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ABSTRACT

Aims. We compare the performance of multiple codes written by different groups for making polarized maps from Planck-sized,
all-sky cosmic microwave background (CMB) data. Three of the codes are based on a destriping algorithm; the other three are
implementations of an optimal maximum-likelihood algorithm.
Methods. Time-ordered data (TOD) were simulated using the Planck Level-S simulation pipeline. Several cases of temperature-only
data were run to test that the codes could handle large datasets, and to explore effects such as the precision of the pointing data. Based
on these preliminary results, TOD were generated for a set of four 217 GHz detectors (the minimum number required to produce I,
Q, and U maps) under two different scanning strategies, with and without noise.
Results. Following correction of various problems revealed by the early simulation, all codes were able to handle the large data
volume that Planck will produce. Differences in maps produced are small but noticeable; differences in computing resources are large.

Key words. cosmology: cosmic microwave background – methods: data analysis

1. Introduction

Cosmic microwave background (CMB) observations have
driven a remarkable advance in cosmology over the past decade
(Smoot et al. 1992; de Bernardis et al. 2000; Hanany et al. 2000;
Benoît et al. 2003; Bennett et al. 2003 and references therein),
and will continue to furnish invaluable data in the years to come.
As the data volume and precision demanded of these observa-
tions increases (for example, Bond et al. 1999), the complex-
ity of the analysis methods required to deal with the data in-
creases also. Map-making – the process of turning time-ordered
scan data into an image of the sky – is an example of a cru-
cial step whose technical complexity has grown significantly.
This is particularly so in the case of total power measurements,
where one removes signal drifts due to 1/ f -spectrum noise in
the map-making step. If left unchecked, these drifts leave stripes
in the final map with amplitudes greater than the cosmic signal,

potentially compromising the scientific goals of a precision in-
strument such as Planck. For example, in the simulations pre-
sented below, the magnitude of the striping signal (estimated
from the rms difference between a simple coadded map and the
output map from one of our codes) was 336 µK, more than three
times the output map’s residual rms error of ∼100 µK due to
white detector noise (see Table 5). (These numbers are for 1.′7
pixels and four polarized detectors. For 5′ pixels, corresponding
to the resolution of the detectors, and for the full set of twelve
detectors, the residual error is ∼15 µK for the temperature map.)
In other words, map-making effectively removed striping with
three times the target sensitivity. Proper map-making is thus cru-
cial to mission objectives.

Planck1, to be launched in 2008, will be the third-generation
satellite dedicated to observations of CMB anisotropies.

1 http://www.esa.int/science/planck/
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Its primary objective is to measure the temperature anisotropies
to the cosmic variance limit out to multipoles l > 2000; other
scientific goals include detailed measurements of the polarized
power spectrum, the extraction of catalogs of galaxy clusters and
extragalactic sources, searches for non-Gaussianity, and in-depth
studies of the Galaxy. To achieve these goals, Planck will im-
age the sky in nine frequency bands, with resolution and sen-
sitivity in the CMB-dominated bands of 5–15′ and 5–10 µK,
respectively. Crucial to the success of the mission is the pro-
duction of sky maps approaching the instrumental white-noise
limit; drifts and artifacts must be removed and the noise proper-
ties well-understood. The formidable challenge of doing this for
maps containing millions of pixels lies at the heart of the effort
of one of the Planck working groups, the CTP Working Group.

It is important to develop and test well before launch efficient
algorithms for inclusion in the data analysis pipeline. Besides
preparing the pipeline, this helps to identify potential sources of
systematic error and inform mission operations (e.g., scanning
strategy). It also allows us to better quantify the mission’s ex-
pected scientific output.

In this paper, we evaluate a suite of map-making tech-
niques using simulations of several channels of the Planck High
Frequency Instrument (HFI) 217 GHz time-ordered data (TOD).
The simulations model non-white noise and primary CMB tem-
perature and polarization anisotropies. The suite of methods in-
cludes both destriping and optimal map-making algorithms. We
gauge the quality of our recovered temperature and polarization
maps by looking at rms pixel residuals, and the residual power
spectrum. This gives us an evaluation through second order sta-
tistical measures of noise and artifact residuals. The complexity
of the problem requires (at this stage) that we impose a number
of simplifying assumptions; these are clearly spelled out in the
text and are the focus of on-going work. We emphasize that the
ability to produce the maps shown here is a notable achievement
requiring intensive computation.

1.1. Planck scanning strategy

Planck will make its observations from the 2nd Earth-Sun
Lagrange point, approximately 1.5×106 km from the Earth. The
satellite is spin-stabilized, and during science observations it will
rotate on its axis once per minute. The telescope points at angle
of 85 degrees to the spin axis, so the detectors follow small cir-
cles on the sky. The satellite will perform a repointing manouvre
once per hour to keep the spin axis close to the anti-solar direc-
tion. Thus during the one hour periods between manouvres the
detectors will make repeated observations of the same “rings” on
the sky. Some of the algorithms presented in this paper can take
advantage of these repeated observations to reduce the computa-
tional burden.

Within the constraints imposed by Planck’s design, there is
freedom to choose the precise pointings of the spin axis to op-
timize the scientific returns of the mission. The choice of spin
axis pointings – the scanning strategy – is one of the factors we
examine in this paper.

1.2. Planck science goals for sky maps

Planck is designed to image the sky at nine frequencies from
30 to 857 GHz, with angular resolution from 33 to 5 arcmin.
The raw sensitivity is sufficient that inferences about the under-
lying distribution of fluctuations on the sky should be limited not
by noise, but rather by cosmic variance. To achieve this state,

systematic errors and processing artifacts must be controlled to
microkelvin levels. It is the latter challenge that we are address-
ing in this paper and its predecessor (Poutanen et al. 2006).

2. Map-making algorithms

Maps of the Cosmic Microwave Background (CMB) sky signal
are derived from long time series of data. These data are gener-
ally collected by telescopes fitted with detectors based on either
HEMT amplifiers or bolometers. Both detection systems have
noise characterized by a power spectrum that rises at low tem-
poral frequencies (often referred to generically as “1/ f noise”,
even though this is only approximate at best). These systems are
better-suited to differential measurements, where a short period
of time lapses between two measurements being differenced,
than to absolute ones. To achieve this, such CMB telescopes are
scanned rapidly across the sky, with the scanning pattern cross-
ing over itself multiple times to enable determination of the low
frequency noise in the time stream.

2.1. The problem

We assume that the data d recorded from a detector can be writ-
ten as the sum of two contributions, one from the sky signal s
and the other from the noise n in the detection chain

d = As + n, (1)

where the pointing matrix A describes the path of the detector
across the sky. If we have data from more than one detector, we
can treat all of the data together by concatenating their data vec-
tors and pointing matrices. The sky signal is represented by a
vector with discrete entries which are the pixels in a map. This
implies that the signal has a constant value across each pixel, so
the pixels of the map must be smaller than instrumental beam
by a sufficient amount to satisfy this assumption. If the detectors
only measure the intensity of the sky emission, then the signal
vector contains one entry in each pixel p, giving the value of the
I Stokes parameter, spI . If, however, the detectors also measure
linear polarization, then the signal vector must contain three en-
tries for the I, Q, and U Stokes parameters in pixel p, spI , spQ,
and spU .

If at time-index t an unpolarized detector is pointing at pixel
p, then the datum recorded from the detector is

dt = spI + nt, (2)

where nt is the noise contribution to the datum. If the detector is
sensitive to polarization, the datum recorded is

dt = spI + spQ cos(2χt) + spU sin(2χt) + nt, (3)

where χt is the angle of the detector’s polarization direction with
respect to the polarization basis in that pixel. It can be seen
from (2) and (3) that the pointing matrix A is very sparse. Each
row contains only one or three non-zero entries, depending on
whether the detector is polarized.

The assumptions above imply that there is no attempt to
deconvolve the instrumental beam during the map-making pro-
cess. If the beam is symmetrical, then the resulting map will be
smoothed with the same beam. If instead the beam is asymmet-
rical, then the effective smoothing of the map will vary with po-
sition. The smoothing at a particular position will depend on the
orientations in which the detector has passed over that point in
the sky. If the detector visits all points on the sky in all orien-
tations, then the effective smoothing of the map will be given
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by a symmetrized version of the beam (Wu et al. 2001). This
is not the case for the Planck scanning strategy which is highly
inhomogeneous.

