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ABSTRACT

We study destriping as a map-making method for temperature-and-polarization data for cosmic microwave background observations.
We present a particular implementation of destriping and study the residual error in output maps, using simulated data corresponding
to the 70 GHz channel of the Planck satellite, but assuming idealized detector and beam properties. The relevant residual map
is the difference between the output map and a binned map obtained from the signal + white noise part of the data stream. For
destriping it can be divided into six components: unmodeled correlated noise, white noise reference baselines, reference baselines
of the pixelization noise from the signal, and baseline errors from correlated noise, white noise, and signal. These six components
contribute differently to the different angular scales in the maps. We derive analytical results for the first three components. This study
is related to Planck LFI activities.
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1. Introduction

Construction of sky maps from the time-ordered data (TOD) is
an important part of the data analysis of cosmic microwave back-
ground (CMB) surveys. For large surveys like Planck1 (Planck
Collaboration 2005), this is a computationally demanding task.
Methods which aim at finding the optimal minimum-variance
map (Wright 1996; Borrill 1999; Doré et al. 2001; Natoli et al.
2001; Yvon & Mayet 2005; de Gasperis et al. 2005) are com-
putationally heavy and require large computers. Also, a faster
method is needed for Monte Carlo studies to assess systematic
effects, noise biases, and error estimates.

Destriping (Burigana et al. 1997b; Delabrouille 1998; Maino
et al. 1999, 2002; Revenu et al. 2000; Sbarra et al. 2003;
Poutanen et al. 2004; Keihänen et al. 2004; Sutton et al. 2009)
is a fast map-making method that removes correlated low-
frequency noise from the TOD utilizing crossing points, i.e., the
same locations on the sky observed at different times. Correlated
noise is modeled as a sequence of (“uniform”) baselines, i.e.,
constant offsets in the TOD. High-frequency noise (frequency of
the same order or higher than the inverse of the baseline length)
cannot be modeled this way. Thus the method assumes that the
high-frequency part of the noise is uncorrelated (white noise).

In some implementations, a set of base functions (e.g. low
order Legendre polynomials) is used instead of just the uniform
baseline (Delabrouille 1998; Maino et al. 2002; Keihänen et al.
2004, 2005), or a spline is fitted to the TOD (Ganga 1994).

In this paper we describe one destriping implementation
for making temperature and polarization maps of the sky and
study the residual errors in the maps. This implementation
was originally known as the “Polar” code, and used in the

1 http://www.rssd.esa.int/index.php?project=PLANCK

map-making comparison studies of the Planck CTP Working
Group (Poutanen et al. 2006; Ashdown et al. 2007a, 2007b,
2009). Polar has now been merged into the “Madam” destriping
code. The novel feature in Madam was the introduction of an
optional noise prior (noise filter) that utilizes prior information
on the noise power spectrum (Keihänen et al. 2005). Polar cor-
responds to Madam with the noise prior turned off. The results
presented in this paper were obtained with the Madam code, with
the noise prior turned off. We briefly comment on the effect of
the noise prior in Sect. 8. The use and effect of the noise prior
will be described in detail in Keihänen et al. (2009).

Destriping errors have been previously analyzed by Stompor
& White (2004) and Efstathiou (2005, 2007).

The TOD can be considered as a sum of signal + white
noise + correlated (“1/ f ”) noise. If there were no correlated
noise, the optimal way to produce a map would be a simple
binning of the TOD samples onto map pixels. (We do not ad-
dress here the question of correcting for the effect of the instru-
ment beam. “Deconvolution” map-making methods that correct
for the effect of the beam shape have been developed, Burigana
& Saéz 2003; Armitage & Wandelt 2004; Harrison et al. 2008,
but tend to be computationally very resource intensive. They also
alter the noise properties of the maps in a way that is difficult to
follow in CMB angular power spectrum estimation.) Thus the
task of a map-making method is to remove the correlated noise
as well as possible, with as little effect on the signal and white
noise as possible. The difference of the output map from the
binned signal + white noise map is thus the residual map to con-
sider to judge the quality of the output map. We divide this resid-
ual into six components: unmodeled 1/ f noise, 1/ f baseline
error, white noise reference baselines, white noise baseline er-
ror, pixelization noise reference baselines, and pixelization noise
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baseline error. We study the nature of each component, and its
dependence on the baseline length.

We have used simulated data corresponding to 1 year of ob-
servations with 4 Planck LFI 70 GHz detectors (two horns,
each with two orthogonally polarized detectors).

For simplicity, we did not include foregrounds in the sig-
nal (see Ashdown et al. 2007b, 2009, for effect of foreground
signal) or such systematic effects as beam asymmetries, sample
integration, cooler noise, or pointing errors (see Ashdown et al.
2009). Even in Ashdown et al. (2009) the simulated data used
was still fairly idealized. We are currently working on more re-
alistic simulations.

In Sect. 2 we discuss some early-stage design choices made
in the development of our map-making method. Section 3 con-
tains the derivation and description of the method. Section 4 de-
scribes the simulated data used to test the method. In Sect. 5 we
analyze residual errors in the time domain, and in Sect. 6 in the
map domain. In Sect. 7 we discuss the effect of the noise knee
frequency, and in Sect. 8 we give a preview of results obtained
when a noise prior is added to the method. We mainly consider
maps made from a full year of data, but in Sect. 9 we discuss
maps made from shorter time segments. In Sect. 10 we summa-
rize our conclusions.

