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A B S T R A C T

Land cover change takes place in sub-Saharan Africa as forests and shrublands are converted to agricultural lands
in order to meet the needs of growing population. Changes in land cover also impact carbon sequestration in
vegetation cover with an influence on climate on continental scale. The impact of land cover change on tree
aboveground carbon stocks was studied in Taita Hills, Kenya. The land cover change between 1987 and 2011 for
four points of time was assessed using SPOT satellite imagery, while the carbon density in various land cover
types was assessed with field measurements, allometric biomass functions and airborne laser scanning data.
Finally, the mean carbon densities of land cover types were combined with land cover maps resulting in carbon
stock values for given land cover types for each point of time studied. Expansion of croplands has been taking
place since 1987 and before on the cost of thickets and shrublands, especially on the foothills and lowlands. Due
to the land cover changes, the carbon stock of trees was decreasing until 2003, after which there has been an
increase. The findings of the research is supported by forest transition model, which emphasizes increase of
awareness of forests' role in providing ecosystem services, such as habitats for pollinators, water harvesting and
storage at the same time when economic reasons in making land-use choices between cropland and woodland,
and governmental legislation supports trees on farms.

1. Introduction

Human modification of land has been recognized as a major driver
of change influencing the Earth's ecosystems and climate (Rockstrom
et al., 2009; Steffen et al., 2015). Land conversions in forested areas are
of special concern in the context of climate change. In Africa, significant
amount of carbon is also sequestered in woody vegetation outside for-
ests (Baccini et al., 2012). Land use change, deforestation in particular,
is the second biggest driver for increased carbon dioxide (CO2) emis-
sions after the burning of fossil fuels according to the Fifth Assessment
Report of the Intergovernmental Panel on Climate Change (IPCC) (Ciais
et al., 2013). It has been estimated that land use and land cover change
caused 12.5% of all anthropogenic CO2 emissions from 1990 to 2010,
but the estimate is uncertain (Houghton et al., 2012).

Tropical forest regions are currently undergoing rapid changes with
direct consequences to aboveground carbon (AGC) stocks (Feldpausch
et al., 2012; Saatchi et al., 2011). For recent decades, a remarkable
increase in cultivated areas has been detected in sub-Saharan Africa. An
increase of 57% in cultivated area was reported between 1975 and
2000, being 2.3% per year (Brink & Eva, 2009), and between 1990 and

2010 in the Horn of Africa 28%, with yearly increase of 1.4%. (Brink
et al., 2014). In East Africa, between 2002 and 2008, wooded vegeta-
tion cover decreased by 5.1%, 15.8% and 19.4% from forests, woodland
and shrubland, consecutively (Pfeifer et al., 2012). Using historical land
cover maps, Willcock et al. (2016) estimated 74% forest loss between
1908 and 2000 in Eastern Arc Mountain watershed in Tanzania causing
a carbon release of 0.9 Pg C.

Total net emissions of carbon from deforestation and land cover
change in tropical regions has been estimated to be 1.0 Pg C per year
(Baccini et al., 2012). However, in Asia and Africa the rate of defor-
estation is expected to decrease in the 21th century compared with
deforestation rates in 1990 due to the depletion of forests (Denman
et al., 2007). Total AGC stocks in tropical Africa are estimated as
59.8 Pg C, with 45.9% in shrublands and savannahs and 54.1% in forest
land (Baccini et al., 2012). Lack of data on carbon densities and land
use/land cover changes cause large uncertainties in these estimates
(Baccini et al., 2012).

Number of initiatives aim to reduce anthropogenic carbon emissions
from changes in land cover. In REDD + program, for example, the
changes in forest AGC stocks need to be quantified with scientifically
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rigorous monitoring systems (UN-REDD, 2011; GOFC-GOLD, 2014). In
these initiatives, agroforestry is an important approach as a carbon
sequestration strategy (Montagnini & Nair, 2004). AGC of trees in
agricultural land play an important role in mitigating climate change,
but agroforestry systems are often not accounted for in national and
global assessments (Zomer et al., 2016).

Earth observation contributes to the monitoring of anthropogenic
greenhouse gas emission. Remote sensing provides effective methods
for observing changes in land cover over large areas with limited data
availability or accessibility. Combined with tree measurements in the
field, remote sensing data enable the mapping of AGC (Baccini et al.,
2012; Willcock et al., 2012). The use of global default values for esti-
mating carbon storage (Aalde et al., 2006) in data deficit areas may
result in simplified estimations of local carbon stocks (Baccini et al.,
2012). Efforts for more precise carbon estimations have been made on
pan-tropical (Baccini et al., 2012; Saatchi et al., 2011), national
(Tyukavina et al., 2013) and regional (Gonzalez, Kroll, & Vargas, 2014)
scales.

Optical satellite imagery is often the primary data source for mon-
itoring land changes in tropical forest areas (GOFC-GOLD, 2014).
However, lidar (light detection and ranging), particularly airborne laser
scanning (ALS), has been proven to provide more precise three-di-
mensional data on vegetation properties, including tree biomass and
carbon stocks (Zolkos, Goetz, & Dubayah, 2013). Combining local scale
carbon stock estimates from ALS with land cover maps produced from
satellite imagery can yield regionally applicable carbon density values
in a cost-efficient way (Willcock et al., 2012) allowing also change
detection and projection of future scenarios of carbon storage (Gonzalez
et al., 2014; Swetnam et al., 2011). It is also possible to extend the
carbon storage monitoring backwards using historical land cover maps
as in Willcock et al. (2016). A recent study by Baccini et al. (2017)
based on MODIS satellite imagery from 2003 to 2014 presented that
tropical forests are net carbon source rather than a sink as deforestation
and forest degradation (reduction in carbon density) are faster than
forest growth. The loss of carbon is the highest in Amazonia, while in
Africa there are areas of gain and losses. This study presents a land-
scape-scale study of carbon stock changes between 1987 and 2011 in
the Taita Hills in south-east Kenya.