It is assumed that the statistical properties of the noise n are
known a priori. It is possible to perform a joint estimation of the
signal and the noise properties, but this is not addressed in this
paper. Here we assume that the noise is Gaussian with zero mean
and covariance N,

〈n〉 = 0, (4)〈
nnT
〉
= N, (5)

where 〈·〉 denotes the average over noise realisations. It is usu-
ally assumed that the noise properties are stationary or piece-
wise stationary in the time domain. Because of its stationarity the
noise can be described by a correlation function in the time do-
main or equivalently by a power spectrum in the (temporal) fre-
quency domain. Thus each stationary block of the noise covari-
ance matrix is a symmetric Toeplitz matrix (Golub & van Loan
1996).

2.2. Optimal solution

The optimal solution for the map is given by the maximum-
likelihood estimate ŝ which is obtained by solving the gener-
alized least-squares (GLS) equation(
ATN−1 A

)
ŝ = ATN−1d. (6)

The term in brackets in the left-hand side is an Npix×Npix matrix,
where Npix is the number of pixels in the map. It is the inverse of
the pixel-pixel covariance matrix of the resulting map,

S =
(
ATN−1 A

) −1. (7)

For Planck-resolution maps, it is impossible in practice to cal-
culate S−1, let alone invert it, so (6) is solved using iterative
methods. The implementations of optimal map-making tested in
this paper all use the preconditioned conjugate gradient (PCG)
method (Golub & van Loan 1996) to find the solution. In each
iteration of the PCG method, it it necessary to apply S−1 =
ATN−1 A to a vector. This can be achived by using its factors
in the following procedure:

1. Use the pointing matrix, A, to project the map-domain vector
into the time domain.

2. Apply the inverse noise covariance matrix N−1 to the time-
domain vector.

3. Use the transpose of the pointing matrix AT to map the time-
domain vector back into the map domain.

Since the pointing matrix is sparse, steps (1) and (3) can be
achieved very efficiently in O(Ntod) operations, where Ntod is the
number of TOD samples. Step (2) can be applied by taking ad-
vantage of the piecewise-stationary properties of the noise. The
stationary blocks of the noise covariance matrix N are symmet-
ric Toeplitz matrices, and it is assumed that they are large enough
so that their inverses are well-approximated as Toeplitz matrices
too (Stompor et al. 2002). This being so, the blocks can be ap-
plied using a convolution that is evaluted using a fast Fourier
transform (FFT). The computational complexity of this step is
O(Ntod log Ntod). In practice, the convolution kernel is truncated
to a length Nτ where the long-range correlations are dying away,
so the computational complexity is reduced to O(Ntod log Nτ).
The convolution is applied using the overlap-add or overlap-save

methods (Press et al. 1992). Since the FFT is the most time-
consuming of these operations, all of the optimal map-making
codes in this paper use the highly-performant and portable FFTw
library (Frigo & Johnson 1998).

The preconditioner used in the PCG solution is obtained by
approximating the noise covariance matrix N as diagonal,

N ∼ Nu = diag(. . . , σ2
t , . . .) (8)

where σt is the noise standard deviation at time index t. Thus the
preconditioner matrix

M = ATNu
−1 A (9)

is diagonal in the unpolarized case and block diagonal in the
polarized case.

2.3. Approximate solution: the destriping approach

In calculating the optimal solution to the map-making problem,
many computationally-expensive operations are required on data
in the time domain. If these could be reduced or eliminated by
making approximations of the noise, then the map-making pro-
cess could be made faster.

In the destriping approach (Burigana et al. 1997;
Delabrouille 1998; Maino et al. 1999, 2002; Revenu et al. 2000;
Keihänen et al. 2004), the noise is divided into a low-frequency
component represented by a number of basis functions mul-
tiplied by coefficients and a high-frequency part which is
uncorrelated,

n = Bx + nu. (10)

The coefficients x are multiplied the matrix B containing the ba-
sis functions which are usually assumed to be a series of offsets.
The noise covariance matrix (8) is diagonal, though its diagonal
elements need not be equal. The data are now given by

d = As + Bx + nu. (11)

It is thus possible to write the map-making problem in a
maximum-likelihood form (Keihänen et al. 2004), where the pa-
rameters to be solved for are s and x. The maximum-likelihood
coefficients x̂ can be found from the TOD by solving(
BTNu

−1ZB
)

x̂ = BTNu
−1Zd, (12)

where

Z = I − A
(
ATNu

−1 A
) −1 ATNu

−1. (13)

The GLS equation (12) is solved using the conjugate gradient
method with or without a preconditioner. The offsets are then
subtracted from the TOD, which has the effect of “whitening”
the noise, so the map can be obtained by binning the resulting
TOD

ŝ =
(
ATNu

−1 A
) −1 ATNu

−1 (d − Bx̂) . (14)

It is possible to incorporate prior information about the offsets
in the destriping process (Keihänen et al. 2005). The drifts in the
TOD are caused by the low-frequency part of the noise spectrum.
The prior distribution of the noise is assumed to be Gaussian
with zero mean (4), so the prior on the offsets must be Gaussian
with a zero mean too. Thus the prior distribution of the offsets
can be summarized by a covariance matrix P which is related to
the prior noise covariance matrix (5). Incorporating this into the
solution for the offsets, (12) becomes(
BTNu

−1ZB + P−1
)

x̂ = BTNu
−1Zd. (15)

The prior covariance of the offsets can be derived from the prop-
erties of the noise spectrum or it can be estimated from the data.
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2.4. Degenerate pixels

If the map being made is polarized, then it is possible that some
pixels have not been observed by detectors in a sufficient num-
ber of orientations to well constrain all of the I, Q, and U Stokes
parameters. If this is the case, then the sky signal estimate of all
three components may not be well-defined, and the correspond-
ing map-making equations are ill-conditioned. A procedure for
eliminating the badly-observed pixels is thus required in order to
solve the map-making equations in a general case.

Such a procedure can be based on the preconditioner matrix,
M (9). The matrix plays a crucial role in both the optimal and
destriper approaches, and in the latter case, directly determines
the numerical stability of the sky map computations (14). In the
optimal case, the (numerically stable) invertibility of the matrix
M is a necessary (and for many scanning strategies, nearly suf-
ficient2) condition for successful calculation of the map.

Thus the preconditioner matrix can provide a method com-
mon to the optimal and destriping approaches for eliminat-
ing badly-observed pixels. The preconditioner matrix is block-
diagonal with 3 × 3 blocks that correspond to the approximate
covariance of the I, Q, and U Stokes parameters of individual
pixels. Using (3) and (8), it can be seen that the block of the
matrix corresponding to pixel p is given by

Mp =
∑

d∈dets

∑
t∈p

1

σ2
d, t

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 ct st

ct c2
t ct st

st ct st s2
t

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , (16)

where ct = cos(2χt) and st = sin(2χt). The inner sum is over
time-samples t of the detector d falling in the pixel p, and the
outer one is over the detectors included in the data set. If the ma-
trix is not invertible, then it is impossible to constrain the Stokes
parameters for this pixel. We test for the matrix invertibility us-
ing its condition number, κp, (Golub & van Loan 1996), defined
as,

κp ≡ κ
(
Mp

)
=

max
ρi∈ρ(Mp)

(ρi)

min
ρi∈ρ(Mp)

(ρi)
, (17)

where ρ(Mp) denotes the eigenvalues {ρi} of the matrix Mp. The
condition number is thus calculated using an eigenvalue decom-
position routine (Golub & van Loan 1996; Press et al. 1992).
If it is larger than a chosen threshold, then the Stokes parame-
ters are considered to be ill-constrained and the corresponding
pixel is eliminated from the map. (Note that the lower bound
on the value of the condition number is in our case equal to 2,
corresponding to the perfectly isotropic observations of a given
pixel.)

Some of the codes presented in this paper implement a post-
processing phase in which further pixels are eliminated after the
map-making. This step uses either a lower value of the block
condition number threshold or an additional criterion using the

2 The cases when this is not a sufficient condition are, for example,
the ones when all the observations falling into a given pixel are nearly
100% correlated. Such cases can be readily avoided if each pixel on
the sky is revisited multiple times on different time scales. The addi-
tional pixel excision criterion could then just read: ∆t > 1/ fknee, with
∆t denoting the time interval between the first and the last pixel obser-
vation. Note that for the scanning strategies and the characteristics of
the instrument considered here, such degenerate cases are unlikely to
happen, as whenever the pixel is observed from mulitple, sufficiently
different directions, that implies multiple visits of the pixel on a time
scales comparable to or longer than the noise correlations.

absolute values of the block eigenvalues or diagonal elements.
The pixels eliminated in this way are not so poorly-conditioned
as to make the solution impossible, but they tend to produce large
noise residuals and thus are undesirable in the final map.

