1 2	 Relations between subdomains of physical activity, sedentary lifestyle and quality in young adult men 				
3					
4					
5 6	Ville Päivärinne, MSc ¹ , Hannu Kautiainen, BA ² , Ari Heinonen, PhD ³ , Ilkka Kiviranta, MD, PhD ^{1,4}				
7					
8	1) Department of Orthopaedics and Traumatology, University of Helsinki				
9	2) Department of General Practice and Primary Health Care, University of Helsinki				
10	3) Department of Health Sciences, University of Jyväskylä				
11	4) Helsinki University Hospital, Helsinki, Finland				
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					
23					
24					
25					
26					
27					
28					
29 30 31	Corresponding author: MSc Ville Päivärinne, University of Helsinki, Department of Orthopaedics and Traumatology, P.O. Box 63, FI-0014 University of Helsinki, Finland. Phone: +358504110796. Fax: +358947187481. E-mail: ville.paivarinne@helsinki.fi				
32					

33 ABSTRACT

Purpose: To assess the relationship between physical activity (PA) in work, transport,
domestic and leisure-time domains (with sitting time included) and health-related quality of
life (HRQoL) among young adult men.

Methods: The long version of IPAQ and SF-36 Health Survey were used to assess PA and
HRQoL, respectively, in 1425 voluntary 20 to 40 year old Finnish male participants.
Participants were divided into tertiles (MET-h/week): Lowest tertile (<38 MET-h/week),
Middle tertile (38-100 MET-h/week) and Highest tertile (>100 MET-h/week).

41 **Results:** The IPAQ domain leisure-time PA predicted positively the Physical Component Summary (PCS) (β=0.11, 95% CI: 0.06 to 0.16) and Mental Component Summary (MCS) 42 (β=0.11, 95% CI: 0.05 to 0.16) dimensions. Occupational PA predicted negative relationships 43 44 in the PCS (β =0.13, 95% CI: -0.19 to -0.07), and sitting time predicted negative relationships in MCS dimension (β =-0.13, 95% CI: -0.18 to -0.07). In addition, a linear relationship was 45 found between total PA level (including sitting time) and all of the IPAQ domains (<0.001). 46 Middle tertile had the highest leisure-time PA (38% of total PA), whereas the highest sitting 47 time (28%) and lowest occupational PA (8%) were found in the lowest tertile. Highest tertile 48 had the highest occupational PA (61%), while the leisure-time PA was the lowest (16%). 49 Conclusions: Different PA domains appear to have positive and negative relationships to 50 mental and physical aspects of HRQoL. Relatively high leisure-time PA indicated a better 51

52 HRQoL regardless of the amount of total PA, while occupational PA and higher daily sitting

- 53 time related negatively to HRQoL.
- 54 Key Words: Exercise, MET, questionnaires, public health

55

57 INTRODUCTION

Physical inactivity and increasingly sedentary lifestyles have become major global public 58 health problems associated with many chronic diseases and reduced life expectancy ¹. 59 According to recent studies, 31% of the world's population is not meeting the minimum 60 recommendations for physical activity (PA)². From an economic point of view, in 2013 61 physical inactivity was responsible for a total cost of \$67.5 billion worldwide, wherein the 62 largest proportion of economic burden originated in the public sector (ranging from 40.5% in 63 Southeast Asia to 75.3% in Europe)³. In Finland, the majority (76%) of adults spend most of 64 their waking hours sitting, standing still or lying down, and only 32% of men between 18 to 65 65 years of age meet the recommended levels of PA⁴. 66

67

68 Growing evidence strongly emphasises the role of PA in health promotion, disease prevention, treatment and rehabilitation ⁵. In addition, regular PA enhances health-related quality of life 69 (HRQoL), that is, PA contributes to perceived well-being ^{6,7}. HRQoL is a multi-dimensional 70 concept including physical, mental and social components of functioning⁸. Moreover, PA is a 71 complex behaviour, comprising various dimensions and sub-domains such as occupational, 72 leisure-time, housework and transport-related activity ⁹. To date, there is limited data on the 73 relationship between domain-specific PA and HRQoL. An increased understanding of how 74 different PA domains associate with HRQoL can help create strategies to prevent associations 75 76 between sedentary lifestyles and deleterious health effects. The aim of this study was to determine in young adult men the association between domain-specific (occupational, 77 transportation, domestic and leisure-time) PA, including sitting time, and HRQoL. 78

