

strategy was done based on what genetic elements the final reporter plasmid would need to 

contain (Figure 9). More specifically, the reporter plasmid is an expression vector with 

psiCHECK2 (Promega) as the backbone, having Amp-resistance gene as the antibiotic 

selection marker, and is designed to express three main elements: 1) a primary fluorescent 

reporter protein, a modified red fluorescent protein known as modified Cherry (mCherry), 

which additionally has a nuclear localization sequence (NLS) and a regulatory element, the 

Woodchuck virus posttranscriptional regulatory element (WPRE), to stabilize and increase 

expression, in its mRNA transcript 2) a secondary fluorescent reporter protein, enhanced 

green fluorescent protein (EGFP) for normalization and 3) a siRNA designed to target the 

transcript of mCherry inserted into a murine pri-miR155 hairpin (Moreland et al. 1985; 

Reichel et al. 1996; Zhang et al. 1996; Ludtke et al. 1999; Zufferey et al. 1999; Klein et al. 

2006). All of these three main elements have different pA signal sequences and different 

promoters which are optimal for mammalian gene expression (Gruss et al. 1981; Post et al. 

1982; Reyes et al. 1982; Stringer 1985; Kobayashi et al. 1997). When the mCherry-targeting 

siRNA is expressed in a pri-miR155 hairpin, it must first be processed by the 

Drosha/DGCR8 microprocessor complex, and then by Dicer to knockdown mCherry. 

When mCherry, along with the mCherry/EGFP ratio, decreases, it gives an indication on 

Dicer processing. The hypothesis is that when Dicer is activated, the knockdown, and 

decrease of mCherry/EGFP ratio should be further decreased. 

 

 

Figure 9. The designed construct which is the basis for the assay. The construct expresses 

two fluorescent reporter proteins, EGFP and mCherry, and a mCherry targeting siRNA in 
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a murine pre-miR155 backbone. They have different promoters and different pA 

sequences, and the mCherry transcript has a nuclear localization sequence (NLS) and is 

further stabilized by WPRE. A reduction in mCherry/EGFP ratio, due to mCherry 

silencing, indicates Dicer processing of pre-miR155. CMV = cytomegalovirus, EGFP = 

enhanced green fluorescent protein, HSV-TK = Herpes simplex virus thymidine kinase, 

mCherry = modified Cherry (red fluorescent protein), miRNA = microRNA, NLS = 

nuclear localization sequence, pA = polyadenylation, siRNA = short interfering RNA, SV40 

= simian virus 40, WPRE = Woodchuck virus posttranscriptional regulatory element. 

 

Cloning of the reporter plasmid 

The backbone for the constructs, psiCHECK2 was digested with restriction enzymes XbaI 

and NheI and the 2768 bp fragment was purified by electrophoresis (100-120 volts, 

constant voltage) of the restriction reaction mixture in a 1% agarose gel, cutting out the 

linearized DNA containing band, and extracting the DNA form the gel by using a gel-

extraction kit (Macherey-Nagel, Düren, Germany) according to the manufacturer’s 

protocol. For all subsequent linearized fragments, or PCR amplicons, purifications were 

done in the same manner using the same extraction kit. pA-HSV-TK fragment was PCR 

amplified from psiCHECK2 using primers pA_for and HSVTK_rev with 15 nts 

overlapping on both ends, mCherry was amplified by PCR from pLenti-CRISPR-mCherry 

with primers Cherry_for and NLS_rev with 15 nts overlapping on the 5´ end conserving 

NheI restriction site, EGFP from pCDH-hSYN-T2A-GFP with EGFP_for and EGFP_rev 

with 15 nts overlapping on 3´end conserving XbaI restriction site (Table 2). All PCRs were 

performed with Phusion Hot-Start polymerase (ThermoFisher Scientific, Waltham, MA). 

All these fragments together with the XbaI/NheI-digested psiCHECK2 vector were 

recombined in a single In-Fusion (In-Fusion® HD Enzyme Premix, Clontech, Mountain 

View, USA) reaction for 15 min at 50
 o

C (Irwin et al. 2012). Next, a BsmBI-MscI-BsmBI 

spacer, obtained by annealing (95
 o

C for 4 min and the allowed to cool at RT for 10 min) 

the oligonucleotides 5´-TGCTTGAGACGTATGGCCATACGTCTCT-3´ and 5´-

CCTGAGAGACGTATGGCCATACGTCTCA-3´, was ligated into pBlockIT vector to 

get pBlockIT-EmGFP-BMB which was then digested with DraI and re-ligated to remove 

EmGFP. All ligations were done using T4 DNA ligase (ThermoFisher Scientific, Waltham, 

USA) incubating the mix for 60 min at RT. Then a CMV-miRNA-pA fragment was 

amplified from pBlockIT-BMB with CMV_for and pA_rev primers conserving BglII 

restriction site (Table 2). The amplified fragment was recombined with In-Fusion into BglII 
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digested psiCHECK-SV40-mCherry-NLS-pA-HSVTK-EGFP-pA to obtain psiCHECK-

CMV-miRNA-pA-SV40-mCherry-NLS-pA-HSVTK-EGFP-pA. 

The mCherry siRNA strands were designed with the Invitrogen BLOCK-iT™ RNAi 

Designer (https://rnaidesigner.thermofisher.com/rnaiexpress/) and two different siRNAs 

(highlighted by violet in the final full pre-miR155 strand containing the siRNA) were added 

by first annealing (95
 o

C for 4 min and the allowed to cool at RT for 10 min) the top and 

bottom oligonucleotides, siRNA1 top = 

5´TGCTGTTGATGTTGACGTTGTAGGCGGTTTTGGCCACTGACTGACCGC

CTACAGTCAACATCAA3´ and bottom = 

5´CCTGTTGATGTTGACTGTAGGCGGTCAGTCAGTGGCCAAAACCGCCTAC

AACGTCAACATCAAC3´ siRNA2 top = 

5´TGCTGTACTGTTCCACGATGGTGTAGGTTTTGGCCACTGACTGACCTAC

ACCAGTGGAACAGTA3´ and bottom = 

5´CCTGTACTGTTCCACTGGTGTAGGTCAGTCAGTGGCCAAAACCTACACC

ATCGTGGAACAGTAC3´ and next, ligating them with digested (FastDigest-Esp3I 

(BsmBI) for 1 hour at 37
 o

C) and gel purified psiCHECK-CMV-miRNA-pA-SV40-

mCherry-NLS-pA-HSVTK-EGFP-pA.  

WPRE was added to the constructs by amplifying it from pCDH-CMV-T2A-GFP with 

WPRE_for and WPRE_rev primers conserving PmeI restrictions site and recombining it 

with In-Fusion into PmeI digested psiCHECK-CMV-siRNA1-pA-SV40-mCherry-NLS-pA-

HSVTK-EGFP-pA and psiCHECK-CMV-siRNA2-pA-SV40-mCherry-NLS-pA-HSVTK-

EGFP-pA. 
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Table 2. Primers used for PCRs in cloning. 

Name Sequence 

Cherry_for 5´-CTCACTATAGGCTAGCCACCATGGTGAGCAAGGGCGAGGAG-3´ 

CMV_for 5´-ATGGCTCGACAGATCGTACGCGTTGACATTGATTATTGACTAG-3´ 

EGFP_for 5´-GTAAAGCGCTCACCATGGTGAGCAAGGGCGAG-3´ 

EGFP_rev 5´-CCGCCCCGACTCTAGATTACTTGTACAGCTCGTCCATGC-3´ 

HSVTK_rev 5´-TGGTGAGCGCTTTACCAACAGTACCGGAATGC-3´ 

LV_for 5´-TTCAAAATTTTATCGATCGTACGCGTTGACATTGATTATTGAC-3´ 

LV_rev 5´-TCATTGGTCTTAAAGTATCGATTTTACCACATTTGTAGAGGTTTTAC-3´ 

NLS_rev 5´-TCAGTCTAGTTTAACGCGTTTGG-3´ 

pA_for 5´-GTTAAACTAGACTGATTCTAGGCGATCGCTCGAGC-3´ 

pA_rev 5´- GGTGCTGCGCAGATCACGTGCTATGGCAGGGCCTG-3´ 

TRex_for 5´-GTGGCGGCCGCTCGAGGGAGGTAGTGAGTCGACCAG-3´ 

TRex_rev 5´-CAGCGGGTTTAAACGGGCCCGACTCTAGATTACTTGTACAGCTCG-3´ 

WPRE_for 5´-CCCGGGAATTCGTTTAAACAATCAACCTCTGGATTACAAAATTTGTG-3´ 

WPRE_rev 5´-GGCCGCTCTAGGTTTAAACAGGCGGGGAGGC-3´ 

 

Cloning of the Tet-On inducible expression plasmid 

psiCHECK2-CMV-siRNA2-mCherry-WPRE-EGFP was amplified with TRex_for and 

TRex_rev primers conserving XhoI and ApaI restriction sites (Table 2). pTO-HA-StrepIII-

GW-FRT vector was linearized with XhoI and ApaI. Purified products were recombined 

with In-Fusion to form pTO-GW-FRT- CMV-siRNA2-mCherry-WPRE-EGFP.  