Note also that for the optimal approach removing pixels prior
to map-making needs to be done with care in order not to affect
the continuity of the time ordered data (Stompor et al. 2002). In
the optimal runs described here, we excised a pixel by setting
the sky signal at the pixel to zero, and introducing a fictitious
extra pixel with zero sky signal observed instead. In this way, we
preserved the noise stationarity across the entire segments of the
data, without a need for involved time stream processing. None
of these complications is relevant for the destriper algorithm. In
the destriping runs presented here, samples corresponding to the
pixel to be removed are simply dropped from the map-making.

3. Map-making implementations

Six implementations of the two basic algorithms described
in Sect. 2 were tested on simulated Planck data. Three are
based on optimal map-making (MADmap, MapCUMBA, and
ROMA), and three are based on destriping (Springtide, Polar,
and MADAM). Common features of the codes are described in
Sect. 2. In this section, we highlight implementation details and
differences.

3.1. ROMA

ROMA (ROMA Optimal Map-Making) is a Fortran 95 par-
allel (MPI) implementation of an iterative optimal GLS map-
making algorithm. The first implementation of ROMA (Natoli
et al. 2001) showed that it is feasible to solve the optimal map-
making Eq. (6) for a Planck-sized dataset using an FFT-based,
PCG iterative solver. Over time, ROMA has evolved into a mul-
tichannel, polarization-capable code, which includes an iterative
noise estimation stage. ROMA has been integrated at the Planck
LFI Data Processing Center; it has also been used to analyze
data from the last (2003) Antarctic flight of BOOMERanG. A
detailed discussion can be found in (de Gasperis et al. 2005).

The noise was considered stationary over the whole time-
line, and its power spectral density was assumed known a pri-
ori. The instrumental beam is assumed to be axisymmetric and
common to I, Q, and U. This means that the code solves for a
beam-smeared (I,Q,U) set of maps. The condition number of
each block of the preconditioner matrix (9) is checked and, if
deemed satisfactory, the block is inverted and the result used for
preconditioning. The convolution is performed using the overlap
save method (Press et al. 1992), exploiting the fact that the the
noise correlation function is truncated after a lag (equal to 16385
samples. Double precision is used throughout.

3.2. MADmap

MADmap, part of the MADCAP3 package, is a massively paral-
lel implementation of the map-making equations (6); see Borrill
et al. (2007) for a detailed description. Communications between
processors are handled by MPI, and data are distributed over the
memory associated with each processor.

The major data objects involved in the calculation are dis-
tributed over the memory associated with each processor in a
balanced way. All time domain data, including the time stream
vector, the pointing matrix, and the correlation functions that de-
fine the inverse time-time noise matrix, are distributed with an
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even partition of the data over the processors so that every pro-
cessor stores the data associated with an equal number of con-
tiguous time samples. A single processor may store time stream
data that belong to more than one data set (a data set is the data
recorded by a single detector in the simulations described in this
paper) if the processor stores the last samples from one data set
and the first samples from the next.

In calculating the pixel-pixel noise correlation matrix with
the PCG algorithm, five pixel-domain vectors must be stored.
These vectors are distributed over the processors so that if a pixel
is observed during the time interval associated with a given pro-
cessor, then the vector elements associated with that pixel are
stored in the processor’s memory. This does not represent an
even partition of the pixel domain, but it does limit the size of the
pixel vectors stored on a given processor to be less than the size
of the pointing matrix stored on the processor (with most exper-
imental scanning strategies it will be significantly smaller). For
the Planck scanning strategy in particular, the memory footprint
required for the pixel vectors will be approximately 60 times
smaller than the pointing matrix memory footprint.

The pointing matrix is stored as a sparse matrix in zero-
compressed row major order; it can take on a variety of forms to
reflect different models of the observation. If there are Nz non-
zeros per row, then A takes O(NzNt) storage space and O(NzNt)
calculations to operate with, where Nt is the number of time sam-
ples. MADmap allows for an arbitrary pointing matrix, and this
flexibility allows for very complicated time stream models. By
using an arbitrary pointing matrix we can remove parasitic sky-
asynchronous signals, calibrate from a known signal, pixelate a
systematic effect and remove it, and so forth.

The inverse time-time noise correlation matrix operator has
a complex implementation (Borrill et al. 2007). The computa-
tional cost of the N−1 operator is O(Nt ln(Nτ)) and the storage
space required is O(NsNτ), where Nt is the number of time sam-
ples, Nτ is the length of the correlation function, and Ns is the
number of stationary intervals. It is important to note that N−1

can be arbitrary within the structural definition outlined above.
This includes the possibility for each stationary interval to have a
different noise correlation function associated with it, and these
noise correlation functions can take any form.

MADmap has the functionality to read an arbitrary sparse
preconditioner matrix and use this precomputed data product
as the preconditioner. If no preconditioner is provided, then
MADmap uses a diagonal preconditioner composed of the in-
verse of the diagonal elements of AT A.

MADmap uses the M3 library to access CMB data.
Applications that use the M3 library for reading data can be
daisy chained, so that the output of one application can be used
as input for a subsequent application. (A suite of massively
parallel applications using the M3 library is detailed in Borrill
et al. 2007). This functionality is afforded by the combination of
a versatile XML-based data model description and the ability of
the M3 library to read data stored a variety of file formats while
translating the data to conform to a single application program-
mer interface.

Use of the M3 library also gives MADmap a comprehensive
and versatile user interface designed specifically to enable the
analysis of simulated data. For each detector and for each six
day period there are three files, containing the pointing informa-
tion, the CMB signal time stream, and the detector noise time
stream. These 732 files were organized in the M3 XML docu-
ment describing the simulation, and the M3 library is able to add
the signal and the noise time streams in a weighted fashion as
specified by the user.

3.3. MapCUMBA

MapCUMBA is a set of codes dealing with the analysis and
map-making of polarized CMB data. The current version (2.1)
has been modified from previous versions (Doré et al. 2001) to
solve the GLS map-making Eq. (6) by the preconditioned conju-
gate gradient (PCG) method. It can now process polarized data
from multiple detectors, filling the gaps in the data stream due to
cosmic ray hits or data acquisition drop-out with a constrained
noise realization. The noise properties, assumed piece-wise sta-
tionary, can be estimated from the TOD through an iterative pro-
cess of map-making and noise extraction. The codes are written
in Fortran 90 and are parallelized for distributed memory archi-
tecture using the message passing interface (MPI). They have
been applied to the analysis of the 2003 flight of Boomerang.

In the current analysis, the instrumental noise is assumed to
have a known power spectrum and to be statistically stationary
over the whole flight. We assume its time-time correlations to be
negligible beyond 5.4 min, which corresponds to Nτ = 65536
samples. This latter number has been chosen to be a power of
two to speed up the FFT operations described below, but could
be set to any other value larger than the noise correlation length.

The convolution is applied using an overlap-add method
(Press et al. 1992). This approach allows for a simple paralleliza-
tion of the code, reducing the computation and memory load of
each CPU. Since the number of pieces created is generally larger
than the number of CPUs, and they have a predictable length
(they are all equal here), load balancing between CPUs is fairly
simple.

In order to apply the PCG techniques, the matrix to be in-
verted ATN−1 A is approximated by M =

∑
c AT

cσ
−2
c Ac, where

c is a data stream of a given detector for which the intrumen-
tal noise is assumed stationary with rms σc. Ac is the pointing
matrix of the detector during that stretch of time, and the sum
is done over all such pieces for all detectors. For polarization, if
the condition number (ratio of the largest to the smallest eigen-
values) of a given block of M is small enough, the block is in-
verted to provide a local preconditioner. Otherwise the pixel is
degenerate and flagged as unobserved.

Making maps of the Planck HFI data with a optimal method
and a PCG algorithm poses a double challenge in terms of data
volume. The full data stream must be kept in memory or re-read
regularly from disk to allow for the filtering operations described
earlier, and the PCG algorithm requires five intermediate maps
and the preconditioner M−1, each covering the same sky area as
the final map with the same resolution and number of fields, to
be kept in memory at the same time. For the full-sky HFI appli-
cations considered here, each unpolarized map with 0.′8 pixels
(Nside = 4096) takes 1.6 GB in double precision, while a po-
larized map with 1.′7 pixels (Nside = 2048) takes 1.2 GB. The
maps used in the PCG solver are therefore broken into Ncpu non-
overlapping pieces of almost equal number of pixels, and each
piece is assigned to one CPU. This scheme simplifies the op-
erations such as scalar products of maps, and application of the
preconditioner performed during the PCG iterations, and ensures
a perfect load balancing independently of the scanning strategy.

