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Abstract

The paper considers the transmission problems for Helmholtz equation with
bodies that have negative material parameters. Such material parameters are
used to model metals on optical frequencies and so-called metamaterials. As
the absorption of the materials in the model tends to zero the fields may blow
up. When the speed of the blow up is suitable, this is called the Anomalous
Localized Reconance (ALR). In this paper we study this phenomenon and
formulate a new condition, the weak Anomalous Reconance (w-AR), where the
speed of the blow up of fields may be slower. Using this concept, we can study
the blow up of fields in the presence of negative material parameters without
the commonly used quasi-static approximation. We give simple geometric
conditions under which w-AR or ALR may, or may not appear. In particular,
we show that in a case of a curved layer of negative material with a strictly
convex boundary neither ALR nor w-AR appears with non-zero frequencies
(i.e. in the dynamic range) in dimensions d ≥ 3. In the case when the
boundary of the negative material contains a flat subset we show that the
w-AR always happens with some point sources in dimensions d ≥ 2.

1 Introduction and statement of main results

Consider a pair of bounded C∞-domains D and Ω of Rd, d ≥ 2, such that the closure
of D is included in Ω. Given complex wave numbers ke and ki, Im ke, Im ki ≥ 0, we
consider the properties of the following transmission problem

−(∆ + k2
e )v1 = 0 in D, −(∆ + k2

i )v2 = 0 in Ω \D (1.1)

−(∆ + k2
e )v3 = f in Rd \ Ω, f ∈ E ′(Rd \ Ω),

where on the interior boundary Γ1 = ∂D we have the boundary conditions

v1|Γ1 = v2|Γ1 , τ1∂νv1|Γ1 = ∂νv2|Γ1 (1.2)

and on the exterior boundary Γ2 = ∂Ω we have

v2|Γ2
= v3|Γ2

, τ2∂νv3|Γ2
= ∂νv2|Γ2

. (1.3)
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Above, ν is the exterior unit normal vector of Ω \ D. We also assume that the
exterior field v3 satisfies the (outgoing) Sommerfeld radiation condition at infinity,

ke 6= 0, d ≥ 2 : v3(x) = O
(
|x|2−d

)
, (∂r − ike)v3(x) = o

(
|x|2−d

)
, (1.4)

as |x| → ∞ uniformly in x/|x| ∈ Sd−1,

ke = 0, d ≥ 3 : v3(x) = O
(
|x|2−d

)
as |x| → ∞ uniformly in x/|x| ∈ Sd−1,

ke = 0, d = 2 : v3(x) = o (1) as |x| → ∞ uniformly in x/|x| ∈ S1,

where ∂r = x
|x| · ∇. Also, if d = 2 and ke = 0, we assume that the compactly

supported source f ∈ E ′(R2 \ Ω) satisfies the vanishing condition

〈f, 1〉 = 0.

Figure 1: Setting of the paper: Domain Ω ⊂ Rd that contains the closure of domain
D. In the set Ω\D the material parameters approach negative value and are positive
outside this set.

We will also consider the equations (1.1)-(1.3) in divergence form. To this end,
we define a piecewise constant function aη by

aη(x) = ae > 0 in D and R3 \ Ω, (1.5)

aη(x) = ai = ae(−1 + η) in Ω \D, η ∈ C, (1.6)

and

τ1 = τ2 = τ =
ae

ai
= (−1 + η)−1. (1.7)

Typically, the parameter η above will be small. Also note that in the electromagnetic
case we would have aη = 1/ε, and hence it is natural to assume that Im η ≤ 0. A
weak solution of

∇ · aη(x)∇u+ ω2(χD∪Rd\Ω + bχΩ\D)µ0u = f in Rd, f ∈ E ′(Rd \ Ω), (1.8)

where b is a complex constant, is obtained from v1 = u|D, v2 = u|Ω\D and v3 =

u|Rd\Ω solving (1.1)–(1.3), where the transmission coefficients satisfy (1.7). Note
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that since outside the interfaces u solves a Helmholtz–equation, it has one sided
weak normal derivatives on both interfaces. Also, the wave numbers are determined
by

k2
e = ω2µ0a

−1
e , k2

i = ki(η)2 := ω2µ0a
−1
i b, (1.9)

and depending on our choice of b and η the sign of Re k2
i may vary. We will in

particular consider two physically interesting cases. In the first case, b = 1, and
Re k2

i ≤ 0. In the second case, b = −1 and Re k2
i ≥ 0. For more on the physical

relevance of these cases, please see the Appendix in the attached Supplementary
Material. We also denote

k2
i,0 = ki(η)2|η=0 = −ω2µ0a

−1
e b. (1.10)

We are especially interested in the behavior of the solutions – and of course
in the unique solvability – as η → 0 when the ellipticity of (1.1)–(1.4) degener-
ates. Physically this corresponds to having a layer of (meta)material in Ω \ D.
More precisely, as explained in the Appendix in the Supplementary Material, in R2

this problem comes up when considering time-harmonic TE-polarized waves in the
cylinder R2 × R with the dielectric constants given by a piecewise constant a−1

η .

It is known that in the case when Ω = B(0, R1) and D = B(0, 1) are discs (see
[2, 3, 23, 24]) and ω = 0, that when iR 3 η → 0 there is a limit radius R∗ > 0 s.t. if

supp (f) ⊂ (R2 \ Ω) ∩ {x; |x| > R∗}

the solution of (1.1)–(1.4) will have a bounded H1-norm in Ω \ D as η → 0, but
when

supp (f) ⊂ (R2 \ Ω) ∩B(0, R∗)

the H1(Ω \ D)–norm of u2 blows up at least as O(|η|−1/2). This phenomenon is
called anomalous localized resonance (ALR). To clarify the results of this paper, we
make the following formal definitions:

Definition 1.1. Let vηi , i = 1, 2, 3, be the unique solutions of (1.1)–(1.4) for η 6= 0
with a given, fixed source term f ∈ E ′(Rd \ Ω).

1. If lim supη→0 ‖v
η
2‖H1(Ω\D) =∞, we say that the Weak Anomalous Resonance

(w-AR) occurs.

2. If η is purely imaginary, and limiR3η→0 |η|1/2‖∇vη2‖L2(Ω\D) =∞, we say that

the Anomalous Localized Resonance (ALR) occurs.