2. Design choices

2.1. Ring set or not

For a Planck-like scanning strategy, where the detectors scan
the same circle on the sky many times before the spin axis of
the satellite is repointed, an intermediate data structure can be
introduced between the TOD and the frequency map. The cir-
cles from one repointing period can be coadded to a ring, i.e.,
averaged to appear just as a single sweep of the circle. In this
context it is natural to choose one baseline per ring. Destriping
is then performed on this ring set, instead of the original un-
coadded TOD. This reduces the memory and computing time
requirements by a large factor.

If the scanning is ideal, i.e., the observations (samples) from
the different circles of the same ring fall on exactly the same
locations on the sky, destriping coadded rings is equivalent to
destriping the uncoadded TOD with baseline length equal to the
repointing period (i.e., one baseline per ring). In this case it is
also almost equal (for map-making purposes) to destriping the
uncoadded TOD with baseline length equal to the spin period
(i.e. one baseline per circle), see Sect. 6.3.2.

In reality, the spin axis will nutate with some small ampli-
tude, so that the different circles will not scan exactly the same
path on the sky. The spin rate is also not exactly constant, and
the detector sampling frequency is not synchronized with the
spin. Binning the samples first into a ring (“phase binning”)
(van Leeuwen et al. 2002) and then repixelizing the ring pixels
into map pixels after destriping may then introduce some extra
smoothing of the data.

We have chosen to sidestep this intermediate structure and to
assign the samples directly to map pixels. The baseline length is
then not necessarily tied to scan circles and rings, and also data
taken during the repointing maneuvers can be used. For short
baselines no data compression is possible and map-making is
done from the full TOD, requiring large computer memory. For
long baselines (many scan circles) the data can be compressed
by binning observations directly to map pixels. For baselines one
repointing period (one ring) long a similar data compression is
achieved as by using the intermediate ring set structure. Whereas

the phase-binned ring set is still closely connected to the time
domain, our “pixel binning” destroys the time-ordered structure
of the ring, and therefore works only with uniform baselines.

This way we have achieved a versatile destriping method,
where the baseline length is an adjustable parameter. Shorter
baselines can be used in large computers for higher accuracy,
whereas longer baselines require less memory and computing
time and can be used in medium-sized computers and for Monte
Carlo studies. The baseline length is not tied to the scanning
strategy, and our destriping method can be applied to any scan-
ning strategy that has crossing points, not just to a Planck-like
scanning strategy.

However, for a Planck-like scanning strategy there is a cer-
tain advantage in choosing the baseline length so that an integer
number of baselines fits to one repointing period. Baseline seg-
ments that extend to two different repointing periods are avoided
this way. This is mainly an issue for long baselines (not very
much shorter than the repointing period). For baselines shorter
than the spin period there seems to be some advantage in choos-
ing the baseline length so that an integer number of baselines fits
to one spin period. See Keihänen et al. (2009). In this paper we
only consider such choices for baseline length.

2.2. Crossing points and signal error

The baselines are estimated from crossing points, i.e., observa-
tions falling on the same map pixels at different times. Samples
are assigned to pixels based on the pointing of the detector beam
center. The beam center may still point at a different location
within the same map pixel for different samples. We do not at-
tempt to correct for this effect and this results in a “signal error”
in our output maps. The signal error due to in-pixel differences in
beam pointing could be largely eliminated in another kind of de-
striping implementation, where the scanning circles are treated
as exact geometrical curves (instead of just a sequence of map
pixels), and the observations are interpolated to the exact cross-
ing points of these lines (Revenu et al. 2000). In this case only
actual crossings of the scan circles contribute to baseline de-
termination, whereas in our implementation it is enough that
two paths pass through the same pixel without actually cross-
ing there. The latter situation is very common, since successive
circles are almost parallel.

However, in a realistic situation there are other contributions
to signal error that could not be eliminated this way. One such
contribution is the different beam orientations of the different ob-
servations of the crossing point, as real beams are not circularly
symmetric. In Ashdown et al. (2009) elliptic beams were consid-
ered for the Planck 30 GHz channel and it was found that this
had a contribution to the signal error, which was of comparable
size or larger.

3. Destriping technique

3.1. Derivation

The destriping method can be derived from a maximum-
likelihood analysis of an idealized model of observations. The
signal observed by a detector sensitive to one linear polarization
direction is proportional to

s = I + Q cos 2ψ + U sin 2ψ, (1)

where ψ is the polarization angle of the detector, and I, Q, and
U are the Stokes parameters of the radiation coming from the
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observation direction. In the idealized model the time-ordered
data (TOD), a vector y consisting of nt samples, is

y = Pmin + n (2)

where min (the “input map”) represents the sky idealized as a
map of np sky pixels, P is the pointing matrix, and n is a vector of
length nt representing the detector noise. For observations with
multiple detectors, the TODs from the individual detectors are
appended end-to-end to form the full TOD vector y.