 

Cloning of the lentiviral genome insert plasmid 

psiCHECK2-CMV-siRNA2-mCherry-WPRE-EGFP was amplified with LV_for and 

LV_rev primers conserving ClaI and KpnI restriction sites (Table 2). pCDH-CMV-MCS-

T2A-EGFP was linearized with ClaI and KpnI. Purified products were recombined with 

In-Fusion to form pCDH-CMV-siRNA2-mCherry-WPRE-EGFP. 

Ligation and recombination reactions were transformed into competent Stellar or Stbl3 

bacterial (E. coli) cells, with ampicillin (psiCHECK2) or spectinomycin (pBlockIT) used to 
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select for correct clones. Transformed cells were plated and grown overnight in 37
o

C. 

Various amounts of colonies were selected and cultured for 12-18 hours (37
o

C in a 222 

rpm shaking platform) in LB-medium with correct antibiotic (ampicillin 100 µg/ml or 

spectinomycin 50 µg/ml). Plasmid extraction and purification from cells was done with a 

plasmid purification kit (Macherey-Nagel, Düren, Germany) according to the manufactures 

protocol. Diagnostic digestions were performed with selected restriction enzymes and, in 

addition, all plasmids were sequenced with primers designed to obtain sequences of the 

recombination and/or ligated sites. The design of the plasmids, primers and restriction 

digestions, and analysis of sequencing data was done with A plasmid Editor (ApE) software. 

 

3.2.2 Cell culture and producing stable cell lines 

 

Cell culture 

Human embryonic kidney (HEK293T) cells, Chinese hamster ovarian (CHO) cells, 

human SH-SY5Y neuroblastoma cells and FLP-IN 293 T-Rex (T-Rex) (ThermoFisher 

Scientific, Waltham, MA) cells were maintained in humidified incubator (37
o

C, 5% CO2, 

saturated humidity, RH 80-100%) and re-plated 2-3 times a week (Tjio and Puck 1958; 

Biedler et al. 1973; Graham et al. 1977). Commercially available Dulbecco’s modified eagle 

medium (DMEM, pH 7.4) supplemented with 10% fetal bovine serum (FBS) and 100 

µg/ml Normocin™ (N, InvivoGen, San Diego, USA) was used as the growth medium. 

When the cells reached approximately 80-90% confluency, they were re-plated into 

Greiner CellStar 96-well clear-bottom cell culture plates for a density of ca 10000 cells/well 

in DMEM, pH 7.4 supplemented with 10% FBS and 100 µg/ml N and incubated at 37
o

C, 

5% CO2 for 24 hours before transfection or administration of compounds in all assay 

validation and compound screening experiments. Cells were used from passage 2-20. 

 

Stable transfection of FLP-IN 293 T-REX cells 

After T-Rex cells reached 80-90% confluency, they were re-plated into Greiner CellStar 

dishes in DMEM supplemented with 10% FBS and 100 µg/ml N. 1 µg of pTO-GW-FRT- 

CMV-siRNA2-mCherry-WPRE-EGFP was transfected simultaneously with 5 µg of flippase 
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(FLP) expressing plasmid pOG44 using 1 µg/µl polyethylenimine (PEI) (4:1 ratio of 

PEI/DNA) as the transfection reagent, diluted in OptiMEM (ThermoFisher Scientific, 

Waltham, MA). Cells were incubated for 48 hours in 37
o

C, 5% CO2 before changing 

medium to DMEM supplemented with 10% FBS, 100 µg/ml N, 15 µg/ml Blasticidin HCl 

and 100 µg/ml Hygromycin B. Media was changed every 2-4 days for 2 weeks until cells 

with the correct insertion were left. 

 

VSV.G pseudotyped lentiviral packaging and lentiviral transduction of SH-SY5Y cells 

HEK293T were allowed to grow in a humidified incubator (37
o

C, 5% CO2), using DMEM 

supplemented with 10% FBS and 100 µg/ml N as growth medium, until they were 80-90% 

confluent and then re-plated into Greiner CellStar dishes with DMEM supplemented with 

10% FBS, 100 µg/ml N and 25 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid. 

Cells were grown to 70-80% confluency and transfected with 4 µg of pCDH-CMV-siRNA2-

mCherry-WPRE-EGFP 2 µg of pMDLg/pRRE, pRSV/REV and pMD2.G each using 1 

µg/µl PEI (4:1 PEI/DNA) as the transfection reagent, in OptiMEM. Cells were incubated 

(37
o

C, 5% CO2) for 72 hours, transferred into tubes and spun down 1100 rpm/200-300 ×g 

for 5 min. The supernatant was filtered through a 0.45 µm filter into metal centrifuge tubes 

(Beckman UltraClear #344058) fitted into metal rotor tubes (Beckman AH-629 rotor). 

Tubes were spun for 1.5 hrs 25000 rpm (AH-629 (36 mL) Swinging Bucket Rotor, 120000 

×g) at 4°C. Supernatant was discarded, pellets were dried for 2-3 min and resuspended into 

sterile Dulbecco’s phosphate-buffered saline (PBS). Finally, the resuspended mixture was 

centrifuged for 1 min at maximum speed on a benchtop microcentrifuge (Wealtec E-

Centrifuge) and the supernatant was collected, aliquoted and stored at -80°C. 

SH-SY5Y cells were maintained in an incubator (37
o

C, 5% CO2) in DMEM supplemented 

with 10% FBS and 100 µg/ml N. The cells were plated into a Greiner CellStar 6-well cell 

culture plate and transduced the following day with different concentrations of the virus. 

Cells were observed for fluorescence 72 hours after transduction and were selected by 

hand-picking fluorescent cells and re-plating them in fresh medium. This was done by 

aspirating the medium, washing once with PBS and then using a small volume of trypsin to 

trypsinize cells with a sterile pipette and aspirating them to the pipette tip. The selected cells 
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were cultured for 1 week, re-plated and sorted with a fluorescence-assisted cell sorting 

FACSAria machine (BD Biosciences, Franklin Lakes, USA). 

 

3.2.3 Validation of the assay 

 

Plasmid testing  

CHO cells were transfected after 24 hours with 10 ng, 30 ng or 100 ng of plasmid DNA of 

the following constructs, using 1 µg/µl PEI (4:1 PEI/DNA) as the transfection reagent, in 

OptiMEM: psiCHECK2-CMV-siRNA1-mCherry-EGFP, psiCHECK2-CMV-siRNA1-

mCherry-WPRE-EGFP, psiCHECK2-CMV-siRNA2-mCherry-EGFP or psiCHECK2-

CMV-siRNA2-mCherry-WPRE-EGFP. Before transient transfection, the cells were 

deprived of serum by changing the medium to DMEM supplemented with 100 µg/ml N. 

Cells were treated with enoxacin (in DMSO) or 1% DMSO 1 hour after transfection. After 

72 hours, cells were fixed with 4% paraformaldehyde for 20 min, stained with 200 ng/ml 

4',6-diamidino-2-phenylindole (DAPI), incubating 10 min in dim light and rinsed once with 

PBS all at room temperature (RT). 

 

Inducible cell line 

T-Rex cells were treated with 10 ng/ml doxycycline hyclate (Cat#D9891, Sigma-Aldrich, St. 

Louis, USA, DOX, in ethanol) to induce mCherry siRNA expression. This was done by 

changing the medium to 100 µl of doxycycline containing medium. 

T-Rex cells were additionally treated with 50 µM or 100 µM enoxacin sesquihydrate 

(Cat#94426 Sigma-Aldrich, St. Louis, USA, ENX, in DMSO), 10 nM or 100 nM 

thapsigargin (Cat#T9033, Sigma-Aldrich, St. Louis, USA, TG, in DMSO), or 0.01-0.2% 

DMSO diluted in DMEM supplemented with 100 µg/ml N or DMEM supplemented with 

100 µg/ml N and 10 ng/ml DOX. 

Enoxacin concentration (100 µM) was based on studies done by Shan et al. on the relative 

RNAi enhancing activity of enoxacin (Figure 8). Thapsigargin (10-100 nM) concentration 



32 

 

was chosen according to literature and previous tests done in thapsigargin assays on primary 

neurons (Chmielarz et al. 2017). 

All validation experiments shown in results were confirmed by 2-3 independent, similar or 

exact repeat experiments from different passages, unless otherwise stated (pooled data). 