In this paper we show that neither ALR nor w-AR happens in Rd, d ≥ 3, when the
boundaries of Ω and D are strictly convex as embedded hypersurfaces of Rd. We
also prove that if the exterior boundary has a flat part then w-AR will occur even
without the quasi-static approximation. Numerical simulations explained in the
Appendix support the hypothesis that w-AR is a weaker phenomenon than ALR.
Note, that in [2] the authors define a condition called weak-CALR. In our case this
is equivalent to having

lim sup
η→0

|η|1/2‖vη2‖H1(Ω\D) =∞

and hence is stronger than w-AR.
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Note that to prove that ALR does not happen, it is enough to prove that there
exists a stable H1–limit of all the fields vηi as η → 0. Also, that our existence
result, Theorem 5.1, is much weaker: first of all, we cannot infer from our result
that the resonance is localized. Also, the condition of w-AR only says that there is
a sequence ηi → 0 such that the corresponding field vηi2 do not remain bounded in
H1–norm.

In the seminal papers by Milton et al [23, 24] it was observed that ALR happens
in the two-dimensional case when Ω and D are co-centric disc, i.e., Ω \ D is an
annulus, in the quasi-static regime. This case corresponds to a “perfect lens” made
of negative material with a small conductivity |η| when |η| → 0. When this device
is located in a homogeneous electric field and a polarizable point-like object is taken
close to the object, it produces a point source due to the background field. When the
object is sufficiently close to the annulus, the induced fields in the annulus blow up as
|η| → 0. Surprisingly, the fields in the annulus create a field which far away cancels
the field produced by the point like-object. This result can be interpreted by saying
that the annulus makes the point-like object invisible. Presently, this phenomena is
called “exterior cloaking”. It is closely related to other type of invisibility cloaking
techniques, the transformation optics based cloaking, see [11, 12, 13, 14, 15, 16, 21,
20, 30] and active cloaking, see [35, 36]. These cloaking examples can be considered
as counterexamples for unique solvability of various inverse problems that show the
limitations of various imaging modalities. [37, 38].

Results of Milton et al [23, 24] raised plenty of interest and motivated many
studies on the topic. The cloaking due to anomalous localized resonance is studied
in the quasi-static regime for a general domain in [2]. There, it is shown that in R2

the resonance happens for a large class of the sources and that the resonance occurs
not because of system approaching an eigenstate, but because of the divergence
of an infinite sum of terms related to spectral decomposition of the Neumann-
Poincaré operator. In [19] the ALR is studied in the quasi-static regime in the two
dimensional case when the outer domain Ω is a disc and the core D is an arbitrary
domain compactly supported in Ω. ALR in the case of confocal ellipses is studied
in [7].

In [3], it was shown that the cloaking due to anomalous localized resonance
does not happen in R3 when Ω and D are concentric balls. In [4], cloaking due
to anomalous localized resonance is connected to transformation optics and it is
shown that ALR may happen in three dimensional case when the coefficients of
the equations are appropriately chosen matrix-valued functions, i.e. correspond to
non-homogeneous anisotropic material.

Earlier, ALR has been studied without the quasi-static approximation both in
the 2 and 3 dimensional cases in [26, 27]. In these papers the appearance of ALR
is connected to the compatibility of the sources. The compatibility means that for
these sources there exists solutions for certain non-elliptic boundary value problems,
that are analogous to the so-called interior transmission problems. We also want
to mention the work [5], where the surface plasmon resonance for nanoparticles is
studied using the full Maxwell system.

In this paper we show that w-AR either happens, or does not happen, when
certain simple geometric conditions hold: We show that w-AR - and hence also ALR
- does not happen in the three and higher dimensional case when the boundaries
∂Ω and ∂D are strictly convex, and also show in section 5 that w-AR does happen
in d-dimensional case, d ≥ 2 with some sources when the boundary of ∂Ω contains a
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flat part. These results show that w-AR is directly related to geometric properties
of the boundaries.

The first main result deals with the solvablity of the case τ1 = τ2 = −1 when the
ellipticity of the transmission problem degenerates. Below we will use the notation

H
1

loc(Rd \Ω) = {u; u = w|R3\Ω, w ∈ H1
loc(Rd)}. Also, we assume in both Theorems

below that the following injectivity assumption is valid:

• Injectivity assumption (A): Assume that the equation (1.1)–(1.4) has only
the trivial solution v1 = v2 = v3 = 0 when f = 0.

The first main result shows that under certain geometric conditions on the
boundary interfaces the limit problem η = 0 is solvable.

Theorem 1.2. Let d ≥ 3. Assume that the interior boundary Γ1 and the exterior
boundary Γ2 are smooth and strictly convex. Assume also that η = 0, so that
τ = −1, and that ke > 0, k2

i,0 is not a Dirichlet eigenvalue of −∆ in D and Rd \Ω,

and k2
e is not a Dirichlet eigenvalue of −∆ in Ω. Then given K ⊂ Rd \ Ω compact

and f ∈ Hs(Rd \ Ω) with supp (f) ⊂ K, the problem (1.1)–(1.4) has a unique

solution v1 ∈ H1(D), v2 ∈ H1(Ω \D) and v3 ∈ H
1

loc(Rd \ Ω) such

‖v2‖H1(Ω\D) ≤ CK ‖f‖Hs(Rd\Ω) .

This result is generalization to the layered case of a previous result by one of
the authors ([29]). We can also prove the following limiting result when η → 0.

Theorem 1.3. Let d ≥ 3. Assume that the interfaces Γ1 and Γ2 are smooth and
strictly convex and let f be as in the previous Theorem. Let τ1 = τ2 = τ(η) =
(−1 + η)−1, η ∈ C. Assume also that the wave numbers ke and ki are given by
(1.9) and (1.10), with k2

i,0 is not a Dirichlet eigenvalue of −∆ in D, and k2
e is not

a Dirichlet eigenvalue of −∆ in Ω. Then the problem (1.1)–(1.4) with τ = τ(η) is
uniquely solvable for |η| small enough, and if vηi , i = 1, 2, 3 are its solutions and vi,
i = 1, 2, 3 the solutions given by Theorem 1.2, we have as η → 0 along the imaginary
axis iR,

vη1 −−−−→
H1(D)

v1, vη2 −−−−−−→
H1(Ω\D)

v2, vη3 −−−−−−−→
H

1
loc(Rd\Ω)

v3.

Both of these theorems will be proven in section four of this paper. Analogous
results have been proven in [28] using variational methods.

Some comments are in order. First of all, under the assumptions of the above
theorems, given a fixed source distribution f supported in Rd \ Ω, the solution vη2
tends to a H1–function v2 as iR 3 η → 0, and thus there is no blow up.