The Taita Hills were once forested, but during last centuries most of
the forests were cleared for agricultural purposes, while on surrounding
lowlands, land is used for dryland agriculture, grazing, wildlife

conservation and sisal farming to large extent (Pellikka et al., 2013).
Despite of the clearance for agriculture, indigenous trees are left and
exotic trees are planted for food production and timber on croplands.
Trees on farms play an important role providing ecosystem services
(Aerts et al., 2011). In the previous studies, land cover changes have
been monitored with aerial photographs and satellite imagery (Clark &
Pellikka, 2009; Pellikka, Lötjönen, Siljander, & Lens, 2009). According
to the projected land cover changes, cropland could cover 60% of the
area in 2030 (Maeda, Clark, Pellikka, & Siljander, 2010).

The aim of this study was to assess changes in tree AGC stocks in the
Taita Hills and its foothills as a case study of land cover change impact
on tree AGC stocks in East Africa. The Taita Hills are like a miniature of
Kenya and East Africa having a range on land uses and cover types from
grasslands in lowlands areas to indigenous moist evergreen montane
forests on the hilltops. The more detailed objectives of this study were
1) to assess land cover change trends in the area from 1987 to 2011
using land cover maps derived from SPOT satellite images from four
years, 2) to assess the amount of carbon sequestered across different
land cover classes using field measurements and ALS, and 3) to assess
the effect of land cover change on tree AGC stocks.

2. Study area and material

2.1. Study area

The study area covers 876 km2 in Taita Taveta County in SE Kenya
(3°25′ S, 38°20′ E). The lowest areas of the study area are at an average
elevation of 700m above sea level (m a.s.l.), while the Taita Hills rise
on average up to 1500m a.s.l. having the highest peaks between 1600
and 2200m (Fig. 1). The area has two rainy seasons annually, the long
rains occurring from March to May and short rains from November to
December. The hottest and driest months are January and February,
while the dry season from June to October is cooler. According to
Maeda, Wiberg, and Pellikka (2011), the average temperature in Voi at
566m a.s.l. is 27 °C in February and 23 °C in August. Annual rainfall in
the Taita Hills is according to Erdogan, Pellikka, and Clark (2011) be-
tween 1100 and 1400mm, while in the lowlands it is between 400 and
600mm. Rainfall increases with altitude, but the higher elevations in
the western parts of the hills receive less rainfall due to rain shadow
effect. The reference evapotranspiration is the highest in the lowlands
and the lowest in the hills. The maxima (> 7mm/day) in the lowlands

Fig. 1. Map of Taita Hills in southeastern Kenya re-
presenting the extent of study area (land cover map)
and airborne laser scanning data, and positions of
field plots. Background image is a false colour com-
posite of Sentinel-2A MSI satellite image from 8
October 2016. (For interpretation of the references to
colour in this figure legend, the reader is referred to
the Web version of this article.)
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occurs in October at the end of the dry season, while the minima
(4mm/day) occurs in the hills in May during the rainy season (Maeda
et al., 2011).

The Taita Hills are the northernmost part of the Precambrian
Eastern-Arc mountain range known for its rich biodiversity (Platts
et al., 2011). The hilltops are typically covered with indigenous moist
evergreen montane forest with varying disturbance levels (Aerts et al.,
2011) hosting endemic flora and fauna (Chege & Bytebier, 2005) of a
specific scientific and conservation interest. The montane forest cover
has decreased in the hills by 50% between 1955 and 2004, the largest
patches being between 100 and 180 ha. Due to the establishment of
exotic plantation forests, mostly of pines and eucalyptuses, the total
forest area has remained about the same since 1950's (Pellikka et al.,
2009). In the hills, outside of forests, the main land cover is cropland
(Pellikka et al., 2013). The highest aboveground biomass have re-
mained in the hills receiving more rainfall and on steep slopes, which
have been too cumbersome for agricultural expansion (Adhikari et al.,
2017).

The foothills and the lowlands are characterized by Acacia-
Commiphora type dry thickets and shrublands, and croplands by dry-
land agriculture, cattle grazing, wildlife conservation and sisal farming.
The area is divided into agro-ecological zones (AEZ) based on estimated
yield and the length of growing period in different climate conditions
occurring at different elevation ranges by Jaetzold and Schmidt (1983).
In this study, we analyzed separately the land cover change and carbon
stocks in the highland zone and upper midland AEZ above 1220m a.s.l.,
and lower midland and lowland zones below it (Fig. 1). The croplands
below and above 1220m boundary are characterized by different crops,
phenology and soil types, and also land cover change trend. Fig. 2
presents examples of cropland below and over 1220m a.s.l. and mon-
tane forest of the Taita Hills.

2.2. Satellite imagery

Clark and Pellikka (2009) produced land cover classifications for
1987, 1992 and 2003 using 20m spatial resolution SPOT HRV and
SPOT HRVIR imagery applying an object-oriented approach, also re-
ferred to as a multi-scale segmentation and object relationship model-
ling (MSS/ORM) methodology. The same approach was used for pro-
cessing and classification of the SPOT 4 HRVIR image from October

2011 to ensure comparability between the land cover maps from dif-
ferent dates. The HRVIR sensor contains spectral information on four
spectral bands: green (0.50–0.59 μm (μm)), red (0.61–0.68 μm), near
Infrared (NIR) (0.78–0.89 μm) and a middle infrared (MIR,
1.58–1.75 μm). The 2011 image was the most recent, relatively cloud-
free SPOT 4 image available from the study area. Another SPOT 4
image from September 2008 was used for filling the clouds in the 2011
image. Additional reference data for the accuracy assessment were
collected from aerial and satellite images available from Google Earth.
Preprocessing of the SPOT imagery included geometric correction,
DOS3 atmospheric correction (Clark, Suomalainen, & Pellikka, 2010)
and topographic C-correction (Teillet, Guindon, & Goodenough, 1982).
The SPOT data are characterized in Table 1.