 

Imaging, fluorescence quantification and cell counting 

Cells were imaged at RT live, or fixed for 20 min with 4% paraformaldehyde, stained 10 

min with 200 ng/ml DAPI and washed with PBS all at RT before imaging. Varying time 

points were determined, ranging from 24 hours to 120 hours in 24 hour intervals. Imaging 

was done with Thermo Scientific CellInsight™ CX5 High-content screening (HCS) 

platform at ×10 magnification at RT. Channels (λ=) 389 nm, 485 nm and 549 nm were 

used. In experiments where cells were fixed, 9 images (fields) were taken per well and in 

live cell experiments 3 images were taken per well to reduce stress caused to cells due to 

exposure to prolonged periods in sub-optimal culture conditions. Images were processed 

and analysed quantifying fluorescence intensities with CellProfiler & CellProfiler analyst 

(Carpenter et al. 2006; Jones et al. 2008). Custom-made CellProfiler pipelines were used 

with thresholding strategies account for the cytosol and nuclei. Quality control was done by 

visually inspecting images and clearly over/under-exposed images, due to equipment error, 

were excluded from analysis. Mean fluorescence intensities from all cells (from all images 

per well) were aggregated per well with custom-made scripts using R Studio. The ratio of 

mCherry and EGFP fluorescence was calculated in Microsoft Excel 2016. In experiments 

with transient transfection, background fluorescence values were additionally subtracted 

before calculating ratios. 

Cell counting was done by classifying cells with CellProfiler Analyst using RandomForest 

classifier and LogisticRegression algorithms and training them to identify cells. After 

positive cells were identified, the total number of positive cells from each image from each 

well was summed per group using CellProfiler Analyst and Microsoft Excel 2016. 
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3.2.4 Small-scale screening of compounds 

 

T-Rex cells were kept and plated as described in section 3.2.2. Briefly, the cells were plated 

into Greiner CellStar 96-well clear-bottom plates for a density of ca 10000 cells/well in 

DMEM supplemented with 10% FBS and 100 µg/ml N and incubated for 24 hours in a 

humidified incubator (37
o

C, 5% CO2). 

After 24 hours various compounds, which were diluted into DMEM supplemented with 

100 µg/ml N and 10 ng/ml DOX, were administered to the cells by changing 100 µl of 

corresponding compound containing medium to the cells or vehicle as a negative control. 

The compounds were diluted from the following stocks: 10 mM 6-OHDA (in DMSO), 10 

µM bafilomycin A1 (in DMSO), 50 ng/µl BDNF (in DMEM), 5,7725 mM corticosterone 

(in ethanol), 5 mM ellagic acid (in DMSO), 50 mM enoxacin sodium salt (Cat#557305 

Millipore, Burlington, USA, in PBS), 500 mM metformin (Cayman Chemical Company, 

Ann Arbor, USA, cat#13118, in ddH2O), 20 mM PD98059 (in DMSO), 1 mM 

staurosporine (in DMSO), 10 mM SU6656 (in DMSO) or 20 mM UO126 (in DMSO). 

The final concentrations of the compounds used for the screening can be found from Table 

3, except for enoxacin which was used as 100 µM (sodium salt) concentration. 

The effects of the higher doses of BDNF and metformin were further studied in two 

duplicate repeat experiments (quadruplicate if considering the groups only) done in the 

same manner as described without all of the other compounds. 

Compounds were chosen either based on literature to have an effect on Dicer (see section 

2.3.3), or arbitrarily from what was conveniently available (Table 3). Concentrations were 

chosen according to literature and unpublished experiments by colleagues. Two 

concentrations were used, the compound’s effective concentration regarding its main 

mechanism of action and a higher concentration inferred by enoxacin’s Dicer-activating 

concentration. 

Cells were incubated in 37
o

C, 5% CO2 and imaged live 24 hours, 72 hours and 120 hours 

after administration of compounds. Imaging, processing of images, data processing and 

statistical analysis was done as described in section 3.2.3. 
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Table 3. Compounds used in the small-scale screening. 6-OHDA = 6-hydroxydopamine, 

BDNF = brain-derived neurotrophic factor, MEK1/2 = mitogen-activated protein kinase 

kinase 1/2, Src = proto-oncogene tyrosine-protein kinase Src. 

Drugs & Compounds Mechanism of action Reference Concentrations 

6-OHDA Oxidative agent / 

Dopaminergic cell toxin 

(Michel and Hefti 

1990) 

10 and 100 µM 

Bafilomycin A1 Autophagy inhibitor (Redmann et al. 

2017) 

10 and 100 nM 

BDNF Neurotrophic factor (Kalcheim and 

Gendreau 1988) 

5 and 50 pg/µl 

Corticosterone Glucocorticoid 

(hormone) 

(Kurek et al. 

2016) 

1 and 5 µM 

Ellagic acid Inhibits Translin/Trax (Salimi et al. 

2015) 

10 and 100 µM 

Metformin Anti-diabetic 

compound 

(McKiney et al. 

2010) 

100 µM and 1 

mM 

PD98059 MEK1/2 inhibitor (Koivisto et al. 

2014) 

10 and 100 µM 

Staurosporine Apoptosis inducer (Koh et al. 1995) 100 nM and 1 

µM 

SU6656 Src kinase inhibitor (Blake et al. 2000) 2 and 20 µM 

UO126 MEK1/2 inhibitor (Burkhard and 

Shapiro 2010) 

10 and 100 µM 

 

3.2.5 Statistical analysis 

 

All statistical analysis and graphs were done with GraphPad Prism version 6.01 or 7.03 

(GraphPad Software, Inc., La Jolla, San Diego, USA). A p value of less than 0.05 was 

considered statistically significant. All data are expressed as mean and error bars are 

standard deviations. Statistical analysis was done within plates in the validation experiment 

and the preliminary small-scale screen to assess initial effects. However, to be fully certain 

of an effect, experiments were repeated and pooled data of independent (i.e. different 
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plates from different passages and in some cases freeze/thaw cycles) experiments was 

analysed by calculating the mean value of all wells per group per plate and using the mean 

values from each independent experiment for statistical analysis. 

One-way analysis of variance (ANOVA) was used when comparing three or more groups 

simultaneously, when variances were assumed statistically equal and did not differ 

significantly according to the Brown-Forsythe test, with Tukey’s multiple comparison test 

or Bonferroni’s multiple comparison test as post-hoc tests. Conserved post-hoc tests were 

chosen to minimize false discovery rate and increase the reliability of results. In 

experiments where variances were not statistically equal, a non-parametric test, the Kruskal-

Wallis test, was used, with Dunn’s multiple comparison test. When comparing two groups, 

Student’s two-tailed unpaired t-test was used if variances were statistically equal, and when 

not (invalid F-test), the Mann-Whitney U test was used. Comparisons were done by 

comparing the means of each group to the mean of the negative and/or positive control. 

Assessing the quality of the assay regarding HTS was done by calculating the Z-factor (1) 

and CV (2) as follows (Adapted from Xiao et al. 2016): 

 

Where PC is positive control wells, NC is negative control wells and SD is standard 

deviation. 

 

3.3 Results 

 

Plasmids 

All of the produced plasmids were verified by DNA sequencing and they functioned as 

planned which was assessed in validation experiments (Appendix 1 and Figure 12). 
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Stable cell lines 

T-Rex cells expressed both fluorescent proteins and doxycycline induction of mCherry 

siRNA was shown to be functional in all experiments where T-Rex cells were used 

(Appendix 2, Figures 11, 14, 15, 16, 19). 

 

       A   B   

 

 

 

 

 

 

 

Figure 10. Doxycycline induction to validate the proper functioning of the Tet-On system 

in FLP-IN 293 T-Rex cells. Representative images of doxycycline treated and vehicle 

treated cells. Reduced mCherry fluorescence can be visually observed by comparing the 

nuclei of cells treated with doxycyline (B) to non-treated cells (A). DAPI stains the nucleus, 

EGFP is localized in the cytosol and mCherry is localized in the nucleus due to the NLS 

integrated to the mCherry transcript. DAPI = 4',6-diamidino-2-phenylindole, EGFP = 

Enhanced green fluorescent protein, mCherry = modified Cherry (red fluorescent protein). 

 

Lentiviral vector transduced SH-SY5Y cells expressed EGFP but a clear majority did not 

express mCherry and, therefore, the cells were not selected for further use (Figure 11). 

 

 

No doxycycline + doxycycline (10 ng/ml) 
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Figure 11. Representative images of lentiviral vector transduced SH-SY5Y neuroblastoma 

cells. A) Cells robustly expressed EGFP (green) B) Only a few cells had quantifiable 

mCherry (red). 

 

3.3.1 Validation with enoxacin and thapsigargin 

 

A plethora of assay parameters that may affect the signal of Dicer activation and noise were 

considered and studied during this thesis work.  

To start, plasmids were tested with transient transfection for transient protein expression. 

