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1 Introduction

Language typology is an approach to the study of languages that has three
different goals. It is interested in how languages can be categorized, what
features are common between languages, and why are these features com-
mon [Cro03, p. 1–2]. Typology studies are commonly centered around
somewhat small details in language such as studying the different modern
language realizations of an old word, or comparing how a grammatical case
behaves within a group of related languages. The detail, or facet could
be within the grammar or in the morphology, or some other part of the
language. The process often starts from analysis of these details and then
leads onto generalizations within or across different languages to come up
with classifications and taxonomies.

In this thesis we propose an automatic method for language typology
that is applicable to speech corpora and doesn’t require human preparation
of data. We develop methods that rely on language similarity to make
hypotheses on how the languages are related. Our methods are based on
statistical language models, which we use to model language surface features.
For us, in this case, the surface is represented by phonetic transcriptions. Our
approach is based on the idea of interpreting a language model’s performance
on another language as a similarity measure between the two languages.
Our research hypothesis is that the better a language model trained on one
language performs on another language, the more similar the languages are,
and that a high similarity between two languages is an indicator that the
languages may be related. In this thesis the term distance is used in place
of dissimilarity, conceptually the inverse of similarity, when discussing the
similarity of languages.

Our main research subject, phonetic transcriptions, are symbolic de-
scriptions of speech. More specifically to this thesis, they are automatically
transcribed texts from the Europarl parallel translation corpus [Koe05], which
is a collection of parliament speech transcripts of the European Parliament.
We use an automatic tool to transcribe the text corpus to a phonetic tran-
scription corpus. Our chosen modeling tool, statistical language models,
are probability distributions over sequences of words, which are used to
predict the next word given previous words [MS99, p. 191]. Instead of words,
we model language on the level of phonemes, because we want to focus on
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the very surface of speech, on features that are found within words, within
syllables. We chose to use statistical language modeling because it provides
an intuitive way of thinking in terms sequences of items instead of relying on
a wide range of language specific language resources such as part of speech
taggers, morphological analyzers, and treebanks.

Data-driven, or corpus-driven means that an approach is based on the
idea that the data itself should be the sole source of hypotheses [MH12, p. 6].
This is in contrast to computational linguistics methods that are built for
proving pre-existing hypotheses. In addition to not centering on pre-existing
hypotheses, the fact that our methods don’t use external language resources
makes them more data-driven than methods that would utilize such resources
as the resources would direct the methods. While our methods don’t rely on
pre-existing hypotheses, they can still be used to test pre-existing hypotheses.
For example, we may have ideas of how a set of languages are related to each
other, and the distance information extracted by our methods could be used
to back up a family relationship hypothesis.

We don’t study morphology, grammar, geographical or social aspects of
language. We only hypothesize language relationships on the basis of distance
measures. Naturally our methods can be used for e.g. sociolinguistics or
dialectological research given applicable corpora. Of established corpus re-
search methods, closest to ours is lexicostatistics, which is the statistical study
of variation of words in corpora [Emb00]. Lexicostatistics is a good method
for analyzing written corpora, but its applicability to inter-language studies
is questionable. For further discussion on lexicostatistics, see section 2.1.

An unsolved problem in the use of phonetic transcriptions in inter-
language comparisons such as ours is the differing meaning of phonetic
symbols between languages. This manifests itself in multiple ways. It may
be that for the same sound a similar, but a little bit different symbol is used
in another language (or the transcription of that language). It may also be
that the phonology of languages differs so that two or more symbols are
used in one language instead of just one in the other, i.e. the phonology
of the former language is more complex with regards to this sound than in
the latter language. Some of these differences may be genuine differences
between languages, which should be accounted for, but some others may
only be accidental differences caused by the chosen transcription policy. We
call this problem the common phoneme set problem. For further background
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on the problem, Port and Leary [PL05] go through the issues with phonology
as a formal system, and the issue is formulated in a familiar setting to this
thesis by Ellison and Kirby [EK06].

Language models have been used to calculate language distances before,
but these studies have been done on text. We use phonetic transcriptions
instead of text and believe the approach is an improvement on the earlier
attempts because we don’t rely on any ad hoc normalization methods. In
earlier studies the text has commonly been normalized to some kind of a
simpler Latin alphabet [BPK92, Kit99, GPA17] by removing at least some
letter diacritics to improve language modeling performance. The motivation
behind this is the assumption that removing diacritics makes the languages
comparable and doesn’t significantly change the meaning of the letters in
terms of phonology. This may make sense in cases where the identity of
the letter does not change when diacritics are removed, but it presents a
new set of problems when the identity of the letter is tied to the diacritic.
An example of a potentially successful normalization is the case of acute in
Portuguese where it signifies word stress (a-á), and hence the normalization
only removes the stress. Conversely, there are cases like the use of diaeresis
in Finnish where the letter with a diacritic stands for a whole another letter
and sound altogether (a vs ä). Normalization is more thoroughly discussed
in Section 2.

This thesis work was done within the Digital Language Typology project1,
where the aim is to produce computational methods for language typology.
The main analysis target of the project is in the analysis of speech sequences,
focusing on prosody and other phonetic sequences. The project’s target
languages Tundra and Forest Nenets, Nganasan and North Sami. These
languages have been studied before, but they don’t have as wide a range of
external resources as the more studied, more widely spoken languages most
efforts in computational linguistics have focused on. Both the low-resourced
target languages and the focus on speech were motivators for our chosen
methods. In addition, given that half of the world’s languages are likely to
become extinct within the next century [Kra92], languages that commonly
don’t have the language resources available, the development of methods
that are viable on these languages is more current than ever.

1Program brochure available at http://www.aka.fi/globalassets/
32akatemiaohjelmat/digihum/hanke-esitteet/vainio-digihum.pdf
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Language A text corpus Language B text corpus

Language A phonetic transcript Language B phonetic transcript

Language A language model Language B language model

Language distance A→ B Language distance B → A

Distance matrix

Heatmap Family tree

Figure 1: Analysis pipeline describing corpora preprocessing, model training,
computation of distances using foreign corpora and visualization.

1.1 Computational Language Typology

We want to develop methods for computational language typology on speech.
We take a step further from analyzing the distribution of phonemes in a
language. We utilize methods and concepts from speech recognition and
language identification to compute distance measures between languages.
Previously language typology has relied mostly on human work, manual
analysis of language features such as grammar or morphology, and then
generalizing, classifying and finding universals based on the findings.

We approach typology from the point of view of language similarity. To
measure similarity, we use a performance measure of language models. Our
hypothesis is that a language model’s perplexity measure can be interpreted
as a similarity measure between languages when the training language of a
language model and the corpus being measured are from different languages
(see Figure 1). Perplexity, a measure of surprisedness of a language model is
defined in Section 3.3. As we want to find out how our method works on
speech, we use automatic phonetic transcriptions of text corpora of different
languages and model them on the level of phonemes instead of on the level
of characters or words.
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The main reason for choosing to work with statistical language models is
their applicability to generic sequences of symbols and independence from
supporting language resources. In other words, limiting ourselves to language
models enables us to work on languages that don’t have a wide variety of
resources available. The ability to handle generic symbol sequences also
makes it possible to handle representations of speech other than the standard
IPA notation [Int99] phonetic transcriptions used in this thesis.

We use statistical language models, more specifically n-gram models.
Phonetic transcriptions are treated as abstract symbol sequences where each
phoneme or phone is represented by a symbol. N-gram models are language
models that have a probability assigned for each sequence of n symbols,
i.e. they use a context of n − 1 to predict the next symbol. Using these
probabilities, a perplexity score describing how surprised the language model
is is computed between the model and a foreign corpus.

Language similarity as understood in this thesis does not provide direct
answers to why languages are similar. This is in contrast to a traditional
language typology approach, which is based on the conceptualization of
language features and basing the actual relationship analyses on these feature
similarities.

Further, to analyze the distances in terms of how they correspond to
known language classifications, we use a variety of visualizations and other
analysis methods. Statistical analysis gives us a view of how the distances
are distributed, and heatmaps are useful for seeing language family patterns.
In addition, family trees describe the distances in a more data-driven fashion,
not predefined by our own hypotheses.

Original work in this thesis is the use of language models on phonetic
transcriptions. Information-theoretic measures have been used before by
Kita et al [Kit99] and by Gamallo et al [GPA17], but both work on text.
Rama and Singh [RS09] use a Brahmi script for Indian languages that has
“almost one-to-one correspondence between letters and phonemes”, but it isn’t
a phonetic writing system in the same sense IPA is.

Given a speech sequence, a phonetic transcription, we model it using
language models and use a commonly used performance measure, perplexity,
to measure the degree of surprise of a model when applied to a speech
sequence from a foreign language. We study the model’s learning constraints
to gauge whether the methods could be applicable to languages with few and
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small corpora. We compute language distances to detect known language
families and test whether we can detect closely related languages. We also
run tests to determine how large learning and test samples our methods
require. The methods seem to work reasonably well to for both detecting
language families and for detecting closely related languages, although the
differing phoneme sets between languages pose a problem to our method.
The methods are not applicable to very small corpora, but don’t require big
data corpora either.

The rest of this thesis is structured as follows: Section 2 provides look
into how things are done without computers and then goes through similar
and related computational methods for producing language family trees. In
section 3 we formally define the methods used in the experiments. Section
4 describes how the methods work with different training and test data
sizes, and probe how the methods work on language family detection and on
detecting closely related languages. Section 5 concludes the thesis with an
overview of the work, and how this line of study should be continued.
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2 Background

Comparative linguistics is a branch of linguistics that studies whether lan-
guages are related by comparing them [Ant89, p. 20, 310–321]. Objective of
these studies is often to come up with a hypothesis on how the languages are
related and how they developed over time from other languages. What lan-
guage family is a language part of? Are some languages clearly exceptionally
closely related while between some other languages systematic similarities
don’t seem to exist? In historical linguistics language families are often
represented with family trees while dialect studies often use maps to describe
and highlight the geographical aspects of language variation.