Since we are dealing with polarization data, the map m
is an object with 3np elements; for each sky pixel the ele-
ments are the I, Q, and U Stokes parameters. The pointing ma-
trix P is of size (nt, 3np). Each row has 3 nonvanishing elements
(1, cos 2ψ, sin 2ψ) at the location corresponding to the sky pixel
in which the detector beam center falls for the sample in ques-
tion (the sample “hits” the pixel). We do not make any attempt at
deconvolving the detector beam. Thus the map m represents the
sky smoothed with the detector beam and the pixel window func-
tion. The pointing matrix spreads the map into a signal TOD Pm.

We divide the TOD into nb segments of equal length nbase;
nt = nbnbase. For each segment we define an offset, called base-
line. The baselines model the low-frequency correlated noise
component, “1/ f noise”, which we want to remove from the
data, and we approximate the rest of the noise as white. Thus
our idealized noise model is

n = Fain + w (3)

where the vector ain (of length nb) contains the baseline ampli-
tudes and the matrix F, of size (nt, nb), spreads them into the
baseline TOD, which contains a (different) constant value ab

(b = 1, . . . , nb) for each baseline segment. Each column of F
contains nbase elements of 1 corresponding to the baseline in
question, and the rest of the matrix elements are 0. The vec-
tor w represents white noise, and is assumed to be the result of a
Gaussian random process, where the different samples in w are
uncorrelated,

〈wtwt′ 〉 = σ2
t δtt′ . (4)

Here 〈 〉 denotes expectation value. The white noise (time-
domain) covariance matrix

Cw = 〈wwT〉 (5)

is thus diagonal (with elements σ2
t ), but not necessarily uniform

(the white noise variance σ2
t may vary from sample to sample).

Given the TOD y, and assuming we know the white noise
variance Cw, we want to find the maximum likelihood map mout.
We assume no prior knowledge of the baseline amplitudes a,
i.e., they are assigned uniform prior probability. (The variant of
the method, where such prior knowledge is used, is described in
Keihänen et al. 2009.)

Given the input map m and the baseline amplitudes a, the
probability of the data y is

P(y|m, a) = (det 2πCw)−1/2 exp
(
− 1

2w
TC−1

w w
)

(6)

where w = y − Fa − Pm. This is interpreted as the likelihood
of a and m, given the data y (Press et al. 1992). Maximizing
the likelihood is equivalent to minimizing the logarithm of its
inverse. We obtain the chi-squared function

χ2 = −2 ln P = (y − Fa − Pm)T C−1
w (y − Fa − Pm) (7)

to be minimized. (We dropped the constant prefactor of Eq. (6).)
We want to minimize this with respect to both a and m.

Minimization of Eq. (7) with respect to m gives the
maximum-likelihood map

m =
(
PTC−1

w P
)−1

PTC−1
w (y − Fa) (8)

for a given set of baseline amplitudes a.
The symmetric non-negative definite matrix

M ≡ PTC−1
w P, (9)

which operates in the map space, is 3 × 3 block diagonal, one
block Mp for each pixel p:

Mp =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑

t
1
σ2

t

∑
t

cos 2ψt

σ2
t

∑
t

sin 2ψt

σ2
t∑

t
cos 2ψt

σ2
t

∑
t

cos2 2ψt

σ2
t

∑
t

cos 2ψt sin 2ψt

σ2
t∑

t
sin 2ψt

σ2
t

∑
t

sin 2ψt cos 2ψt

σ2
t

∑
t

sin2 2ψt

σ2
t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (10)

where the sums run over all samples t that hit pixel p. M−1
p is the

white noise covariance matrix for the three Stokes parameters I,
Q, U in pixel p. Mp can only be inverted if the pixel p is sampled
with at least 3 sufficiently different polarization directions ψt, so
that all Stokes parameters can be determined. This can be gauged
by the condition number of Mp. If the inverse condition number
rcond (ratio of smallest to largest eigenvalue) is below some pre-
determined limit, the pixel p is excluded from all maps (as are
pixels with no hits), and the samples that hit those pixels are ig-
nored in all TODs. Technically, this is done by setting M−1

p = 0

for such pixels and
(
C−1
w

)
tt
= 0 for the corresponding samples.

M can then be easily inverted by non-iterative means.
If all σt are equal, σ2

t Mp(1, 1), gives the number of hits
(observations) in pixel p. Thus M is sometimes called the
Nobs matrix. The optimal distribution of polarization direc-
tions ψt measured from a pixel is one where they are uniformly
distributed over 180◦ (Couchot et al. 1999). In this case Mp =

(nhit,p/σ
2
t ) diag(1, 1/2, 1/2) and M−1

p = (σ2
t /nhit,p) diag(1, 2, 2)

giving the maximum possible value rcond = 0.5.
Substituting Eq. (8) back into Eq. (7) we get this into

the form

χ2 = (y − Fa)T ZTC−1
w Z (y − Fa) , (11)

where we have defined

Z ≡ I − PM−1PTC−1
w . (12)

Here I is the unit matrix. The matrix Z operates in TOD space
and is a projection matrix, Z2 = Z. If all σt are equal, Z is sym-
metric. In general, C−1

w Z is symmetric, so that

C−1
w Z = ZTC−1

w = ZTC−1
w Z. (13)

We minimize Eq. (11) with respect to a to obtain the maximum-
likelihood estimate of the baseline amplitudes aout. It is the so-
lution of the equation(

FTC−1
w ZF

)
a = FTC−1

w Zy, (14)

where we have used Eq. (13).
The matrix

D ≡ FTC−1
w ZF (15)

on the left-hand side of Eq. (14) operates in the baseline space. It
is symmetric but singular. Equation (14) has a solution only if its
right-hand side is orthogonal to the null space of D. The solution
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becomes unique when we require it to be orthogonal to the null
space too.