Transfecting the plasmids psiCHECK2-siRNA1 and psiCHECK-siRNA2 both with, or 

without WPRE in CHO cells, the mCherry siRNA was highly efficient in knocking down 

mCherry expression (H=31.07, p=0.0003, Kruskal-Wallis test) after 72 hours of 

transfection, as the mean mCherry/EGFP fluorescence ratio was very low compared to 

control (Figure 12). The plasmid psiCHECK2-CMV-siRNA2-mCherry-WPRE-EGFP 

produced the highest mean mCherry fluorescence and was thus chosen to be implemented 

into stable cell lines (Figure 12 and additional data not shown). 

A                                B 
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Figure 12. Testing the plasmids by transient transfection. Mean mCherry/EGFP 

fluorescence ratio measured in Chinese hamster ovarian cells 72 h after administration of 

vehicle (1% DMSO) or enoxacin as the positive control (100 µM). Scramble is a non-

targeting miRNA which serves as a negative control. Data are expressed as mean +/- SD. 

Kruskal-Wallis test, ***p<0.001. n = 5 (wells). ENX = enoxacin. 

 

Thereafter, stable cell lines were produced and an isogenic, inducible T-Rex cell line was 

chosen for further experiments (Figure 10). Enoxacin, as the positive control, (10-100 mM) 

did not reduce mCherry/EGFP ratio significantly after 24-48 hours of induction with 

doxycycline compared to DMSO in experiments where cells were fixed (data not shown). 

Therefore, thapsigargin was tested if it could inhibit Dicer and if enoxacin treatment could 

rescue this inhibition (Figure 13). Tests showed that already after 24 hours, thapsigargin 

treatment significantly increased mCherry/EGFP ratio (One-way ANOVA, p=0.005 

F2,12=8.493). However, the effect was significant only in the 100nM arm (p=0.0049, 

Bonferroni’s multiple comparison test) compared to the negative control (DMSO), and 

furthermore, both concentrations reduced cell viability, killing the cells. This was assessed 

by visual inspection with a microscope, a significant reduction in mean EGFP fluorescence 

(One-way ANOVA, p=0.0001 F2, 12=20.70) in TG 10 nM and 100 nM compared to DMSO 

treated cells (p=0.0241 and p<0.0001, respectively, Bonferroni’s multiple comparison test) 
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and significant reduction in the number of cells in both arms (One-way ANOVA, p<0.0001 

F2,12=90.50 10 nM: p=0.0034, 100n nM: p<0.0001, Bonferroni’s multiple comparison test).  
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Figure 13. Testing thapsigargin to optimise a rescue assay. Results after 24 hours of 

administration of vehicle (0.01% DMSO), doxycycline and vehicle or doxycycline and 

either 10 nm or 100 nm of thapsigargin in FLP-IN 293 T-Rex cells.  Measured A) Mean 

mCherry/EGFP fluorescence ratio. B) Mean EGFP fluorescence C) Mean number of cells 

per well. Non-doxycycline treated cells (DOX -) here is to show that the siRNA was 

expressed and DOX+ serves as the control for the assay. Data are expressed as mean +/- 

SD. One-way ANOVA with Bonferroni’s multiple comparison test, *p<0.05, **p<0.01 

****p<0.0001. n = 5 (wells). DOX = doxycycline, TG = thapsigargin. 

  

Next, live-cell imaging with different time points were assessed. Enoxacin (100 µM) did not 

reduce mCherry/EGFP ratio significantly after 24-48 hours of induction with doxycycline 

   B              C 

A 
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compared to DMSO, similarly to previously mentioned experiments fixing cells (Figures 

14 and 15). After 72 hours enoxacin significantly reduced mCherry/EGFP fluorescence 

ratio compared to DMSO (Unpaired Student’s t-test, p=0.0036, t=4.073 df=8). 
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Figure 14. Validating the assay using enoxacin as a positive control. Mean mCherry/EGFP 

fluorescence ratio measured after three time points. FLP-IN 293 T-Rex cells were treated 

with either doxycycline and vehicle (0.2% DMSO) or doxycycline and enoxacin (100 µM). 

Representative images of cells quantified in the assay shown below. EGFP (green) is 

localized in the cytosol and mCherry (red) is localized in the nucleus. Reduced mCherry 

expression due to doxycycline and enoxacin is apparent. Data are expressed as mean +/- 

SD. Unpaired Student’s t-test, **p=0.0036, ns=not significant. n=5 (wells). DMSO = 

dimethyl sulfoxide, ENX = enoxacin. 

 

The effect was confirmed in two subsequent experiments and even further time points were 

also examined (Figure 15 and data not shown). Besides comparing the positive and negative 

control head on (Student’s t-test), results were also compared to non-doxycycline induced 

cells to see whether variation here would make a difference. Using one-way ANOVA 

(p<0.0001, F2,15=1175), the effect of enoxacin in reducing mCherry/EGFP fluorescence ratio 

was significant compared to DMSO after 72 hours of treatment (p=0.0005, Tukey’s 
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multiple comparison test). After 120 hours, the effect was even more significant (p<0.0001 

Tukey’s multiple comparison test, One-way ANOVA, p<0.0001, F2,15=1896). 
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Figure 15. Further validation of the assay using different time points. Mean mCherry/EGFP 

fluorescence ratio measured after four time-points in FLP-IN 293 T-Rex cells treated with 

vehicle only (0.2% DMSO), doxycycline and vehicle or doxycycline and enoxacin (100 µM) 

combined. Non-doxycycline treated group (DOX -) are displayed to show that the siRNA 

was expressed and to serve as an additional control for the assay. Data are expressed as 

mean +/- SD. One-way ANOVA with Tukey’s multiple comparison test, ***p<0.001, 

****p<0.0001. n=6 (wells). DMSO = dimethyl sulfoxide, DOX = doxycycline, ENX = 

enoxacin. 

 

After this, a small-scale screening was done to further assess the quality of the assay and to 

possibly find Dicer-activating compounds (see section 3.4.2). However, due to the 

screening experiments showing that enoxacin did not have a significant effect in reducing 

mCherry/EGFP fluorescence ratio analysing pooled data from four independent 

experiments, a more thorough analysis combining these four screening experiment results 

with the previous two shown here (Figures 14 and 15) and a third one (data not shown) 

showed that the effect was still significant after 72 hours (Figure 16, Unpaired t-test, 

p=0.0272, t=2.515 df=12) but not anymore after 120 hours of treatment (Unpaired t-test, 

p=0.0834, t=1.889 df=12). 



42 

 

7 2  h o u r s

m
C

h
e

r
r
y

/E
G

F
P

fl
u

o
r
e

s
c

e
n

c
e

 r
a

ti
o

 [
a

.u
.]

D
M

S
O

/M
e
d

iu
m

E
N

X
 1

0
0
 µ

M

0 .2 0

0 .2 5

0 .3 0

0 .3 5

0 .4 0 *

1 2 0  h o u r s

m
C

h
e

r
r
y

/E
G

F
P

fl
u

o
r
e

s
c

e
n

c
e

 r
a

ti
o

 [
a

.u
.]

D
M

S
O

/M
e
d

iu
m

E
N

X
 1

0
0
 µ

M

0 .1 5

0 .2 0

0 .2 5

0 .3 0
ns

 

Figure 16. Thorough analysis combining data from validation experiments to data from 

screening experiments. Mean mCherry/EGFP fluorescence ratio assessed from pooled 

data from seven independent experiments after 72 hours and 120 hours of either vehicle 

(0.2% DMSO or plain medium if sodium salt enoxacin stock, diluted in PBS, was used) or 

enoxacin (100 µM) treatment in FLP-IN 293 T-Rex cells. Data are expressed as mean +/- 

SD. Unpaired t-test, *p<0.05, ns=not significant. n=7 (independent experiments). DMSO 

= dimethyl sulfoxide, ENX = enoxacin. 

 

3.3.2 Screening compounds of interest 

 

Screening 10 compounds found no compounds to reduce mCherry/EGFP fluorescence 

ratio significantly, but a few, namely ellagic acid, staurosporine and UO126, which 

increased it (Figure 17, One-way ANOVA, p<0.0001 F21,74=17.53 and ****p<0.0001 

Bonferroni’s multiple comparison test). However, many of these compounds which 

increased mCherry/EGFP ratio also had a significant reduction in mean EGPF 

fluorescence (One-way ANOVA, p<0.0001 F21,74=4.263 and *p<0.05, Bonferroni’s multiple 

comparison test). The compounds which increased EGFP fluorescence most prominently 

were staurosporine (1 µM) and UO126 (100 µM). Compounds which had a trend in 

reducing mCherry/EGFP fluorescence ratio compared to the negative control, were BDNF 
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(50 pg/µl) and metformin (1 mM) and they were chosen for further experiments to assess 

valid statistical analysis of the effects. 
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Figure 17. Preliminary screening with ten compounds of interest. A) Mean mCherry/EGFP 

fluorescence ratio B) mean EGFP fluorescence. Vehicle is doxycycline containing medium. 