Secondly, in Proposition 4.1 we give sufficient conditions for the injectivity assump-
tion (A) to hold. Especially, if the wave numbers come from a divergence type
equation with piecewise constant coefficients, so that (1.5) – (1.10) are valid, the
injectivity will hold. Also, both the above results remain true if ke = 0, assuming
that the injectivity assumption (A) holds.
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2 Layer potentials

As a first step we are going to reduce (1.1)–(1.4) to an equivalent problem on the
boundary interfaces by replacing the source f with equivalent boundary currents.
So, fix f ∈ Hs

0(Rd \ Ω) and let v be the unique solution of the problem

−(∆ + k2
e)v = f in Rd \ Ω, (2.1)

v|Γ2
= 0 (2.2)

that satisfies the Sommerfeld radiation condition (1.4). Then, if we let u3 = v3 − v
in (1.1)–(1.4) we see that u1 = v1, u2 = v2 and u3 will satisfy the transmission
problem

−(∆ + k2
e )u1 = 0 in D, −(∆ + k2

i )u2 = 0 in Ω \D (2.3)

−(∆ + k2
e )ũ3 = 0 in Rd \ Ω (2.4)

u1|Γ1
= u2|Γ1

− f1, τ1∂νu1|Γ1
= ∂νu2|Γ1

− g1, (2.5)

u2|Γ2 = u3|Γ2 − f2, τ2∂νu3|Γ2 = ∂νu2|Γ2 − g2, (2.6)

u3 satisfies Sommerfeld condition (1.4). (2.7)

where f1 ∈ Hs(Γ1), g1 ∈ Hs−1(Γ1), f2 ∈ Hs(Γ2) and g2 ∈ Hs−1(Γ2) for some real
value of s. In fact, for boundary jumps originating from an exterior source we have
f1 = g1 = 0 and f2 = v = 0 and g2 = ∂νv. Notice also that since the source f
is supported away from Γ2 the solution v of (2.1) will actually be smooth near Γ2,
and hence the boundary jumps fi and gi will be C∞ functions. This will be crucial
for our argument.

The reduction to the boundary will be done using layer potentials. Given k ∈ C,
Im k ≥ 0, let

Gk(x) =



i
4

(
k

2π|x|

) d−2
2

H
(1)
d−2
2

(k|x|), k 6= 0, d ≥ 2

Γ( d−2
2 )

4π
d
2
|x|2−d, k = 0, d ≥ 3

1
2π ln |x|, d = 2, k = 0.

be the fundamental solution of −(∆+k2) in Rd satisfying the Sommerfeld condition
(1.4).

For Γ = Γ1 or Γ = Γ2, we define using these kernels the (volume) single layer
operators by

SΓ
k (φ)(x) =

∫
Γ

Gk(x− y)φ(y)dS(y), x /∈ Γ, φ ∈ C∞(Γ).

Sometimes when we wish to emphasize that we are restricting these operators to a
domain Ω, Γ ∩ Ω = ∅, we use the notations SΓ,Ω

k (φ) = SΓ
k (φ)|Ω. These operators

define continuous mappings SΓ
k : C∞(Γ)→ D′(Rd \ Γ).
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Similarly, we define the (volume) double layer operators by

DΓ
k (φ)(x) =

∫
Γ

∂Gk(x− y)

∂ν(y)
φ(y)dS(y), x /∈ Γ, φ ∈ C∞(Γ)

where ν will always denote the exterior unit normal to Ω \ D. Like for the single
layer potentials, we will occasionally denote the restrictions of these to Ω ⊂ Rd \ Γ

by DΓ,Ω
k . Also, DΓ

k : C∞(Γ)→ D′(Rd \ Γ) continuously.

Mapping properties of these operators between appropriate Sobolev spaces are also
well known (see [6], [22] or [31], page 156, Theorem 4): For all s ∈ R we have

SΓ,Ω
k : Hs(Γ) → Hs+ 3

2 (Ω) and DΓ,Ω
k : Hs(Γ) → Hs+ 1

2 (Ω) if Ω ⊂ Rd \ Γ is a
bounded domain.

We need traces of these operators on both Γ1 and Γ2. Hence, let γ+
0,j be the

trace operator on Γj from the complement of Ω \ D, that is, γ+
0,j(u) = u|Γj for

u ∈ H1((Rd \ Ω) ∪ D). Respectively let γ−0,j be the trace–opearator on Γj from

Ω \D, that is, γ−0,j(u) = u|Γj for u ∈ H1(Ω \D). Then, for φ ∈ Hs(Γj), s > −1, we
have

γ+
0,jS

Γj
k φ = V

Γj
k φ = γ−0,jS

Γj
k φ, (2.8)

where

V
Γj
k φ(x) =

∫
Γj

Gk(x− y)φ(y)dS(y) (2.9)

is the trace-single-layer operator on Γj .

Also, if ψ ∈ Hs(Γj), s > 0, for the traces of the double layer we have the jump
relations

γ−0,jD
Γj
k ψ +

ψ

2
= γ+

0,jD
Γj
k ψ −

ψ

2
= K

Γj
k ψ, (2.10)

where K
Γj
k is the trace-double-layer operator on Γj given by

KΓ
k φ(x) = p.v.

∫
Γj

∂Gk(x− y)

∂ν(y)
φ(y)dS(y). (2.11)

The maps K
Γj
k : Hs(Γj) → Hs(Γj) and S

Γj
k : Hs(Γj) → Hs+1(Γj) are continous

pseudodifferential operators for any s ∈ R.

Next, let γ+
1,j be the trace of the normal derivative on Γj from the complement

of Ω \D, that is, γ+
1,j(u) = ∂νu|Γj for u ∈ H1((Rd \ Ω) ∪D). Respectively let γ−1,j

be the trace of the normal derivative on Γj from Ω \D, that is, γ−1,j(u) = ∂νu|Γj for

u ∈ H1(Ω \ D). For the normal derivatives of the single layer potentials we have
the jump relations

γ−1,jV
Γj
k φ− φ

2
= γ+

1,jV
Γj
k φ+

φ

2
= K

∗,Γj
k φ, (2.12)

for any φ ∈ H−1/2(Γj), where the operator K
∗,Γj
k is the adjoint trace-double-layer

operator on Γj given by

K
∗,Γj
k φ(x) = p.v.

∫
Γj

∂Gk(x− y)

∂ν(x)
φ(y)dS(y), (2.13)
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For H1–solutions of an inhomogeneous Helmholz–equation with an L2–source
one can define normal traces weakly using Green’s theorems. With this interpreta-
tion, for any ψ ∈ H1/2(Γj), we also have the traces

γ−1,jD
Γj
k ψ = γ+

1,jD
Γj
k ψ = N

Γj
k ψ, (2.14)

where the hypersingular integral operator N
Γj
k has (formally) the kernel

∂2Gk(x− y)

∂ν(x)∂ν(y)
, x, y ∈ Γj , x 6= y.

The maps K
∗,Γj
k : Hs(Γj) → Hs(Γj) and N

Γj
k : Hs(Γj) → Hs−1(Γj) are continous

pseudodifferential operators for any s ∈ R.