3.4. Polar

Polar (Keihänen et al. 2006) is based on the destriping approach.
We assume no a priori knowledge of the baseline amplitudes,
assigning uniform prior probability to x. The baseline amplitude
vector x is solved from the TOD using (12), without precondi-
tioning.
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In the present study we use a baseline length of 1 min, the
nominal spin period of the Planck spacecraft. The number of
baselines is then Nb = Ndet × 366 × 24 × 60, where Ndet is the
number of detectors used. We have found that 1-min baselines
produce lower noise in the maps than longer baselines (Keihänen
et al. 2006). Note that no coaddition of the data was performed,
unlike in Keihänen et al. (2004) and Poutanen et al. (2006),
where the use of idealized pointing combined with the Planck
scanning strategy made it easy to compress the TOD into smaller
size by coadding repeated scans over the same sky circles.

Solving for the baselines and the final map-making step in-
volve multiplication by the inverse of the matrix ATN−1

u A (9).
This matrix has been discussed in more detail in Section 2.4. As
noted there, that in order to ensure its invertibility, we need to re-
move the degenerate pixels. The Polar code has two options for
the criteria to determine those pixels. One is a determinant cri-
terion, defined as det ≡ σ6 det Mp, where the same white noise
level σi = σ is assumed for each detector and sample and Mp

denotes the p-th diagonal block of the matrix ATN−1
u A. The sec-

ond criterion is the condition number requirement introduced in
Section 2.4. The pixels, whose determinant or reciprocal condi-
tion number is less than some predefined value, will be rejected.

The code is written in Fortran 90, and parallelized using
MPI. The full data stream is kept in memory, leading to a large
memory requirement. Each processor handles a section of the
TOD. In this study the sections were six days long. The to-
tal number of sections and processors required, therefore, was
Ndet × 61. Because of the memory requirement, however, 512
(1536) processors were reserved for Ndet = 4 (12). The map is
divided into submaps (in this case 1024 pixels each). Each pro-
cessor handles a number of submaps. Processors handling TOD
and processors handling maps (the same processors may do both
tasks) communicate by sending these submaps to each other.

3.5. MADAM

The MADAM map-making method is described in Keihänen et
al. (2005). The method is based on the destriping technique, but
also uses information on the noise spectrum.

The first implementation of MADAM was serial, and in-
cluded no polarization. It allowed fitting several basis functions,
such as Fourier components, and also allowed for coadding of
the TOD. For the purpose of this study we wrote a new parallel
implementation of the method, capable of handling larger data
sets, and specially designed for uncoadded data. It allows fitting
of uniform baselines only, which simplifies the code somewhat,
but is able to handle polarization data.

As in Polar, the low-frequency part of the noise is repre-
sented by a sequence of constant baselines, and the remaining
part of the noise is treated as white noise. The baseline ampli-
tude vector x is solved from Eq. (15). The covariance matrix P
of the baseline amplitudes (15) is computed from the noise spec-
trum, assumed to be known. The final output map is constructed
from the cleaned TOD as in Eq. (14).

The code has some parts in common with Polar. In particu-
lar, the binning of TOD into the map and handling of degenerate
pixels are done in the same way. Also, the parallelization scheme
and distribution of data among processors are similar. The main
difference between the codes is the term P−1 x in (15), which
allows MADAM to fit accurately much shorter baselines than
Polar and thus model the correlated noise better. In the present
study we used a baseline length of 4 s. The chosen baseline

length represents a trade-off between accuracy and computation
time.

MADAM solves the linear system (15) by conjugate gradient
iteration, with a preconditioner matrix

M = (BTNu
−1 B + P−1). (18)

The preconditioner is circulant and its multiplication with a
baseline vector can be handled by a Fourier technique, like the
term P−1x.

The term P−1x is computed using the overlap-save method
(Press et al. 1992). It is calculated independently for each detec-
tor. The sequence of baselines is split into sections, whose length
in the present study was 6 or 3 days. Each section is padded at
both ends with baselines from the two neighbouring sections,
wrapping around at the ends. Each section is then convolved with
P−1 using a FFT technique and cut back to the original length.
The convolution takes into account noise correlations over the
length of one data section.

Formulae for computing the prior offset covariance P were
given in Keihänen et al. (2005). The code assumes stationary
noise over the whole TOD sequence.

3.6. Springtide

Springtide (Ashdown 2007) is an implementation of destrip-
ing that is optimized to enable medium-sized supercomputers or
clusters to analyse Planck-sized data sets. The map-making in-
plementations described above require all of the data and point-
ing to be stored in memory at once, at large cost in memory. For
example, to process the data from all 12 detectors of the HFI
217 GHz channel requires several terabytes of RAM. Springtide
reduces the memory requirements by dividing the map-making
into two stages.

The first stage takes advantage of the repeated observations
of the same ring during one pointing period to compress the data.
The baselines that will be subtracted from the time-ordered data
are taken to be equal to the pointing period, during which the
noise is assumed to be white. The data can therefore be com-
pressed by making a map for each pointing period for each de-
tector – a “ring-map” – by simple binning. The low-frequency
part of the noise, modelled by an offset for each pointing period,
is unaffected by the binning operation. The high-frequency noise
in the resulting ring-maps is uncorrelated, with an amplitude
modulated by the hit-count in each of the ring-pixels. Making
ring-maps in this way compresses the TOD by a factor of 20–30,
depending on the amplitude of the nutation of the satellite. The
ring-maps are made using the same pixelation that will be used
to make the final map to avoid any re-pixelation errors.

The second stage of the map-making is to combine the ring-
maps into a global map by destriping. In each ring-map, the
low-frequency noise is modelled as an offset. The maximum-
likelihood solution for the offsets is found using the conjugate
gradient algorithm. The maximum-likelihood offsets are sub-
tracted from the ring-maps, which are then binned to make the
global map. An iterative procedure can be used to estimate the
low-frequency properties of the noise.

Springtide is written in Fortran 95 and is parallelized us-
ing MPI.
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4. Simulations

4.1. Detectors

In this study, our goal was to use data from detectors in a CMB-
dominated Planck channel with the highest angular resolution
(�5′). The HFI 217 GHz channel meets these requirements, so
we chose to use it in this study.

For temperature-only simulations we used data from the un-
polarized HFI bolometer 217-4. For polarization maps, a min-
imum of four polarisation-sensitive detectors is needed, so we
used 217-5a, 217-5b, 217-7a, and 217-7b. A pair of detectors (a
and b) share a horn in the focalplane and are oriented perpen-
dicularly to each other. The two horns we used scan the same
path on the sky. The polarization axes of 217-7a and 217-7b are
aligned parallel and perpendicular to the scan direction, whereas
the polarization axes of 217-5a and 217-5b are oriented at 45◦to
the scan direction.

4.2. Assumptions

We assumed the following:

– Noise is known a priori. (In an experiment it will have to
be determined from the data themselves. Here we unrealis-
tically avoid the effects of both the error and the statistical
uncertainty that would exist in dealing with real data.)

– Noise consists only of white noise and a low frequency com-
ponent, with no peaks or other features at high frequencies,
and no gaps in the noise spectrum (as would result from, e.g.,
microphonics of slightly varying frequency).

– Noise is pseudo-stationary and Gaussian. The data are di-
vided into 6-day pieces; noise is uncorrelated between
pieces, but noise properties are identical in all pieces.

– The white noise level is σ = 1.280 mK for unpolarized and
σ = 1.811 mK for polarized timelines.

– The knee frequency fknee = 0.03 Hz, minimum frequency
fmin = 1.15 × 10−5 Hz, and spectral slope α = −2.

– Noise is uncorrelated between detectors.
– In this paper the map statistics are in thermodynamic mi-

crokelvins and the angular power spectra in these units
squared.

– Beams are symmetric and Gaussian.
– The FWHMs of the beams are 4.′7247, 4.′7269, 4.′7370,

4.′7123, and 4.′7116 for 217-4, 217-5a, 217-5b, 217-7a, and
217-7b, respectively. In practice the beam-widths will not be
known to this level of precision; however, we give additional
significant figures to show the level of variation in the beam-
widths, and to reflect what was actually used in the simula-
tions.