Data are expressed as mean +/- SD. One-way ANOVA with Bonferroni’s multiple 

comparison test, *p<0.05, ****p<0.0001. n=4 (wells). 6-OHDA = 6-hydroxydopamine, 

BDNF = brain-derived neurotrophic factor. 

 

In the validation screening experiments of BDNF and metformin, there was no statistical 

significance in the reduction of mCherry/EGFP fluorescence ratio between enoxacin, 

BDNF and metformin compared to the negative control (doxycycline in plain medium, 

since none of the three compounds were diluted in DMSO) after 72 hours (Figure 18A 

and B, One-way ANOVA, p=0.1244 F3,12=2.344) nor 120 hours of treatment (One-way 

ANOVA, p=0.1251 F3,12=2.339). However, all of them showed a trend in reduction, with 

metformin having the largest reduction of the groups after 72 hours and enoxacin after 120 

hours following administration of the compounds. The results were also analysed by 

comparing the relative change in mCherry/EGFP fluorescence ratio (as was done in Li et 

al. 2012 for example), between the groups compared to the negative control (Figure 18C 

and D). 

A                            B 
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Figure 18. Re-screening BDNF and metformin after 72 hours (A, C) and 120 hours (B, D). 

Results displayed as mCherry/EGFP ratio (A, B) and relative mCherry/EGFP ratio 

comparing them to the negative control (medium) (C, D) Non-doxycyline treated cells 

(DOX-) are displayed to show that the siRNA was expressed and Vehicle (plain medium) 

serves as the negative control for the assay. One-way ANOVA showed no statistically 

significant differences between groups. n=4 (independent experiments). BDNF = brain-

derived neurotrophic factor, DOX = doxycycline, ENX = enoxacin. 

 

A                          B 

C                          D 
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None of the compounds showed significant reduction in mean EGFP fluorescence 

compared to the negative control (vehicle) 72 hours after treatment (Figure 19, One-way 

ANOVA, p=0.3486  F3,12=1.209). However, after 120 hours there was a significant difference 

(One-way ANOVA, p=0.0227 F3,12=4,622) between the negative control and enoxacin 

(p=0.04). 
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Figure 19. Mean EGFP fluorescence which gives an indication of cell death. After 72 hours 

the groups had similar mean EGFP fluorescence. After 120 hours enoxacin showed a 

significant reduction in mean EGFP fluorescence compared to the negative control 

(vehicle). One-way ANOVA with Tukey’s multiple comparison test, *p=0.04. n=4 

(independent experiments). BDNF = brain-derived neurotrophic factor, DOX = 

doxycycline, ENX = enoxacin. 

 

 

3.3.3 High-throughput screening quality measures 

 

The negative (plain medium or 0.2-1% DMSO) controls and the positive control (enoxacin) 

were used to calculate the Z-factor and CV (Table 4). The assay based on the pooled, seven 

experiment (plate), data, gives a Z-factor of -3.45, and CV values of under 10 for both 

controls. 
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Table 4. Calculated Z-factors and coefficient variations from seven different experiments 

(plates) at 72 hours after treatment. Negative control is DMSO (0.2-1%) or plain medium, 

depending on the used enoxacin stock, and positive control is enoxacin. 

Experiment Z´ CV% (Negative 

control) 

CV% (Positive 

control) 

Plate 1 -5.18994498 12.95 13.95 

Plate 2 0.053969431 2.31 3.04 

Plate 3 -8.336164584 4.42 12.97 

Plate 4 -12.80405038 10.93 11.04 

Plate 5 -24.88146876 5.15 3.92 

Plate 6 -5.055476146 9.22 11.13 

Plate 7 -2.816754611 14.92 9.93 

All plates combined -3.448583992 7.77 7.31 

 

 

3.3.4 Summary 

 

Transiently transfecting the plasmids, highly efficient silencing due to mCherry siRNA 

resulted in low mCherry fluorescence. Of all the tested plasmids, psiCHECK2-CMV-

siRNA2-mCherry-WPRE-EGFP was chosen due to highest mCherry fluorescence (Figure 

12, and other experiments not presented here). 

After a number of parameter optimisation experiments, in stable cell lines, enoxacin did 

not seem to have an effect in reducing mCherry/EGFP fluorescence by optimisation after 

24-48 hour experiments in which cells were fixed prior to imaging (data not shown). 

Therefore, thapsigargin was chosen in order to optimise a rescue assay (Figure 13). 100 nM 

increased mCherry/EGFP fluorescence ratio significantly, but also induced cell death, 

demonstrated by the significant reduction in mean EGFP fluorescence and cell viability 

(Figures 13B and 13C) 

In live cell experiments, enoxacin did not reduce mCherry/EGFP fluorescence ratio 

significantly compared to vehicle (plain medium, 0.2% or 1% DMSO depending on used 
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enoxacin stock) after 24-48 hours of administration but did so after 72 and 120 hours in 

three independent experiments (Figures 14, which also display descriptive reduction by 

images, Figure 15, and additional data not shown). However, after a small-scale screen, 

followed by four re-screening replicate experiments combined to the validation 

experiments, a pooled analysis showed that enoxacin’s effect in reducing mCherry/EGFP 

fluorescence ratio was significant only after 72 hours following administration. 

Small-scale screening found no compounds to significantly reduce mCherry/EGFP 

fluorescence ratio (Figures 17 and 18). However, the effects of metformin and BDNF were 

comparable to that of enoxacin (Figure 18). 

Assay quality in HTS terms, was determined by calculating Z-factors and CV values for 

each independent experiment and for the pooled data of seven experiments (Table 4). 

 

3.4 Discussion 

 

The results of this work demonstrate the development and optimisation of an assay to 

measure Dicer activity.  

One secondary aim was to make a lentiviral vector out of the construct to make other stable 

cell lines, besides the T-Rex cells, and use it to transduce neurons (or other post-mitotic 

cells), in addition to possible in vivo studies by e.g. administering the virus intracerebrally 

to mice or rats, to study the biology of Dicer. A virus was produced, but the titer was 

extremely low, most probably due to multiple polyA sequences in the inserted construct, 

which produce truncated genomes and inhibit packaging of the virus (Blo et al. 2008). 

Although there were only trace amounts of the virus, a few SH-SY5Y cells were successfully 

transduced enabling use of the cells by picking them, expanding them in culture and sorting 

them. However, nearly all of the cells did not express quantifiable mCherry, or silencing 

was yet again too efficient for mCherry to be clearly detected so the cells were not usable 

for assaying Dicer activity (Figure 11). 
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3.4.1 Assay validation 

 

The fact that some preliminary results (marked “data not shown” in text) were not repeated 

is not in accordance with the scientific method. However, considering that most validation 

experiments were purely for optimisation purposes, it would be redundant to repeat 

experiments with clearly unwanted results, when attempting to develop a reliable assay. All 

findings showing the assay to work, were further studied by independent, similar (enough 

to make rational inference on the effects), or replicate experiments from different passages 

as described in section 3.2.3. 

Transiently transfecting the plasmids, mCherry silencing was too efficient and, therefore, 

differences in mCherry fluorescence between groups was not optimal to quantify (Figure 

12). Efficient silencing was caused probably due to CMV being a high expression promoter 

combined with the prominent knockdown efficiency of full complementary siRNAs. Thus, 

making inducible stable cell lines, by integrating the assay construct into a cells genome, to 

control expression was justified, besides the reason for making the assay feasible for HT 

screening. Also, a small effect of enoxacin reducing mCherry/EGFP ratio in the scramble 

plasmids was interesting, but with further analysis the difference may have been caused 

mostly due to background fluorescence being higher in the enoxacin group.  

Serum deprivation was chosen due to initial experiments with serum included media 

showing that cells overgrew in the wells which hampered image analysis. Especially 

considering the later time points (72-120 h) this would have been a major problem if 

frequently dividing cells could grow for long periods. Serum deprivation was also decided 

based on the reason that it has lots of proteins (albumin) capable of binding drugs and other 

compounds (Huntley et al. 1977). Binding could affect concentrations and diffusion of 

compounds in to the cytosol of the cell, which could alter the efficacy of the compounds 

considerably. In hindsight, serum deprivation was a serendipitous decision due to a study 

showing that serum deprivation downregulates Dicer (Asada et al. 2008). Regarding the 

assay, this is a fitting finding, since correcting Dicer deficiencies is the main reason for the 

use of Dicer-activating compounds. In fact, if Dicer were fully functional and correctly 

regulated, it could be that activating it more would have no significant effect, since 

processing is already fully saturated. This could also explain why the effect of enoxacin was 
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rather modest. Furthermore, regarding therapeutic use, activating fully functional Dicer 

could even be disadvantageous to humans since its efficiency is already naturally attenuated 

by the helicase domain (Ma et al. 2008; Park et al. 2011). 