2.3. Airborne laser scanning data

ALS data sets from two parts of the study area (Fig. 1) were utilized
to make high-resolution AGB maps for computing mean AGB densities
per land cover classes. The first scanning took place 4–5 February 2013
and covered 100 km2 in the hills. The second scanning took place 17
January 2014 and covered 150 km2 in the lowlands. The sensor was
Optech ALTM 3100 in both campaigns. A maximum of four returns per
pulse were recorded. Further survey and sensor specifications are given
in Table 2.

The data vendor (Topscan GmbH) pre-processed both ALS data sets,
including filtering of the ground returns using Terrascan software
(Terrasolid Oy). The data were delivered as georeferenced point clouds
in UTM/WGS84 coordinate system with ellipsoidal heights.
Furthermore, buildings, powerlines and outliers (high points) were
filtered using Terrascan, LAStools (Rapidlasso GmbH) and manual
editing. Finally, the ground classified returns were used for generating
digital elevation models (DEM) at 1m cell size.

2.4. Field data

The field data was collected from two parts corresponding to the
ALS data collection (Fig. 1). The field work in the hills was carried out
in January 2013 measuring 100 circular field plots, while 61 plots were
measured in the lowlands in January 2014. The sampling followed
spatially stratified and clustered design of the Land Degradation

Fig. 2. A) Cropland over 1220m characterized by tree cover, B) Cropland below 1220m on alluvial plane, C) Indigenous moist evergreen montane forest, D)
Cropland over 1220m with Grevillea robusta trees.
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Surveillance Framework (LDSF) by Vågen, Winowiecki, Tamene Desta
and, Tondoh (2013). In addition, 24 plots were subjectively placed in
montane forests and 9 plots in exotic plantation forests in the hills as
random sampling did not cover different forest types properly. From
0.1 ha circular sample plots all trees with diameter at 1.3m height
(D) > 10 cm were identified and measured. Tree height (H) was re-
corded for at least three trees in each plot (minimum, median and
maximum D) with a laser rangefinder (Laser Technology TruPulse 360)
or a hypsometer (Suunto). In order to use the ALS data with the field
measurements, the plot centre positions were measured with a GNSS
receiver (Trimble GeoXH) equipped with an external antenna (Trimble
Zephyr Model 2). We applied differential correction in relation to a
GNSS base station recording determined using Trimble RTX post-pro-
cessing service (Trimble, 2014).

3. Methods

3.1. Biomass calculation

Site-specific or regional tree aboveground biomass (AGB) allometric
equations are scarce for the study area including a large number of tree
species. Therefore, we calculated AGB for majority of the trees (Table 3)
using the most recent pan-tropical tree AGB equation (Chave et al.,
2014) based on D, H and wood density (ρ, g cm−3). For trees with only
D measurement, H was predicted using two-parameter Curtis's height
function (Curtis, 1967) and non-linear mixed effect modelling
(Valbuena, Heiskanen, Aynekulu, Pitkänen, & Packalen, 2016). Wood
densities (ρ) were retrieved from the online databases (ICRAF, 2015;

Zanne et al., 2009). If species-wise value was not found, genus-wise
mean was used, and if genus-wise mean could not be calculated, the
mean values for species in the lowlands and hills were used. Chave et al.
(2014) found that single equation holds across tropical vegetation types
when H is included. This is important as study area includes an eleva-
tion gradient and range of vegetation types. However, Chave et al.
(2014) tree harvest dataset included only old-growth or secondary
woody vegetation, not plantations or agroforestry systems. Therefore,
we used separate equations for Acacia spp., Eucalyptus spp. and Pinus
spp., which are common in plantations and agroforestry systems
(Table 3). In the case of Pinus spp., stem volume (V) estimates were
converted to AGB using wood density and biomass expansion factor for
tropical pines (Penman et al., 2003). Furthermore, palm equation from
Brown (1997) was used for Phoenix reclinata, which is a native palm
tree in the Taita Hills.

The mean AGB was 118.1Mg ha−1 for the 123 plots with trees in
the hills (range 0.3–681.7Mg ha−1) and 9.3 Mg ha−1 for the 53 plots
having trees in the lowlands (range 0.0–51.4Mg ha−1) indicating that
the trees were much bigger and numerous in the hills.

3.2. Land cover classification

The 1987, 1992 and 2003 SPOT scenes were classified into 12
classes (Clark & Pellikka, 2009): cropland, shrubland, thicket, grass-
land, woodland, exotic plantation forest, water, indigenous evergreen
moist montane forest, bare rock, bare soil, built up areas, and burned
areas. As burnt areas did not exist in 2011 scene, and built-up areas and
bare soil classes were combined into one class, the classification of 2011
scene resulted in 10 classes.

In the first step, multi-resolution segmentation was implemented in
eCognition software (Trimble) with different scale parameters similar
to Clark and Pellikka (2009). Based on a visual inspection of the seg-
mentation results, the scale producing the most meaningful landscape
patterns was chosen. Then, the objects were classified using a su-
pervised nearest-neighbor classification. The objects for training the
classifier were selected based on the field observations and image in-
terpretation. Further knowledge-based rule sets were generated for
adjusting the classification based on different object features and
hierarchical relationships. Also manual class-assignment was used for
editing the map. For example, croplands above and below 1220m a.s.l.
were classified separately due to the different spectral properties of the
dry lowland agricultural areas and the moist and mixed upland

Table 1
Characteristics of the SPOT data used.