3 Reduction to the boundary

We will follow the ideas of [18] adapted to our situation, where we have two interfaces
instead of just one. Let us consider (2.3)–(2.7). Write an ansaz for u1 and u3:

u1 = SΓ1,D
ke

(φ), φ ∈ H− 1
2 (Γ1), u3 = S

Γ2,Rd\Ω
ke

(ψ), ψ ∈ H− 1
2 (Γ2), (3.1)

and to
u2 ∈ L := {v ∈ H1(Ω \D); −(∆ + k2

i )v = 0}

we apply the representation theorem (see for example [8]) to get

u2 = S
Γ1,Ω\D
ki

(
∂u2

∂ν

∣∣∣∣
Γ1

)
−DΓ1,Ω\D

ki
(u2|Γ1) (3.2)

+S
Γ2,Ω\D
ki

(
∂u2

∂ν

∣∣∣∣
Γ2

)
−DΓ1,Ω\D

ki
(u2|Γ2

) , in Ω \D.

Taking traces of u1 on Γ1, of u3 on Γ3, and of u2 on Γ1 ∪ Γ2, and using the
transmission conditions (2.5)–(2.6) to express the boundary values of u2 in terms
of those of u1 and u3 we get a system of boundary integral equations for (φ, ψ) ∈
H−

1
2 (Γ1)×H− 1

2 (Γ2):

(A+M)

(
φ
ψ

)
= f̃ :=

(
f̃1

f̃2

)
(3.3)

where

A =

(
A1 0
0 A2

)
, M =

(
0 M1

M2 0

)
(3.4)

and

A1 = 1
2

(
V Γ1

ke
+ τ1V

Γ1

ki

)
+
(
KΓ1

ki
V Γ1

ke
− τ1V Γ1

ki
K∗,Γ1

ke

)
,

A2 = 1
2

(
V Γ2

ke
+ τ2V

Γ2

ki

)
+
(
KΓ2

ki
V Γ1

ke
− τ2V Γ2

ki
K∗,Γ2

ke

)
.
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Here the off-diagonal operators Mi are infinitely smoothing. This is the integral
equation we are going to study. For the details of the derivation as well as for the
explicit expressions of Mi see section A in the Supplementary Material.

The next proposition establishes conditions under which (4.8) is equivalent with
the original transmission problem (2.3)–(2.7).

Proposition 3.1. Assume k2
i is not a Dirichlet eigenvalue of −∆ in D or in

R3 \ Ω. If u1 ∈ H1(D), u2 ∈ H1(Ω \D) and u3 ∈ H
1

loc(Rd \ Ω) solve (2.3)–(2.7),

then φ ∈ H− 1
2 (Γ1), ψ ∈ H− 1

2 (Γ2) satisfying (3.1) solve (4.8).

Conversely, assume that (φ, ψ) ∈ H− 1
2 (Γ1) × H− 1

2 (Γ2) solve (4.8). Define u1

and u3 by (3.1) and u2 by

u2 = SΓ1

ki

(
τ1

[
K∗,Γ1

ke
(φ)− φ

2

]
+ g1

)
−DΓ1

ki

(
V Γ1

ke
(φ) + f1

)
(3.5)

+ SΓ2

ki

(
τ2

[
K∗,Γ2

ke
(ψ)− ψ

2

]
+ g2

)
−DΓ2

ki

(
V Γ2

ke
(ψ) + f2

)
.

Then the triplet (u1, u2, u3) ∈ H1(D)×H1(Ω \D)×H1

loc(Rd \Ω) will solve (2.3)–
(2.7).

Proof. It only remains to prove the second claim. So define u2 by (3.5) and u1 and

u3 by (3.1) where φ ∈ H− 1
2 (Γ1), ψ ∈ H− 1

2 (Γ2) solve (4.8). By taking traces on Γ1

and Γ2 we immediately recover the transmission conditions

u1|Γ1
= u2|Γ1

− f1, u3|Γ2
= u2|Γ2

− f2.

To prove the transmission conditions for the normal derivatives we define for x ∈
D ∪ Rd \ Ω,

v(x) = SΓ1

ki

(
τ1

[
K∗,Γ1

ke
(φ)− φ

2

]
+ g1

)
(x)−DΓ1

ki

(
V Γ1

ke
(φ) + f1

)
(x) (3.6)

+ SΓ2

ki

(
τ2

[
K∗,Γ2

ke
(ψ)− ψ

2

]
+ g2

)
(x)−DΓ2

ki

(
V Γ2

ke
(ψ) + f2

)
(x).

Then using (4.8) we see that v solves{
(∆ + k2

i )v = 0 in D

v|Γ1 = 0

and since we assumed that k2
i was not a Dirichlet eigenvalue of −∆ in D, we get

that v = 0 in D. Similarily the restriction of v to R3 \ Ω is a solution of{
−(∆ + k2

i )v = 0 in Rd \ Ω

v|∂Ω = 0

satisfying Sommerfeld condition (1.4). Hence by the assumptions, v = 0 also in
R3 \ Ω. Taking traces of the normal derivative of v from D and recombining the

9



terms we get

τ1

[
K∗,Γ1

ke
(φ)− φ

2

]
+ g1 = K∗,Γ1

ki

(
τ1

[
K∗,Γ1

ke
(φ)− φ

2

]
+ g1

)
(3.7)

+
1

2

(
τ1

[
K∗,Γ1

ke
(φ)− φ

2

]
+ g1

)
−NΓ1

ki

(
V Γ1

ki
(φ) + f1

)
+B1

(
τ2

[
K∗,Γ2

ke
(ψ)− ψ

2

]
+ g2

)
− S1

(
V Γ2

ke
(ψ) + f2

)
.

The left-hand side of (3.7) is τ1∂νu1 + g1. The right-hand side is equal to ∂νu2|Γ1 .
Hence we have shown the second equation in (2.5). Proceeding similarly, but taking
traces of v from R3 \ Ω, we get the second equation of (2.6). �

Remark 1. Note that the Dirichlet-spectrum of −∆ on D is discrete and positive,
so that always, if k2

i ≤ 0 or if Im k2
i 6= 0, we have the first condition. Similarly,

Im ki ≥ 0, ki 6= 0, is enough to guarantee that the second assumption of Proposition
3.1 is valid. In the case of most interest to us we have k2

e = ω2aeµ0 > 0 and
k2
i = ω2ba−1

i µ0 with ai = ae(−1 + η), where ae > 0. Hence the assumptions of
Proposition 3.1 are always valid if Im η 6= 0, or if b > 0. If b < 0, then the
assumptions remain valid if ω is small enough.