One problem with the inducible cell line was that expression threshold was reached already 

with a low dose of doxycycline. In titration experiments, there was no significant difference 

in using higher concentrations than 10 ng/ml (Appendix 2, Figure 22). For example, 100 

ng/ml and 1000 ng/ml induced similar expression, or mCherry knockdown, as 10 ng/ml. 

In contrast, lower than 10 ng/ml, namely 1 ng/ml, did not produce significant knockdown 

and thus doxycycline did not leave much room for optimisation since saturation of 

doxycycline-induced expression was already reached with 10 ng/ml induction (Appendix 2, 

Figure 23). 

The results on using thapsigargin for a rescue assay, would suggest that 100 nM thapsigargin 

treatment inhibited Dicer, however, the significant cell death suggests, on the contrary, that 

Dicer may have not been inhibited but was degraded due to cell death. Whether 

thapsigargin also inhibited Dicer, besides getting downregulated/lost due to cell death, is 

redundant to figure out in terms of the assay, since 10 nM already killed the cells, but did 

not significantly increase mCherry/EGFP ratio. Ergo, even if enoxacin would have helped 

with the survival there would not have been much measurable Dicer inhibition to rescue. 

As to why the hypothesized Dicer activating, or more general RNAi enhancing, effect was 

significant only after 72 hours after treatment, the turnover of miRNA/mRNA could take 

longer than expected. Kinetic studies and previous studies suggest that 48-72 hours is 

optimal in RNAi assays (Birmingham et al. 2009; Li et al. 2012; Lemus-Diaz et al. 2017). 

(Further discussion on RNAi kinetics can be found in section 3.4.4.). 48 hours of 

incubation was also used in the original studies where enoxacin was found to enhance 

RNAi, however as noted, the authors’ construct does not have a pri-miRNA, but a shRNA 

which changes the kinetics (Shan et al. 2008; Chakravarthy et al. 2010). Furthermore, in 

the later study, where they used a dual fluorescence system, the effect of enoxacin in 

reducing relative GFP/RFP fluorescence ratio was not highly efficient (60-70% relative ratio 

compared to negative control) and the ca 90% in this work may be due to differences in 

pri-miRNA and shRNA. Additionally, the pri-miRNA rules out selectivity of the activation 

to be mediated by Dicer since it is first processed by the Drosha/DGCR8 complex (Figure 
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1). The reason why Dicer activation was not significant anymore after 120 hours in the 

pooled data may be due to cells dying in some of the experiments after 5 days and thus 

increasing the mCherry/EGFP ratio (Figure 19). The use of alternative or additional 

positive controls could be tested, such as metal chelating compounds e.g. deferoxamine 

mesylate and thiosemicarbazide, especially that they showed more prominent Dicer 

enhancement compared to enoxacin (ca 50% reduction in relative GFP/RFP compared to 

enoxacin’s 30-40%) (Li et al. 2012). However, enoxacin was chosen due to its positive 

effects to the survival of dopaminergic cells and in animal models of neurodegeneration 

(Emde et al. 2015; Chmielarz et al. 2017). 

The precise effect of enoxacin reducing mCherry expression alone, by activating Dicer, 

should be confirmed by another quantitative method such as qPCR to measure the levels 

of mCherry mRNA and mCherry siRNA and to see if there is a difference with enoxacin 

treated cells to control cells. This would thus refute the suggestion that the reduction in 

mCherry fluorescence is not due to reduced protein levels but something else, e.g. the effect 

being noise. 

Dicer levels should also be determined in serum deprived T-Rex cells and cells grown in 

medium with serum, by Western blotting or enzyme-linked immunosorbent assay, to 

confirm previous findings and to assess how Dicer downregulation could affect activation. 

 

General aspects of the assay 

Tet-inducible T-Rex cells have been used successfully in HTS assays previously and are 

optimal in terms of usability regarding their growth rate and growth conditions (Plate et al. 

2016). However, one thing to be considered would have been sorting these cells, as was 

done with the lentiviral vector transduced SH-SY5Y cells, to select for clones that would 

optimally express the reporter proteins. This may have also helped with the low inducibility 

achieved by doxycycline, and a clonal line could have had better dose—responsiveness than 

the used isogenic line. 

EGFP was stable and reliable in the experiments, except for the edge effect in screening 

(see 3.4.2) and some minor variability noticed between EGFP reduction and cell death. 

mCherry expression (or the measured emission, however this can only be affected by 
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changing the protein structure) on the other hand was quite low as can be seen from Figures 

10 and 14. This is not optimal, and a wider range would be better for quantifying changes 

in fluorescence. 

 

3.4.2 Compound screening 

 

The ten-compound screen found that ellagic acid, staurosporine and UO126 seemed to 

inhibit Dicer, however they also seemed to induce cell death which was assessed by the 

reduction in EGFP and, furthermore, visual inspection by a microscope and the images 

attained from CellInsight. Indeed, some compounds were chosen due to their ability to 

effectively induce apoptosis for example, and thus to further assess if the EGFP as an 

internal normalization factor functioned as it did in the validation experiments (Figure 13B 

and 13C). However, there were many other compounds which seemed to induce cell death 

by microscopic assessment but did not produce significant reduction in EGFP fluorescence 

suggesting that the results from this experiment are not reliable. Microscopic inspection 

especially is not reliable and thus cells should have been counted. However, cells were not 

counted in any of the screening experiments due to cells not being equally spread out 

through the wells and because the imaging took place always in the same spot from the well. 

In addition, the whole well was not imaged (only 3 images were taken compared to 9 images 

from which cells were counted as is demonstrated in e.g. Figure 13C) and thus the results 

would only be indicative. A reduction in relative cell death could have been counted, in 

which case the total amount would not matter, between time points, but inferring death with 

visual inspection accompanied by significant reduction in mean EGFP fluorescence is 

enough to conclude that they would not be optimal study further as Dicer-activating 

compounds. The use of EGFP fluorescence reduction as a marker for cell viability is 

supported additionally by the findings that there was a clear link between cell death and 

EGFP reduction measured in validation experiments, as can be seen from Figures 13B and 

13C. Another live cell imaging platform could have been an option but was not considered 

due to limited resources and time in addition to the convenience of the CellInsight 

platform. Furthermore, and more importantly, after 96 h of plating (72 h after treatment), 

the cells were in dense clumps, which CellProfiler could not differentiate and count reliably 
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by EGFP (Figure 20). Nuclei were separable by mCherry, however cells could not be 

reliably counted based on them since some cells had non-detectable mCherry and thus 

would not have been included in counts. However, still, looking at the EGFP for cell death 

was also not reliable in the preliminary ten-compound screen due to large variability. 

Variability was caused in part due to using the whole plate and an edge effect was found in 

the outmost wells. Nevertheless, the variation in EGFP was later reduced in the 

confirmatory experiments with selected compounds, more wells and not using the outmost 

wells, which retained the reliability of using EGFP as a proxy for cell death. 

 

 

Figure 20. Representative image of densely packed live T-Rex cells 96 hours after plating. 

Looking at individual cells based on EGFP (green) it is difficult to differentiate between 

them, while mCherry (red) marked nuclei are more clearly differentiable. 

 

Concentrations used for screening were based on literature (see section 3.2.4) but is based 

on a speculative conclusion that they may have other effects besides their main activity. A 

wider titration of, especially lower, concentrations should be considered, particularly with 

compounds that effectively reduced cell viability. 

Taken together, results from the preliminary experiment are not conclusive since it was a 

single experiment and there was much more variability observed comparing to other 

experiments. Therefore, the re-screening experiments focusing on BDNF and metformin 

were done with repeat experiments and valid replicate analysis. The effects of BDNF and 
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metformin were most intriguing, however, not statistically significant. BDNF and metformin 

had a tendency in enhancing RNAi as expected according to previous studies shown that 

they can elevate Dicer levels (Huang et al. 2012; Hooten et al. 2016). However, these 

findings are not definitive and have not been confirmed in multiple controlled experiments. 

The findings here, assuming the assay works in the first places, do suggest that they could 

support their ability to upregulate Dicer in lieu of comparing their effects to other 

compounds which definitely did not reduce mCherry/EGFP fluorescence ratio. However 

effects were not statistically significant, so more tests are needed to assess their actual effects 

as was done with enoxacin. 

Since enoxacin did not reduce mCherry/EGFP fluorescence ratio significantly, a pooled 

analysis from 7 plates was done to assess the integrity of the assay which showed that the 

effect was only significant after 72 hours. However, the enoxacin batch was changed and a 

sodium salt was used in the screening experiments which may have had some quality related 

issues, although this is unlikely, since it was purchased from a trustworthy vendor. 