Date Path and row Sensor Sensor view angle Solar azimuth angle Solar elevation angle

1 July 1987 143–357 SPOT 1 HRV 1 right 10.35° 41.4° 53.7°
25 Mar 1992 142–357a SPOT 2 HRV 1 right 13.8° 79.0° 63.5°
25 Mar 1992 143–357a SPOT 2 HRV 2 right 9.3° 78.7° 64.0°
15 Oct 2003 143–357 SPOT 4 HRVIR 1 right 10.4° 104.3° 69.0°
6 Sep 2008 143–357 SPOT 4 HRVIR 1 left 22.3° 23.5° 65.0°
23 Oct 2011 143–357 SPOT 4 HRVIR 1 right 26.2° 105.7° 58.1°

a Adjacent scenes captured simultaneously.

Table 2
Characteristics of the airborne laser scanning data sets.

Parameter ALS1 over the hills ALS2 over the lowlands
Coverage 100 km2 150 km2

Date 4–5 February 2013 17 January 2014
Sensor Optech ALTM 3100 Optech ALTM 3100
Mean range (m) 760 1240
Pulse rate (kHz) 100 70
Scan rate (Hz) 36 37
Scan angle (°) ± 16 ±18
Pulse density (pulses m−2) 9.6 2.9
Return density (returns m−2) 11.4 3.3
Beam divergence at 1/e2 (mrad) 0.3 0.3
Footprint diameter (cm) 23 37

Table 3
Summary of the allometric equations.

Tree species Equation Reference Trees

Acacia spp. = − + × ×AGB exp D( 1.59 2.19 ln( ) 1.05 Paul et al., 2013 214
Eucalyptus spp. = − + × ×AGB exp D( 1.71 2.21 ln( ) 1.29 Paul et al., 2013 244
Pinus spp. = × × − × × + ×

− − −V D D8.42 10 7.354 10 2.506 104 2 3 2 Henry et al., 2011 125
Phoenix reclinata = + ×AGB H10 6.4 Brown, 1997 148
Other species

= ×AGB ρD H0.0673 ( )2 0.976 Chave et al., 2014 2988

AGB =aboveground biomass (kg); V =stem volume (m2); D =diameter at 1.3 m height (cm); ρ =wood density (g cm−3); H = tree height (m).
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agricultural lands caused by vegetation phenology and different soil
types. Finally, cloudy areas in 2011 image (4% of the whole area) were
filled by a classification of the 2008 image.

The reference dataset for accuracy assessment included 305 points
collected in the field (161 points visited in 2013 and 2014 according to
the random cluster sample, and 6 additional points from montane forest
areas), and points interpreted from aerial photographs and satellite
imagery available from Google Earth (138 random points covering the
whole area). The points had not been used for training the classifica-
tion.

3.3. Biomass mapping and modelling

The approach used for AGB modelling and mapping was similar for
the hills and lowlands. First, an exhaustive set of ALS features was
calculated for the field plots. The features included all height- and
cover-related features provided by the FUSION software (McGaughey,
2014). A threshold of three meters was used to separate canopy and
ground returns. A relatively high value was used because of large
minimum diameter used in the field inventory (Hansen, Gobakken,
Bollandsås, Zahabu, & Næsset, 2015). Then, the models for AGB pre-
diction were fitted using multiple linear regression. The best models of
1–3 predictors were searched by an exhaustive search ‘regsubsets’
function in package ‘leaps’ (Lumley, 2017) in R (R Core Team, 2015).
The models were assessed by leave-one-out cross-validation and ranked
by the root mean square error (RMSE). The best models that had only
significant predictors (p < 0.05) and no multicollinearity (variance
inflation factors < 4) were selected. The models with three and two
variables, and models with two and one variables were compared by
the analysis of variance to see if additional predictors improved model
fit significantly. Square root transformation was applied to AGB as it
was found to improve model fits. The back-transformation bias was
corrected by multiplying the predictions by the square of the standard
error (Gregoire, Lin, Boudreau, & Nelson, 2008). Finally, the ALS fea-
tures were calculated for 32m×32m grid cells, and the selected
models were used for predicting AGB maps for the hills and lowlands.

The AGB models for the hills and lowlands are presented in Table 4,
and corresponding maps in Fig. 3. In the hills, the best model was based
on 25% percentile of the height values (H.p25) and canopy cover based
on all returns (CC.all= all returns > 3m/all returns× 100). In the
lowland area, the best model included the standard deviation of return
heights (H.stdev) and the 60% percentile of the height values (H.p60) as
explanatory variables. The model fits were acceptable in both areas in
terms of adjusted coefficient of determination (R2). However, RMSE
was greater in the hills because of the higher mean AGB but relative
RMSE (%) indicates similar performance in the both areas. According to
the AGB maps, the highest values in the hills were found within the
montane forests as well as in exotic forests, especially in the Yale hill. In
the lowland area, the largest AGB was found in the hillsides and along
moist river banks and the smallest AGB in dry croplands.

3.4. Calculation of carbon densities for each land cover type

The AGC for different land cover types were calculated as zonal
averages from the AGB maps (Fig. 3) for each land cover class in the
2011 land cover map. A carbon fraction of 0.47 was used for converting
AGB to AGC (IPCC, 2006). AGC for the montane forests, exotic forests
and cropland above 1220m a.s.l. were calculated based on the AGB

map in the hills, and for shrubland and cropland below 1220m a.s.l,
mean AGC was calculated based on the AGB map in the lowlands
(Fig. 3). For woodlands and thicket, mean AGC was calculated as an
average from both AGB map extents. The AGC densities of grassland,
bare soil and built up areas, bare rock, and water were assumed zero.