4 Absence of ALR

As the first step in proving the solvability and stability when η → 0 we give a
uniqueness result (see for example [9]). The proof is a standard application of
Rellich–theorem, and is given in detail in section B of the Supplementary Material:

Proposition 4.1. Assume ke > 0, Im (1/τ2)) ≤ 0, Im
(
k2
i /τ2

)
≥ 0 and Im (τ1/τ2) =

0. Then the problem (1.1)–(1.4) has at most one solution. Especially, if the wave
numbers are associated to a divergence form equation, i.e. (1.5) – (1.7) are satisfied
with a real valued parameter b, the uniqueness holds.

It is well known (see for example [9] or [33]) that on a smooth compact surface
Γ without boundary the single-layer potentials V Γ

k are classical pseudodifferential
operators (ψDO’s) of order −1 with principal symbol

σ(−1)

(
V Γ
k

)
(x, ξ′) = cd|ξ′|−1, ξ′ ∈ T ∗∗ (Γ), x ∈ Γ,

and that 4NΓ
k is the parametrix of V Γ

k , so that

σ(1)

(
NΓ
k

)
(x, ξ′) = c−1

d |ξ
′|/4, ξ′ ∈ T ∗∗ (Γ) \ {0}, x ∈ Γ.

Also – and this is important to us – even though formally of order 0, the double-layer
and its adjoints are in fact of order −1, and hence compact as operators Hs(Γ)→
Hs(Γ). For the principal symbol of K∗,Γk we have (see [29] or [33], Proposition C.1,
p.453)

σ(−1)(K
∗,Γ
k )(x′, ξ′) = addΓ(x′)|ξ′|−3

lx(ξ′, ξ′)−
∑
j

λj(x
′)|ξ′|2

 ,
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where ad is a nonzero constant, dΓ(x′) is the density of the surface measure on Γ, lx
is the second fundamental form of Γ (embedded in Rd) and λj(x

′) are the principal

curvatures of Γ, i.e. eigenvalues of lx. Hence, if Γ is strictly convex, K∗,Γk is an
elliptic operator of order −1.

Proposition 4.2. Assume τ1, τ2 6= −1. Then the integral operator A+M defined
by (4.8)–(4.9) is an elliptic ψDO of order −1, and hence a Fredholm operator

A+M :
Hs(Γ1)
⊕

Hs(Γ2)
→
Hs+1(Γ1)
⊕

Hs+1(Γ2)

for all s ∈ R. Also, indA = 0.

Proof. The principal symbol of A+M is(
1
2 (1 + τ1)|ξ′|−1 0

0 1
2 (1 + τ1)|ξ′|−1

)
proving the ellipticity. Also, if k = 0, then V Γ

0 is self-adjoint on Γ, and hence

Ind
(
V Γ

0

)
= 0. Since V Γ

k − V Γ
0 is of order < −1, and K

Γj
k and K

∗,Γj
k are of order

−1,

Ind (A+M) = Ind

(
V Γ1

0 0

0 V Γ2
0

)
= 0.

From now on we only consider the case d ≥ 3. We have the following lemma, whose
proof can be found in section C in the attached Supplementary Material:

Lemma 4.3. For the difference of single layer potentials we have

V
Γj
ke
− V Γj

ki
∈ Ψ−3+ε

cl (Γj) for all ε > 0.

Proposition 4.4. Assume τ1 = τ2 = −1 and that Γ1 and Γ2 are strictly convex
smooth hypersurfaces of Rd with d ≥ 3. Then (A+M) is an elliptic ψDO of order
−2 with index 0.

Proof. As τ1 = τ2 = −1,

A =

(
KΓ1

0 V Γ1
0 + V Γ1

0 K∗,Γ1

0 0

0 KΓ2
0 V Γ2

0 + V Γ2
0 K∗,Γ2

0

)
mod Ψ−3+ε

cl

Since K
Γj
0 V

Γj
0 + V

Γj
0 K

∗,Γj
0 is self-adjoint, Ind (A +M) = 0. Also, by Calderon’s

identities (see [9])

K
Γj
0 V

Γj
0 = V

Γj
0 K

∗,Γj
0

and hence the principal symbol of A is

CdΓ1
(x′)|ξ′|−4

(
a1(x′, ξ′) 0
0 a2(x′, ξ′)

)

11



where

ak(x′, ξ′) = lΓkx′ (x′, ξ′)−
d−1∑
j=1

λΓk
j (x′)|ξ′|2,

lΓkx is the second scalar fundamental form of Γk, and λΓk
j are the principal curvatures

of Γk, i.e., eigenvalues of lΓk . If Γk is strictly convex, then for all x ∈ Γk, λΓk
j (x) are

either positive or negative, and since λkj are eigenvalues of lΓkx (ξ′, ξ′), lΓkx′ (ξ′, ξ′) −∑
λνj (x′)|ξ′|2 is correspondingly either negative or positive definite, so A +M is

elliptic of order −2.

Next we consider the unique solvability of the boundary integral equation. We
start by proving the uniquenes, and for this we make no additional assumptions on
τ1 and τ2.

Lemma 4.5. Assume that the conditions on the wavenumbers ke and ki of Propo-
sitions 4.1 and 3.1 hold, k2

e is not a Dirichlet eigenvalue of Ω, and

(A+M)

(
φ
ψ

)
= 0,

(
φ
ψ

)
∈ Hs(Γ1)×Hs(Γ1).

Then φ1 = φ2 = 0.

Proof. Assume

(A+M)

(
φ
ψ

)
= 0.

Then by Proposition 3.1

u1 = SΓ1,D
ke

(φ)

u2 = SΓ1

ki

(
τ1

[
K∗,Γ1

ke
(φ)− φ

2

])
−DΓ1

ki
V Γ1

ke
(φ)

+ SΓ2

ki

(
τ2

[
K∗,Γ2

ke
(ψ)− ψ

2

])
−DΓ2

ki
V Γ2

ke
(ψ), in Ω \D

u3 = S
Γ2,R3\Ω
ke

(ψ)

will solve (1.1)–(1.4) with f = 0, so by Proposition 4.1 we have u1 = 0, u2 = 0 and
u3 = 0. Hence u1|Γ1

= V Γ1

ke
(φ) = 0 = u3|Γ2

= V Γ2

ke
(ψ). Also

∂νu1|Γ1 = K∗,Γ1

ke
(φ)− φ

2
= 0 = ∂νu3|Γ2 = K∗,Γ2

ke
(ψ)− ψ

2
. (4.1)

Define now
ũ1 = S

Rd\D
ke

(φ) in R3 \D, ũ2 = SΩ
ke(ψ) in Ω.