80 **METHODS**

81

82 **Design and participants**

In this population-based cross-sectional study, 1425 male participants (born in 1969, 1974, 1979, 1984 or 1989) were randomly selected in 2009 as a population sample from those who had performed, or discontinued military service, or had performed an alternative non-military service. Immigrants, imprisoned subjects or persons with mental disorders were excluded from the study. In the present study, we define 20 to 40 year old men as young adults¹⁰. Participants have given written informed consent, and the study was approved by the Coordinating Ethics Committee of the Helsinki University Hospital (Dnro 267/13/03/00/09).

90

91 Questionnaire

A questionnaire, partly based on The Finnish Health 2000 study ¹¹, was used in 2010 to record
health behavioural and functional capacity, mental disorders, musculoskeletal disorders,
alcohol consumption, work ability, pain and PA.

95

96 **Primary outcomes**

PA was measured by the validated Finnish version of the International Physical Activity 97 Questionnaire (IPAQ) long version. IPAQ assesses detailed PA levels in four different domains 98 (work-related activity, transport-related activity, domestic and gardening activities and leisure 99 time activity). Each domain contains at least two levels of intensity (walking, moderate or 100 vigorous) to provide domain-specific scores. IPAQ also assesses the time person spends sitting 101 while at work, at home, while doing course work and during leisure time. Questions in the 102 IPAQ require respondents to recall PA over the past 7 days. Each type of activity is weighted 103 by its energy requirements defined in metabolic equivalent minutes per week (MET min/week). 104

A MET score is obtained in hours/week by multiplying the MET value for the activity (3.3 for walking, 4.0 to 6.0 for moderate-intensity activity and 8.0 for vigorous-intensity activity) with duration (minutes) and frequency (days) and converted to hours. The IPAQ long form has been proven to be a valid and reliable instrument when assessing levels and patterns of PA ¹², and can be culturally adapted for the Finnish population ¹³.

110

Sitting question is not included as a part of PA, and it also excludes the time spent sitting during travel under the transport domain. Minutes are used to indicate the time spent sitting rather than MET-minutes. This reflects the average time an individual spends sitting per day using the following formula, wherein weekday (a) sitting minutes are multiplied by 5 weekdays and weekend (b) day sitting minutes are multiplied by 2 weekend days ¹⁴:

116

117 Sitting time =
$$(a * 5 + b * 2)/7$$

118

Participants were divided into tertiles based on their total PA (MET-h/week): Lowest tertile (<
38 MET-h/week), Middle tertile (38 - 100 MET-h/week) and Highest tertile (> 100 METh/week).

122

Participant HRQoL was assessed by the SF-36 Health Survey, which consists of eight domains measuring physical functioning. Each category is scored on a scale of 0-100, wherein 0 represents the worst overall health status and 100 the best health status ¹⁵. The scales represent separate but conceptually related aspects of HRQoL; the overall level of subjective HRQoL is portrayed by the scale's score profile. The scales of physical functioning and physical role functioning reflect the respondent's self-rated capability in activities of daily living and mobility. The other scales cover emotional well-being, energy and vitality, bodily pain, general 130 health and limitations in role functions and interaction (social functioning, emotional role functioning)¹⁶. Four scales (Physical Functioning, Role-Physical, Bodily Pain and General 131 Health) contributed to the scoring of the Physical Component Summary (PCS), while four other 132 scales (Vitality, Social Functioning, Role-Emotional and Mental Health) contributed to the 133 Mental Component Summary (MCS). These two distinct summary components were 134 aggregated using a US reference population (1990) for standardisation of the eight domains 135 and for factor score coefficients. Finally, MCS and PCS scores were standardised using a mean 136 of 50 and a standard deviation of 10¹⁷. 137

138

139 Secondary outcomes

140 Occupational status and diagnosed disorders were assessed by the Work Ability Index (WAI) ¹⁸. Alcohol-specific questions included consumption, which was estimated by daily quantity 141 and frequency (weekly/monthly) over the past 12 months. The Finnish guidelines for high-risk 142 alcohol consumption levels for healthy adult males are considered as more than 6 drinks at 143 once and 23-24 drinks per week¹⁹. General pain, low back pain, lower limb pain, neck pain or 144 upper limb pain were assessed by a numeric pain rating scale (NRS), wherein 0 refers to 'no 145 pain' and 10 to 'worst pain imaginable' ²⁰. The NRS has been shown to be a reliable and valid 146 instrument in assessing pain²¹. 147