The comparative method is based on the comparison of sets of features
between languages [Leh93, p. 31]. This comparison often results in hypotheses
on how the language has developed itself over time, how it might have diverged
from another earlier language, and what are the systematic similarities
between these languages. In addition to knowing how the languages are
related, there is often also interest in the timing, into when the languages
diverged. Originally the comparative method has been work of well-read
scholars, but lately there has been interest in computational solutions to the
same problems [McM03]. One can also look at family tree production from
a purely computer science perspective as the language tree reconstruction
problem, which frames the problem as reproduction of a manual method as
computational, not as producing new information about the research subject.
While one could frame the work in this thesis as such, the aim is not only to
reproduce, but to come up with a method that works without the language
resources previous methods need and is generalizable to use cases beyond
text.

A central differentiator between different computational typology methods
is what they use as the distance and/or timing measure. Glottochronology
is based on morpheme decay, which is a theory inspired by radioactivity.
Evolutionary methods are based on finding the most likely hypothesis for
divergence and divergence times. Edit distance is based on the number of edit
operations needed to modify a sequence to another. Information theoretic
methods, such as the one employed in this thesis are based on entropy. These
methods will be discussed in detail in the following subsections.

Another differentiator are the inputs, which are most commonly either
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Text corpora

Cognate lists

Phonetic transcripts

Binary matrices

Language distances

Family trees

Heatmaps

Two-dimensional maps

Transcription

Language model-
ing, lexicostatistics,
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Comparative method

Comparative method
or glottochronology
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Aggregate edit distance

Phylogenetic algorithm
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or hierarchical clustering

Coloring

Language modeling Multi-dimensional scaling

Figure 2: Overview of related methods and what kind of inputs are needed.

text corpora or hand-built cognate lists. Furthermore, the results of these
methods can be represented visually in a number of ways, not just as a family
tree. See Figure 2 for an overview.

2.1 Cognate Methods

A gateway between traditional manual comparative linguistics and computa-
tional methods are cognates. Cognates are words that a language has retained
over history, and shares with its sibling languages and predecessors. When
looking at a family of languages and their shared cognates, the cognates
are said to have a common etymological origin. It is commonly understood
that every cognate has developed gradually from a proto-form, in different
languages in different ways, meaning their later forms may differ significantly.
An example of a cognate is the English word night, which has counterparts
in other Indo-European languages: Nacht (German), natt (Swedish), noc
(Polish), and noche (Spanish). These all have origin in Proto-Indo-European
word *nókwts [Wik17a]. Another word category of importance are loan
words, which are as the name suggests, loaned by some other mechanism,
often through contact to another language.

Swadesh word lists [Swa50] are commonly used lists in cognate studies
which collect universal concepts together to form a dictionary of sorts,
which can be used for comparative study of languages based on shared
vocabulary. These word lists sparked a long string of studies looking at
language similarities by comparing the surface representation of cognates
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English I you (singular) this who what
German Ich du dieses wer was
Dutch ik jij / je deze / dit wie wat
Danish jeg du denne / dette hvem hvad

Swedish jag du denna, den här /
detta det här vem vad

Table 1: Example five word Swadesh list [Wik17c, Wik17b].

between languages and analyzing their change over time. Cognate studies
are based on the idea that language families share common concepts, which
are represented by the same or similar words. The higher the number of
shared words or the similar the words, the more similar the languages are
expected to be. Table 1 describes a very simplified Swadesh list for a limited
set of Germanic languages. It’s quite evident Swedish and Danish are quite
similar according to this list. German and Dutch form a pair as well, while
English shares less words with the others when one only looks at this table
of spellings superficially.

Of cognate methods, lexicostatistics studies the proportion of shared
words between languages and treats the proportion of shared words as a
similarity measure. Glottochronology attempts to construct a family, or
a divergence tree of languages using lexicostatistics and models language
change as divergence from an original proto-language. Glottochronology is
based on the concept of language decay, which is strongly inspired by the
decay mechanisms in radiocarbon timing methods used in archeology [Swa52].
Basic estimation formula in glottochronology is t = log(c)

2log(r) where t is time, c
is the percentage of shared cognates and r is the retention rate per thousand
years [BFG05]. Glottochronology is considered by many historical linguists
to be a problematic method due to two main reasons: the assumption that
there is a universal set of words is flawed, and that the basic tenet of a
constant rate of word retention through time has been proven to not hold
universally [Cam98, p. 180–184]. The criticism towards universal word lists,
or Swadesh lists holds for other cognate- and word list based methods as
well.

While early scholars used morpheme decay, a term adapted from radioac-
tivity as a metaphor and mechanism for modeling language change, in recent
years the focus has turned to computational biology and evolution, and
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Language foot (Eng.)
English foot
German Fuß
Finnish jalka
Estonian jalg

Language Feature #1 Feature #2
English 1 0
German 1 0
Finnish 0 1
Estonian 0 1

Table 2: An example cognate list and a corresponding binary matrix encoding
two cognates as distinct features: Germanic foot (#1) and a Finnic foot
(#2).

especially to phylogenetics, the study of evolutionary relationships between
biological entities [LSV09, p. 16–18]. The hypothesis behind using phyloge-
netic methods is that language change can be thought of as an evolutionary
process and hence methods for analyzing natural evolutionary processes
would also work for language study. Evolutionary methods are based on
coming up with hypotheses for the order of branchings in a family tree, and
estimating the time between branchings. Depending on the method, the
heuristic may be maximum likelihood based, i.e. coming up with the likeliest
branching hypothesis, or in the case of Bayesian methods a similar heuristic,
but based on Bayesian statistics. Evolutionary methods rely on human-coded
binary matrices that map shared cognates between languages. To use these
algorithms, cognates or other shared features need to be coded into separate
features. In Table 2 cognate words are coded into two features. In biology
these binary matrices would either code shared phenotypes (observable traits),
or shared parts of the genome such as individual nucleotides. Lehtinen’s
master’s thesis [Leh09] contains a good overview on the subject of using
evolutionary modeling methods on language.

2.2 Edit Distance

Edit distance [Kru83] (in most cases this is synonymous to Levenshtein
distance [Lev66]) has been used in computational linguistics to compare
words. A common method is take a list of words as the representation of a
language and compute edit distance between each word pair. An aggregate
language distance can be calculated from these word-pair distances by either
summing, averaging or otherwise combining them. The method has been
used successfully for dialect studies [NH97], and also for reproducing family
trees [PS08]. An advantage of using edit distance is that one doesn’t need
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to construct binary matrices by hand. These methods have been tried and
tested for text and certain limited phonetic codings, but generally phonetic
comparison beyond symbol comparisons is a difficult problem [Kes05].

2.3 Language Modeling

Language models have been used for a number of purposes: speech recogni-
tion [JBM75], language identification [LE80], information retrieval [PC98],
but also for reproducing language trees [Kit99]. While one could generalize
all statistical approaches to language as a kind of language modeling, we
focus on statistical language models as they are commonly understood in
the NLP community. We focus on models that are used for estimating the
probability of the next item, or predicting the next item given certain number
of preceding items.

The use of language models consists of two distinct phases: learning phase,
and test phase. In learning phase the language model is trained by feeding
it linguistic sequences from the training corpus. The model keeps track of
the sequences encountered and when the training is completed, the model’s
parameters are estimated using an estimation method. These parameters can
be thought of as the end result of learning. In addition to parameters there
are hyperparameters associated with a language model. Hyperparameters
control how the language model estimates its actual parameters. In practice
hyperparameters are either given from the outside by the programmer or
found by a process of optimization where multiple different hyperparameter
values are tried and the best given some performance measure is chosen. The
test phase contains everything the language model is actually used for. We
use the models only for perplexity computation, but an example of another
use case would be the prediction of next items given a context.

A central term to language models is vocabulary. In a traditional word-
based language model, vocabulary is the set of words the language model
was trained with. In a phoneme-based language model the vocabulary is
the set of phonemes in the transcription. Vocabulary normalization is a
commonly used method to improve the performance of language models.
In the case of character-based language modeling, normalization has been
more specifically motivated by practical issues such as different scripts,
information theory [Kit99], and phonetics [GPA17]. Given the variety of
scripts used across languages and the multitude of character encodings to
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further complicate the landscape, normalization can be seen as a necessity.
However, how normalization between written scripts is done, is not simple
as there are often multiple possible transliteration systems. Vocabulary
normalization can also be seen as a learning optimization for language models
as one can learn the model parameters with less data or more accuracy if the
vocabulary size is reduced. This is generally known as vocabulary selection,
and the solutions to it differ by domain. In the case of Gamallo et al [GPA17]
whose work is similar to ours, vocabulary was selected by hand using phonetic
criteria.

A central problem in statistical modeling is data sparsity. Because of the
large relative frequency differences between linguistic items such as words
or phonemes in a language, it is hard to build a representative statistical
model for rare linguistic items. In practice this statistical constraint means
that often the training data set doesn’t contain enough data to train the
language model to handle the rare items well. The poor handling of rare
items can either cause the rare items to be misrepresented by the model
with regards to their relative frequency or not handling the rare items at
all because they were not part of the training set. While the first problem
could in principle be ignored, the latter one needs to be addressed because
our chosen performance measure requires us to estimate the probabilities for
all contexts and phonemes.

Of different language model performance measures, we use the perplex-
ity [BJM83], which was developed for speech recognition and is conceptually
compatible with how humans tend to think of understanding foreign lan-
guages. For example, a native speaker of Finnish would likely understand
quite a bit of spoken Estonian, but would be surprised or perplexed by some
of the words or forms. We use perplexity in a similar manner in our attempts
to quantify how different languages are.

2.4 Phonetic Transcriptions and Vocabularies

Phonetic transcriptions are symbolic representations of speech. There are
many transcription systems, most at least originally developed to handle
one language well. For example, for Uralic languages there exists the Uralic
Phonetic Alphabet (UPA) [Set01]. A phonetic transcription can be more
or less exact. Narrow transcriptions are more exact estimates of what is
pronounced, and aim to describe the exact phones. Broad transcriptions
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(also known as phonemic transcriptions) are less exact and in their broadest
(or least exact) sense only aim to disambiguate on the level of phonemes,
instead of defining the exact phone used.

According to the phonemic principle [Swa34], each language has its own
unique set of phonemes, which are all and everything that is needed to
express that language in speech. Additionally, when one hears a foreign
language, one hears it in the phonemes of their own native language, not
in the phonemes of the foreign language. In the case of using a language-
independent transcription such as IPA and interpreting the symbols as
universal symbols for the sounds, the phonemic principle is rather strongly
violated as the use of the symbol within a language only makes sense within
that exact language. This is commonly known as the common phoneme set
problem, or the lack of a common phonetic space as discussed by Ellison et
al [EK06].