4. Results

The highest mean AGC density of trees was estimated for indigenous
montane forest class, and lowest carbon densities were estimated for
shrubland and cropland classes located below 1220m a.s.l. (Table 5).
Mean values were 89.5Mg C ha−1 for montane forest, 29.4 Mg C ha−1

for exotic forest, 16.8Mg C ha−1 for woodland, 6.0 Mg C ha−1 for
thicket, 2.6 Mg C ha−1 for shrubland, 9.1Mg C ha−1 for cropland above
1220m a.s.l. and 2.3 Mg C ha−1 for cropland below 1220m a.s.l.

4.1. Land cover change

Changes in the proportions of the most extensive land cover classes
can be observed from the land cover maps from 1987 to 2011 (Fig. 4).
Land areas and proportions of total mapped area are reported in
Table 6. The proportion of cropland has increased from 30.1% to 42.8%
between 1987 and 2011. At the same time, the area of thickets de-
creased from 29.3% to 23.2%, and shrublands from 29.4% to 18.9%.
Area of woodland, exotic forest and montane forest have increased
slightly since 1987 until 2011. The overall classification accuracies for
2003 and 2011 were 89% and 71.1%, respectively, while it was not
possible to assess the accuracy of 1987 and 1992 classifications.

It can be seen in Fig. 4 that area of croplands increased in the
foothills and lowlands from 1987 to 2011, while changes in area in the
hills are small. The area of croplands decreased from 10028 ha to
9743 ha in the hills, while the area in the foothills and lowlands below
1220m a.s.l. increased from 16361 ha to 27730 ha (Table 6).

In terms of conversion between specific land cover classes, the
greatest change was observed between shrubland and cropland as
6414 ha of shrubland was converted into cropland between 2003 and
2011. At the same period, 3423 ha of cropland was converted to
shrubland and 2567 ha to woodland, while 1103 ha woodland was
converted to cropland. Based on the comparison of 2003 and 2011 land
cover, the area of croplands expanded mostly in the lowland area in the
previous shrubland and thicket areas, while conversion of cropland to
shrubland and woodlands took place in the hills (Fig. 4). Above 1220m
a.s.l. croplands covered 40.4% in 2011 of the all the land cover classes
with decreasing area from 2003.

4.2. Impact on carbon stock

Total AGC stock decreased between 1987, 1992 and 2003, but was
increased in 2011 (Fig. 5, Table 7). Thickets stored the largest amount
of carbon throughout the period but the storage decreased steadily due
to the expansion of croplands to thickets. The second largest stock is
either in cropland above 1220m a.s.l. or in woodland depending on the
year.

The carbon storage in the shrubland has decreased due to expansion
of croplands to the shrublands in the lowlands. The carbon sequestered
in croplands below 1220m a.s.l. increased from 7% to 11%, along with
the expansion of croplands. In the hills above 1220m, carbon storage in
croplands is stable due to no expansion of croplands there. Combining

Table 4
Selected models for mapping tree aboveground biomass (AGB).

Area Model Adj. R2 RMSE (Mg ha−1) RMSE (%)

Hills = − + × + ×AGB H p CC all1.69 0.528 . 25 0.116 . 0.93 56.9 48.5

Lowland = − + × + ×AGB H stdev H p0.192 1.13 . 0.166 . 60 0.89 4.26 44.7
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the carbon stocks of the croplands below and above 1220m a.s.l. shows
that the cropland has the highest carbon stock of all the classes
(153231Mg). Croplands are the most significant carbon stock with its
largest land cover share (43%) after thickets. Per hectare, the carbon
stock is 4Mg for croplands, while for thicket it is 6Mg.

5. Discussion

5.1. Carbon stocks

The highest tree AGC densities were estimated for montane forests
(Fig. 2C). However, as the area of this land cover class is relatively
small, other land cover classes constituted most of the total AGC stock.
Thicket, woodland and cropland above 1220m a.s.l. were found to
store most of the carbon, which can be generalized so that areas with
open tree cover constituted most of the total AGC. Thus, the results
show that carbon sequestration in trees with D > 10 cm is significant
also outside forests. These findings are in line with the continent-level
results from Baccini et al. (2012), which show that AGC stocks in woody
vegetation outside the forests constitute almost half of the carbon stocks
in Africa. Zomer et al. (2016) found out that 43% of agricultural land
had globally at least 10% tree cover. The results differ from Baccini
et al. (2017) presenting a loss of forest in tropical Africa and a net

carbon source. However, in detailed inspection of the results of Baccini
et al., one can note that the Taita Hills is shown as carbon increase area
between 2003 and 2014, while nearby Mt. Kilimanjaro is shown as
carbon decrease area. Although the scale of the study using MODIS data
by Baccini et al. differs from our scale, it present the same trend which
we observed for time period 2003 and 2011.

In this study, croplands were divided into two elevation zones for
AGC density estimation. Higher carbon densities were estimated for the
croplands above 1220m (Fig. 2A and D), which indicates greater tree
volume in the croplands in the hills, where agroforestry is practiced,
which emphasizes the role of trees on farms in ecosystem functioning
(Thijs et al., 2015). In addition to carbon sequestration, the forest can
trap water from the air as fog deposit (Muchura, Min, Mworia, &
Gichuki, 2014), store water in the tree biomass, epiphytes, litter and
soil (Bruijnzeel, Scatena, & Hamilton, 2010), provide shade for the
crops, and litter for fertilizing soils (Rhoades, 1996).