148

149 Statistical analysis

The data is presented as means with standard deviations (SD), as medians with interquartile range (IQR) or as counts with percentages. Linearity across the three PA levels was tested using the Cochran-Armitage test, Cuzick test or analysis of variance (ANOVA). In the case of violation of the assumptions (e.g., non-normality), a bootstrap-type test was used. Linear regression analyses were used to identify the appropriate predictors of the physical summary

- 155 or mental summary indices using standardised regression coefficients Beta (β). The B value
- is a measure of how strongly each predictor variable influences the criterion (dependent)
- 157 variable wherein the β is measured in units of standard deviation. Cohen's standard for B
- values represent small (0.10), moderate (0.30) and large (0.50) relationships. The normality
- of the variables was tested by using the Shapiro-Wilk W test. Stata 14.1, StataCorp LP
- 160 (College Station, TX, USA) statistical package was used for the analysis.

161 **RESULTS**

Forty-eight participants were excluded because of incomplete survey data. According to IPAQ ¹⁴, another 99 participants were excluded because they reported a total sum of PA more than 164 16 h a day (walking, moderate or vigorous activity). The final sample consisted of 1278 male 165 participants. Demographic and clinical characteristics of the study participants according to 166 total PA (MET-h/week) are shown in Table 1. A linear relationship across MET tertiles was 167 found between subjects' age, meaning that older subjects had the lowest MET-h/week scores.

Figure 1. Distribution of total PA (MET-h/week). The box shows the distance between the
quartiles, with the median marked as a line and the whiskers showing the 5th and 95th
percentiles. Dashed lines divide the tertiles (Lowest, Middle, Highest).

172

168

There was a linear relationship between accidents, general pain, low back pain and neck pain. This demonstrated that the higher the MET-h/week, the more incidents there were between the tertiles. There was also a linear relationship in the subjects' employment status between the tertiles. Inverse linear relationships were found between either being a student, unemployed, on disability pension or having mental disorders, meaning that the lower MET-h/week, the higher the incidence was in these categories.

	Lowest	Middle	Highest	P-value for
	(n=426)	(n=425)	(n=427)	linearity
Age, mean (SD)	32 (7)	31 (7)	30 (7)	0.002
BMI, mean (SD)	26.3 (4.3)	25.9 (3.7)	26.1 (4.0)	0.39
BMI≥30.0, n (%)	63 (15)	56 (13)	61 (14)	0.79
Status, n (%)				< 0.001
Employed	284 (67)	310 (73)	374 (88)	
Student	73 (17)	74 (17)	25 (6)	
Unemployed	53 (12)	32 (8)	26 (6)	
Disability pension	14 (3)	8 (2)	2 (1)	
Disorders, n (%)				
Accidents	38 (9)	36 (8)	58 (14)	0.025
Musculoskeletal	85 (20)	65 (15)	89 (21)	0.083
disorders				
Cardiovascular	23 (5)	8 (2)	11 (3)	0.10
disorders				
Lung disorders	21 (5)	18 (4)	26 (6)	0.46
Mental disorders	36 (8)	13 (3)	25 (6)	0.003
Alcohol consumption,	4 (1, 10)	4 (1, 10)	4 (1, 10)	0.56
(dose per/week				
median, IQR)				
Pain, NRS, mean (SD)	1.6 (1.9)	1.4 (1.9)	2.0 (2.2)	< 0.001
Low back pain,	73 (17)	70 (16)	108 (25)	< 0.001
NRS≥4				
Lower limb pain,	47 (11)	50 (12)	69 (16)	0.055
NRS≥4				
Neck pain, NRS≥4	78 (18)	58 (14)	104 (24)	< 0.001
Upper limb pain,	51 (12)	51 (12)	67 (16)	0.18
NRS≥4				

Table 1. Demographic and clinical characteristics of the participants (N=1278) divided into
 tertiles according to level of physical activity (MET-h/week).