The common phoneme set problem can be understood in two different
ways. In computer science and information theory terms we can treat it
as an accidental mismatch between language model vocabularies, or rather
the symbols used within them, which should be fixable by finding corre-
spondences between phonemes between languages. In other words, thinking
opportunistically that the phonemes represent something similar enough that
using these correspondences doesn’t change the meaning of the phonemes in
a way that would invalidate the use cases. If we take a phonetic and linguis-
tic viewpoint, the differences between phoneme sets are either systematic
phonetic shifts, which can be accounted for if we want to track something
beyond them, or alternatively they are something for which there is no clear
correspondence for, which is the case when the languages are not very closely
related.

2.5 Visualizing Relationships

While our methods can compute distances between languages, the distances
are rarely descriptive just by themselves. They can be used for comparisons,
but to actually get something out of the distances, they need to be pro-
cessed somehow to a representation more compatible with human perception.
Examples of these representations are tree diagrams and heatmaps. Trees
or dendrograms are typical representations because they succinctly describe
families and categories (see Figure 3 for an example.) Heatmaps rely on
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Germanic languages

English

Dutch German

Danish Swedish

Figure 3: Example language tree of Germanic languages.

color to bring out both patterns and outliers in a standard grid, which makes
it possible to distinguish relative differences between items not visible on
dendrograms the same way.

Dendrograms are used to represent the results of hierarchical clusters and
their most common use case is to show the relationships between languages.
Often language families and language relationships are described in tree
format to show how a language came to be from a predecessor language.
Examples of these language families are Germanic languages, or Slavic
languages. Languages and language families can be thought to have been
born by branching out from an earlier language, i.e. there is a somewhat
clear single common origin in time and place. Languages can also be born out
of language contact in a way that makes it hard to pinpoint a single origin,
these languages are called creoles. While there is ample discussion in this
thesis and in current research on how languages can be studied similarly to
biological organisms, one cannot always expect to draw similar dendrograms
as in computational biology out of languages because languages don’t change
only at birth, or by themselves gradually, but also through contact with
their neighbors. In other words, due to language contact, a more suitable
representation of language history would be a directed and cyclic graph, not
a tree. However, to produce such a graph one would have to identify and
quantify not just language distances, but in a more granular manner the
different forms of influence between languages.

A central concept behind reconstructing language history in a tree form
are proto languages. For example, in the case of Indo-European languages
linguists have reconstructed a language called Proto-Indo-European, of which
the cognates shared by all Indo-European languages should in theory be
derived from. This is to say, there is an expectation of a lineage of languages,
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shifts, and changes over time. An example of a family tree such as this is
in Figure 3 showing a subset of the Germanic language family, which is a
part of the Indo-European language family. The tree contains a subset of
West Germanic languages in the left branch where Dutch and German are
closer to each other than they are to English. The right branch of the tree
contains North Germanic (or Scandinavian) languages Danish and Swedish.

2.6 Prior Work on Computing Language Distances

In this section we go through prior work related to computing language
distances, and language clustering or text categorization.

Closest to our work and hence relevant to this thesis is the work done
by Kita [Kit99]. The work utilizes n-gram language models on language
clustering on text corpora. Major difference to our work is the use of a
Kullback-Leibler divergence inspired distance measure which differs from per-
plexity in its way of taking into account language models for both languages
when determining the pairwise distances. Gamallo et al [GPA17] study the
same problem, but similarly to our work rely on perplexity as the distance
measure.

Batagelj et al [BPK92] were one of the earliest to tackle a language family
tree reproduction problem. They use a variety of different edit distances to
cluster languages using word distances and sum of word distances as the
language distance score. Petroni et al [PS08] somewhat similarly compute
normalized word distances via edit distance between cognate lists, averaging
these distances into a language pair distance, which is then further converted
into a language divergence timing estimate to produce family trees. Both
normalize the character set to the English alphabet. Batagelj et al use a
limited word list of only 16 words while Petroni et al use the Swadesh list
prepared by Dyen et al [DKB92].

Cavnar and Trenkle [CT94] propose a method for text categorization using
n-gram frequency statistics, specifically frequency distribution profile, or the
order of most common n-grams. While their work focuses on categorization,
not on the distances themselves, the method or a variation of it has been
used by others [AM11, RS09] as it can be used to derive a distance measure
between languages via the rank-order difference between n-gram frequency
profiles.

Abramov et al [AM11] introduce multiple methods for computational
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language typology of differing complexities and compare them to each other.
They classify languages using a network analysis method on graphs (Global
Syntactic Dependency Networks) extracted from treebanks. They compare
the results to an n-gram based method building on top of the work by Cavnar
and Trenkle [CT94] and use the most common n-grams as features to be
classified by the genetic algorithm. Abramov et al state that the n-gram
method is simple and relatively effective at reproducing trees, but typolog-
ically less useful due to its opaqueness with regards to language features.
In addition to the network and n-gram methods they apply a quantified
typology method [AL73] using tree bank data which looks at multiple levels
of the language at once (morphology, syntax etc). The method works on
morphological complexity, dependency structure of sentences, centrality of
predicates, and both relative sentence depth and width in dependency trees.

There have been three approaches to normalization: normalization to an
arbitrary script, normalization to a phonetically motivated script and the
study of an almost phonetic script to start with. Both Kita and Gamallo et al
normalize their text corpora into a form of Latin script. In case of non-Latin
corpora this involves a transliteration step from the origin script such as
Cyrillic to Latin. In addition to this, Kita removes diacritics from characters,
practically ending up with the letters of the English alphabet. Gamallo et
al normalize the Latin script into 34 symbols (10 vowels, 24 consonants),
which they say is a phonological one containing common sounds, consonant
palatalizations, and different vowel articulations. Thus Kita uses an ad hoc
vocabulary normalization method while Gamallo et al motivate their chosen
normalization phonologically. While Gamallo et al have normalized their
Latin script into a phonological one, Rama et al [RS09] use Indian written
scripts, which can be thought to be almost phonological in nature.

Ellison et al [EK06] produce family trees by constructing a distance
matrix intra-language between a set of cognates and then compute inter-
language distances between distance matrices. The authors clearly formulate
the common phoneme set problem and present a method that is immune
to the problem because it doesn’t compare the lexical representations of
cognates over languages. Intra-language cognate distances are motivated by
psychological models implying that word similarity is related to how easily
words are confused with each other.

Gray et al [GA03] use Bayesian phylogenetic methods on binary cognate
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matrices to reproduce a family tree and timing estimates for the Indo-
European language family. Notable in their work is the use of prior knowledge
in priming the Bayesian process. Similarly to Gray et al, Lehtinen et
al [LHK+14] use Bayesian methods, but they produce split graphs from
cognate data, and work on Uralic languages. Split graphs are an alternative
to family trees introduced by Bryant et al [BFG05] as an alternative to trees
and full-blown graphs which doesn’t force one to cluster unrelated languages
together, and still isn’t quite as complex as a full-blown graph. In addition
to producing split graphs, Lehtinen et al study the effect of loan words in
the analysis by using separate word lists of known cognates and known loan
words and compare the graphs produced.

Based on this overview we note that there have been multiple takes on
both language distance computation and language clustering. The four main
types of methods are either information-theoretic/statistical, edit distance
based, tree-bank based, and cognate based. Our approach is information-
theoretic because we wanted a method that isn’t tied to any one particular
type of speech sequence, and because we ultimately want to provide an
automated alternative to complement a previously largely manual process.
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3 Methods

Our experimental pipeline starts by transcribing a text corpus of each
language into a corresponding phonetic transcription, followed by training a
language model on each transcription. The language models are then applied
on phonetic transcriptions of all languages to compute pairwise distance
measures between all languages. The distance measure used, perplexity,
is in essence the average degree of surprise for each item in the phonetic
transcription. For further analysis, the distances are visualized as heatmaps
and dendrograms, and by other means. For an overview see Figure 1.

Because we apply language models on language corpora they were not
trained on, the sets of phonemes for the model and the corpus it’s applied
on never perfectly overlap. In addition to this, due to data sparsity, we
may either be estimating parameters for rare phonemes poorly or can even
be missing them from the model altogether due to the training sample not
having them.

The omission of an individual phoneme from a model prevents the esti-
mation of the probabilities of that phoneme using the model. In this case the
only way we can compute a perplexity for the transcription is by ignoring
the phoneme. Ignoring unknown phonemes is not a viable option as then
some of the statistical properties of the model are not respected. In our case
the effects of ignoring the problem are quite drastic as the phoneme sets
of languages differ, and this would not then be reflected by the perplexity
measure. The other effect is that all the contexts the missing phoneme
appears would be ignored. In other words, if a phoneme is missing from one
language and is present in the other, the distance measure and the language
model must handle this difference, not ignore it.

To mitigate both foreign vocabulary item and data sparsity issues in a
generic way we utilize two techniques: smoothing and interpolation. Smooth-
ing is the process of shifting part of the probability mass of phonemes
encountered during training more evenly amongst all the phonemes. This
makes it possible to shift part of the probability mass also to unknown
items so that their probability can be estimated. Interpolation is the use of
multiple different language models, in our case, the use of trigram, bigram
and unigram models together to reduce the impact of missing items and
improve the estimation performance on rare phonemes.
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As the distances between languages are highly dependent on the choice
of phonetic symbols used in phonetic transcriptions, we want to find out
if the language models capture something in addition to just phoneme set
differences. We use the cross entropy distance measure for comparing the
phoneme sets to each other and compare these distances to the ones obtained
with language models and the perplexity measure. We utilize cross entropy
as a distance measure between the phoneme frequency tables, or unigram
distributions as it defines a practical distance measure between two discrete
random distributions. Like the language model distance, cross entropy
distance is asymmetric. Due to the non-central use of this measure, other
distance measures for comparing unigram distributions were not evaluated.

3.1 Phonetic Transcription

We use eSpeak 2 speech synthesizer to produce phonetic transcriptions using
IPA symbols. Text corpora are run as plaintext through eSpeak and after that
converted into a sequence of symbols where both utterance boundaries and
word boundaries are abstracted into special word boundary items to simplify
the analysis of the language models. A number of other transcription post-
processing steps are taken in addition to abstracting over word boundaries.