– Every bolometer has the same ideal top-hat spectral response
and the shape of the beam is constant over the passband.

– There are no missing data in the time-stream
– There are no foreground signals.

For each detector, measurements are taken at a rate of 200 sam-
ples/s. The detectors scan the sky along ∼85◦-opening-angle cir-
cles, at 1 rpm. The spin axis is changed once per hour by 2.′5.
Two scanning strategies were simulated (Dupac & Tauber 2005):

– nominal scanning, in which the spin axis follows the ecliptic
plane in the anti-Sun direction during the whole flight;

– cycloidal scanning, in which the spin axis follows a cycloidal
path 7◦ from the anti-Sun direction with 6-month period.

For both scanning strategies, a small nutation of the spin axis was
included, along with a small change in the spin rate. The nutation
amplitude and spin rate were changed every hour when the spin
axis was repointed, and then kept constant for an hour. Their
values were selected randomly from truncated Gaussian distri-
butions with 0.′5 rms and 2′ maximum for nutation and 0.◦12 s−1

rms and 0.◦3 s−1 max for spin rate deviation from the nominal
1 rpm.

4.3. The CMB template

The CMB reference sky was constructed to reproduce the large
scale anisotropy pattern observed by WMAP. Specifically, we
chose a threshold in the angular domain, lWMAP, and used the
observed harmonic coefficients for l ≤ lWMAP from the inter-
nal linear combination (ILC) CMB map3 (Bennett et al. 2003)
as described below. To reduce the residual effect of foregrounds
and WMAP instrumental noise and systematics, we chose the
threshold to be much larger than the actual WMAP angular res-
olution, i.e., lWMAP = 70. The CMB reference consists of total
intensity and E mode polarization, but zero power on B, and
has been obtained as described below. Extensive use was made
of HEALPix4 routines. The template and the codes for produc-
ing it are publicly available as part of the Planck Component
Separation Working Group effort for building a background and
foreground reference sky5.

4.3.1. l ≤ lWMAP

For total intensity, we take directly the aT,WMAP
lm from the out-

puts of the HEALPix anafast routine running on the WMAP
ILC map. The coefficients for the E polarization mode, aE

lm,
were obtained as follows. For all m, the average amplitude
of the component of aE

lm which is correlated with T is given
by CT E

l /C
T
l ; the remaining component has average amplitude√

CE
l − (CT E

l /C
T
l )CT E

l . Here by Cl we mean the angular power
spectrum taken from the best fit theoretical power spectrum to
the WMAP, ACBAR, and CBI data, described below. We define
the angular power spectrum Cl in the usual way

Cl =
1

2l + 1

l∑
m=−l

|alm|2 (19)

and include no l(l + 1)/2π normalization. The relative weights
of the real and imaginary part of the aE

lm component which is
correlated with T E are set by aT,WMAP

lm . Those of the remaining
part are chosen randomly. The result is

aE
lm = aT,WMAP

lm · CT E
l

CT
l

+

⎛⎜⎜⎜⎜⎝ xE
lm + iyE

lm√
2

⎞⎟⎟⎟⎟⎠
√

CE
l −

CT E
l

CT
l

CT E
l , (20)

where xE
lm and yE

lm are Gaussian distributed numbers with zero
mean and unit variance; the

√
2 as well as the imaginary part are

absent for m = 0.

4.3.2. l > lWMAP

The harmonic coefficients on these scales were obtained by run-
ning the synfast HEALPix routine to generate a template for T ,

3 http://lambda.gsfc.nasa.gov/product/map/m−products.cfm
4 http://healpix.jpl.nasa.gov/
5 see http://www.planck.fr/heading79.html for details.
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Table 1. Inputs and outputs of the four temperature simulations without
noise, designed to test our ability to reproduce the input map exactly.

Case Bolometer time Pointing Output resolution
constant precision / Nside

1 No Double 4096
2 No Single 4096
3 Yes Double 4096
4 No Double 2048

Q, and U out of the WMAP, ACBAR, and CBI best-fit theo-
retical CMB power spectrum with no running spectral index6,
specified by h = 0.71992, ωb = 0.02238, ωCDM = 0.11061,
τ = 0.11027, ns = 0.95820, and r = 0, where h is the Hubble
constant in units of 100 km s−1 Mpc−1, ωx/h2 is the ratio be-
tween the density of the species x and the critical one, τ is the
optical depth at reionization, ns is the scalar perturbation spec-
tral index, and r is the ratio between the primordial tensor and
scalar perturbation amplitude.

4.4. Temperature

An initial set of simulations for temperature only, summarized
in Table 1, was run with no noise, in order to test our ability to
reproduce exactly the input map. These simulations comprised
one year of CMB temperature data from HFI 217-4, using the
cycloidal scanning strategy over an input temperature map gen-
erated at HEALPix Nside = 4096 resolution. The pointing data
were generated in double precision and stored in either double
or single precision (see Table 1); other data were stored in single
precision.

Three main issues were identified which impacted the ability
of the map-making codes to reproduce the noiseless signal in the
input maps:

– Pointing precision – Information about the satellite pointing
is specified in terms of θ and φ, the co-polar and azimuthal
angles in ecliptic coordinates. Initially, the Level-S pipeline
calculated the pointing angles in double precision but stored
them in single precision. This truncation led a small fraction
of the pointings being assigned to the wrong pixel. This mis-
assignment could only affect pointings that lay within the
truncation error limit of a pixel boundary, but the number of
such pointings increases as the pixel size is reduced.

– Bolometric time constants – Each time sample corresponds
to the integration of the signal along the scan for the duration
of the sampling period. The Level-S pipeline simulates this
by performing a convolution of the input signal along the
scan. The time stamp associated with each sample is the time
when the sample is read by the onboard electronics, at the
end of the integration period. In addition to this integration,
bolometers have a finite time impulse response. This leads to
an additional smearing which is modeled in the simulations
by a convolution with a causal filter (implemented through
averaging over ‘fast samples’). The smearing of the signal
due to both of these effects will have to be taken into account
in the analysis. Ideally the filter response will be inferred
from the data themselves. We conjecture that the ability to
do so will depend on the availability of bright point sources
and the ratio of the bolometric time constant to the sampling
period. Except for the noiseless case 3, where this feature
was included in the simulation, to see its effect when not

6 http://lambda.gsfc.nasa.gov/product/map/lcdm.cfm

Table 2. RMS pixel residual for the four temperature simulations with-
out noise. For the optimal map-making codes ∗ indicates that noise cor-
relations were ignored and † that they were taken into account; see the
text for further details.

rms residual / µK
Code Case 1 Case 2 Case 3 Case 4
Polar 0.00 10.9 0.0753 1.85
MADAM 0.00 – – 1.85
Springtide 0.00 – – 1.85
MADmap∗ 2.08 × 10−18 10.9 0.0682 1.85
MADmap† 4.50 × 10−4 – – –
MapCUMBA∗ 2.06 × 10−5 10.9 0.0682 1.85
ROMA∗ 0.00 – – 1.85
ROMA† 0.00 – – –

corrected for, we decided to switch it off from the simulation
pipeline for several reasons:

– In practice, these effects will have to be included in the
time-stream pre-processing and noise estimation, not the
map-making, and this stage was not being considered
here.

– The effect of the bolometric time constants is coupled
to the effects of asymmetric beams and correlated noise.
Our current exercise does not consider these effects, and
it does not make sense to consider the effect of bolomet-
ric time constants in isolation.

– The bolometric time constants used in Level-S were not
based on actual hardware performance, which was not
yet available, and therefore were not likely to be repre-
sentative of the actual Planck instrument.

– Output map resolution – If the output map has lower reso-
lution than the input map there is a residual due to the addi-
tional pixel smoothing.

Once these issues were sorted out, a fifth temperature-only sim-
ulation was run, the same as Case 1 but with noise added.

4.5. Polarization

We then ran simulations with polarization. Based on the lessons
learned in the temperature cases, all used double precision
pointing, no bolometer time constant, and output maps at the
same resolution as the input data. Data were generated for
four polarization-sensitive bolometers, 217-5a, 217-5b, 217-7a
& 217-7b. Input and output I, Q, and U maps were made at
Nside = 2048 to reduce memory requirements during the sim-
ulation process. Four cases were run: with and without noise for
both nominal and cycloidal scanning strategies.