182 Values are means (SD) or n (%) unless otherwise noted.

183 IQR = interquartile range

184 NRS = numeric rating scale

185

186 The PA domains expressed as MET-h/week and daily sitting time are shown in Table 2. A

187 linear relationship was found between total PA tertiles, with sitting time included, and in all

- the other IPAQ domains. In the Highest tertile, the most common type of PA was occupational
- 189 PA (mean: 3 h/week, 19 h/week and 129 h/week in tertiles, respectively) (Table 2).
- 190

	Lowest	Middle	Highest	
	(<38)	(>38 <100)	(>100)	
	n=426	n=425	n=427	P-value for
IPAQ Domain	Mean (SD)	Mean (SD)	Mean (SD)	linearity
Work	3 (6)	19 (24)	129 (66)	< 0.001
Active transportation	5 (6)	12 (13)	19 (23)	< 0.001
Domestic and	9 (14)	16 (23)	29 (36)	< 0.001
gardening				
Leisure time	9 (9)	29 (21)	38 (42)	< 0.001
Sitting (h/day)	8 (3)	7 (3)	5 (3)	< 0.001

Table 2. PA domains expressed as MET-h/week and sitting time as h/day in each tertile.

192

The relative MET-h/week in IPAQ domains and average sitting time (h/day) according to tertiles are shown in Figure 2. In the Highest tertile, the relative occupational PA was highest (61% of total PA), while the leisure-time PA was the lowest (16%). On the other hand, the Middle tertile had the highest relative leisure-time PA (38%), whereas highest relative sitting time (28%) and lowest occupational PA (8%) were found in the Lowest tertile (Figure 2.).

Figure 2. Relative MET-h/week (%) according to PA tertiles of total PA and average sitting
 time (h/day) (with 95% confidence interval) in physical activity domains (IPAQ).

Figure 3. Age- and employment status-adjusted mean (with 95% of confidence interval)
 profiles in health related quality of life (SF-36) dimensions between the tertiles. ■=Lowest,
 ●=Middle and ○=Highest tertile. The p-value indicates linearity across the tertiles.

205 Age- and employment status-adjusted mean HRQoL are shown across the MET tertiles (Figure

3). There were statistically significant differences between the total PA tertiles and all of the

207 HRQoL domains.

- 211 The β values are described as indicators of PCS or MCS dimensions in IPAQ domains (Figure
- 4.) Univariate IPAQ domains predicted moderate negative relationships between Work domain
- and PCS dimension (β =-0.13, 95% CI: -0.19 to -0.07) and between Sitting domain and MCS
- dimension (β =0.13, 95% CI: 0.18 to 0.07). However, the Leisure-Time domain predicted
- moderate positive relationships in both the PCS (β =0.11, 95% CI: 0.06 to 0.16) and MCS
- 216 (β =0.11, 95% CI: 0.05 to 0.16) dimensions.
- 217

218 **DISCUSSION**

The results presented here indicate a significant relationship between total PA (MET-h/week) and HRQoL dimensions in this population of healthy male subjects between 20 to 40 years of age. On the contrary, a higher sitting time was associated with greater inactivity and was negatively related to mental health, while higher occupational PA was negatively related to physical health. In addition, leisure time predicted positive physical function and mental health.

224

Our findings are consistent with the systematic review of Bize et al.⁶, which describes a strong 225 226 positive association through cross-sectional studies between total PA and HRQoL in the general population of healthy adult men and women. In addition, higher total PA levels were 227 associated with better HRQoL in various dimensions. Furthermore, a positive association 228 between PA and HRQoL in the elderly population has also been reported ⁷. Moreover, our 229 findings are consistent with previous studies that reported positive relationships between 230 leisure-time PA and Physical Summary score ²²⁻²⁵ and Mental Summary score ^{22,24,26} in a 231 healthy male and female adult population. However, the information is sparse between domain-232 specific PA, including sitting time, and HRQoL in young adult men. 233