Both primary and secondary word stresses are removed from the tran-
scription. In addition to removing word stresses, special compound phonemes
consisting of a glottal stop and a vowel such as Pa are split into two sequential
phonemes, P and a. We also considered doing the same for retracted vowels
present in the French transcription represented as @- or a-, but decided not
to do that because we deemed them to just be a part of the way eSpeak
transcribes French. One could argue that these are one of the accidental
transcription differences, an anomaly in transcription narrowness. Motivated
by this narrowness in French transcription one could then opt to remove the
retractions. This would broaden French transcription to be more in line with
other languages.

Long vowels stay as they are, i.e. when there is a sequence like a:, it is
treated as a single phoneme, even though typographically it consists of two
separate IPA characters in eSpeak output. We also remove phonemes such
as (el) and (em) which are present in eSpeak output. Their exact meaning in

2http://espeak.sourceforge.net/, version 1.48.03 on Mac OS X.
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the output isn’t known. Given that there is not only one kind of a phonetic
transcription, or even two, it is rather clear that any automatic transcription
system is bound to produce transcriptions of slightly varying broadness for
different languages. This is true even when using a standard transcription
system, as the broadness of a language’s transcription is defined from within
the language itself; broadness is not a universal property.

3.2 N-gram Models

N-gram language models are statistical language models that predict the
next item in a sequence given N − 1 previous items. N-gram models are
analogous to Markov chains, but we use the term n-gram model as that is
more customary within the NLP community. For each context of size N − 1,
the model provides a probability distribution which describes the probability
of transitioning to different phonemes. The probability distributions are
estimated during the training phase of the model, and they are derived
using maximum likelihood estimation (MLE) [Sch04]. MLE is a method for
estimating the parameters of a statistical model to maximize its likelihood,
the probability of obtaining the data given the parameterized probability
model. In our case likelihood is maximized by counting the occurrences of
sequences of N items and their contexts, and using their relative frequencies
within the context as individual transition probabilities:

p̂(itemb | itema) = count(itema, itemb)
count(itema) ,

where p̂(itemb | itema) is the estimate for probability of itemb given that is
preceded by itema.

For example, given sequence A,A,B,B, the bigram (N = 2) probability
distribution for context A would be calculated for A as p(A |A) = c(A,A)

c(A) = 1
2 ,

for B as p(B |A) = c(A,B)
c(A) = 1

2 ; for context B as p(B |B) = c(B,B)
c(B) = 1

2 , and
p(A |B) = c(B,A)

c(B) = 0
2 .

To find out how different n-gram models work, different models and their
combinations were tried. Unigram model is a probability distribution of
individual symbols over the learning data. Bigram model takes context into
account by looking at the previous item in a sequence to predict the next.
Trigram model extends the observed context to two items, i.e. given two
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symbols, it provides a probability distribution of items that should follow.
Additive smoothing is used to handle unseen symbols (see Section 3.2.1

for definition) and linear interpolation is utilized to handle unseen transitions
between symbols (see Section 3.2.2 for details). Trigram, bigram and unigram
models are used in conjunction in an interpolated model setup to estimate
the probabilities, and in addition to this, additive smoothing is used on the
unigram model to estimate probabilities for items not encountered during
training. Hyperparameters for linear interpolation and additive smoothing
were not optimized programmatically. They were hand-tuned to lower
the perplexity values up to some extent. There are likely more optimal
parameters, especially if different parameters values were used for different
languages.

3.2.1 Additive Smoothing

A central property expected by the perplexity distance measure from the
language model is that it can estimate the probability of each trigram, not
just the ones it was trained on. To maintain this property for phonemes
not part of the training data set, we use additive smoothing, a mechanism
to shift part of the probability mass in the model to these phonemes. This
can also be phrased as handling items that are not part of the model’s
vocabulary. For example, given a learning set of A,A,B,B and a unigram
model with items A,B,C we would end up with probabilities p(A) = 2

4 = 1
2

and p(B) = 2
4 = 1

2 , but p(C) would be 0, which is incompatible with the
perplexity measure. Similarly, the estimated probabilities for all the cases
where the zero-estimated is part of the context would be 0.

Additive smoothing (or Laplace smoothing) [Lid20] is used on probability
models to smooth over values where we know the probabilities should not
be zero. Additive smoothing works by adding a certain constant (commonly
called pseudocount) to every item’s count in the learning set in order to
distribute a small amount of probability mass to every item regardless of
whether all the values were encountered in the learning set or not. Additive
smoothing probability estimator function is defined as

p(item) = Countitem + pseudocount

Countallitems + Sizevocabulary · pseudocount
.

Using additive smoothing and a pseudocount PC = 1 the derived
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pseudocount A B C
2 0.400 0.400 0.200
1 0.429 0.429 0.142
0.5 0.454 0.454 0.091
0.1 0.488 0.488 0.023

Table 3: Probabilities assigned with different pseudocounts.

probabilities would be p(A) = 2+P C
4+3∗P C = 3

7 , p(B) = 2+P C
4+3∗P C = 3

7 , and
p(C) = P C

4+3∗P C = 1
7 , which would shift part of the probability mass to item

C. Generally, the higher the pseudocount, the more of the probability mass
is shifted to unknown items, as seen on Table 3.

Throughout our tests we used a value of 0.1 for the pseudocount. Initially
a default of 1 was used as advocated by Lidstone [CG96, Lid20], but it was
reduced to 0.1 to obtain better results. After trying a number of other (lower
and higher) values and not seeing a big difference in results, we settled with
it. It is not entirely clear how to tune this hyperparameter in our setup as
the objective of smoothing differs from single language modeling. If we were
tuning the hyperparameter for use within one language, for example for use
in speech recognition, the optimization would be rather straightforward. In
our case, as there are multiple languages involved, the assumptions that the
learning set vocabulary and test set vocabulary overlap in a similar way, and
that the sizes of vocabularies are similar, don’t apply.

We could optimize pseudocount for each language pair separately, but
there’s a risk of choosing a too high value when the vocabularies are highly
divergent. This would result in an over-smoothed model where genuine
differences between vocabularies are not reflected. There’s no single obvious
way to optimize for a one pseudocount value for all models, either. For
example, if we tried to optimize the average language distance measure,
we might end up with over-smoothed models again as we would likely end
up optimizing away the highest language distances with highly divergent
vocabularies. Even with a more conservative approach genuinely good
distance measures between language pairs close to each other could be
negatively affected if we tried to optimize distance measures where our model
doesn’t work very well.

We did not experiment with other smoothing methods. The assumption
is that the choice of smoothing technique isn’t currently the main bottleneck
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with regards to the quality of the results, and thus trying out other methods
wouldn’t have necessarily improved the results.

The frequency of phonemes seems to follow a kind of a log-linear rela-
tionship with the rank. The most common phonemes are significantly more
common than the least common phonemes. One could also characterize the
phoneme frequency distribution to also somewhat follow the Zipf distribu-
tion [Zip32], although Zipf generally estimates the relatively common (rank
between 10-30) phonemes to be less frequent than they are in our data, which
can clearly be seen on Figure 4.
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Figure 4: Frequency distribution of English phonemes and their fit against
the Zipf distribution.

Even when we know the distribution of phonemes, we cannot assume the
exact same implications and mitigation effects with regards to data sparsity as
for cases where the training and testing language are the same. The languages
may be using differing phonemes altogether, i.e. a common phoneme in one
language may be missing from another, which means the n-gram contexts
this phoneme appears aren’t handled gracefully. A more capricious case
is when the languages in question use a phoneme in completely different
roles. A common phoneme in first language may be relatively uncommon in
a second language, and may also be used in different contexts from the first
language. Some of these differences are caused by genuine differences between
phonologies, but some may be more accidental differences in transcription.
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3.2.2 Interpolation

Unigram models typically have between 50 and 60 unique items, bigram
models 1000-1200 unique transitions, and trigram models 8000-10000 unique
transitions. In order to fully train a model, the training data set needs
to be large enough. Trigram model requires the largest training data set,
followed by bigram and then unigram. See Section 4.1 for more details.
Interpolation, as its name implies estimates parameter values by calculating
a kind of a consensus estimation between multiple models so that we can
mainly rely on the specific trigram model, but also use the information in
the simpler unigram and bigram language models when the trigram model
cannot estimate a probability for a context.

Linear interpolation (or Jelinek-Mercer interpolation) [JM80] is an inter-
polation method for n-gram language models, which works on the assumption
that n-gram models with lower n-parameters will more likely have a defined,
or well-estimated probabilities for rare item sequences not found from the
higher order model. Linear interpolation works by estimating the probabil-
ities over multiple n-gram models. We use the term interpolating trigram
model to refer to a language model that interpolates between trigram, bi-
gram and unigram models. Probabilities for this model are estimated as
P̂ (wi |wi−2wi−1) = λ1(wi |wi−2wi−1) + λ2(wi |wi−1) + λ3(wi |wi), where λ1

is weight of the trigram model, λ2 the weight of the bigram model, λ3 the
weight of the unigram model, and λ1 + λ2 + λ3 = 1.

We didn’t try to optimize the interpolation hyperparameters (λ1, λ2

and λ3), but settled for values λ1 = 0.7, λ2 = 0.2, and λ3 = 0.1 early on.
Some minor modifications to the hyperparameters were tried, but the results
were not conclusive. Both interpolation and smoothing hyperparameter
optimization share the same conceptual difficulties with regards to the
decision on which distance measure or measures to minimize. See Section 3.2.1
for discussion on the conceptual issues with hyperparameter optimization.

3.3 Perplexity Measure

Perplexity [BJM83] is a measure used in the speech recognition community
to describe how surprised a system is when it encounters a certain input.
The simple way to understand the measure’s value is that a perplexity value
of k means that one is as surprised on average as one would have been if
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Item Count Probability
A 2 0.33
B 2 0.33
C 1 0.167
D 1 0.167

Table 4: Frequency table for sequence A, A, B, B, C, D.

one were to have had to guess between k equally probable choices at each
predictable phoneme. In other words, with a k value of 10, one had to choose
from 10 equally probable choices on each phoneme in the measured sequence.
Formally perplexity is defined as

Perplexity = b
− 1

N

N∑
i=1

logb q(xi)
,

where b is the base and is customarily, and in our tests, 2, and q(xi) is the
estimated probability for the item in the language model.