The highest mean carbon density for montane forest was estimated
as 89.0 Mg C ha−1 and maximum density value for a 32m×32m grid
cell was 248Mg C ha−1. The mean density is less than global default
values represented by Aalde et al. (2006), who used 141Mg C ha−1 for
tropical rain forests. According to Baccini et al. (2012), smaller carbon
densities were reported for tropical Africa (82Mg C ha−1) compared
with other tropical areas (116Mg C ha−1 for America and
119Mg C ha−1 for Asia), which supports the lower carbon densities for
montane forests in the Taita Hills compared to the global default value.
Furthermore, the indigenous montane forest fragments of the Taita
Hills are badly degraded (Aerts et al., 2011) by removal of the largest
trees, which decreases the carbon stock. Kenya Forest Research Institute
evidenced this as the degraded forest stands were found to sequester
less carbon (by 9–70%) compared to undisturbed ones (Wekesa et al.,
2016).

The previous studies on carbon stocks in the Taita Hills had some
methodological differences compared to this study making comparisons
of the carbon stocks not straightforward. Omoro, Starr, and Pellikka
(2013) reported plot-level mean AGC density for montane forests as
360Mg C ha−1 and for exotic forests (cypress, eucalyptus and pine)
158, 221 and 195, respectively. Itkonen (2012) estimated that carbon
density for montane forests was 231 ± 95Mg C ha−1 and for exotic
forests 133 ± 95Mg C ha−1. Both of the previous studies included
measurements from Mbololo, the least disturbed forest fragment (Aerts

Fig. 3. Tree aboveground biomass (AGB) in the in the hills (A) and in the lowlands (B) mapped at 32m×32m resolution.

Table 5
Mean, maximum and standard deviation of tree aboveground carbon (AGC)
densities for different land cover types in 2011.

Land cover class Area (ha) AGC mean
(Mg C ha−1)

AGC max
(Mg C
ha−1)

AGC sd (Mg
C ha−1)

Cropland< 1220m 27730 2.3 96 3.1
Cropland> 1220m 9743 9.1 189 11.5
Shrubland 16577 2.6 71 3.5
Thicket 20364 6.0 169 7.4
Woodland 6392 16.8 216 17.5
Exotic forest 2656 29.4 273 30.7
Montane forest 813 89.5 254 56.1
Grassland 2234 0.0 0.0 0.0
Bare soil & built up areas 991 0.0 0.0 0.0
Rock 114 0.0 0.0 0.0
Water 17 0.0 0.0 0.0
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et al., 2011), and used allometric models, which did not consider tree
height. If height is excluded from the AGC calculations, the estimates
can be significantly smaller (Valbuena et al., 2016). For example,
Marshall et al. (2012) showed that mean AGC was 174.6Mg C ha−1

when height was included and 229.6Mg C ha−1 when it was excluded
along a forested elevation gradient in Tanzania. Furthermore, the pre-
vious studies assumed carbon fraction to be 50%, which makes a small

difference.
The results compared with a REDD + project undertaken in the

Kasigau near the Taita Hills are more similar (Wildlife Works, 2008).
Carbon densities estimated using destructive methods were reported as
55.7 Mg C ha−1 for montane forest, 4.7 Mg C ha−1 for agricultural en-
croachments, 35.0 Mg C ha−1 for dryland forest and 2.8Mg C ha−1 for
savannah grassland. Glenday (2006; 2008a,b) has assessed carbon
stocks in other parts of Kenya. The aboveground carbon density of
lowland rain forest in Kakamega was 200Mg C ha−1 (Glenday, 2006),
in Arabuko Sokoke coastal forest between 36 and 48Mg C ha−1 de-
pending on the tree species (Glenday, 2008b), and 140Mg C ha−1 for
Tana levee riverine forests (Glenday, 2008a). However, the indigenous
montane forests of Taita Hills being degraded and close to coastal for-
ests, the carbon density values may be comparable with the Arabuko
Sokoke forests, at least with the tall Brachystegia forest.

The land cover change between 1987, 1992, 2003 and 2011 had an
impact on the total carbon stock in the study area. Between 1987, 1992
and 2003, a decreasing trend in total carbon stocks was detected, but
there was an increase in the total amount of carbon sequestered in
2011. An increasing trend in croplands and a decreasing trend in
thickets are the most notable changes. Results for croplands below
1220m a.s.l. follow the observed (Clark & Pellikka, 2009) and pre-
dicted (Maeda et al., 2010) trends in the study area, a clear reduction in
the area of thickets translated into reduced carbon storage in the area.
Clearing thickets for agricultural use decreases the amount of woody
vegetation in the landscape resulting in lower total carbon stocks. On a
continental scale, Baccini et al. (2012) observed that clearing of trees in
areas outside forests may have a significant impact on changes in
carbon stocks.

5.2. Methodological considerations

The landscape of the Taita Hills is highly heterogeneous (Fig. 2A)
and land cover classification is challenging using satellite imagery and
even with very high resolution hyperspectral data classification of
agricultural crops is a challenge (Piiroinen et al., 2015, 2017). There
was confusion especially between the cropland and shrubland classes,
shrubland and thicket classes, as well as between thicket and woodland,
which are likely caused by spectral overlap between the classes con-
sisting of vegetation and open soil. Confusion between croplands and
shrublands is inevitable, as the croplands are characterized with trees
and bushes. However, the accuracy is considered satisfactory as the
most confusing misclassifications were between shrubland, woodland
and thicket, while croplands were classified with high accuracy (81.5%
user's accuracy). The object-based method was useful in detecting
meaningful image objects in the landscape scale, but on the other hand,
the object-based classification produces also a more generalized output
(Blaschke et al., 2014), which may affect the final carbon density va-
lues.