234

In the present study, the average daily sitting time varied between 5 to 8 hours per day, with 235 the highest mean value in the most inactive group. There are no public health reference values 236 for sitting time, probably because sedentary time has not been considered to be harmful to 237 health until very recently ²⁷. Biswas et al. ²⁸ found that overall sedentary time or sitting time 238 (either television or screen time) is associated with an increased incidence of cardiovascular 239 disease, type 2 diabetes, certain types of cancer as well as all-cause mortality in adults. 240 However, increased PA (either moderate or vigorous intensity) in older men and women seems 241 to reduce the mortality risk associated with high sitting time, but not the risk associated with 242

high TV-viewing time¹. In addition, a low level of PA combined with high screen time is 243 negatively associated with HRQoL²⁹. In the present study, sitting time was not divided into 244 leisure time, screen time, study or work-related. Presumably, behavioural aspects during screen 245 time (such as eating and drinking) could be the factors that cause TV-viewing sitting more 246 harmful to health than other types of sitting. Negative associations between sedentary 247 behaviour and HRQoL have been previously reported in older adults ^{30,31}, although there is also 248 recent evidence of a positive association of domain-specific sedentary time (reading time) and 249 mental-based HRQoL in middle-aged adults²⁹. Nevertheless, in our study, the Lowest tertile 250 251 averaged the most daily time sitting. This indicates that due to the lack of PA, this relationship could be the most harmful to health compared to all the other tertiles. 252

253

254 In the present study, occupational PA related to musculoskeletal disorders, injuries or deleterious effects on health suggests that a large proportion of the subjects with these 255 conditions were possibly involved in heavy physical labour. It has been previously shown that 256 frequent excessive PA can result in detrimental heart conditions and cardiovascular disease ³². 257 In addition, heavy physical labour is a significant risk factor for low back pain, accident 258 occurrence and all-cause mortality ^{33,34}. However, Holtermann et al. ³⁴ found that higher levels 259 of leisure-time PA decreased the risk of all-cause mortality caused by high occupational PA. 260 In the present study, occupational PA was negatively related to the Physical Summary 261 262 dimension of HRQoL, which might indicate that participants in the Highest tertile could face possible deleterious health symptoms in the future. Moreover, it is also possible that excessive 263 occupational PA may explain the relatively low leisure-time PA in the Highest tertile. 264

265

A significantly lower HRQoL Vitality score and highest relative sitting time in the Lowest tertile could indicate that these subjects are less physically active, sit more on a daily basis and 268 feel less energetic. The Lowest tertile also had the highest incidence of mental disorders; sitting time predicted a negative mental summary dimension. This observation can be explained at 269 least in part by the higher inactivity in this group, since PA and exercise have been reported to 270 improve physical and mental well-being ³⁵. Furthermore, low values in the work PA domain in 271 the Lowest tertile may indicate that large proportion of these subjects were white-collar 272 workers or vehicle operators. Riise et al. ²² reported that drivers or mobile plant operators had 273 the lowest mean scores in the SF-36 physical component summary scale. Drivers are also 274 known to have a high risk of developing musculoskeletal disorders ²². However, the present 275 study did not demonstrate a significant association or relationship between sedentary lifestyle 276 and physical symptoms. Different lifestyle factors, such as PA, inactivity and alcohol 277 278 consumption have demonstrated importance in an elderly group of workers but not among young workers, suggesting that health problems due to an unhealthy lifestyle occur at an older 279 age ³⁶. This may explain the lack of a linear relationship between the tertiles in diagnosed 280 disorders. On the other hand, perceived poor health appears to predict becoming or remaining 281 employed ³⁷, which may explain the relationship in employment status according to total PA. 282

283

A previous systematic review reported a possible association between sedentary lifestyle and 284 PA, suggesting that sedentary behaviour could diminish the benefits of light intensity PA ³⁸. 285 This association might have occurred in our study as well. In other words, the Lowest tertile 286 might have replaced light occupational PA (e.g., standing and light walking) with sitting; this 287 may thus also reflect the lack of leisure-time or transportation PA. On the other hand, the 288 relatively high leisure-time PA in the Middle tertile may reflect compensating the daily sitting 289 time with increased energy expenditure during free time ³⁹. However, the compensatory effect 290 (or the lack thereof) could have been seen in the Lowest tertile, which may be explained by the 291 relationship of high sitting time and low PA level. Moreover, it has been suggested that genetics 292

may also affect activity behaviours that determine the level of PA ⁹. There are also findings of moderate genetic effects on SF-36 domain and summary measures ⁴⁰. Despite the fact that heritability was not a measured factor in our study, should the role of genetics be taken into consideration.