Then ũ1|Γ1 = V Γ1

ke
(φ) = 0ũ2|Γ2 = V Γ2

ke
(ψ). Since the exterior Dirichlet problem is

always uniquely solvable if ke > 0 (see [8]), ũ1 ≡ 0 in Rd \D, so by taking traces of
∂ν ũ1 on Γ1 we get

0 = K∗,Γ1

ke
(φ) +

φ

2
. (4.2)

Thus (4.1) and (4.2) imply that φ = 0. Similarly, since k2
e is not an interior Dirichlet

eigenvalue of Ω, we get ψ = 0.

Combining Lemma 4.5 and Propositions 4.2 and 4.4 we now get

12



Proposition 4.6. Assume again that the conditions on the wavenumbers ke and
ki of Propositions 4.1 and 3.1 hold, and that k2

e is not a Dirichlet eigenvalue of Ω.
Let (

f̃1

f̃2

)
∈
Hs(Γ1)
⊕

Hs(Γ2)
,

where s > −1. Then if either

a) τ1, τ2 6= −1 ,

or

b) τ1 = τ2 = −1, d ≥ 3 and ∂D and ∂Ω are strictly convex,

the boundary integral equation (4.8) has a unique solution

(
φ1

φ2

)
∈
Hs−1(Γ1)
⊕

Hs−1(Γ2)
in case a) or

(
φ1

φ2

)
∈
Hs−2(Γ1)
⊕

Hs−2(Γ2)
, in case b) respectively.

Remark 2. Notice that if f̃1 and f̃2 are given by formulas (A5) and (A8) in
the attached supplementary material respectively, with fi and gi determined by the
source f ∈ Hs(Rd \ Ω) with a compact support contained in Rd \ Ω as described at

the beginning of the section 2, then f̃1 and f̃2 will be smooth functions and hence the
above proposition holds with any s > −1. Hence especially the field u2 will belong
to H1(Ω \D), and we have proven Theorem 1.2.

To prove Theorem 1.3 we need the following result:

Proposition 4.7. Consider the transmission problem (2.3) – (2.7) with the trans-
mission coefficients given by

τ1 = τ2 = (−1 + η)−1,

where η = iδ is purely imaginary, and the wave numbers by

k2
e = ω2µ0a

−1
e , k2

i = ki(η)2 := ω2µ0a
−1
i b,

with b and µ0 real, and ai/ae = −1 + η. Assume also that the conditions on the
wavenumbers ke and ki(η) of Propositions 4.1 and 3.1 hold, and that ke is not
a Dirichlet eigenvalue of Ω, and also that the interfaces ∂D and ∂Ω are strictly
convex. Let

f̃(η) :=

(
f̃1

f̃2

)
∈
H1/2(Γ1)
×

H1/2(Γ2)

be the equivalent boundary source term as given by formulas (A.5) and (A.8) in
the supplementary material. Note that these depend on η through the interior wave
number ki. Let (

φ1(η)
φ2(η)

)
∈
H−1/2(Γ1)
⊕

H−1/2(Γ2)
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be the unique solution of (4.8) with τ1 = τ2 = τ(η). Also, let(
φ1

φ2

)
∈
H−3/2(Γ1)
⊕

H−3/2(Γ2)

be the unique solution of (4.8) with τ1 = τ2 = −1.

(a) As iR 3 η → 0 we have (
φ1(η)
φ2(η)

)
→
(
φ1

φ2

)
in H−3/2−ρ(Γ1)⊕H−3/2−ρ(Γ2) for any positive value of ρ.

(b) If in addition f̃(η) ∈ Hs(Γ1)×Hs(Γ2) with s > 3/2, then(
φ1(η)
φ2(η)

)
→
(
φ1

φ2

)
in H−1/2(Γ1)⊕H−1/2(Γ2) as η → 0 along the imaginary axis.

Before the proof we give the following lemma:

Lemma 4.8. Consider the transmission problem (2.3) – (2.7). Assume that the
transmission coefficients are given by

τ1 = τ2 = (−1 + η)−1,

and the wave numbers by

k2
e = ω2µ0a

−1
e , k2

i = ki(η)2 := ω2µ0a
−1
i b,

with b and µ0 real, and ai/ae = −1+η. Under these assumptions we have an priori
bound, for R > 0 large enough and for all |η| ≤ η0 with η0 small enough,

‖u1‖H1(D) + ‖u2‖H1(Ω\D) + ‖u3‖H1(BR(0)\Ω) ≤
C(f1, f2, g1, g2)

|Im η|
,

with some constant C(f1, f2, g1, g2) depending continuously on ‖gj‖H−1/2(Γj) and
fj‖H1/2(Γj), j = 1, 2.

Proof. Denote τ = (−1+η)−1. Integrating repeatedly by parts and using the trans-
mission conditions we get, since u3 is outgoing,∫

Ω\D
|∇u2|2 − k2

i |u|2 dx = τ

∫
D

|∇u1|2 − k2
e |u1|2 dx

+ τ lim
R→∞

∫
BR(0)\Ω

|∇u3|2 − k2
e |u3|2 dx

+
∑
j=1,2

∫
Γj

fj∂νu2 + gju2 dS.

Note now that k2
i = τk2

eb, so dividing by τ and taking imaginary parts we get

Im (−1 + η)

∫
Ω\D
|∇u2|2 dx = Im

(−1 + η)
∑
j=1,2

∫
Γj

fj∂νu2 + gju2 dS

 .
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Hence we have an L2–bound for the gradient of u2,∫
Ω\D
|∇u2|2 dx ≤

C ′

|Im η|
∑
j

(‖u2‖H1/2(Γj) + ‖∂νu‖H−1/2(Γj)). (4.3)

with C ′ = C(
∑
j ‖fj‖H−1/2(Γj) + ‖gj‖H−1/2(Γj)) To get a similar bound for the

L2–norms of ui’s we argue as follows. First of all, for all φ ∈ H1
0 (Ω \D) we have∫

Ω\D
∇u2∇φ− k2

i u2φdx = 0,

so that ∣∣∣∣∣
∫

Ω\D
k2
i u2φdx

∣∣∣∣∣ ≤ C‖∇u2‖L2(Ω\D)‖φ‖H1(Ω\D),

If ω > 0, we may divide by k2
i , and then take supremun over φ ∈ H1

0 (Ω \ D) to
conclude

‖u2‖H−1(Ω\D) ≤ C‖∇u2‖L2(Ω\D). (4.4)

Hence
∆u2 = −k2

1u2 ∈ H−1(Ω \D).