Nevertheless, based on this data, the true effect of enoxacin should be studied and validated 

in further replicates.  

 

3.4.3 Assay quality in terms of high-throughput screening 

 

The combined plate Z-factor and CV state that the variability of the assay is good, but the 

difference between the effect of positive control (enoxacin) and negative control (DMSO 

or plain medium) is not different enough to warrant large-scale HTS (Table 4). Looking at 

the quality of the assay and dissecting individual experiments, one of the plates gives a Z´= 

0.053969431, and CVs less than 5, indicating that the assay could be used to some extent 

for HTS if it were to have such quality. However, one positive experiment out of seven can 

hardly be met with conviction, and besides on the contrary, one plate had a Z´= -

12.80405038 and CVs over 10 which would definitely not be suitable for HTS. Taken 

together, the quality of the assay does not support large-scale high-throughput screening in 

terms of looking at the Z-factor of individual or combined experiments. The S/B or the 

S/N was not calculated because they don’t tell anything about the measured phenomena 
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and because the Z-factor and CV are enough to assess the quality and, thus, calculating the 

S/B or S/N would be redundant for further quality assessment. 

 

3.4.4 General discussion 

 

One important thing to consider is the mechanism of action of enoxacin. It may be that its 

neuroprotective activity is not a result from, at least mostly, Dicer activation. Enoxacin has 

been shown to inhibit JNK, of which inhibition has neuroprotective action in 

neurodegenerative animal models (Qu et al. 2013; Liu et al. 2014; Le Pichon et al. 2017). 

Moreover, proteins in the piRNA pathway may repress miRNAs and recently it was shown 

that enoxacin targets PIWIL3 in cancer cells which may contribute further to its miRNA 

enhancing activities (Abell et al. 2017). However, in another study it was shown that 

enoxacin has varying effects on the expression of certain miRNAs, by even downregulating 

some of them which also may or may not contribute to its neuroprotective effects 

(Valianatos et al. 2017). Nevertheless, these findings further illuminate the 

polypharmacological nature of enoxacin and supports the reasoning that its neuroprotective 

enhancing action should be studied thoroughly. This could be done using in vitro and in 

vivo Dicer CKO models and finding out whether it is still has neuroprotective effects 

without Dicer. 

Furthermore, the precise binding mechanism of enoxacin on TRBP-Dicer should be 

studied. Since the RNAi-enhancing activity of enoxacin depends on TRBP, and because 

TRBP-Dicer binding is facilitated by the helicase domain of Dicer, in addition to enoxacin’s 

ability to inhibit helicases, it may be that enoxacin acts as a stabilizer of TRBP-Dicer through 

its helicase binding domain, rather than through allosteric modulation inducing a 

conformational change on a different binding site (MacRae et al. 2008; Shan et al. 2008; 

Zhang et al. 2008; Lau et al. 2009; Cao et al. 2017). Adding to support these studies, also 

the binding of TRBP and pre-miRNAs has been elucidated and, thus, performing 

biophysical and structural biological studies on the precise binding of enoxacin in complex 

with Dicer-TRBP and possibly a pre-miRNA, could enable structure-activity relationship 

assisted screening, or de novo design, of better compounds to enhance this interaction 

(Benoit et al. 2013). 
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Additionally, the interactions of Dicer with its other notably interacting proteins, such as 

PACT and PCBP2 should be studied to see if affecting their interaction could have 

therapeutic effects, as is hypothesized by the TRBP-Dicer enhancing effect of enoxacin 

(Lee et al. 2006; Shan et al. 2008)). 

 

RNAi kinetics and stoichiometry 

Improving the effect size, could be done by changing to a more sensitive (brighter) reporter 

protein and by expressing additional siRNAs or adding binding sites for the siRNA. As 

shown by Mukherji et al. (2011), adding binding sites for miRNAs can have up to 10-fold 

changes in repression on the target mRNA. Or conversely, switching to higher expression 

of the pre-miRNA, changing the siRNA to a partial complementary miRNA and optimising 

with additional binding sites if expression were to saturate binding. 

However, as can be seen from the studies, the models factor different variables in their 

predictions and only give estimates on the kinetics, and the notable discrepancies between 

siRNA and miRNA kinetics should be assessed and taken into account when measuring 

their effect (Cuccato et al. 2011; Mukherji et al. 2011). This is especially important 

considering the assay established in this work. The construct has a siRNA, and is subject to 

siRNA kinetics, but is implemented into a pri-miRNA backbone and thus is processed by 

Dicer much more efficiently than from a dsRNA (Chakravarthy et al. 2010). This may 

cause that intact Dicer processing combined to low expression is efficient enough so that 

additional TRBP-mediated enhancement won’t have a significant effect, i.e. there isn’t 

enough processable pre-miRNA for Dicer activation to cause any change, in contrast to a 

situation where Dicer is dysfunctional or deficient. This is supported by the fact that the 

optimum RNAi-enhancing effect by enoxacin was observed at a siRNA concentration of 

8.4 × 10−
10

 M and to achieve the same RNAi knockdown efficiency, enoxacin can reduce 

the amount of siRNA by 2-5-fold (Zhang et al. 2008). It is not known if the amount to make 

this concentration is even produced by the induction of the T-Rex cells herein.  

One important thing to consider is when affecting gene expression rather than a protein’s 

mechanistic function, is that the maximal effect takes longer (48-72 h) to reach. This is why 

the earlier time points (24-48 h) may have not given positive results, due to false negatives 

and later time points (>72 h) may give false positives (Birmingham et al. 2009). Considering 
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why the assays created by Shan, Li and colleagues in 2008 and 2012 which used 48 hours 

of incubation, were validated to work, may be due to the differences in constructs, as they 

have a shRNA targeting the reporter, opposed to the pri-miRNA used here. These are 

transcribed (pol II vs pol III) and processed differently (pri-miRNA first by Drosha) which 

may alter kinetics and affect turnover times and account for the differences in results. 

As mentioned, serum deprivation was used, although serendipitously, as means to 

downregulate Dicer, but it may not be enough to downregulate into Dicer deficient disease 

mimicking levels. Therefore, one thing to consider would be the use of Dicer deficient cell 

lines, such as cancer cell lines know to be hemizygous for Dicer (Kumar et al. 2007; Foulkes 

et al. 2014). 

In conclusion, regarding only Dicer kinetics in terms of RNAi and not considering other 

steps, an ideal assay construct to measure Dicer activity dependent miRNA dysregulations 

would have 1-3 miRNAs (e.g. could also be expressed with a bidirectional promoter which 

would produce the right amount of expression) with the miRNAs targeting a bright 

fluorescent protein, or have more binding sites in the reporter transcript, using a Dicer 

deficient cell line. Regarding purely Dicer kinetics, a dsRNA would be better than a pri/pre-

miRNA so that activation would have a larger effect due to slower processing. However, if 

this were to be used to screen drugs for miRNA dysregulations, it assumes dsRNA and pre-

miRNA binding and processing is similar enough so that compounds which are found to 

activate in the assay would also work in vivo to reduce miRNA dysregulation associated 

diseases, which may not be the case. As to why it is in any case better to have a miRNA 

instead of a siRNA, is the reason for the more physiological role of miRNAs in mammals. 

It is not well known how the functions of miRNAs and siRNAs exerted on mRNA, i.e. 

degradation mostly with siRNAs compared to additional translational repression of 

miRNAs, may affect cellular function more generally. These may or may not have some 

further effects in Dicer or miRNA related dysregulations aimed to model with this assay, 

making miRNAs a better option from a physiological perspective. 

When considering the whole RNAi process, the steps upstream and downstream of Dicer 

processing in miRNA biogenesis, namely Drosha/DGCR8 processing, exp5 transporting, 

and miRISC mediated repressing should also be studied in terms of kinetics. This would 

able the assessment of whether they can act as rate-limiting so that Dicer activation is 
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redundant if any of the upstream or downstream processes were to be much less effective. 

For example, overexpression of shRNAs may clog up exp5 transport and additional 

overexpression of exp5 has been shown to enhance shRNA mediated RNAi which could 

also be the case in Drosha/DGCR8 or miRISC functioning (Yi et al. 2005). 

 

Future prospects for optimisation 

Bioluminescence based approach with renilla and firefly luciferases as the reporters is also 

an option, but most luciferase based approached for measuring RNAi have only been done 

by transient transfection, which as previously mentioned is not optimal for HTS and may 

induce variation (Zhang et al. 2008; Watashi et al. 2010). However, a dual luciferase system 

implemented into an adeno-associated virus and used as a miRNA sensor could be 

repurposed for a Dicer assay (Tian et al. 2012). Nevertheless, Lemus-Diaz et al. (2017) 

show that a similar fluorescence reporter system is comparable with a luciferase-based 

reporter system. Thus, advancing with fluorescent reporter systems, one option would be 

to use a brighter RFP, such as tandem dimer-(td)Tomato may increase sensitivity and 

therefore effect size. A brighter reporter could circumvent doxycycline inducing minimal 

expression and not being able to adjust the assay by controlling expression. On the other 

hand, tdTomato is not as photostable as mCherry, so it should be taken into account, 

especially when choosing imaging equipment (Graewe et al. 2009). 