297

Our study had several strengths, such as (1) the use of validated and widely employed 298 questionnaires, (2) the use of IPAQ long form to calculate domain-specific PA level 299 estimations, sitting included, which has not been presented in previous studies, (3) the use of a 300 301 random, homogenous sample that permitted a reliable generalisation of the study population and (4) the use of a large sample size. However, there are also limitations to our study that 302 303 should be taken into consideration. Due to the cross-sectional design, determinations of causality cannot be analysed; the findings remain therefore purely hypothesis generating. 304 Secondly, the complex nature of PA and HRQoL was investigated using self-reported 305 questionnaires, which may result in reporting bias ⁴¹. In conclusion, among young adult men, 306 PA was significantly related to HRQoL physical and mental summary components. More 307 specifically, leisure-time PA was positively related to physical and mental summary, while 308 occupational PA was negatively related to physical summary and sitting time was negatively 309 related to mental summary. 310

311

312 **PERSPECTIVES**

Our study adds useful information to the body of evidence between domain specific, relative PA and HRQoL, which could assist public health efforts in promoting positive health messages and health interventions to improve lifestyles, particularly, in young adult men. The total amount of PA does not appear to be as beneficial to HRQoL as does relatively high amount of leisure-time PA. The present findings provide valuable information of negative associations in

318	HRQoL between excessive occupational PA and daily sitting time. In contrast, relatively high
319	leisure-time PA indicated a better HRQoL regardless of the amount of total PA. In the future
320	studies, it will be important to assess domain-specific and relative PA, sitting time included,
321	and not only total PA.
322	
323	Acknowledgments
324	This study was funded by the Social Insurance Institute of Finland (ref: 16/26/2009),

325 Scientific Board for Defence (ref: 630/70.03.01/2015, 474/70.03.00/2016) and Centre for

326 Military Medicine. None of these had role in study design, collection, analysis and

327 interpretation of data; in the writing of the manuscript; and in the decision to submit the

328 manuscript for publication.

329

330 Ethical approval

The study protocol (Dnro 267/13/03/00/09) was approved by the Coordinating Ethics

- 332 Committee of the Helsinki University Hospital. Written informed consent was obtained from
- all participants prior to enrolment.

334

335 **Conflict of interests**

336 None.

337

References

340	1. Ekelund U, Steene-Johannessen J, Brown WJ, et al. Does physical activity attenuate, or
341	even eliminate, the detrimental association of sitting time with mortality? A harmonised
342	meta-analysis of data from more than 1 million men and women. Lancet.
343	2016;388(10051):1302-1310.
344	2. Kohl HW,3rd, Craig CL, Lambert EV, et al. The pandemic of physical inactivity: Global
345	action for public health. Lancet. 2012;380(9838):294-305.
346	3. Ding D, Lawson KD, Kolbe-Alexander TL, et al. The economic burden of physical
347	inactivity: A global analysis of major non-communicable diseases. Lancet.
348	2016;388(10051):1311-1324.
210	4 World Health Organization Finland physical activity factsheet
545	4. World Health Organization. Finnand-physical activity factsheet.
350	http://www.euro.who.int/data/assets/pdf_file/0008/288107/FINLAND-Physical-
351	Activity-Factsheet.pdf?ua=1. Published February 18, 2016. Accessed December 12,
352	2016.
353	5. Reis RS, Salvo D, Ogilvie D, et al. Scaling up physical activity interventions worldwide:
354	Stepping up to larger and smarter approaches to get people moving. Lancet.
355	2016;388(10051):1337-1348.
356	6. Bize R, Johnson JA, Plotnikoff RC. Physical activity level and health-related quality of life
357	in the general adult population: A systematic review. <i>Prev Med</i> . 2007;45(6):401-415.
358	7. Vagetti GC, Barbosa Filho VC, Moreira NB, Oliveira V, Mazzardo O, Campos W.
359	Association between physical activity and quality of life in the elderly: A systematic
360	review, 2000-2012. Rev Bras Psiquiatr. 2014;36(1):76-88.