In this study, only tree with D > 10 cm were considered, but
smaller trees and shrubs might constitute a considerable fraction of the
woody biomass, especially in the lowlands. Thus part of the AGC may
have been evidently excluded in thicket and shrubland land cover
classes. Last, carbon densities were averaged over land cover classes
from the AGB maps instead of direct plot measurements to enable a
representative sample for each land cover class. Thus, an average
carbon density value is given to a land cover class (area with hetero-
geneous properties), and the comparison of these results with mea-
surements from homogenous forest plots is not straightforward.

In a multitemporal study expanding over several decades, one has to
use various data types collected using various sensors, which may cause
uncertainties to the results. We used data from SPOT HRV 1, HRV 2,
and HRVIR 1, but the wavebands and spatial resolution used for the
classification were the same for each individual classification. We do
not see any significant impact on using various sensor types to the
confidence on the results as each image was analyzed separately.

Fig. 4. Land cover classifications and proportions of different land cover classes
for 1987 and 2011.
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Another concern is impact of time of year to the interpretation of the
land cover classes. Varying solar azimuth and zenith angles causes
variations in the illumination (Pellikka, 1996) especially in rough to-
pography as in the Taita Hills, but topographic effects were removed
with C-correction (Adhikari, Heiskanen, Maeda, & Pellikka, 2016;
Teillet et al., 1982). Another impact caused by time of the year is
phenological status of the both natural and cultivated vegetation. The
lowland forests consists typically deciduous trees shedding the leaves
during dry season, while native and exotic forests in the hills are ty-
pically evergreen throughout the year. Agricultural fields are verdant
during the rainy season, while during the dry seasons and especially at
the end of them fields are mostly barren. The 1992 images were taken
during rainy season, 1987 image was taken right after a rainy season,
while 2003, 2008, and 2011 images were taken at the end of the dry
season. As a consequence, one could make serious false interpretations
on land cover change if not taking the phenological differences into
account. We performed an independent classification for each imagery
knowing the phenology of the study area. In order to retrieve the
carbon stocks, many steps including field measurements, allometric
models, ALS-based maps and classifications were made. Further studies

are required to understand the total effect of uncertainties involved in
each step.

5.3. Land change trend

The need for more efficient methods of quantifying aboveground
carbon stocks is often stated (Baccini et al., 2012; Chave et al., 2014;
Feldpausch et al., 2012). In this study we used our land cover change
results together with field measurements and ALS data for estimating
the impacts of land cover change on carbon stocks. ALS has proofed to
be an accurate and efficient method in carbon inventories (Zolkos et al.,
2013), and in forestry studies in general, but more case studies from the
tropics are needed (Maltamo et al., 2014). Cost-effectiveness needs also
to be taken into account. Organizing ALS campaigns is expensive,
especially in Africa, so it may not be viable to use ALS for carbon
monitoring only. Thus, a combination of satellite image classification is
a relevant approach, and a necessity in assessing historical carbon
stocks. Applying global default values (Aalde et al., 2006) especially in
a fragmented landscapes of Africa might overestimate the size of carbon
stocks.

Table 6
Land cover in the Taita Hills, SE-Kenya in 1987, 1992, 2003 and 2011.

Land cover class 1987 1992 2003 2011

Area (ha) % Area (ha) % Area (ha) % Area (ha) %

Cropland< 1220m 16361 62 17955 67 24864 69 27730 74
Cropland> 1220m 10028 38 8843 33 11171 31 9743 26
Total cropland 26389 30.1 26798 30.6 36035 41.1 37473 42.8
Shrubland 25726 29.4 21136 24.1 19567 22.3 16577 18.9
Thicket 25711 29.3 25893 29.5 20814 23.8 20364 23.2
Woodland 4827 5.5 5758 6.6 5043 5.8 6392 7.3
Exotic forest 2057 2.3 1830 2.1 2039 2.3 2656 3.0
Montane forest 779 0.9 738 0.8 697 0.8 813 0.9
Grassland 1314 1.5 1304 1.5 1607 1.8 2234 2.5
Bare soil and built-up areas 448 0.5 761 0.9 1016 1.2 991 1.1
Rock 235 0.3 225 0.3 189 0.2 114 0.1
Water 84 0.1 50 0.1 19 0.0 17 0.0
Burned area 59 0.1 262 0.3 603 0.7 0 0.0
Cloud 0 0.0 2874 3.3 0 0.0 0 0.0
Total 87629 100.0 87629 100.0 87629 100.0 87629 100.0

Fig. 5. Aboveground tree carbon (AGC) density (Mg C ha−1) in 1987, 1992, 2003 and 2011.
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Detailed study by Pellikka et al. (2009) documented a rapid loss in
the extent of indigenous montane forests since 1955. The process of
deforestation has more recently slowed down and the total area of
montane forests in the hills has not further decreased between 2003 and
2011 (Pellikka et al., 2013). The slowing trend of expansion of crop-
lands seems to favor carbon sequestration. Similar slowing trends in
expansion of agriculture was reported also by Olang and Fürst (2011) in
Nyando river basin in Kenya, but on the other hand Were, Dick, and
Singh (2013) reported an ongoing expansion of croplands in the Mau
forest, Kenya up to 2011. This alarming decrease of forests in the Mau
forest, can be seen also in Baccini et al. (2017). Increase of carbon
stocks in 2011 over 1220m a.s.l. is presumably due to growing number
of trees on farms compared to late 1900s and early 2000s, which has
been identified also visually by the research team after working in the
Taita Hills in 1989 (Pellikka, 1990) and again since 2004 (e.g. Pellikka
et al., 2004).