For example, given a learning sequence of A,A,B,B,C,D, we would get
the unigram model frequency Table 4. Given the frequency table, we would
calculate the perplexity for a test sequenceA,B,D as 2−

1
3 (log20.33+log20.33+log20.167) =

3.8.
An alternative distance measure to perplexity for our use case would have

been Juang & Rabiner’s Kullback-Leibler divergence based method [JR85],
which was used by Kita [Kit99] in their experiments, which were similar to
ours. We did tests with the measure, but they are not included in this thesis
as the results did not significantly differ from the ones done with perplexity.
Perplexity was chosen over the measure used by Kita as it is better known,
simpler, and in our case performs similarly.

3.4 Cross Entropy Measure

Cross entropy is a distance measure between two arbitrary probability distri-
butions. In information theory terms, when entropy can be thought of as the
average coding cost of a random variable when coded against its own proba-
bility distribution, cross entropy is the average uncertainty when the random
variable is coded against some other probability distribution. Entropy can
be interpreted as a measure of surprisedness [MS99, p. 73–76], somewhat
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Variable A B C D
Probability 0.1 0.2 0.3 0.4

(a) Distribution p′.

Variable A B C D
Probability 0.1 0.4 0.4 0.1

(b) Distribution q′

Figure 5: Discrete probability distribution p′ and q′.

similarly to perplexity. We use cross entropy to compute distances between
unigram distributions: how surprised are we in the context of one language’s
unigram distribution when encountering a foreign unigram distribution.

In the case of discrete distributions, cross entropy is defined as

H(p, q) = −
∑

x

p(x) · log2q(x),

where p(x) is the probability according to distribution p and q(x) the proba-
bility according to distribution q.

For example, given the discrete probability distributions p′ in Table 5a
and q′ in Table 5b, the cross entropy between p′ and q′ would be H(p′, q′) =
−(0.1 · log20.2 + 0.2 · log20.4 + 0.3 · log20.4 + 0.4 · log20.1) = 2.22 while
H(q′, p′) = −(0.2 · log20.1 + 0.4 · log20.2 + 0.4 · log20.3 + 0.1 · log20.4) = 2.09.
In other words, it takes less bits to code distribution p′ given distribution q′

than the other way. Note that H(p′, p′) = 1.85, and H(q′, q′) = 1.72.

3.5 Visualizing Language Distances

Language relation hypotheses in related studies have mainly been visualized
with family trees, or dendrograms. Their use originates from computational
biology, where dendrograms are used for representing relationships between
genes, or between organisms. In dendrograms each language belongs to
a cluster and these clusters similarly can belong to clusters (see Figure 3
for an example). Characteristic to dendrograms is the expectation of each
dendrogram member to have just one closest neighbor and that the further
in the tree one goes, the more distant the tree members are. In other words,
if a language is equally close to two other languages, in a dendrogram one
would still have to be chosen as the closer one. Dendrograms are hierarchical
in nature, i.e. they can only express language relationship upwards and
downwards in a tree, not sideways or across branches.

Due to the complexities involved with what can be well represented by a
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tree, an alternative representation with more degrees of freedom is a heatmap.
Heatmaps are tables where each language is represented by both a row and
a column and the color of the cell in the intersection is the distance between
them. In our case the heatmap is asymmetric because there are two distances
between each language pair. Heatmaps are especially useful for us because
they don’t hide the complexity of two different distance measures between
language pairs. Heatmaps show the two distance measures separately in a
graphical representation and can be used to explain why certain languages
behave in unexpected ways when distances are represented by more opaque
methods such as trees.

The colors and how they change from one to another are a central part of
a heatmap. In order to properly distinguish groups one needs to understand
what kind of values require which colors and whether the color gradients
should be gradual, continuing or even have jumps in them. We selected
colors so that low distances would be easily distinguishable from the rest
by constructing the color scale from two gradients, which have a small
discontinuation between them. In addition to this the colors were picked
so that the heatmap would be monochromatic for better printability and
readability without perfect color vision.
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4 Experiments

In order to validate the viability and assess the performance of n-gram models
and perplexity measure, two sets of experiments were executed. To test the
effects of sample size in learning and testing of language models, different
sample sizes were evaluated for both tasks. The general assumption is that
the larger the training and test sets are, the less the distance measure varies
from sample to sample when its variability is measured using a sampling
approach. We are especially interested in the effects of sample sizes because
of the research project’s interest in low-resource languages that are limited
both in terms of tools and in terms of available corpora. In order to analyze
these languages, we must have methods that work with small corpora.

The general viability of n-gram models is studied by comparing visual-
izations of distance matrices and distances between languages to linguistics
literature and well-known language families. Cross entropy, a distance mea-
sure which compares the frequency distributions of phonemes within language
model vocabularies is used to study the effects of differing phoneme sets.

We use the Europarl parallel translation corpus, which consists of a
collection of translated parliament speeches from the European Parliament.
This means that for each language corpus the subject matter is roughly the
same. Different languages have different amount of material available due
to some countries having joined the EU after the corpus was first published.
While the same amount of input data is used for each language for each
task in the tests, the corpora are not aligned. Due to the rather peculiar
contents of the corpora, political speeches, one can only speculate on how
representative are the corpora of the languages overall. However, as the
subject matter is the same for all languages and hence also the lexicon, the
corpora should be relatively comparable to each other.

4.1 Effects of Sample Size

There are a number of approaches for exploring the effects of sample size
and the learning and testing data size requirements. One can approach the
problem from a purely statistical point of view and compute the correlation
between the parameters of a fully trained model and a sample size constrained
model to gauge how well the sample size constrained model corresponds to
a fully trained model. The main benefit of this approach is the immediate
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applicability of commonly accepted thresholds for statistical significance in
the analysis of the results. Main caveat is that there is no simple way of
knowing how the statistical correlation corresponds to the model’s prediction
performance without further studying this relationship.

Then there are the use-case specific metrics. If we were to take family
tree reproduction as the main use case for our methods, we could tailor
the sample size tests around this and use cophenetic distance [SR62] as
the distance measure. Cophenetic distance is a distance measure used to
compare and calculate distances between trees. In our case, we could utilize
cophenetic distance to deem a sample size constrained model to be good
enough — or even require it to produce an identical family tree to a fully
trained model. If we were to take nearest neighbor discovery as the main use
case for our methods, we could focus on the neighbor lists of languages and
use a statistical metric such as Spearman’s rank correlation coefficient [Spe04],
which is a method for measuring the correlation between the orders of items,
in our case the ideal order of neighbors to the order computed by our method.
This would again make it easier to rely on statistical significance for making
decisions on whether a learning sample is sufficiently large. Both of these
are use case specific measures for language model performance. As we were
mainly interested in how perplexity measure behaves, and not focused on
either of these use cases, we didn’t use these measures.

Instead, we approach the problem by trying to answer the question what
is the probability of having a large enough corpus, where large enough means
that the perplexity measure is within a predefined threshold with high enough
certainty. In other words, in order to validate the feasibility of language
models for smaller data sets, we use probability as the driving measure for
finding large enough sample sizes. For each sample size, we calculate the
probability of reaching a distance measure within a threshold when compared
to a fully trained model or when compared to the full test data set.
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Algorithm 1 Learning sample size
Input: Cf , iterations, threshold, where Cf is the full training corpus
Output: Psize, an associative array of size→ probability

Mf ← Train(Cf )
Df ← Distance(Mf , Cf )
for size in sample sizes do
A← 0
for i = 0 to iteration do
Mc ← Train(Sample(Cf , size))
Dc ← Distance(Mc, Cf )
if |Dc −Df | <= threshold then
A← A+ 1

end if
end for
Psize ← A

sample count

end for

The learning sample size algorithm (see Algorithm 1) goes through
learning sample sizes in growing order, trains constrained models from
sampled training corpora and calculates distances between them and the
full testing corpus. The probability of the sample size being large enough
is calculated by dividing the number of models having a distance measure
within a threshold of the fully trained model by the number of iterations
(which can also be thought of as the sample count). The measure tested and
its parameters are, or correspond directly, to the distance measure produced
by our method itself, which makes it interpretable in the same context.

We studied the effect of test sample size with a similar test to the learning
sample test. As described in Algorithm 2, different sized corpora are tested
in a sampling manner in growing order against a fully trained model. For
each corpora size a distance is calculated and the number of distances within
a given threshold is divided by the number of iterations to compute the
probability of reliably reaching the threshold.
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Algorithm 2 Test sample size
Input: Cf , iterations, threshold, where Cf is the full training corpus
Output: Psize, an associative array of size→ probability

Mf ← Train(Cf )
Df ← Distance(Mf , Cf )
for size in sample sizes do
A← 0
for i = 0 to iteration do
Dc ← Distance(Mf , Sample(Cf , size))
if |Dc −Df | <= threshold then
A← A+ 1

end if
end for
Psize ← A

sample count

end for

We study the behavior by sampling because the methods themselves
are statistical and rely on the distribution of items or item sequences. The
iteration count required wasn’t extensively studied, it was increased for as
long as the results seemed to be unstable from run to run. In the learning
tests we used a perplexity threshold of 1.5, within which the perplexity for
each iteration has to be within, a cutoff probability of 0.9, the minimum
proportion of iterations that have to reach a perplexity within the perplexity
threshold for a cutoff to happen, and an iteration count of 200. For test
samples tests we used a perplexity threshold of 0.5, a cutoff probability of
0.9 and an iteration count of 1000. All of these parameters were adjusted so
that the distance measure would be reasonably close to what a fully trained
model would produce and that the tests would finish in a reasonable amount
of time. While an increase in the iteration count would improve accuracy,
the improvements would be rather small and they would likely not affect the
analysis.

Different perplexity thresholds were used for the experiments because of
the differing stabilization behaviors between learning and testing. Using a
lower threshold on the learning test would have resulted in unpractically large
stabilization sample sizes considering the low resource language mindset.
Conversely, using the same, higher perplexity threshold for test samples
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Figure 6: Learn stabilization sample size using the trigram model over all
studied languages.

would have sacrificed perplexity accuracy, and wouldn’t have given as good
an understanding of stabilization behavior. These two conclusions are derived
from the general assumption that we have similar sized language samples for
different languages. In other words, there is no harm in using a larger test
sample as learning behavior is the more likely bottleneck.