- 361 8. Revicki DA. Health-related quality of life in the evaluation of medical therapy for chronic
 362 illness. *J Fam Pract.* 1989;29(4):377-380.
- 9. Bauman AE, Reis RS, Sallis JF, et al. Correlates of physical activity: Why are some people
 physically active and others not? *Lancet*. 2012;380(9838):258-271.
- 365 10. Boyd D, Bee H. *Lifespan development*. Boston, MA: Pearson Education, Inc.; 2002. 658
 366 p.
- 367 11. Aromaa A., Koskinen S.
- 368 Health and functional capacity in Finland: Baseline results of the health 2000 health
- *examination survey.* Publications of the National Public Health Institute B12/2004,

Helsinki: KTL National Public Health Institute, Finland; 2004. 171 p.

12. Hagstromer M, Oja P, Sjostrom M. The international physical activity questionnaire

372 (IPAQ): A study of concurrent and construct validity. *Public Health Nutr*.

373 2006;9(6):755-762.

13. Craig CL, Marshall AL, Sjostrom M, et al. International physical activity questionnaire:

12-country reliability and validity. *Med Sci Sports Exerc*. 2003;35(8):1381-1395.

- 14. International Physical Activity Questionnaire team. Guidelines for data processing andanalysis of the international physical activity questionnaire (IPAQ).
- http://www.ipaq.ki.se/scoring.pdf. Published November, 2005. Accessed November 26,
 2016.

15. Fayers P. Quality of life. assessment, analysis and interpretation. 2nd ed. Chichester,

381 England: Wiley; 2000. 568 p.

- 16. Ware JE, Jr, Kosinski M, Gandek B, et al. The factor structure of the SF-36 health survey
- in 10 countries: Results from the IQOLA project. International quality of life assessment.
- *J Clin Epidemiol*. 1998;51(11):1159-1165.
- 17. Ware JE, Kosinski M. SF-36 physical and mental health summary scales: A manual for
- *users of version 1.* 2nd ed. Lincoln,RI,US: QualityMetric Incorporated; 2001.
- 18. Tuomi K, Ilmarinen J:,A., Katajarinne L, Tulkki A. The Work Ability Index (WAI). *Occupational Medicine*. 2007;57(2):160.
- 19. Kauhanen J, Julkunen J, Salonen JT. Coping with inner feelings and stress: Heavy alcohol
 use in the context of alexithymia. *Behav Med.* 1992;18(3):121-126.
- 20. McCaffery M, Beebe A. *Pain: Clinical manual for nursing practice*. St.Louis, MO:
 Mosby; 1989. 353 p.
- 393 21. Hawker GA, Mian S, Kendzerska T, French M. Measures of adult pain: Visual analog
- scale for pain (VAS pain), numeric rating scale for pain (NRS pain), McGill pain
- questionnaire (MPQ), short-form McGill pain questionnaire (SF-MPQ), chronic pain
- grade scale (CPGS), short form-36 bodily pain scale (SF-36 BPS), and measure of
- 397 intermittent and constant osteoarthritis pain (ICOAP). Arthritis Care Res.
- 398 2011;63(11):240-252.
- 22. Riise T, Moen BE, Nortvedt MW. Occupation, lifestyle factors and health-related quality
 of life: The hordaland health study. *J Occup Environ Med*. 2003;45(3):324-332.
- 401 23. Wendel-Vos GC, Schuit AJ, Tijhuis MA, Kromhout D. Leisure time physical activity and
- 402 health-related quality of life: Cross-sectional and longitudinal associations. *Qual Life*
- 403 *Res.* 2004;13(3):667-677.

404	24. Vuillemin A, Boini S, Bertrais S, et al. Leisure time physical activity and health-related
405	quality of life. Prev Med. 2005;41(2):562-569.
406	25. Nakamura PM, Teixeira IP, Smirmaul BP, et al. Health related quality of life is
407	differently associated with leisure-time physical activity intensities according to gender:
408	A cross-sectional approach. Health Qual Life Outcomes. 2014;12(98). doi:
409	10.1186/1477-7525-12-98.
410	26. Jurakic D, Pedisic Z, Greblo Z. Physical activity in different domains and health-related
411	quality of life: A population-based study. Qual Life Res. 2010;19(9):1303-1309.
412	27. Chau JY, Grunseit AC, Chey T, et al. Daily sitting time and all-cause mortality: A meta-
413	analysis. PLoS One. 2013;8(11). doi:10.1371/journal.pone.0080000
414	28. Biswas A, Oh PI, Faulkner GE, et al. Sedentary time and its association with risk for
415	disease incidence, mortality, and hospitalization in adults: A systematic review and
416	meta-analysis. Ann Intern Med. 2015;162(2):123-132.
417	29. Omorou AY, Vuillemin A, Menai M, et al. 10-year cumulative and bidirectional
418	associations of domain-specific physical activity and sedentary behaviour with health-
419	related quality of life in french adults: Results from the SU.VI.MAX studies. Prev Med.
420	2016;88:66-72.
421	30. Balboa-Castillo T, Leon-Munoz LM, Graciani A, Rodriguez-Artalejo F, Guallar-Castillon
422	P. Longitudinal association of physical activity and sedentary behavior during leisure
423	time with health-related quality of life in community-dwelling older adults. Health Qual
424	Life Outcomes. 2011;9(47). doi: 10.1186/1477-7525-9-47.