5. Results

The output map was subtracted from a reference map at the same
resolution, and the mean, minimum, maximum, and root mean
square residual pixel values were calculated, together with the
angular power spectrum of the residual map. The full results are
available on the Helsinki results website7. Tables 2 (no noise), 3
(with noise), and Figure 1 (with noise) summarize the results for
the single detector temperature-only runs for the four cases listed
in Table 1.

In the noiseless cases, the optimal map-making implementa-
tions can be run with two different assumptions about the noise

7 http://www.mrao.cam.ac.uk/∼maja1/ctp/helsinki/



M. A. J. Ashdown et al.: Making sky maps from Planck data 769

Table 3. RMS pixel residual for the temperature simulation with noise.

Code rms residual / µK
Polar 379.12
MADAM 378.96
Springtide 401.19
MADmap 378.96
MapCUMBA 378.96
ROMA 378.96

covariance matrix. The first is to assume that the prior informa-
tion about the noise is correct, even though no noise is included
in the simulations. The second is to ignore the prior informa-
tion about the noise and to assume it is white. For the noiseless
case the latter is closer to the truth, but ignores the correlations
that will be introduced when noise is added to the simulations.
Tables 2 and 4 indicate which assumption was made.

From the no-noise results we see that simulation errors ex-
ceed the numerical precision of the map-making codes and are
recovered by all six methods. Residuals arising from the map-
making itself are extremely small, as can be seen from the case 1
results in Table 2. The much higher rms of the codes in case 2 il-
lustrates the point made in Sect. 4.2 about the impact of pointing
precision on high resolution maps. case 3 shows that smoothing
caused by the bolometer time constant adds appreciable residu-
als. (The marginally higher rms for Polar in case 3 is due to using
a lower pixel resolution (Nside = 2048) in the ring offset fit. This
was a temporary fix for a problem an early version of the code
had with noiseless data. The TOD for cases 2 and 3 were later
deleted to save disk space, so that they could not be redone with
a consistent use of the higher resolution, after the problem was
corrected.) Case 4 shows that the use of different resolutions for
input and output maps contributes much larger residuals than the
map-making itself. The most significant of these three sources of
error is the pointing precision, followed by the output map res-
olution, and then the bolometer time constant. It is worth noting
that the pointing precision error generates residuals with not only
the largest amplitude, but also the most structured angular power
spectrum.

In all cases the (pure) map-making residuals are much
smaller than the residual noise level, as shown by the results
given in Table 3 for the simulations including instrumental
noise. As discussed in Sect. 5.1 below, the residual rms values
in Table 3 are consistent with the expected white noise level.
Figure 1 displays the power spectrum of the noise residuals.
All the methods tend towards the white noise plateau at high l,
and contain significant structure at low l. Residual noise from
Springtide remains noticeably higher than in the other codes
(especially at multipoles l � 100), because it works with ring
baselines rather than the shorter time-stream baselines used by
the other destripers. This greatly reduces the resources required
for the code (see below), but it permits a larger amount of low-
frequency noise to pass into the reconstructed map. Figure 1 also
shows the spectrum of the CMB anisotropy signal. At low mul-
tipoles the residual noise is a tiny fraction of the CMB signal. At
l � 900 the noise exceeds the magnitude of the CMB. The dif-
ferences of the residual noise of the map-making codes appear
mainly in the large angular scales (at l � 100), where the CMB
dominates. Therefore these results suggest that the differences in
the temperature maps from our map-making codes are not likely
to be significant for the science to be extracted from them.

Tables 4 (no noise) and 5 (with noise) and Figs. 2 (cy-
cloidal scanning) and 3 (nominal scanning) show results for the

Fig. 1. Spectrum of residuals from the temperature simulation with
noise. For comparison the spectrum of the CMB reference map is shown
too (black curve). Cl is defined in Eq. (19).

polarization simulations. The beam sizes of the four detectors
differ slightly; the reference map used to calculate the residuals
was constructed by averaging the four input maps. Comparison
of the two tables demonstrates that once again residuals caused
by the map-making itself are negligible relative to the noise
residuals. In Fig. 2 the low-l residuals of the ROMA code differ
from the residuals of the other codes, whereas the ROMA resid-
uals are well comparable to the other residuals in Figs. 1 and 3.
For Fig. 2 we could have let ROMA to perform some more con-
jugate gradient iterations for better low-l recovery. We can see
from Figs. 2 and 3 that the low-l (l � 7) EE power of the noise
residuals is comparable to the power of the reionization bump
of the CMB signal. At higher l the residual noise dominates. A
closer inspection of Figs. 2 and 3 reveal that the low-l EE pow-
ers of the residual noise are nearly identical except for Springtide
and Polar, which have slightly larger low-l power than the other
map-making codes (at least in this realization of noise). For the
detection of the weak polarization signal the larger residual noise
is a disadvantage.

We also note that the U residuals in Table 4 are significantly
higher than those on Q, an effect that we have traced to dif-
ferences in the FWHM of the beams (uncorrected in our map-
making). In fact, the difference in beam FWHM for the 217-5ab
pair, aligned at 45 degrees to the scan direction, is larger than the
difference for the 217-7ab pair, aligned parallel/perpendicular to
the scan direction. Given these orientations and the scanning pat-
tern on the sky, the 217-5ab pair primarily measures the U field
(especially at the Ecliptic equator). The larger beam difference
for this pair thus causes a larger residual in the U measurement.
The effect is, however, much smaller than the noise residuals
(Table 5). We discuss the import of these results on scanning
strategy in the Conclusion section.

Polarization map-making introduces the additional compli-
cation of handling pixels in which the I, Q and U Stokes pa-
rameters are either mathematically or numerically degenerate.
In the white noise case this degeneracy can be seen in the
properties of the 3 × 3 (I,Q,U) pixel triplet covariance sub-
matrices of the full block-diagonal inverse pixel-pixel noise cor-
relation matrix S−1 = ATN−1 A. In these runs we used the de-
terminant criterion of Polar, so that Polar rejected all (I,Q,U)
pixel triplets whose covariance matrix had a determinant below
some threshold, while MapCUMBA and MADmap imposed a
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Table 4. RMS pixel residuals for the polarization simulations without noise. For the optimal map-making codes ∗ indicates that noise correlations
were ignored and † that they were taken into account; see the text for further details.

Cycloidal rms residual / µK Nominal rms residual / µK
Code I Q U I Q U

Polar 4.07 × 10−3 3.42 × 10−3 1.22 × 10−2 2.30 × 10−3 2.86 × 10−3 1.27 × 10−2

MADAM 2.09 × 10−3 3.41 × 10−3 1.22 × 10−2 2.00 × 10−3 2.86 × 10−3 1.27 × 10−2

Springtide 2.09 × 10−3 3.41 × 10−3 1.22 × 10−2 2.00 × 10−3 2.86 × 10−3 1.27 × 10−2

MADmap† 2.16 × 10−3 3.71 × 10−3 1.83 × 10−1 2.02 × 10−3 2.87 × 10−3 1.46 × 10−2

MapCUMBA∗ 2.09 × 10−3 3.41 × 10−3 1.22 × 10−2 2.00 × 10−3 2.86 × 10−3 1.27 × 10−2

MapCUMBA† 1.23 × 10−1 1.70 × 10−2 2.47 × 10−2 5.39 × 10−3 2.88 × 10−3 1.27 × 10−2

ROMA∗ 2.09 × 10−3 3.41 × 10−3 1.22 × 10−2 2.00 × 10−3 2.86 × 10−3 1.27 × 10−2

ROMA† 2.09 × 10−3 3.41 × 10−3 1.22 × 10−2 2.00 × 10−3 2.86 × 10−3 1.27 × 10−2

Table 5. RMS pixel residuals for the polarization simulations with noise.

Cycloidal rms residual / µK Nominal rms residual / µK
Code I Q U I Q U
Polar 102.91 148.05 148.41 97.36 138.23 139.31
MADAM 102.86 147.97 148.33 97.32 138.16 139.25
Springtide 106.18 152.51 153.18 100.03 141.91 143.25
MADmap 102.86 147.97 148.34 97.32 138.16 139.24
MapCUMBA 102.86 147.97 148.33 97.32 138.16 139.25
ROMA 102.86 147.97 148.33 97.32 138.16 139.24

minimum condition number on this matrix for the pixel triplet to
be accepted. The implications of these acceptance criteria, and
the choice of threshold for each, is an ongoing research activity.