While our testing methodology tries to account for variability in the
training and test sets by sampling, one should note that our tests only
measure the stabilization by testing the model against its own language, not
as is done on our method’s viability tests where we apply a language model
on a language other than the model was trained on.

4.1.1 Sample Sizes in Learning

Based on the experiments results, languages can be roughly divided into
three groups in their learning behavior. There are languages with low sample
size requirements, a group consisting mostly of Romance languages. The
higher end of sample size requirements is dominated by Slavic and Baltic
languages. The rest of the languages fall in the middle between 30000 and
40000 phonemes (see Figure 6), which translates to a word count between
5000 and 7000. Hungarian and Lithuanian require larger samples and only
stabilize at 50000 phonemes or 8000 words. The languages with low sample
requirements are Spanish, Greek and French, which stabilize below 30000
phonemes, Spanish notably at 12000 phonemes, or 2500 words.

To illustrate the differences between languages, we studied the two ex-
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Figure 7: Learning stabilization for Spanish and Lithuanian languages using
different models. Stabilization cutoff sizes for each model are shown in lower
right corner.

trema languages by learning behavior, Spanish and Lithuanian (see Figure 7.)
Spanish bigram model can be trained with a sample of 3000 while Lithuanian
unigram model requires 4000 phonemes for training. Similarly, Spanish
trigram model and Lithuanian bigram models can both be trained with
12000 phonemes. This shows that while one can make conclusions on the
basis of model’s complexity, in the sense bigram model generally doesn’t
require as large a learning sample as a trigram model, the differences between
languages are significant and need to be taken into account when estimating
the required sample size.

To come up with a way to estimate the learning sample size for a lan-
guage, we studied whether this could be achieved by extrapolation from the
language’s phoneme count. While the two extreme languages in their learn-
ing behavior, Spanish and Lithuanian, at 40 and 75 phonemes respectively,
seemed to support this hypothesis, we didn’t find a correlation between
the variables. Two counter examples to this are Hungarian and Romanian:
Hungarian has 51 phonemes and it stabilizes at 50000 phonemes while Roma-
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Threshold Min 1st Qu. Median 3rd Qu. Maximum
1.5 12000 25000 30000 35000 50000
2.0 7000 14000 20000 25000 30000
2.5 5000 12000 12000 16000 25000
3.0 4000 8000 10000 12000 16000
4.0 3000 5000 6000 8000 12000
5.0 2000 4000 5000 6000 8000

Table 5: Learning sample stabilization points for different perplexity thresh-
olds. Each row is a statistical summary over all the languages of the stabi-
lization sample size given a perplexity threshold.

nian has 92 phonemes and it stabilizes at 25000 phonemes. In other words:
different languages have differing learning sample requirements and these
requirements cannot be estimated by their phoneme counts size alone.

A correlation between a language’s phoneme count and its learning
stabilization sample size would have made it possible to estimate a learning
sample size for languages that were not part of this test. As this was not
the case and as we also don’t have a single good number for the perplexity
threshold, we then studied the stabilization behavior for the whole set of
languages with different perplexity thresholds to have a better idea on what
kind of sample sizes one needs to use to obtain a certain precision in the
perplexity measure. Table 5 gives a statistical overview of the learning
stabilization sample sizes with different values of perplexity threshold. In
a corpora size restricted research setting, given a sample size between the
median and 3rd quartile values one should be able to reach comparable
perplexity precision.

4.1.2 Sample Sizes in Testing

In a similar experiment to the learning sample size test we studied how
perplexity stabilization behaves with different test sample sizes. Half the lan-
guages stabilize with sample sizes of 2000 to 5000 phonemes, which translates
to 350 to 900 words as can be seen in Figure 8. Seven languages stabilize
at under 1000 phonemes or under 200 words. Bulgarian is a notable outlier
because it only stabilizes at 14000 phonemes, or 2500 words. Spanish, simi-
larly to learning sample size test, requires the smallest sample at 500. Along
with Spanish in the low sample size requirement group are other Romance
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Figure 8: Test stabilization sample size using the trigram model over all
studied languages

languages Portuguese, French and Italian. The high end is dominated by
Slavic and Baltic languages as Latvian, Slovene, Lithuanian, Czech, Slovak
and Bulgarian are in the top seven languages requiring largest samples.

The experiment indicates that while the unigram model can be trained
with a small sample, the test sample for the unigram model needs to be
rather large compared to the other models. An example of this is Finnish,
where the unigram model requires a sample of 14000 phonemes to stabilize,
as seen on Figure 9. At the same time, the bigram model requires a sample
of only 3000, and the trigram model a sample of only 2000 phonemes. In
terms of words this is over 2000 for the unigram model, 450 for the bigram
model, and 300 for the trigram model.

The unigram model seems to require a large test set while the trigram
model requires considerably more learning data. The bigram model is
somewhere between these two for both tasks. We believe that a higher order
n-gram model test sample size stabilizes with a smaller sample because the
model is simply better at predicting. I.e. given a bigram model and a trigram
model, the bigram model is more likely to be highly perplexed by something
very rare, which may then heavily affect perplexity and in our tests cause
it to not be within the threshold. Another way to look at the problem is
the higher variability of a lower order n-gram model’s perplexity measure,
meaning that when we set a fixed threshold parameter for a test, our tasting
favors the models with lower variability.

When training language models, one is often concerned with overfitting.
Overfitting is a phenomenon where the trained model is too descriptive of
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Figure 9: Testing stabilization for Finnish language. Right lower legend
shows the stabilization cutoffs for each model type.

the corpus it was trained on. For example, in the case of speech recognition,
if one is training a language model to recognize a language but only trains on
speakers of one distinct dialect, the model would in fact learn to recognize
that dialect, not the language itself. Overfitting is commonly mitigated by
making sure the trained model keeps improving during training on a separate
held out data set from the one it is being trained on.

In our case overfitting could be described in three ways: as overfitting to
our chosen corpus, overfitting because of an insufficient learning sample size,
or overfitting to the model’s own language. If we were overfitting to a corpus,
the language model would be too focused on parliament speech, speech
transcriptions, or to our automatic transcription system. An advantage of
the parallel translation corpus is that the subject matter is exactly the same
across languages, i.e. overfitting this is not as big a problem. The same
applies to speech transcriptions. It would have been useful to try other
automatic transcription systems, but this was not possible due to the lack
of easily available comparable systems. If we were overfitting because of an
insufficient learning sample size, we would be overfitting because the learning
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sample wouldn’t be representative of the corpus as a whole. This we mitigate
against with the tests presented here.

If we were overfitting to the model’s own language, we would be using
more training material that is needed. We would end up with a model that
performs very well on its own language, but which would perform very poorly
on others, i.e. the distances to others would be disproportionately high.
Although self distances seem to be significantly lower for all languages than
distances to other languages, the distances to others are still meaningful and
the qualitative analysis in Section 4.2 shows that this sort of overfitting has
not happened. It would have been better to address this issue in a statistical
manner as well, but there is no obvious method to do that as we do not know
what the distribution of distances should be like. We can only qualitatively
make the judgment that the distances make sense.

In order to understand what kind of perplexity differences make a dif-
ference using our methods, we looked at the language pairs with lowest
distances. The lowest perplexity differences between languages in our tests
are between the closely related languages Czech and Slovak. Using the
Czech model the perplexity on a Czech corpus is 8.79 while perplexity for
a Slovak corpus is 21.41. Against the Slovak model Slovak corpus gets a
perplexity of 8.64 and Czech a perplexity of 19.05. The next closest neighbor
to Czech is Greek at 37.60, and for Slovak the next closest neighbor is Greek
at 42.62. Given these kind of perplexity differences, one could conservatively
hypothesize that a perplexity threshold of 3.0 would be sufficient, giving us
a ground rule of 12000 phonemes, or roughly 2000 words for achieving a
level of perplexity stability needed to detect these kinds of pairs. It must be
emphasized, though, that these kinds of results only follow if the corpora
and transcriptions are similar. The sample size required is roughly 4 pages
of text or 20 minutes of speech to produce 2000 words at 500 words per page,
or 100 words per minute in speech.

As using automatic transcriptions with homogeneous corpora is rather
unrealistic for a project such as the Digital Language Typology project, one
could hypothesize that with a similar sized vocabulary (50 to 60 items) of
speech features at the same rate as in our transcription one would need
roughly 20 minutes of speech data. This would mean that the method is not
strictly a big data method requiring hundreds of hours of data, and could be
applicable to smaller speech corpora. How and what these speech features
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are and how one can generalize a language into a set of these speech features
given speech corpora spoken by different people is intentionally left out of
this analysis.

4.2 Language Model Viability and Performance

As language models’ main use case has been within areas such as speech
recognition, text prediction, and information retrieval, their use as a language
distance measure is not a generally well understood problem. The methods
used in the analysis of experiment results are rather ad hoc, and rely mainly on
comparisons to existing literature within linguistics on language relationships,
and statistical analyses.

To gauge how the methods work on languages that are known to be
relatively close to each other, we try to detect known language families. To
see whether we can detect very closely related languages, we analyze distances
in more detail by comparing the perplexity difference of different order n-
gram models on language pairs. As from a computer science viewpoint our
task is very closely related to prior work on the reproduction of family trees,
we also visualize them as trees and analyze these trees.

4.2.1 Detecting Language Families

Three language families were chosen for this test, the test includes Germanic
languages Danish, Dutch, English, German, Swedish; Slavic languages Bul-
garian, Czech, Polish, Slovak, Slovenian, and Romance languages French,
Italian, Portuguese, Romanian, and Spanish.

In order to understand what is a low and what is a high distance, and
to understand the overall behavior of the distance measure, we first take
a look at the distribution of distances. The distances between languages
vary greatly, lowest being the distances from language to itself, where the
perplexity values vary from 6.47 for Spanish to 9.15 for Czech. Typical
distances between languages are under 2000, roughly half the distances being
under 1000 as seen in Figure 10. Closely related languages Czech and Slovak
have distances of 23.03 (Czech model, Slovak corpus) and 20.13 (Slovak
model, Czech corpus). According to visual inspection, most distances are
under 1000, and the distances above 1000 are mostly below 4000, i.e. lower
distances are generally more common than higher distances. Within the
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Figure 10: Frequency distribution of distances using the trigram model, self
distances excluded, and on the three families data set.

distances under 1000 the distances are more evenly distributed than above
1000, but again the lowest distances are more common than higher distances.