425	31. Meneguci J, Sasaki JE, Santos A, Scatena LM, Damiao R. Sitting time and quality of life
426	in older adults: A population-based study. J Phys Act Health. 2015;12(11):1513-1519.
427	32. Scott KA, Browning RC. Occupational physical activity assessment for chronic disease
428	prevention and management: A review of methods for both occupational health
429	practitioners and researchers. J Occup Environ Hyg. 2016;13(6):451-463.
430	33. Nenonen N. Analysing factors related to slipping, stumbling, and falling accidents at
431	work: Application of data mining methods to finnish occupational accidents and diseases
432	statistics database. Appl Ergon. 2013;44(2):215-224.
433	34. Holtermann A, Marott JL, Gyntelberg F, et al. Occupational and leisure time physical
434	activity: Risk of all-cause mortality and myocardial infarction in the copenhagen city
435	heart study. A prospective cohort study. BMJ Open. 2012;2(1). doi: 10.1136/bmjopen-
436	2011-000556.
437	35. Penedo FJ, Dahn JR. Exercise and well-being: A review of mental and physical health
438	benefits associated with physical activity. Curr Opin Psychiatry. 2005;18(2):189-193.
439	36. van den Berg TI, Alavinia SM, Bredt FJ, Lindeboom D, Elders LA, Burdorf A. The
440	influence of psychosocial factors at work and life style on health and work ability among
441	professional workers. Int Arch Occup Environ Health. 2008;81(8):1029-1036.
442	37. Schuring M, Burdorf L, Kunst A, Mackenbach J. The effects of ill health on entering and
443	maintaining paid employment: Evidence in european countries. J Epidemiol Community
444	Health. 2007;61(7):597-604.

445	38. Mansoubi M, Pearson N, Biddle SJ, Clemes S. The relationship between sedentary
446	behaviour and physical activity in adults: A systematic review. Prev Med. 2014;69:28-
447	35.

448	39. Knuth AG, Hallal PC. Temporal trends in physical activity: A systematic review. J F	Phys
449	Act Health. 2009;6(5):548-559.	

- 40. Romeis JC, Heath AC, Xian H, et al. Heritability of SF-36 among middle-age, middleclass, male-male twins. *Med Care*. 2005;43(11):1147-1154.
- 452 41. Bauman A, Ainsworth BE, Bull F, et al. Progress and pitfalls in the use of the
- 453 international physical activity questionnaire (IPAQ) for adult physical activity
- 454 surveillance. J Phys Act Health. 2009;6(1):5-8.

456 **Figure captions**

457

Figure 1. Distribution of total PA (MET-h/week). The box shows the distance between the 458 459 quartiles, with the median marked as a line and the whiskers showing the 5th and 95th percentiles. Dashed lines divide the tertiles (Lowest, Middle, Highest). 460 Figure 2. Relative MET-h/week (%) according to PA tertiles of total PA and average sitting 461 time (h/day) (with 95% confidence interval) in physical activity domains (IPAQ). 462 Figure 3. Age- and employment status-adjusted mean (with 95% of confidence interval) 463 profiles in health related quality of life (SF-36) dimensions between the tertiles. =Lowest, 464 •=Middle and \circ =Highest tertile. The p-value indicates linearity across the tertiles. 465 Figure 4. Relationships between IPAQ domains and health-related quality of life according to 466 physical and mental component summary. β -values with 95% confidence intervals. 467