Analyzing drivers of land cover and land use change is often sim-
plified in land change studies (Lambin et al., 2001). In this study, land
cover change was seen as a driving force for changes in carbon stocks.
In Maeda et al. (2010), the most significant drivers in the Taita Hills

were modelled to be distance to markets, roads and drivers causing the
expansion of agricultural areas. Muriuki et al. (2011) found in studies
close by Chyulu hills in Kenya an increase in built-up areas and
squatters causing land cover change and fragmentation of vegetation.
Evidently, the main reason for expansion of croplands is a need for daily
bread and food security, at least in the lowlands, but in the hills the
drivers may be different.

The environmental and social drivers as well as governmental de-
cision systems at different scales need to be recognized in order to
understand ongoing changes in land cover and carbon stocks (Were
et al., 2013). The increase of carbon stock in the Taita Hills after 2003
can be explained by environmental legislation, climate change, and
effects of conservation education (Himberg, Omoro, Pellikka, &
Luukkanen, 2009). A lot of environmental conservation work by gov-
ernment, non-governmental organizations, and academic research or-
ganizations has been carried out, and the findings have been dis-
seminated in the Taita Hills. The increase of carbon stock especially in
the croplands after 2003 and also the change from croplands to
shrublands and woodlands, may be caused by the fact that farmers are
changing from agriculture to forestry since there has been less rainfall

Table 7
Aboveground tree carbon (AGC) stock in Megagrams (Mg). AGC for grassland, bare rock, bare soil and built-up areas were set to zero and are not presented in the
table.

Land cover class 1987 1992 2003 2011

AGC % of total AGC % of total AGC % of total AGC % of total

Cropland< 1220m 37631 7% 41295 7% 57187 11% 63779 11%
Cropland> 1220m 91253 16% 80474 15% 101655 19% 88660 15%
Shrubland 66888 12% 54953 10% 50874 9% 43100 7%
Thicket 154267 27% 155355 28% 124881 23% 122185 21%
Woodland 81087 14% 96738 18% 84726 16% 107382 19%
Exotic forest 60461 11% 53811 10% 59947 11% 78075 14%
Montane forest 69774 12% 66060 12% 62364 11% 72746 13%
Total 563348 550678 543637 577938

Fig. 6. Forest transition model modified from Reed et al. (2017) for the Taita Hills.
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for cultivation during recent years (Rikkinen, Laine, & Pellikka, 2015),
or less labor available for agriculture (Angelsen & Rudel, 2013). The
reasons may be purely economic; farmer expects more income from
trees than from crops, or farmer is working elsewhere and converts the
fields to self-maintained forest (Rudel et al., 2005). Based on detailed
interviews, Hohenthal, Owidi, Minoia, and Pellikka (2015) found that
governmental policy has played a role in the Taita Hills. A Forest Act
from 2005 and Agriculture (Farm Forestry) Rules 2009 requires farm
owners to maintain at least 10% of forest cover on their holdings. Also
water and soil conservation measures are intensifying tree cover as
riverbanks are protected. Shifting cultivation (Heinimann et al., 2016)
is not common in the Taita Hills, although time to time some fields are
left to fallow for few years, but reason behind is partly the cropland
abandonment for cultivation of trees.

These findings are supported by Reed et al. (2017), who represented
reforestation taking place after clearance of the forests for croplands in
their forest transition model (Fig. 6). The forest transition framework
was first suggested by Mather (1992) suggesting that over time a
country or region moves from high forest cover and low deforestation
through accelerated deforestation and shrinking forest cover to stabi-
lization and reversal of deforestation process. Several authors have
since modified the framework (e.g. Angelsen & Rudel, 2013). Globally,
Zomer et al. (2016), presented a 2% increase of carbon stocks on
agricultural lands. It may be concluded that research on land cover
changes and carbon sequestration should be linked to forest dynamics
on various timescales via historical comparisons and interdisciplinary
theoretical methods (Perz, 2007). Another factor in carbon increase is
conservation, which was found to increase carbon stocks in East African
in protected areas since 1951 (Willcock et al., 2016). Wekesa et al.
(2016) reported improvement in forest condition compared with pre-
vious studies, for example in Chawia forest, which has been a model of
community based forest conservation.

As land use change has been detected as one of the major sources for
anthropogenic carbon emissions, studies quantifying these changes
should also have a link to reasons behind such change (Meyer & Turner,
1994). Assessing carbon stock change with spatially explicit data allows
for further identification of possible drivers in time and space.

6. Conclusions

Application of airborne laser scanner data provide a powerful
method for assessing carbon stocks together with field measurements,
but adapting the land cover specific carbon values for land cover classes
mapped with satellite imagery is challenging. The average carbon
density was the highest for indigenous montane forests compared to
exotic forests and woodlands suggesting saving montane forests for
carbon sequestration. Croplands above 1220m a.s.l. had much higher
carbon density compared to croplands in the lowlands showing im-
portant role of agroforestry practiced in the hills for carbon seques-
tration. The highest carbon stocks were in croplands due to largest land
cover area of croplands in the study area.

Croplands have been expanding rapidly in the Taita Hills and its
surrounding lowlands, but since 2003 a slowing trend in the process is
recognized. Moreover, changes identified between 2003 and 2011 show
that while shrublands are still cleared for croplands in the lowlands, in
the hills croplands are recently converted to shrublands and woodlands.
Land cover change has direct impact on carbon stocks as clearance of
forest and shrublands leads to decreased carbon sequestration. A slight
increase in carbon stocks from 2003 to 2011 is recognized, which
follow the model of forest transition of native forests through logging
and clearance for croplands to reforestation. The underlying reasons for
the increase of shrublands and woodlands in the hills and increased
carbon stocks in croplands are related to forests' role in conservation
and increasing biodiversity, providing ecosystem services such as water
harvesting and storage, economic reasons in making land-use choices
between cropland and woodland, and governmental legislation

supporting trees on farms.
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