To study the effect of the phoneme distributions on our language models,
we take a closer look at the distributions of cross entropy and trigram
perplexity, and at how they correlate. We study the correlation between cross
entropy and trigram perplexity using Spearman’s rank correlation coefficient
as the studied distributions were not normally distributed according to
Shapiro-Wilkes test, and hence the more commonly used Pearson’s correlation
coefficient wasn’t applicable.

The distributions of cross entropy distances and trigram perplexity dis-
tances are quite different from each other, as evident from Figures 10 and
11a. Spearman’s correlation coefficient between cross entropy and trigram
perplexity is 0.40, which points to a moderate correlation between the vari-
ables. To study the correlation, we build a linear model to see how cross
entropy functions as a predictor for perplexity. In Figure 11b cross entropy
is plotted against the logarithm of perplexity, and we can see that the point
cloud is quite wide with large deviations, although a fuzzy right-ascending
shape can be seen. In Figure 11c Y axis shows the prediction residuals for the
predicted log perplexities. Highlighted in this plot are pairs Spanish-Danish,
Swedish-Bulgarian and Danish-Spanish (model-corpus order), which have
high residuals, i.e. they are not well predicted by the linear model.

Figure 11d shows the outliers with regards to deviance from mean of
Cook’s distance. Cook’s distance tells us how much a data point affects the
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Figure 11: Cross entropy distribution and cross entropy’s prediction perfor-
mance of trigram perplexity using a linear model. Cutoff line for Cook’s
distance (Plot 11d) is set at four times the mean of Cook’s distances. Self
distances are excluded, using the three families test setup.

linear model, i.e. the higher Cook’s distance a data point has, the more the
linear model needs to be changed to take this data point into account. Here
the cutoff line is set at four times the mean Cook’s distance, and the labeled
distances above the cutoff line can then be thought of as a larger group of
outliers. Five highest Cook’s distances (pairwise, either way) are for Danish-
Spanish, Slovak-Czech, Czech-Slovak, Danish-Spanish, Bulgarian-Swedish,
Danish-Swedish and Danish-Romanian.

In addition to the correlation coefficient, another way to study the
goodness of fit of the model is by plotting the residuals of the linear model,
as in Figure 11c, and verifying they are uniformly distributed. In our case
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A B XE(A → B) P(A → B) XE(B → A) P(B → A)
Czech Slovak 6.13 20.99 6.34 19.45
Danish Romanian 24.89 289.63 12.17 2410.27
Danish Spanish 26.57 149.95 8.66 3923.27
Danish Swedish 29.90 691.72 14.00 5846.06
Bulgarian Swedish 27.02 397.64 12.41 4252.13

Table 6: Top five linear regression model outlier language pairs according to
their Cook’s distance in the three families data set. P stands for perplexity,
XE for cross entropy. Here cross entropy is the predictor and perplexity the
predicted.

they appear to be somewhat uniformly distributed, although the red line
bends downwards on the left and on the right, which would hint that the
relationship is somewhat curved: for low and high values of cross entropy
perplexity is lower than expected. Even though the model may not be
completely representative, we can still use it to dive deeper into the how the
variables correlate.

When looking at the outliers with Cook’s distances, there are interesting
outliers. The cross entropy distance from Spanish to Danish is low at 8.66
(Danish having lowest distance compared to other neighbors of Spanish), but
the other way the distance is 26.57, which is one of the highest distances
from Danish. Looking at perplexity, Spanish corpus on Danish model gets a
perplexity of 149.95, which is low while using the Spanish model on Danish
the distance is a very high 3923.27. This relationship seems to be completely
asymmetric and indicates quite a strong disagreement between the models
on the proximity of Danish and Spanish. As reported on Table 6 other
such asymmetric pairs are Danish-Italian, Bulgarian-English, and Bulgarian-
Swedish. Czech and Slovak are outliers as well due to their significantly lower
pairwise distance, both in terms of perplexity and cross entropy.

This analysis sheds some light on the expected and demonstrated rela-
tionship between the distribution of phonemes and perplexity. While the
correlation coefficient shows a moderate correlation, there are significant
outliers. Danish language in general is part of many of these outlier pairs, as
is the known closely related language pair Czech-Slovak. Given these results,
we believe that trigram perplexity can partly be explained by the phoneme
distribution.

To analyze whether we can actually detect language families, we turn
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our attention to the heatmap in Figure 12. Without looking at the details,
all language groups are rather visible and distinct from other groups on the
diagonal. When looking at in-group distances, all Slavic languages except for
Polish are relatively close to each other. In Germanic languages Danish is
the outlier, having relatively higher distances to other languages in its own
family. From Romance languages only French is not as close to the others.
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Figure 12: Heatmap of distances. The language of the model is signified by
the column and the language of the corpus is signified by the row., i.e. this
describes distances both ways.

Taking the out-group perspective, Italian and Romanian are close to
all other Slavic languages except for Polish. In relative to other languages,
Danish model performs well on the corpora of Romance languages Spanish,
French, Italian and Romanian while the models of these languages perform
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poorly on the Danish corpus. In general, the outliers of these languages, in
the sense that they are distant from their own language groups are Danish,
French, Polish and Slovene.

To understand why Danish, French and Polish, the least fitting languages
in their respective language families, don’t fit into their language families as
well as other languages, we took a further look at how much of an overlap
there is in their phonology with other languages in their families in terms
of shared phonemes. Danish language has a curious phonology and clearly
differing set of phonemes in our transcription, which explains its distance
from its own language family. For example, glottal stop P, guttural r K, and
vowels e, 5

“
, and o only exist in Danish of all Germanic transcriptions. These

phonemes together make up 21.4% of the Danish transcription. One has to
note, though, that Swedish includes the long forms of vowels e, and o (e:,
o:,) but our system considers the short and long forms of vowels as strictly
different phonemes.

Polish transcription differs significantly from other Slavic languages.
Phonemes O, 1, E, ñj, w are either missing or very rare in Bulgarian, Czech
and Slovak transcriptions, and they make up 22.9% of phonemes in the
Polish transcription. Polish and Slovenian are more similar to each other,
sharing the phonemes O, E and V, which are either missing or very rare in the
other Slavic transcriptions. Polish and Slovene have relatively low mutual
perplexity (Polish-Slovene 256.28, Slovene-Polish 193.11) and seem to not be
missing as many phonemes as the other Slavic languages from each other
(13.2%, 16.3%). In comparison, Czech transcription is missing 28.8% of the
Polish transcription phonemes.

French has a number of common phonemes which don’t exist in other
Romance transcriptions. The other Romance languages are lacking the
guttural r K, nasal vowels ã, Õ, Ẽ, retracted vowels @

¯
, a
¯
, e
¯
, and vowel y which

only exists in French and Portuguese transcriptions. These phonemes make
up 18.5% of phonemes in the French transcription.

Given the results and further analysis of the phonetic spaces, we believe
perplexity works relatively well as a distance measure for our use case of
detecting language families. The phoneme distributions of the languages affect
the trigram model as evident from the correlation between cross entropy and
trigram perplexity. Using phonetic transcriptions as it is between languages
is problematic partly due to differences in transcription and partly due to
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small differences between phonologies between languages. By overcoming
the hurdles caused by differing phoneme sets, be the reason behind them
whichever, one should be able to significantly improve the overall performance
of the methods. For example, by mapping Polish phonemes into their closest
corresponding phonemes in other Slavic languages the perplexities can be
significantly reduced.

We did a limited experiment on this by mapping O to o and E to e,
which together make up 16.3% of phonemes in the Polish transcription,
and distances to Bulgarian, Czech and Slovakian were reduced from 785.23,
1126.86 and 779.23, to 205.69, 102.77 and 72.19. These reductions are
significant and show that there is a window of improvement if the phonetic
spaces could be aligned to overcome these symbol set differences. Even
though the phonemes mapped are actually different and describe different
sounds, in this case we could also think of this mismatch as a byproduct of a
too narrow transcription for the use case.

The tests were replicated using a similar bigram model (interpolation
between bigram model and an additively smoothed unigram model), and in a
parallel set of experiments using an LSTM neural network model, which is not
described here. The bigram model’s distances were more evenly distributed
and generally higher than using the other models. The correlation coefficient
between cross entropy and bigram perplexity was 0.40. Between trigram and
bigram models the trigram model had slightly higher differences between
distances, meaning the language families stood out from the heatmap clearer.
The differences were not very big, however.

The LSTM model was able to distinguish Slavic and Germanic language
families well, but it couldn’t distinguish the Romance family at all. A benefit
of the LSTM model was its “binary” behavior in the sense that it clearly
worked on some language pairs and not at all on others, i.e. there’s less
vagueness in analyzing its performance. Furthermore, the LSTM model found
that Italian and Romanian were very closely related to almost all languages,
somewhat similarly to the trigram model. The trigram model also found
Italian and Romanian close to both Slavic and Romance languages. Using
the LSTM model Slovenian had low distances to many Germanic languages,
but it wasn’t as close to other Slavic languages, similarly to the trigram
model.

The correlation between cross entropy and LSTM model’s perplexity was
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A B A → B B → A Mean Max
Czech Slovak 20.99 19.45 20.22 20.99
Estonian Finnish 57.62 60.81 59.22 60.81
Estonian Italian 65.97 88.83 77.40 88.83
Bulgarian Slovak 70.37 96.93 83.65 96.93
Greek Romanian 97.73 48.35 73.04 97.73
Greek Spanish 97.87 38.17 68.02 97.87
Bulgarian Czech 82.21 98.79 90.50 98.79
Estonian Slovak 104.56 91.88 98.22 104.56

Table 7: Top eight language pairs using the trigram model, ordered by
maximum distance.

weak with a Spearman’s correlation coefficient of 0.21. Interestingly, the
correlation between trigram perplexity and LSTM perplexity was a relatively
high 0.57, however, this was not studied further. The major difference
between the linear models where cross entropy is the predictor and either
trigram perplexity or LSTM perplexity is the predicted are the high outliers
of the LSTM model. The most extreme of these outliers is the Finnish model
on Danish corpus. The perplexity of Finnish model on a Danish corpus is
the highest of all distances we have seen in our experiments: 1.5 million.
The perplexities are overall lower for the LSTM model than for the trigram
model. The LSTM model used is not further documented in this thesis as it
is not the work of the author. The results are reported here to discuss the
similarities between the behaviors of trigram and LSTM models.