The null space of D contains the vector that gives all base-
lines the same amplitude. This represents the inability to detect
a constant offset of the entire noise stream n, because it has the
same effect on y as a constant shift in the I of the entire min (the
monopole). This is of no concern (but should be kept in mind)
since the goal is to measure the CMB anisotropy and polariza-
tion, not its mean temperature. If the baselines are sufficiently
connected by crossing points (two different baseline segments
of the TOD hitting the same pixel), there are no other kind of
vectors in the null space, so that the dimension of the null space
is one. The right-hand side of Eq. (14) is orthogonal to this one-
dimensional null space, and thus Eq. (14) can now be solved. In
practice it is solved by the conjugate gradient method. If the ini-
tial guess is orthogonal to the null space, the method converges
to a solution that is also orthogonal to the null space. Normally
we start with the zero vector as the initial guess to guarantee
this. This means that the average of the solved baseline ampli-
tudes is zero. Strictly speaking this holds exactly only when no
pixels are excluded from the baseline determination due to their
poor rcond.

We write the solution of Eq. (14) as

aout = D−1FTC−1
w Zy. (16)

D−1 is interpreted as the inverse in this orthogonal subspace.
D and D−1 will act in this subspace only.

Using the maximum likelihood baselines from Eqs. (16)
in (8) we get the output map of the destriping method:

mout =M−1PTC−1
w (y − Faout) . (17)

Equations (16) and (17) summarize the destriping method.
Implementation details are discussed in Keihänen et al.

(2009).

3.2. Description

Let us review the different operations involved:
PTC−1

w acts on a TOD y to produce from it a sum map
PTC−1

w y where each pixel has Stokes parameters representing a
sum over observations that hit the pixel,

Ip =
∑
t∈p

1

σ2
t

yt (18)

Qp =
∑
t∈p

1

σ2
t

cos 2ψtyt (19)

Up =
∑
t∈p

1

σ2
t

sin 2ψtyt. (20)

Instead of a sum, we should take the average of observations.
This is accomplished by M−1PTC−1

w , which corresponds to solv-
ing the Stokes parameters from the observations hitting this
pixel; i.e., without regard for pixel-to-pixel noise correlations.
The observations are just weighted by the inverse white noise
variance. The resulting map is called the naive map, or the
binned map. We shall use the shorthand notation

B ≡M−1PTC−1
w . (21)

B acts on a TOD to produce from it a binned map. Note that
BP = I.

(It may be better to use the same σt for the two polarization
directions of the same horn, to avoid polarization artifacts from

systematic effects (Leahy et al. 2009). In case their true noise
levels are different, destriping allows also the option of using
equal σt in solving baselines, Eq. (16), but the actual σt in the
final binning to the map, Eq. (17). We do not study this issue in
this paper, as we used simulated data with a constant σt.)

We can now see that the effect of

Z = I − PB (22)

on a TOD is to bin it to a map, read a TOD out of this map,
and subtract it from the original TOD. Thus Zy represents an
estimate of the noise part of y. Acting on a TOD constructed
from a map as Pm, Z returns zero, ZPm = 0.

Likewise, FTC−1
w acts on a TOD to sum up the samples of

each baseline segment, weighting each sample by σ−2
t .

The effect of the matrix

D = FTC−1
w ZF = FTC−1

w F − FTC−1
w PBF (23)

on a baseline amplitude vector a is to produce a TOD Fa con-
taining just these baselines, make a noise estimate ZFa from this
baseline TOD, and calculate then the weighted sum FTC−1

w ZF of
this noise estimate for each baseline. Thus the content of Eq. (14)
is to find such a set of baseline amplitudes that these noise es-
timate sums are the same for the baseline TOD Fa as for the
actual input TOD y. Thus the solved baselines aout represent the
estimated average noise for each baseline segment of the TOD.

These baselines are then subtracted from the TOD to produce
the cleaned TOD y − Faout, which is then binned to produce the
output map

mout = B (y − Faout) (24)

in Eq. (17).
In a good scanning of the sky the number of hits in each pixel

is large. From Eq. (22) we see that Z contains two parts. The first
part I gives each row t a large diagonal element 1 corresponding
to the TOD sample this row is acting on. The second part gives
this row a large number of small nonzero elements correspond-
ing to all samples t′ that hit this same pixel. The sum of these
elements is −1 so that the row sum is zero. Thus the first and
second parts make an equally large contribution, but the second
part comes in many small pieces.

The matrix D has a similar structure. The first part (see
Eq. (23)) is diagonal containing the sum

∑
t∈b 1/σ2

t over all sam-
ples in the baseline segment b. The second part gives to each
row b a nonzero element for each baseline b′ that has a cross-
ing point with b. For a good scanning each baseline has a large
number of crossing points, so that this second part contributes a
large number of small elements to each row.

We define a shorthand notation for the matrix

A ≡ D−1FTC−1
w Z, (25)

which appears in Eq. (16) as aout = Ay. This matrix acts on
a TOD and produces from it the set of baseline amplitudes ac-
cording to the destriping method, Eq. (16). Note that AF = I,
in the sense that AFa = a for any set of baseline amplitudes,
whose average is zero (so that a is orthogonal to the null space).
Since Z is a projection matrix, AZ = A.