5.1. Expected white noise levels

The map residuals in Tables 3 and 5 are due mainly to remaining
noise in the maps. They can be compared to the expected level
of white noise, which we discuss in this subsection.

The white noise level in our simulated noise timelines was
set to σ = 1279.78 µK for the unpolarized detectors, and σ =
1811.15 µK for the polarized detectors. A full year (366 days)
TOD from one HFI detector contains 366 × 86400 × 200 =
6 324 480 000 samples. If the whole sky were sampled uni-
formly (same number of samples from each pixel), we would get
n = 31.4 hits per pixel for an Nside = 4096 map, and n = 125.7
hits per pixel for an Nside = 2048 map, from one detector. This
would lead to a white noise rms level of 228.34 µK (114.17 µK)
per pixel for an Nside = 4096 (Nside = 2048) I map from a
single unpolarized detector. Assuming also an optimal sampling
of polarization directions, from the set of four polarized detec-
tors, the white noise level would be 80.79 µK (114.25 µK) per
pixel for the I (Q, or U) map with Nside = 2048. And from the
one-year data from the full set of twelve HFI 217 GHz detec-
tors (8 polarized, 4 unpolarized), the white noise level would
be 40.38 µK(80.79 µK) per pixel for the I (Q or U) map with
Nside = 2048.

A standard measure of performance is to give the white noise
level for a pixel whose size corresponds to the resolution of the
detector. From the above numbers the white noise level per a 5′×
5′ pixel would be 13.87 µK or ∆T/T = 5.1× 10−6 for the I map,
and 27.75 µK or ∆T/T = 10.2× 10−6 for the Q and U maps. For
fourteen months of data these numbers are smaller by a factor of√

12/14 giving δT/T = 4.7×10−6 for I and 9.4×10−6 for Q and
U, in accordance with the Planck instrument performance goals.

The actual average white noise level will be higher, since
the sky will not be sampled uniformly, and also the polariza-
tion directions will not be sampled optimally for every pixel. On

the other hand, there will be regions of the sky where the noise
will be much lower. We calculated the resulting theoretical white
noise rms values for our maps using the actual pointing of the
TOD used in this study.

An Nside = 2048 pixel is typically just 1.′7 across. The Planck
spin axis is shifted by about 2.′5 at every repointing. The simula-
tions presented here involve either one or four detectors, rather
than the full complement of twelve that Planck will have. As
a result, the sampling of the sky in these simulations is quite
nonuniform at small scale. This leaves “cracks” between the
scanning rings of a single detector or a 4-detector, 2-horn po-
larized pair at low ecliptic latitudes in an Nside = 2048 map. The
expected nutation of the satellite spin axis, included in our simu-
lated data, reduced this effect somewhat by broadening the scan-
ning rings, but many pixels were not hit at all, and many more
were hit only a few times. Pixels hit only a few times, moreover,
were not necessarily hit by all the detectors, and the sampling of
polarization directions may be poor.

For the one-detector case, 189 146 022 of the 201 326 592
pixels of the Nside = 4096 map were hit, with an average of
n = 33.4 hits per hit pixel. If the hits were distributed uni-
formly over these pixels, the white noise level would be σmap =

1279.78/
√

n = 221.32 µK. Actually the hits are distributed quite
nonuniformly, with 1/〈1/np〉 = 11.4 � 33.4 = 〈np〉, giving
an expected rms white noise of σmap = 1279.78 × √〈1/np〉 =
378.95 µK on the map. Here np indicates the number of hits in a
pixel, and 〈·〉 an average taken over all hit pixels. We see that the
map residuals in Table 3 are quite close to this expected level of
white noise.

The corresponding results for the four-detector cases with
polarization are presented in Table 6. Some of the pixels of the
Nside = 2048 map are not hit at all. In the nominal scanning
strategy there are also large holes at the ecliptic poles, where
the scanning does not extend. Of the pixels that are hit, we have
defined as degenerate those map pixels whose κ−1

p < 10−6, and
bad those with 10−6 ≤ κ−1

p < 10−2, with the idea that degener-
ate pixels should be excluded from the map-making completely,
whereas bad pixels can be calculated by the map-making codes,
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Fig. 2. Spectra of residuals for the polarization simulations with noise in the cycloidal scanning strategy. The black curve shows the power spectrum
of the CMB reference map. It has zero B mode power. Cl is defined in Eq. (19).

but are excluded from the calculations of the map rms residuals
or the expected white noise levels (see Sect. 2.4). Inclusion of
bad pixels would increase dramatically the Q and U residuals,
because the low reciprocal condition number means that noise is
amplified in the solution of these Stokes parameters.

We can see from Table 6 that the main reason the rms resid-
uals in Table 5 are significantly larger than in the ideal case of
uniform sky coverage and optimal polarization sampling is the
nonuniform sky coverage. Nonoptimal sampling of the polariza-
tion directions gives an additional contribution. This latter con-
tribution is sensitive to the chosen cut-off (here 10−2) for “bad”
pixels. Using κ−1

p < 10−1 as a criterion, we would halve the

difference between optimal and actual polarization sampling, at
the cost of leaving out an additional 17196 (5540) pixels in the
cycloidal (nominal) case.

Table 6 cannot be directly compared to Table 5, because the
set of pixels included is not exactly the same. Different codes
used slightly different criteria for excluding pixels, and Table 5 is
calculated for the common set of pixels calculated by all codes,
which is slightly smaller than the set of κ−1

p ≥ 10−2 pixels. We
have therefore added in Tables 6 and 7 a column giving the Polar
rms residual for exactly the same set of pixels as the other entries
in Tables 6 and 7. We can see that the expected white noise level
for the actual scanning predicts well this Polar result, indicating
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Fig. 3. Spectra of residuals for the polarization simulations with noise in the nominal scanning strategy. The black curve shows the power spectrum
of the CMB reference map. It has zero B mode power. Cl is defined in Eq. (19).

that the rms residuals for the map-making codes come mainly
from the white noise.

For the cycloidal scanning strategy we actually had avail-
able simulated TOD for the full set of 12 detectors. It can be
seen from Table 7 how including 8 or 12 detectors leads to
more uniform sky coverage. The small-scale nonuniformity due
to the cracks between scanning rings goes away. The large-scale
nonuniformity due to more visits per pixel near the ecliptic poles

remains. The degenerate and bad pixels, that were due to the
cracks have practically disappeared. Thus the results are much
closer to the ideal case.

5.2. Resource requirements

The codes described here operate on the full TOD, and
their resource requirements are sizable. The one-year TOD
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Table 6. The expected level of white noise in the maps for the 4-detector polarization simulations.

Uniform hits Actual hits Actual hits Polar with
Pixels optimal sampling optimal sampling actual sampling κ−1

p ≥ 0.01
Not hit Discarded σmap/µK σmap/µK σmap/µK σmap/µK

Cycloidal
40383 56140 I 80.71 102.82 102.97 103.06

Holes 0 Degenerate 54380 Q 114.14 145.41 149.96 150.02
Cracks 40383 Bad 1760 U 114.14 145.41 149.83 149.98

Nominal
145626 10 346 I 80.66 97.26 97.29

Holes 144021 Degenerate 7559 Q 114.07 137.55 138.31
Cracks 1605 Bad 2787 U 114.07 137.55 139.43

Table 7. The expected level of white noise in the maps for 8-detector and 12-detector simulations. One year of simulated TODs were generated
for all 12 detectors. The scanning paths of the detectors were generated using a realistic focalplane. The beam-widths of 217-4, 217-5a, 217-5b,
217-7a, and 217-7b were as given in Section 4.2. The beam-widths of the rest of the detectors were FWHM = 4.′7263, 4.′7055, 4.′7011, 4.′7192,
4.′7148, 4.′7438, and 4.′7442 for 217-1, 217-2, 217-3, 217-6a, 217-6b, 217-8a, and 217-8b, respectively.