4.2.2 Detecting Closely Related Languages

As evident from Section 4.2.1 Czech and Slovak languages jump out as
outliers due to their low mutual distance. The other known language pair
which jumps out, when using the whole set of Europarl languages is Estonian
and Finnish, as seen on Table 7. Czech and Slovak languages are both part
of the West Slavic language group, forming their own Czech-Slovak subgroup.
The languages are largely mutually intelligible and similar in both grammar
and vocabulary. Estonian and Finnish are both Finno-Ugric languages, part
of a smaller Finnic group of languages.

To shed light on the question whether language modeling is at all useful
for detecting closely related languages, a list of closest languages was also
calculated using a unigram model. We can notice that the two closest
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Figure 13: Distance distributions for unigram and trigram models between
all languages, excluding self distances.

language pairs Czech and Slovak, and Estonian and Finnish, are again at the
top (see Table 8). However, when using the unigram model, the perplexity
values are quite a bit closer to each other: the pair Estonian and Italian is
suspiciously close to Estonian and Finnish pair. This can be explained in
two ways.

The first evident explanation is the distribution of perplexities for both
models: unigram model’s perplexities are all in all closer to each other and
generally lower than the trigram model’s (see Figure 13). The distribution of
distances seems rather similar, but highest unigram perplexities are around
5000 while trigram perplexities span up to 15000. The other explanation is
that the trigram model captures properties of the languages not present in
the unigram model and due to the similarity of the languages places them
closer to each other than to the other languages in the test.

Generally, the perplexity values for a trigram model are expected to be
more extreme than the perplexity values for a unigram model. Trigram
model applied on its own language corpus always performs better than a
unigram model applied on its own language corpus, i.e. trigram model is able
to use its learned contextual information to its advantage when predicting
the next item. This is in contrast to cases where it cannot use its contextual
information and gets a higher perplexity than a unigram model: it is in a
sense a tighter fit to a language. Using this information, one can hypothesize
that if a higher order n-gram model performs better than a lower order
n-gram model on a foreign language, the languages are also a tighter fit with
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A B A → B B → A Mean Max
Czech Slovak 42.75 39.83 41.29 42.75
Estonian Finnish 52.52 60.35 56.43 60.35
Estonian Italian 54.36 62.63 58.49 62.63
Estonian Slovak 71.96 72.84 72.40 72.84
Romanian Slovak 82.55 73.78 78.16 82.55
Czech Estonian 85.51 78.32 81.91 85.51
Greek Romanian 87.56 43.18 65.37 87.56
Bulgarian Slovak 60.01 88.42 74.22 88.42

Table 8: Top eight language pairs using the unigram model, ordered by
maximum distance.

regards to each other: there are properties in the languages that are useful
for predicting the other language.

Building on top of this hypothesis, the pair Czech and Slovak expectedly
gets a lower distance score using the trigram model than using the unigram
model. The Pair Estonian and Finnish stays roughly the same while the rest
of the language pairs get higher distance scores in the trigram model, which
indicates that the things the higher order model learns don’t carry over to
other languages. Especially the third language pair in the ranking, Estonian
and Italian gets a clearly higher distance measure using the trigram model
than using the unigram model.

Using the perplexity-improvement hypothesis, we can deduce that the
language models detect the similarity of Czech and Slovak very well. Pair
Estonian and Finnish stands out as well, even though distance from Finnish
to Estonian in the trigram model is slightly higher than in the unigram
model. Other language pairs don’t come up in this simplistic ranking at all.

4.2.3 Reproducing Family Trees

When the distance matrix from Section 4.2.1 as seen in Figure 12 is repre-
sented as a tree (see Figure 14), or a dendrogram, certain groups pop up.
Germanic languages are rather well clustered, except for Danish. Romance
and Slavic languages get mixed up in two different main branches with Czech
and Slovak, and Slovenian and Polish being grouped together. Romance lan-
guages are clustered in an inconsistent manner with either Danish or Slavic
languages among them in subtrees. The reason for the relative proximity
of Danish and Spanish in this clustering is explained by the Danish model
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Figure 14: Reconstructed family tree from the three language families distance
matrix using UPGMA clustering.

working well on the Spanish corpus.
We use the Unweighted Pair Group Method with Arithmetic Mean [Sok58]

(UPGMA) hierarchical agglomerative clustering method from the R Statistical
Computing system 3, which works from the leaves up, always creating a
cluster of the two closest items and ending when everything is in a cluster.
It derives new distances from the newly created cluster to items not in the
cluster by averaging the distances from cluster members to the items not in
the cluster.

In general, we believe our methods work for mutually similar languages,
but have trouble with languages less similar. For example, Germanic lan-
guages Dutch, German and Swedish behave as we expect, as do the Slavic
languages Bulgarian, Czech and Slovak. The same is exhibited by Romance
languages Portuguese, Italian and Romanian, although these last groups of
three are mixed in the same subtree. When we go further apart from the
successfully grouped three-language subtrees, the tree-distance-averaging
clustering method cannot find the canonical literature-backed [Cam98, p. 168]
tree shape we would like to see.

3https://stat.ethz.ch/R-manual/R-devel/library/stats/html/hclust.html
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5 Conclusions

In this thesis we analyzed languages using automatic phonetic transcriptions
by information-theoretic means: computed distances between languages and
treated language model’s perplexity measure as a distance measure. We ex-
perimented with n-gram models, studied their sample size constraints, studied
how languages’ phoneme sets and phoneme distributions affect the methods,
and finally studied how our results correspond with current literature.

The Digital Language Typology project, which this thesis is a part of,
studies low-resourced languages. As the focus of the project is on speech
as opposed to text corpora, we needed a framework that would facilitate
working with generic symbol sequences and wouldn’t rely on any external
resources. Language modeling and perplexity as a distance measure were a
good match for these criteria.

We made two main sets of experiments. The first of them studied sample
size requirements: how big a speech corpus would be needed to properly
train a language model and compute a distance measure between a model
and a corpus. The second set of experiments studied the feasibility of the
approach as a whole: can it produce typological or language relationship
hypotheses? The sample size experiment worked by finding how long a
sequence of phonemes is required to reliably reach a perplexity value within a
given threshold. The feasibility experiment relied on the qualitative analysis
of heatmaps and ordered lists of distance measures, and comparisons to
linguistic literature. Additionally, statistical analysis was used to illuminate
the details of relationships between cross entropy and perplexity to quantify
the effect of phoneme distributions on different language distance measures.

We found that n-gram models of lower n, like unigram and bigram models
can be trained with smaller training samples than for example trigram models.
However, the lower the n, the larger a test set one needs to estimate the
model’s perplexity on a corpus. The learning behaviors between languages
vary greatly. For instance, a Spanish trigram model can be trained with the
same sized sample that is required to train a Lithuanian bigram model. The
differences between languages in test samples are even more pronounced,
with some languages requiring a sample larger by order of magnitude than
others. Both learning and test samples behaved similarly: Romance languages
typically required small and Slavic languages large samples. We discovered
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that trigram models can be trained on roughly 20 minutes of speech data
given a similar sized vocabulary of speech symbols and a similar rate of
symbols per minute as in our corpus. A speech sample of 20 minutes is short
compared to the corpora required for other speech systems tasks, for example
in the training of speech recognition systems.

We found that language models work on phonetic transcriptions and
should similarly work on other speech sequences. The central limitation in
the use of language models is the natural lack of a common symbol system
between languages: there is no true common phoneme set. The interpretation
of symbol equivalence between languages is only an approximation. The
effect of differing symbols for corresponding (or near corresponding) sounds
between languages are small in cases where the phonemes are not very
common, but in case of common phonemes, perplexity measure is heavily
affected. If phonemes have different symbols, but are genuinely in similar
roles in compared languages, they can be mapped across to significantly
lower the perplexity measure between the languages. We also found there to
be a moderate correlation between the cross entropy measure between the
phoneme distributions of two languages and their trigram perplexity.

Despite the effect of phoneme sets on the n-gram model performance, we
were able to detect and analyze language families. We were also able to detect
closely related languages by comparing the distances obtained using both
bigram and trigram models. For all languages the trigram model performed
better than the bigram model on their own language corpora. Only on related
language pairs Czech-Slovak and Estonian-Finnish was trigram perplexity
almost the same or better than bigram perplexity. This is in contrast to most
language pairs, where the trigram model typically performs clearly worse
than the bigram model.

We know from prior work that language models work for similar tasks as
ours when applied on text, and we show that they also function for phonetic
transcripts. It is, however, an open research question how they work on other
speech sequences. As evident from our work, the vocabulary, or the set of
symbols in the sequences being studied is in key role in determining how one
can go beyond a single language, or a single method of transcription, be the
transcription a phonetic one or some other representation of speech.

It can be said that our current approach cannot achieve what traditional
typology does, because it doesn’t provide a detailed analysis of what are
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the distinguishing features between languages. When thinking in terms
of n-gram models, the language model type employed in this thesis, more
detailed analyses, for example on the sources of perplexity (what things are
unexpected), or on the sources of clarity (what things were expected) are
possible. However, the clearest future continuation for this work is finding
information-theoretic methods for bridging the gaps caused by the common
phoneme set problem.

This work pioneered the use of automatic phonetic transcriptions on
multiple data-driven language typology tasks and showed how language
models can be used in conjunction with perplexity as a language distance
measure and how language distances can be used to make language relation-
ship hypotheses. We identified the issues caused by differing phoneme sets
between languages and studied the effects of this in relation to the results of
our methods. We showed that language models and perplexity are a useful
tool, but also acknowledge that their usefulness is limited especially because
one cannot easily explain their results. It would require further studies and
method development to open up the models to inspection and to properly
highlight the sources of perplexity between languages.

The unigram, bigram, trigram models, and distance computation code
were written by the author and will be made available in source form 4.

4https://github.com/guaq/data-driven-language-typology
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