Recall now the weak definition of the normal derivative of u2: Given h ∈ H1(Ω\D)
the normal derivatives of u2 are defined by duality∫

Γ1∪Γ2

∂νu2h dS =

∫
Ω\D

(∆u2)h+ 〈∇u2,∇h〉,

and we have an estimate

‖∂νu2‖H−1/2(Γ2) ≤ C(‖∆u2‖H−1(Ω\D) + ‖∇u2‖L2(Ω\D)). (4.5)

If ω > 0, we can use (4.4) to deduce

‖∂νu2‖H−1/2(Γ2) ≤ C‖∇u2‖L2(Ω\D), (4.6)

possibly with another constant. If ω = 0, this already follows from the weak defini-
tion of ∂νu2 since then u2 is harmonic. Hence the H1 stability of the interior and
exterior Neumann–problems gives, for R > 0 large enough,

‖u1‖H1(D)+‖u3‖H1(BR(0)\Ω) ≤ C(‖∇u2‖L2(Ω\D)+
∑
j

‖fj‖H1/2 +‖gj‖H−1/2), (4.7)

Using now the H1 – stability of interior Dirichlet–problem and the Trace–theorem
for Sobolev spaces, we conclude, in view of the above and (4.3),

‖u2‖H1(Ω\D) ≤ C(
∑
j

‖fj‖H1/2 + ‖gj‖H−1/2)1/2 ×

×

‖u2‖1/2H1(Ω\D)

|Im η|1/2
+ (
∑
j

‖fj‖H1/2 + ‖gj‖H−1/2)1/2

 .
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This estimate proves the claim for u2 when η0 is chosen small enough, and the
estimates for u1 and u3 then follow from the H1–stability of the interior and exterior
Dirichlet–problems. �

Proof of Proposition 4.7: Recall that (4.8) is given by

(Aη +Mη)

(
φ1

φ2

)
= f̃η, (4.8)

where

Aη =

(
Aη,1 0

0 Aη,2

)
, Mη =

(
0 Mη,1

Mη,2 0

)
(4.9)

with

Aη,1 = 1
2

(
V Γ1

ke
+ τ1V

Γ1

ki

)
+
(
KΓ1

ki
V Γ1

ke
− τ1V Γ1

ki
K∗,Γ1

ke

)
,

Aη,2 = 1
2

(
V Γ2

ke
+ τ2V

Γ2

ki

)
+
(
KΓ2

ki
V Γ1

ke
− τ2V Γ2

ki
K∗,Γ2

ke

)
.

Here the off-diagonal operators Mi were infinitely smoothing, and we have explicitly
indicated the η–dependence of ki = ki(η). Denote τ = −1 + ρ, so that η = iδ → 0
precisely when ρ→ 0, and for some positive constant c we have c−1|ρ| ≤ |η| ≤ c|ρ|.
We write Aη,j in the form

Aη,j =
1

2

(
V Γ1

ke
− V Γ1

ki

)
+
(
KΓ1

ki
V Γ1

ke
− τ1V Γ1

ki
K∗,Γ1

ke

)
(4.10)

= −ρ
2
Vki +

1

2
(Vke − Vki) +Kη. (4.11)

Note now that analyticity of the layer potentials with respect to the wave number
implies

‖Vke − Vki‖L(H−3/2,H1/2) ≤ Cρ,
and

‖Kη −K0‖L(H−3/2,H1/2), ‖Mη −M0‖L(H−3/2,H1/2) ≤ Cρ.

Also, note that the remainder 1
2 (Vke − Vki) + Kη is infact of order −2. We now

have the equations (
−ρ

2

(
Vki 0
0 Vki

)
+Bη

)(
φ1(η)
φ2(η)

)
= f̃η,

B0

(
φ1(0)
φ2(0)

)
= f̃0,

where

B0 :=

(
1
2 (Vke − Vki(0)) +K0 M0,1

M0,2
1
2 (Vke − Vki(0)) +K0

)
is invertible, and

Bη :=

(
1
2 (Vke − Vki) +Kη Mη,1

Mη,2
1
2 (Vke − Vki(η)) +Kη

)
.

Substracting the two equations above from each other, we see that the difference

Ψ(η) = Φ(η)− Φ(0) :=

(
φ1(η)
φ2(η)

)
−
(
φ1(0)
φ2(0)

)
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satisfies the equation

B0Ψ(η) = f̃(η)− f̃0 +
ρ

2

(
Vki 0
0 Vki

)
Φ(η)− (Bη −B0)Φ(η). (4.12)

By the previous lemma and the definition of our unknown boundary densities,
‖Φ(η)‖H−1/2 ≤ C|Im η|−1, so that we have for some other constant C,

‖B0Ψ(η)‖H1/2 ≤ C, uniformly for |η| small enough.

The invertibility of B0 then implies the uniform bound

‖Ψ(η)‖H−3/2 ≤ C ′, |η| ≤ η0,

so by compactness every sequence Ψ(ηj), ηj → 0, has a subsequence Ψ(ηjk) converg-
ing in H−3/2−ρ(Γ1)×H−3/2−ρ(Γ2) to a limit Ψ0 solving the equation B0(Ψ0) = 0,
and hence invertibility of B0 implies Ψ0 = 0. Thus every sequence ηj → 0 has a
subsequence such that Ψ(ηjk) → 0, and so ‖Φ(η) − Φ(0)‖H−3/2−ρ → 0 as η → 0
along the imaginary axis.

Assume now, that f̃(η) ∈ Hs+1/2(Γ1)×Hs+1/2(Γ2) with s > 0. For η small enough
Vki are classical, strongly elliptic invertible ψDO’s, so we can define the pseudo
differential (complex) powers as

Λs =

(
Vki 0
0 Vki

)−s
.

These are isomorphisms of Sobolev order Re s commuting with each other. Consider
the equation

(Aη +Mη)
(
Φ(η)

)
= f̃η.

The order reducing operators Λs commute with the principal part of A, and since
these both are diagonal operators modulo smoothing, we see that Φ̃(η) := ΛsΦ(η)
solves

(Aη +Mη)Φ̃(η) = Λsf̃η − [Bη −Mη,Λ
s]Φ(η).

where the commutator [Bη −Mη,Λ
k] is of order s− 3, and hence

Λsf̃ − [Bη −Mη,Λ
k]Φ(η)→ Λsf̃0 − [B0 −M0,Λ

s]Φ(0)

in H1/2 if −3/2−ρ+ 3− s > 1/2 for some positive ρ, i.e . if s < 1. The first part of
the proof then gives that Λs(Φ(η)−Φ(0))→ 0 in H−3/2−ρ, i.e that Φ(η)−Φ(0)→ 0

in Hs−3/2−ρ. Iteration of this argument then proves that if f̃(η) → f̃(0) in the
H3/2+α–norm for some positive α, then actually Φ(η)− Φ(0)→ 0 in H−1/2–norm.
This proves the final claim.