Uniform hits Actual hits Actual hits Polar with
Pixels optimal sampling optimal sampling actual sampling κ−1

p ≥ 0.01
Not hit Discarded σmap/µK σmap/µK σmap/µK σmap/µK

Cycloidal, 8 polarized detectors
0 4 I 57.12 65.72 65.72 65.79

Holes 0 Degenerate 3 Q 80.79 92.94 93.16 93.23
Cracks 0 Bad 1 U 80.79 97.94 93.04 93.11

Cycloidal, all 12 detectors
0 16 I 40.38 45.88 45.88

Holes 0 Degenerate 3 Q 80.79 92.94 93.16
Cracks 0 Bad 13 U 80.79 92.94 93.04

from four HFI detectors contained 4 × 366 × 24 × 3600 ×
200 = 25 297 920 000 samples. All codes except Springtide
keep the whole dataset in memory. Tables 8 and 9 show the
memory and CPU times required for both the one-detector
(unpolarized) and four-detector (polarized) cases. The codes
were run on the NERSC Seaborg supercomputer, an IBM SP
RS/6000, with clock speed 375 MHz and peak performance
1.5 Gflops/processor. Note that for the same code these run times
can vary depending on load and status of the supercomputer.
Since not all timings were obtained in exactly the same manner,
the comparison should be taken as indicative only.

All algorithms solve a linear system by iterative methods. In
destriping (Polar, Springtide) and destriping-based (MADAM)
methods, the quantities to be solved are a set of baselines for the
TOD. As a result, the system is smaller than in optimal map-
making (MADmap, MapCUMBA, ROMA). Thus the destriping
codes are significantly faster than the optimal codes.

The processors in Seaborg are organized into nodes of 16
processors. Processors of the same node share memory. Most
nodes have 16 GB of memory, but some have 32 GB or 64 GB.
Because of the size of the TOD, the codes require lots of mem-
ory. Since the communication overhead between processors in-
creases when the same task is performed with a larger number
of processors, run time increases as memory per processor de-
creases. As a result, the 32 GB and 64 GB nodes are faster.
However, queue times on the high-memory nodes are longer, so
most of the codes were run on the 16 GB nodes. The ROMA
code requires the 32 GB nodes, because at one point in the cal-
culation it keeps a full sky map in the memory requested by a
single processor. For the other codes, the memory requirement
is dominated by the size of the TOD, and the variation between
codes reflects differences in how the TOD are stored in memory

(single or double precision; how the pointing and orienta-
tion of the detector is represented). For the unpolarized case,
MapCUMBA was run with an older version of the code, which
required more than twice the memory amount of the current code
and used a slower FFT library.

Springtide requires less memory than the other codes, be-
cause it keeps only ring-maps in memory simultaneously. A
ring-map for a Planck one-hour pointing period contains many
fewer pixels than the number of samples in the corresponding
one-hour TOD. Springtide could achieve lower noise in the maps
by using baselines shorter than one hour. This would reduce the
compression factor from TOD to ring-maps; for 1-minute base-
lines, as used by Polar, there would be no compression. But this
would also increase the size of the matrix equation to solve, in-
creasing computation time.

6. Conclusions

The main goal of the simulations reported in this paper was to
compare various map-making codes, and to demonstrate that
they can deal with Planck-size data sets. The complexity of
the simulated data was kept to a minimum in order to isolate
software-induced systematic effects. No instrumental systematic
effects other than noise correlations were included in the sim-
ulated data. Comparisons based on more realistic simulations
will be made in future papers, which will assess the impact of
strong gradients in the signal due to foregrounds, and include
a more realistic treatment of the instrumental transfer function,
e.g. through the inclusion of beam asymmetries. Nevertheless,
some useful results can be identified.
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Table 8. Memory use and run times for the different codes in the unpolarized case with one detector. See text for discussion.

Code Number of Memory required Run time Total
processors (reserved) / GB / min CPU-hours

Polar 256 60 (256) 23 98
Springtide 128 45 (128) 21 45
MADAM 256 60 (256) 18 77
MADmap 512 200 (512) 90 768
MapCUMBA 768 300 (768) 52 666
ROMA 512 100 (1024) 129 1101

Table 9. Memory use and run times for the different codes in the polarized case with four detectors. See text for discussion.

Code Number of Memory required Run time Total
processors (reserved) / GB / min CPU-hours

Polar 512 400 (512) 37 316
Springtide 512 70 (512) 36 307
MADAM 512 400 (512) 45 384
MADmap 2048 800 (2048) 90 3078
MapCUMBA 1024 800 (1024) 100 1707
ROMA 1024 800 (2048) 206 3515

6.1. Residual noise

The residual noise rms of the optimal and MADAM maps were
nearly the same. The map noise rms of Polar and Springtide were
larger, but the difference is small.

In our temperature maps the residual noise is smaller than
the CMB anisotropy signal at large and intermediate angular
scales. The differences in the residual noise of our map-making
codes appear mainly at large angular scales where the tempera-
ture maps are CMB dominated. Therefore we expect, that these
differences would not affect significantly the science extracted
from these maps. On the other hand, the large scale noise power
of our polarization maps is comparable to the power of the reion-
ization bump of the CMB signal. In smaller angular scales the
residual noise dominates over the CMB anisotropy signal in our
polarization maps. Springtide and Polar seem to have slightly
stronger large scale residuals (at least in this realization of noise)
than our other map-making codes, which is a disadvantage for
them when detecting the weak polarization signal.

6.2. Resource requirements

The map-making codes described in this paper require consider-
able resources for Planck-sized data. All codes except Springtide
keep the entire data stream in memory. Memory requirements
are therefore dominated by the size of the TOD. Springtide re-
quires significantly less memory, since it first calculates ring-
maps, which compresses the data by a factor of 20–30 (for a
Planck-type scanning strategy).

The optimal codes (MADmap, MapCUMBA, ROMA)
achieve slightly lower noise in the final maps than Polar and
Springtide, but require an order-of-magnitude more CPU time.
Polar achieved lower noise than Springtide, because it worked
with shorter baselines (1 minute instead of 1 h). Using shorter
baselines would increase the memory requirement of Springtide.
MADAM, which combines optimal map-making ideas with de-
striping, achieves practically the same noise levels as the optimal
codes, with similar memory requirements, but in a time compa-
rable to the destriping codes.

6.3. Scanning strategy

The Planck design allows considerable flexibility in the choice
of the scanning strategy, even in orbit. The refinement of the
scanning strategy will therefore be an important aspect of the
pre-launch simulation and analysis work. Our ability to assess
the pros and cons of various candidate strategies will improve
as our map-making algorithms include the functionality to deal
with increasing levels of realism in the simulated data.

Keeping these qualifications in mind, we compare the map-
making residuals for the nominal and cycloidal scanning strate-
gies. The results are summarized in Table 5. There is a slight
preference for the nominal strategy. This preference is a result
of the smoother distribution of integration time on the sky for
the case of the nominal scanning. Comparison of Figs. 2 and 3,
on the other hand, shows that the power in the residuals is higher
at the lowest multipoles for the nominal scanning, at least for
this particular realization of the noise TOD. An accurate quan-
tification of the effects of scanning strategy requires, however,
ensemble averaging, e.g., using Monte Carlo simulations. This
will be the subject of future work. The issue is important for
proper understanding of the mission’s ability to measure, for in-
stance, the reionization bump at low multipole.

Furthermore, we anticipate that the nominal scanning will
perform more poorly than the cycloidal scanning when we con-
sider some other features of the scanning strategy (Dupac &
Tauber 2005). Such features are, for example, the sky cover-
age (nominal scanning strategy leaves unobserved caps around
the ecliptic poles, whereas the cycloidal scanning can provide
full-sky coverage), the ability to revisit pixels on a range of
timescales in order to be able to reject systematic effects (such as
residuals from quasi-periodic signals such as cooler noise) and
the ability to cross through pixels in several different directions
in order to allow the accurate reconstruction of the polarization
maps and the beam transfer functions.

We will return to the assessment of the relative benefits of
scanning strategies in future publications.
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6.4. Future improvements

The simulated data prepared for this work are the most advanced
so far, but are still far from the reality of the Planck experiment.
This holds for instrumental systematics as well as for accurate
modeling of the sky signal. No foregrounds have been included,
and several aspects of the CMB emission have been simplified.
In particular, no gravitational lensing or tensor signals have been
included. Both processes have their main impact on the B modes
of polarization anisotropy. Lensing is a well-understood and in-
evitable effect in cosmology, distorting the CMB and producing
B modes in a broad peak in the power spectrum centered at a
� ≈ 1000, with an amplitude much smaller than that of E modes.
Tensor signals show up primarily as degree-scale B modes. Early
reionization could make a tail of that component appear on very
large angular scales, with an amplitude which might be de-
tectable by Planck. The pattern of the total intensity anisotropies
on scales of about three degrees or more has been taken directly
by the WMAP data. This affects also a component of the E po-
larization mode pattern. The angular extension and reliability of
the WMAP pattern in our simulation may certainly benefit from
the future releases of WMAP data.
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