For easy reference, all the matrices introduced are collected
in Table 1. The square matrices Cw, M, D, and C−1

w Z are sym-
metric, Cw is diagonal, and M 3 × 3 block diagonal. Z is a
projection matrix. D is singular, and D−1 is its inverse in the
subspace orthogonal to its null space. The third column in the
table refers to the equation in which the matrix was introduced.
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Table 1. Table of matrices.

Matrix Size Eq. Comment
P nt × 3np (2) pointing matrix
F nt × nb (3) baselines to TOD
Cw ≡ 〈wwT〉 nt × nt (5) white noise cov.
M ≡ PTC−1

w P 3np × 3np (9) Nobs matrix
B ≡ M−1PTC−1

w 3np × nt (21) bin TOD to a map
Z ≡ I − PB nt × nt (12)
D ≡ FTC−1

w ZF nb × nb (23)
A ≡ D−1FTC−1

w Z nb × nt (25) solve baselines

R ≡
(
FTC−1

w F
)−1

FTC−1
w nb × nt (37) reference baselines

Note that all the matrices are constructed from I, P, Cw, and F.
The adjustable parameter in the destriping method is the base-
line length nbase, which affects the matrix F. P is determined by
the scanning strategy and map pixelization, and Cw by detector
noise properties.

3.3. Destriping error

One can easily show that

Dbb′ =
1
2
∂2(χ2)
∂ab∂ab′ |a=aout,m=mout

, (26)

i.e, the matrix D of Eq. (15) is the Fisher matrix of the base-
lines. Its inverse gives the covariance of the baseline error Δa ≡
aout − ain. In particular,(
D−1

)
bb
= 〈Δa2

b〉. (27)

Ignoring the nondiagonal terms we get an approximation

〈Δa2
b〉 ≈

⎛⎜⎜⎜⎜⎜⎝∑
t∈b

1

σ2
t

⎞⎟⎟⎟⎟⎟⎠
−1

· (28)

Assuming the white noise variance stays constant, σt = σ, over
a given baseline, this becomes

〈Δa2
b〉 ≈

σ2

nbase
· (29)

We can understand the approximate result (29) as follows.
Destriping solves the baseline amplitude ab from the differences
between samples from baseline segment b and from other base-
line segments that hit the same pixel. Both the baselines ain
and the white noise contribute to these differences. Without the
presence of white noise the baselines could be solved exactly,
aout = ain (in the idealized model considered in this section), so
the error comes from the white noise in the samples. Typically
there are many more differences involved than there are sam-
ples in the baseline (number of hits per pixel 
2), but samples
from the baseline segment b contribute only nbase uncorrelated
random variables, with variance σ2, and their contribution cor-
responds to the result (29). The total of samples from baseline
segment b contribute equally to its amplitude determination than
do the total of samples from other baseline segments that hit
the same pixels. But the latter contribution comes from a much
larger number of uncorrelated random variables, with a similar
variance, so it gets averaged out by the larger number and makes
a much smaller contribution to the baseline error variance (27).
This contribution from the white noise from the crossing sam-
ples is ignored in (28) and (29). However, it should add to the

baseline error variance, so that Eqs. (28) and (29) are underesti-
mates. See also Efstathiou (2005, 2007).

The approximation (29) corresponds to the white noise refer-
ence baseline contribution discussed in Sect. 5. We see in Sect. 6
that, while this approximation is good in the time domain, it is
not that good in the map domain.

4. Simulation

In this study we tested the destriping method using simulated
data that is more realistic than the model used to derive the
method in Sect. 3. The TOD was produced using Planck Level-
S simulation software (Reinecke et al. 2006) as a sum of signal,
white noise, and correlated noise (called also 1/ f noise),

y = s + n = s + w + nc. (30)

We produced the three time streams, s, w, and nc separately, so
we could analyze the effect of each component on the destriping
error. The TOD represented 1 full year (366 d) of data from 4 po-
larized Planck 70 GHz detectors (LFI-19a, LFI-19b, LFI-22a,
LFI-22b).

4.1. Signal

We considered the CMB signal only; no foregrounds were in-
cluded in the simulation. Detector pointings θt, φt, ψt for each
sample t were produced to imitate a realistic scanning strategy.
We used a set of input spherical harmonic coefficients aT


m, aE

m to

represent the sky. The signal sample st was then produced by the
convolution of a circularly symmetric Gaussian beam (fwhm =
12.68′) centered at this pointing with the input aT,E


m (Wandelt &
Górski 2001; Challinor 2000). Thus the I, Q, and U (Eq. (1)) of
the signal parts of different samples hitting the same pixel are
different, as θt, φt can vary within the pixel.

To produce the input aT,E

m we used the CAMB2 code to pro-

duce the theoretical angular power spectra CTT

 , CT E


 , CEE

 for the

Friedmann-Robertson-Walker universe with cosmological pa-
rameter values Ω0 = 1, ΩΛ = 0.7, ωm = 0.147, ωb = 0.022,
τ = 0.1, and with scale-invariant (n = 1) adiabatic primordial
scalar perturbations with amplitude 5 × 10−5 for the curvature
perturbations. A realization {aT


m, a
E

m} was then produced from

these spectra. Effects of gravitational lensing were ignored, and
therefore there is no B mode polarization in the input spectrum.