Remarks. (a) The lemma above implies the following upper limit for the solutions
of the transmission problems: As |Im η| → 0, for R > 0 large enough,

‖∇u1‖H1(D), ‖∇u2‖H1(Ω\D), ‖∇u3‖H1(BR(0)\Ω) ≤ C|Im η|−1.

Hence even in the presence of the ALR the blow–up can’t be stronger thanO(|Im η|−1).
Note that the ALR requires a blow–up rate stronger than |Im η|−1/2.

(b) Assume that the source f is supported in R3\Ω and that the boundary interfaces

are strictly convex as embedded hypersurfaces. Then f̃(η) ∈ Hs with any s ∈ R,
and the case (b) above implies Φ(η)→ Φ(0) in the H−1/2–norm. This implies that
the original fields ui, i = 1, 2, 3, converge to the limit field in H1–norm, and hence
there is no ALR, or even a weaker resonance like w-AR.
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5 Presence of w–AR

In this section we consider dimension d ≥ 2 and frequencies ω ≥ 0. We denote by
aη(x) the piecewise constant function in Rd that is aη(x) = ae for x ∈ (Rd \Ω)∪D
and aη(x) = ae(−1 + η) for x ∈ Ω \ D, η ∈ iR− ∪ {0}. Also, b = −1 in equation
(1.8).

D

Ω

S+

S−
z

Figure 2: Setting of the Theorem 5.1: Domain Ω ⊂ Rd that contains domain D.
The material parameters approach in the set Ω \D negative value and are positive
outside this set. Coordinates are chosen so that x1–direction is vertical.

Theorem 5.1. Assume D ⊂ Ω ⊂ Rd, d ≥ 2 that the interfaces Γ1 = ∂D and
Γ2 = ∂Ω are smooth and Γ2 contains a flat subset S0 = {y1} × B, where y1 ∈ R
and B = {x′ ∈ Rd−1; |x′| ≤ R0}. Also, assume that S+ ⊂ Ω \D and S− ⊂ Rd \ Ω
are compact sets given by S+ = [y1, y1 + a]×B and S− = [y1 − a, y1]×B, a > 0.

Moreover, let f = δz with z ∈ S−. Also, let τη = −1 + η, η ∈ iR+, and assume
that ke = ki ∈ R+ ∪ {0}, i.e., b = −1 in equation (1.8), and (1.5), (1.6), and
(1.7) are valid. Let 0 < |η| ≤ η0 for some positive fixed η0. Assume the problem
(1.1)–(1.4) with τ = τη is uniquely solvable and that vηi , i = 1, 2, 3 are its solutions.
Let r1 > 0 be such that B(z, r1) ⊂ S−. Then as η → 0,

lim
η→0

(
‖vη2‖H1(S+) + ‖vη3‖H1(S−\B(z,r1))

)
=∞.

Proof. Denote S = S+ ∪ S0 ∪ S−. Let z− = (z1, z
′) ∈ S− and z+ = (2y1 − z1, z

′) ∈
S+. By (1.3), we see that there are functions wη ∈ H1(S \ B(z−, r1)) such that
wη|S+ = vη2 |S+ and wη|S− = vη3 |S− . To show the claim, assume the opposite: We
assume that there is a sequence ηj → 0 and constants C0 and Cr1 such that

‖wηj‖H1(S+) ≤ C0, ‖wηj‖H1(S\B(z−,r1)) ≤ Cr1

Hence, using the weak compactness and after replacing ηj with a suitable subse-
quence, that we continue to denote by ηj , we can then assume that wj converges in
H1(S \ B(z−, r1)) weakly to some function W . For all φ ∈ C∞0 (S \ B(z−, r1)) we
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now have ∫
Rd

(a0(x)∇W · ∇φ− ω2a0(x)µ0 Wφ)dx

= lim
j→∞

∫
Rd

(aηj (x)∇wηj · ∇φ− ω2aηj (x)µ0 wηjφ)dx = 0.

Hence in the domain S \B(z−, r1) we have

∇ · (a0(x)∇W ) + ω2a0(x)µ0 W = 0 (5.1)

in the weak sense. In particular, this yields that W satisfies an elliptic equation in a
neighbourhood of S0 with trace W |S0

∈ H1/2(S0) and thus W has well defined one-
sided normal derivatives on S0 ⊂ Γ2 with values in H−1/2(S0). Applying integration
by parts in domains S− \B(z−, r1)) and S+ we obtain for φ ∈ C∞0 (S \B(z−, r1))

0 =

∫
Rd

(a0(x)∇W · ∇φ− ω2a0(x)µ0 Wφ)dx

= −
∫
S0

(ν · ∇W |S0− + ν · ∇W |S0+)φdS,

where ν = (0, 0, . . . , 0, 1) is normal vector of S0 pointing from S− to S+. Thus we
see that ∂νW |S0− = −∂νW |S0+. Summarizing, we have

W |S0− = W |S0+, ∂νW |S0− = −∂νW |S0+. (5.2)

Using this, equation (5.1), and the fact that S \ (B(z−, r1)∪B(z−, r1)) is connected
implies that for x = (x1, x

′) ∈ F := S\(B(z−, r1)∪B(z+, r1)) we have the symmetry

W (x1, x
′) = W (2y1 − x1, x

′), x = (x1, x
′) ∈ F. (5.3)

Now, using the Gauss theorem we observe∫
∂B(z−,r1)

∂νwηj (x)dS(x) = 1− ω2µ0

∫
B(z−,r1)

wηj dx. (5.4)

On the other hand, symmetry of the limit W implies

lim
j→∞

∫
∂B(z−,r1)

∂νwηj (x)dS(x) = lim
j→∞

∫
∂B(z+,r1)

∂νwηj (x)dS(x) = 0.

Hence, for any r1 > 0 small enough,

1 = ω2µ0 lim
j→∞

∫
B(z−,r1)

wηj dx = ω2µ0

∫
B(z−,r1)

W dx

On the other hand, the sequence (wηj ) was bounded in H1(S+) with a bound
independent of r1, so again using the symmetry of the limit W we get∣∣∣ ∫

B(z−,r1)

W dx
∣∣∣ ≤ Crd/22 ,

which yields a contradiction as r2, r1 → 0.
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The results of the previous sections, together with the earlier results of Milton
et al. ( [23, 24]) and Ammari et al. ([2]) show that for strictly convex bodies ALR
may appear only for bodies so small that the quasi-static approximation is realistic.
This gives limits for size of the objects for which invisibility cloaking methods based
on ALR may be used. However, the results of this section show that the weak AR
may appear if the body Ω \ D has double negative material parameters and its
external boundary contains flat parts.
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