Moreover, depending on the imaging platform, other options would be to use cyan 

fluorescent protein (CFP) and enhanced yellow fluorescent protein (EYFP) and different 

channels, or new blue-shifted engineered variants of fluorescent proteins, if the imaging 

platform was prone to overlapping of channels, for example (Molina et al. 2017). Additional 

reporters could allow to monitor even more processes at once and increase amount of data 

acquired from the assay. However CFP has shown to be photosensitive and subject to 

bleaching, thus making an RFP/GFP couple much better suited than CFP/EYFP (Tramier 

et al. 2006). Furthermore, engineered fluorescent proteins, such as mCherry variants, with 

minimal toxicity should be considered which could help with variability caused by potential 

toxic effects or reporters on cells (Shen et al. 2017). 

Although variation between replicates was already quite low, showed by low standard 

deviations and good CV values (<10), the variation could have been further reduced by first 
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calculating the ratio of mCherry and EGFP in single cells and then proceeding to calculate 

the mean of these ratios, opposed to counting the mean first and ratio after as has been 

done in these analyses. However, clumping of the cells, as previously mentioned, affected 

the detection capabilities of the CellProfiler pipeline and could have skewed the results, 

and therefore calculating whole area or aggregate fluorescence, as was done, from an image 

would still have been a better option.  

Recently published miRNA sensors could be repurposed to measure Dicer activity (Lemus-

Diaz et al. 2017). The construct Lemus-Diaz et al. created is quite similar to ours, the main 

difference being that they express endogenous human miRNAs (miR-27a and miR-19b) 

and have binding sites for them in the reporter protein transcript (either RFP or CFP), 

compared to our designed mCherry targeting siRNA. This could help with the physiological 

relevancy of the assay as mentioned previously.  

Taken the previous discussion into consideration, as of right now there is a new and 

improved construct which has tdTomato instead of mCherry and expresses human miR-

19b or human miR-27a and includes binding sites for them in the td-Tomato-NLS-WPRE 

transcript (Lemus-Diaz et al. 2017). The hypothesis for my work further is that this 

construct would increase the sensitivity and linear range of the assay, in addition to making 

it more physiologically relevant. 

An important thing for all the dual assays, would be to show further proof of the reporters 

reporting the actual phenomena aimed to be measured. This could be done by showing 

the correlation of the expression of reporters and their differences using precise ratiometric 

bidirectional promoter systems (Sladitschek and Neveu 2016). Further adjusting and 

optimisation could therefore be done by changing promoters that have similar expression 

patterns and adding regulatory regions or elements to further stabilize expression, such as 

was done here with WPRE. 

Regarding the lentiviral vector transduced SH-SY5Y cells, further sorting may have enabled 

selecting an expanding the few mCherry expressing cells but was not continued due to the 

T-Rex cell line seeming to work. Nevertheless, producing a viral vector would be an 

interesting avenue in future research for studying the reporter in vivo. This could possibly 

be done by in vitro translation, so that the pA sequences would not disturb the packaging 

(Blo et al. 2008). This is something to be considered when the assay is fully optimised, if 
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for instance, the new construct with human miRNAs and tdTomato should be more 

sensitive. 

 

Future prospects for screening 

Finding inhibitors, or activators that do not have drug-like properties would not be a loss 

either, because they could be repurposed to be used as cancer therapeutics, or chemical 

biology tools to further elucidate Dicer biology, respectively. One thing not to be 

overlooked is, that not only the activation of Dicer but more generally inducing Dicer, that 

is upregulating the expression of Dicer instead of, or in addition to, activation, may be 

beneficial in ameliorating neurodegenerative diseases. As it may be in the case of 

metformin, although it has not been shown that its neuroprotective effects, e.g. in PD, are 

mediated through Dicer upregulation (Bayliss et al. 2016; Hooten et al. 2016). 

Nevertheless, finding compounds which induce, rather than just activate Dicer is desirable, 

whether it is for therapeutic purposes or not. 

It would be interesting to study whether enoxacin, metorfmin or BDNF, would have 

synergistic effects in the assay, for example metformin upregulating while enoxacin 

activating and thus enhancing processing further. However, kinetics of miRNA processing 

and mRNA repression/degradation upstream and downstream of Dicer should be further 

elucidated, as previously mentioned, to account whether Dicer induction is even 

meaningful by itself or should also be accompanied by enhancing other key factor of RNAi 

to have significant effects in non- Dicer deficient states. 

Above all, a large-scale screen has been planned in collaboration for 3920 compounds from 

three different libraries. The assay still needs to be optimised so that the Z-factor is enough 

to justify large-scale screens, since they are expensive and wasting valuable resources is of 

interest to no one. However, if the assay cannot be further optimised and the effect of 

enoxacin is as shown in this study, the screen can be done with more replicates but fewer 

compounds (5-7 wells and <1000 compounds compared to 2-3 wells and 3920 compounds) 

without the reliability of the results suffering too much. 

Nevertheless, as it is tempting to speculate, if there are hits with drug-like properties found 

from screening, they will be confirmed and validated with the new construct and additional 
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in vitro binding studies. It is plausible that hits may be found rather easily, since from a 

medicinal chemistry perspective, Dicer, due to its RNA-binding interactions, multidomain 

nature and its actions mediated in concert with the RLC, is a suitable drug target since it 

may have plenty of binding sites for the drug(s) to exert their action on. The validated hit(s) 

will be selected as lead compound(s), optimised in collaboration with chemists and studied 

further in in vivo models of PD. 

 

 

4 CONCLUSIONS 

 

Dicer is a promising drug target for many miRNA dysregulation associated diseases, 

predominantly cancers linked to Dicer deficiencies and aging-related neurodegenerative 

disease, particularly ALS and PD (Kumar et al. 2007; Emde et al. 2015; Chmielarz et al. 

2017). Inducing, i.e. activating or upregulating, Dicer could help prevent global loss of 

miRNA -related stress to cells and promote the survival of cells with stress-related 

degenerative phenotypes. Therefore, compounds which selectively induce Dicer could 

have therapeutic value. 

This work aimed to establish an assay to screen for Dicer-activating compounds. Dicer 

processing of pre-miRNA and the subsequent silencing of a fluorescent reporter was 

achieved. The assay is functional to some extent, as mCherry/EGFP fluorescence ratio 

reduction was statistically significant after 72 hours administration of enoxacin, a known 

Dicer stimulating compound (Shan et al. 2008). Screening ten pharmacologically active 

compounds with the assay did not find any compounds to significantly reduce 

mCherry/EGFP fluorescence ratio. However, metformin and BDNF, compounds 

previously shown to have the ability to elevate Dicer levels, showed similar results to 

enoxacin, the positive control (Huang et al. 2012; Hooten et al. 2016). Enoxacin, BDNF 

and metformin should be further studied regarding their possible synergistic effects as well. 

Assessing the quality of the assay in terms of HTS, the Z-factor and CV indicate that the 

assay is robust in terms of variability but does not measure differences between the controls 

clearly enough to support large-scale screening with thousands of compounds. 
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Taken together, my thesis work provided further knowledge in the development of Dicer 

and miRNA processing related screening assays. Regarding the assay, because the effect of 

enoxacin was not robust, more optimisation is still needed with a better construct, other 

positive controls, and possibly clonal selection of cells if large-scale high-throughput 

screening were to be conducted with minimal resources. 
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APPENDIX 1 

 

Plasmid maps of produced plasmids. 

 

 

Figure 21. Plasmid maps of plasmids produced in this work as they are displayed in A 

plasmid Editor software. psiCHECK is the reporter plasmid, pCDH was used for 

producing the lentiviral vector and pTO was used for integrating the reporter plasmid into 

the FLP-IN 293 T-Rex cells’ genome. 



 

 

APPENDIX 2 

 

Doxycycline titration experiments using doxycycline-inducible cells. Two independent 

experiments using FLP-IN 293 T-Rex cells to assess optimal expression of mCherry 

siRNA. 
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Figure 22. Doxycycline titration using concentrations between 10-2000 ng/ml. There were 

no significant differences in mCherry/EGFP fluoresence ratio between doxycycline treated 

groups. Data are expressed as mean +/- SD, n=6 (wells). DOX = doxycycline. 
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Figure 23. Doxycycline titration using concentrations between 1-100 ng/ml. The difference 

in mCherry/EGFP fluoresence ratio between groups was minimal. 1 ng/ml was comparable 

to medium. Data are expressed as mean +/- SD, n=5 (wells). DOX = doxycycline. 