Figure 1 shows the input C
 as well as the C
 of the binned
(noiseless) signal map Bs made from the simulated TOD.

Figure 2 shows the binned signal maps Bs, and Figs. 3
and 4 zoom into two 10◦ × 10◦ regions to reveal small-scale
detail. Since the signal contains only E mode polarization,
Q shows structures elongated along lines of latitude and longi-
tude, whereas U shows structures elongated 45◦ away from them
(see Fig. 4).

In this paper we keep using these same two 10◦ × 10◦ re-
gions, one near the ecliptic north pole, one near the eclip-
tic, to show map detail. We show all maps in the ecliptic co-
ordinate system. This coordinate system is good for showing
map-making related systematics, since the scanning direction is
mostly close to the ecliptic meridians.

4.2. Scanning

The sky scanning strategy was cycloidal (Dupac & Tauber
2005): the satellite spin axis was repointed at 1 h intervals,

2 http://camb.info

http://camb.info
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Fig. 1. Input angular power spectrum. Black lines show the theoretical
C
 produced by CAMB, and the beam-and-pixel-smoothed version of
it. Red dots show the C
 of the a
m realization. Blue dots show the C


calculated from the binned noiseless map.

causing it to make a clockwise circle (radius 7.5◦) around the
anti-Sun direction in 6 months. When the spin axis is north of
the ecliptic, the motion along the circle subtracts from the mo-
tion of the anti-Sun direction on the sky, making the repointing
step shorter; and when the spin axis is south of the ecliptic, the
two motions add up, making the repointing step longer.

Random errors (rms = 1.3′) were added to the repointing.
Between repointings the spin axis nutated at an amplitude related
to the repointing error. The mean nutation amplitude was 1.6′.
The nutation was dominated by a combination of two periods,
∼45 s and∼90 s. In reality, the repointing errors and nutation am-
plitudes are expected to be smaller. Thus effects of nutation and
small-scale variations in the map pixel hit count appear some-
what exaggerated in this study.

The satellite rotated clockwise (i.e., spin vector pointing
away from the Sun) at about 1 rpm ( fspin ≈ 1/60 Hz); spin

Fig. 2. Binned CMB signal map, I and Q, full sky. All maps in this paper
are shown using the ecliptic coordinate system.

Fig. 3. Binned CMB temperature (I) signal maps from two 10◦ × 10◦ re-
gions. Left column: near the ecliptic North Pole (centered at θ = 7◦,
φ = −90◦). Right column: near the ecliptic (centered at θ = 85◦, φ = 5◦).

rate variations (rms 0.1◦/s) around this nominal rate were chosen
randomly at each repointing. (In reality, the spin rate variations
are expected to be smaller.) Coupled with the 60 s spin period,
the 45 s and 90 s nutation periods produce a 3-min periodicity in
the detector scanning pattern.

We simulated 4 detectors corresponding to 2 horns
(19 and 22). The detectors were pointed θdet = 87.77◦ away from
the spin axis, causing them to draw almost great circles on the
sky, the “22” trailing the “19” detectors by 3.1◦, but following
the same path. The a and b detectors of each horn shared the
same pointing but had different polarization directions by ex-
actly 90◦. The polarization directions of the 19 and 22 detector
pairs differed from each other by 44.8◦.

The cycloidal scanning causes the detector scanning rings to
form caustics around the ecliptic poles, where nearby scanning
rings cross (see Fig. 5). A large number of ring crossings cluster
at the four corners of these caustics. For destriping, such a clus-
tering, where very many crossing points fall on the same pixel,
is disadvantageous, since there is less independent information

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912361&pdf_id=1
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912361&pdf_id=2
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912361&pdf_id=3
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Fig. 4. Same as Fig. 3, but for the Stokes parameters Q (top) and U
(bottom).

Fig. 5. Hit map for the 1-year simulation. We show regions around the
ecliptic North Pole (left) and South Pole (right). The color scale is linear
and goes from zero (blue) to 50 000 (red). Lines of latitude are drawn at
5◦ intervals.

available for solving the baselines of these rings. The clustering
occurs when the curvature of the path of satellite pointing on
the sky equals the curvature of the scanning circle. The curva-
ture changes sign when the spin axis is close to the ecliptic, but
slightly north of it, and the clusterings near the north and south
ecliptic poles occur a little bit before and after that. Conversely,
the crossing points are spread more widely along the caustics
when the spin axis is near its north or south extrema.

The sampling frequency was fsample = 76.8 Hz, and each
sample was simulated as an instantaneous measurement (no in-
tegration along scan direction). The baseline length nbase, is
given in time units as tbase = nbase/ fsample in the following. The
beam center moves on the sky at an angular velocity ωscan =
360◦ fspin sin θdet ≈ 6◦/s, so that one baseline corresponds to a
path of length θbase = ωscantbase on the sky. The samples are
separated by θs = ωscan/ fsample ≈ 4.68′ on the sky. The length
of the simulated TOD was nt = 4 × 366 × 24 × 3600 s ×
fsample = 9 714 401 280.

Fig. 6. Power spectrum of the noise stream n (black). The spectrum was
calculated from the detector 19a noise stream by dividing it into 6-day
pieces, obtaining their spectra separately, taking their average, and bin-
ning the spectrum into 800 logarithmic bins, to get a smooth curve. The
red curve is the noise model.

4.3. Noise

The noise part was produced as a sum of white and correlated
noise,

n = w + nc (31)

where the correlated part (1/ f noise) was produced by a
stochastic-differential-equation (SDE) method, that produces
noise whose power spectrum is approximately of the form
Pc( f ) ∝ f −α. It is not of the form Fa, but contains a part that
cannot be modeled with baselines.

The white noise rms was set to σ = 2700 μK (thermo-
dynamic scale for CMB anisotropies), corresponding to the
Planck 70 GHz goal sensitivity (Planck Collaboration 2005).
The 1/ f noise was simulated with slope −α = −1.7 and fmin =
1.15 × 10−5 Hz (period of one day), so that the power spec-
trum was flat for f < fmin. See Fig. 6. Since the white and
1/ f streams were produced separately, the knee frequency fk
(where the white and 1/ f noise powers are equal) could be ad-
justed by multiplying the 1/ f stream with different factors. We
used fk = 50 mHz as the reference case, representing a conser-
vative upper limit for the Planck 70 GHz detectors (Burigana
et al. 1997a; Seiffert et al. 2002; Tuovinen 2003), but consider
also fk = 25 mHz in Sects. 7 and 8.

The power spectrum of the 1/ f noise is thus approximately

Pc( f ) =

⎧⎪⎪⎨⎪⎪⎩
σ2

fc

(
fk
f

)α
f ≥ fmin

σ2

fc

(
fk

fmin

)α
f ≤ fmin,

(32)

where fc = fsample/2 = 38.4 Hz is the Nyquist (critical)
frequency.

The 1/ f noise was generated in tgen = 15.25 d pieces. The
actual statistics calculated from the simulated 1/ f stream were:
mean= −9.86 μK, stdev =σc = 1868.5 μK, so thatσ2

c = 0.48σ2.
As can be seen from Fig. 6, the simulated 1/ f stream power
falls below the noise model for the lowest frequencies. This
rounding of the spectrum is a feature of the SDE method (see
Keihänen et al. 2009). Although a sizable part of the variance
in the 1/ f stream comes from the very lowest frequencies, these
low frequencies are removed well by destriping, and thus the de-
tailed shape of the spectrum at low frequencies is not that impor-
tant. For analytical estimates we use the noise model of Eq. (32).

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912361&pdf_id=4
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912361&pdf_id=5
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912361&pdf_id=6
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Fig. 7. Hit maps of the two 10◦ × 10◦ regions. The color scale is linear
and goes from 0 to 50 000 in the left plot, and from 1000 to 3000 in the
right plot. The 1-year survey begins and ends near the right edge of the
right plot, where the first and last rings overlap to produce a higher hit
count.

Fig. 8. Destriped (output) temperature map (one year survey, 15 s base-
lines) for the two 10◦ × 10◦ regions.

The nonzero mean of the 1/ f stream has to be taken into ac-
count when comparing solved baselines to the input 1/ f stream,
since the destriping method sets the average of the solved base-
lines to zero.

4.4. Maps

The maps were produced in the HEALPix3 pixelization (Górski
et al. 2005) in ecliptic coordinates. We used the Nside = 512 res-
olution for all maps, corresponding to np = 3 145 728 for the full
sky, with square root of pixel solid angle θp ≡ Ω1/2

p = 6.87′. For
the full-year TOD the polarization of each pixel was well sam-
pled; the lowest rcond was 0.422. The mean rcond was 0.492
and the maximum 0.49999. The hit count nhit (number of hits
per pixel) varied from 818 to 273 480 for the full 1-year simula-
tion. The mean number of hits was 〈nhit〉 ≡ nt/np = 3088.125.
The mean inverse hit count was 〈n−1

hit〉 = 0.000418 = (0.0204)2 ≈
1/2391. Figure 5 shows the hit count in the regions around the
ecliptic poles, where it varies a lot. Figure 7 shows the hit count
in the two 10◦ × 10◦ regions.

Figure 8 shows the output temperature map mout for the case
tbase = 15 s. The visual appearance is the same for other baseline
lengths. To see differences one has to look at residual maps, see
Sect. 6. Polarization maps (Fig. 9) are dominated by small-scale
noise. The most obvious map-making related feature in the out-
put maps is the reduction of noise where the hit count is larger.
Other effects are more subtle and are analyzed in the following
sections.

3 http://healpix.jpl.nasa.gov

Fig. 9. Even near the ecliptic poles, where the noise in the output map
is the lowest, the pixel-scale noise from four 70 GHz detectors is higher
than the CMB polarization signal in the map. Left: binned signal Q map.
Right: output Q map (15 s baselines). (Both plots are from the same pole
region.)

5. Time domain

We now analyze the application of the destriping method to this
kind of data. We consider the case of the full 1-year survey with
fk = 50 mHz noise, except for Sect. 7, where we discuss the
effect of changing the knee frequency, and for Sect. 9, where we
consider maps made from shorter pieces of the TOD. Consider
this first in the time domain, i.e., look at the cleaned TOD

d ≡ y − Faout. (33)

We assume that the two noise streams, w and nc are independent
Gaussian random processes.

Since the destriping method is linear, we can divide the base-
line amplitudes obtained by Eq. (16) into the parts coming from
the different TOD components,

aout = Ay = As + Aw + Anc. (34)

Likewise, the cleaned TOD can be divided into five terms,

d = s + w − FAw + (nc − FAnc) − FAs. (35)

The first term is the signal and the second term is the white
noise. We call the third term white noise baselines, the fourth
term (in parenthesis) residual 1/ f noise, and the fifth term sig-
nal baselines.

The TOD vector Zs appearing in the signal baseline term

FAs ≡ FD−1FTC−1
w Zs (36)

is the pixelization noise (Doré et al. 2001). It is the noise estimate
we get from the signal TOD (which contains no noise). Signal
gradients (of the beam-smoothed input sky) within a map pixel
are the origin of the pixelization noise.

5.1. Reference baselines

We define the reference baselines Rn of a noise stream n as the
weighted averages of each baseline segment, i.e., matrix R is
defined as

R ≡
(
FTC−1

w F
)−1

FTC−1
w . (37)

Note that RF = I.
The reference baselines of the 1/ f noise,

ar ≡ Rnc, (38)

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912361&pdf_id=7
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912361&pdf_id=8
http://healpix.jpl.nasa.gov
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912361&pdf_id=9
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can be viewed as the “goal” of baseline estimation. Subtracting
them from the full TOD gives us a TOD stream

y − Far = s + w + (nc − Far) , (39)

which contains, beside the signal and the white noise, only the
part (nc − Far) of correlated noise that cannot be represented in
terms of baselines. We call this unmodeled 1/ f noise.

The actual cleaned TOD that results from destriping, can
now be written as

d = y−Faout = s+w−FAw+(nc − Far)−F (Anc − ar)−FAs, (40)

where the residual 1/ f noise is split into the unmodeled
1/ f noise and the 1/ f baseline error, Anc − ar = (A − R) nc.
Thus, altogether, there are three contributions to missing the goal
of baseline estimation,

aout − ar = Aw + (A − R) nc + As, (41)

white noise baselines, 1/ f baseline error, and signal baselines.
Unlike the solved baseline contributions An, the reference

baselines Rn do not involve the pointing matrix (except for the
case of pixelization noise), so the differences between them are
related to how the scanning strategy connects the baselines with
crossing points. Thus, for analyzing errors, it is useful to sep-
arate also the white noise baselines into white noise reference
baselines and white noise baseline error, Aw = Rw + (A − R)w;
and likewise the signal baselines into reference baselines of pix-
elization noise and signal baseline error As = RZs+ (A−R)Zs.

The white noise baseline error stream (A − R)w is un-
correlated with the white noise reference baseline stream Rw.
To show this, we note that

RCwAT = RCw

(
I − BTPT

)
C−1
w FD−1

= D−1 − RPBFD−1

= D−1 −
(
FTC−1

w F
)−1 (

FTC−1
w F − D

)
D−1

=
(
FTC−1

w F
)−1
= RCwRT, (42)

so that〈
(Rw) ((A − R)w)T

〉
= RCwAT − RCwRT = 0. (43)

5.2. Approximation to solved baselines

The solved baselines aout can now be written as

aout = ar + As + Aw + A(nc − Far)

= ar +
(
FTC−1

w ZF
)−1

FTC−1
w Zs

+
(
FTC−1

w ZF
)−1

FTC−1
w Zw

+
(
FTC−1

w ZF
)−1

FTC−1
w Z(nc − Far) (44)

(up to an overall constant), so that

FTC−1
w ZF(aout − ar) = FTC−1

w Zs + FTC−1
w Zw

+FTC−1
w Z(nc − Far). (45)

For the TOD streams F(aout − ar), w, and nc − Far there should
be no significant correlations between the samples from different
circles that hit the same pixel. (If the baseline length is longer
than one scanning circle, this statement is limited to the samples
that come from different baseline segments for F(aout − ar) and
nc − Far.) Therefore, for a large number of hits, the effect of the

PB part of Z tends to average out, leaving the I part dominant,
and we can approximate Z ≈ I, leading to A ≈ R, for these
terms. We get the approximation

aout ≈ ar + Rw + RZs. (46)

Comparing to Eq. (41), we note that in Eq. (46) white noise
baselines are approximated by white noise reference baselines,
1/ f baseline error is ignored, and signal baselines are approxi-
mated by the reference baselines of pixelization noise. Thus, for
a good scanning, the solved baselines aout should track the ref-
erence baselines of instrument noise + pixelization noise.

5.3. Division

The effect of destriping on the white noise is just harmful for
the maps (we elaborate on this in Sect. 6), so the relevant time
domain residual is

d − s − w = nc − Faout

= −FAw + (nc − FAnc) − FAs. (47)

It consists of three components:

1. white noise baselines;
2. residual 1/ f noise;
3. and signal baselines;

which are uncorrelated with each other.
Each component can be further divided into two parts:

d − s − w = −FRw − F(A − R)w

+ (nc − Far) − F(Anc − ar)

−FRZs − F(A − RZ)s. (48)

We call these six components:

1α) white noise reference baselines;
1β) white noise baseline error;
2α) unmodeled 1/ f noise;
2β) 1/ f baseline error;
3α) reference baselines of pixelization noise;
3β) signal baseline error.

Of these components, 1α, 1β, 2 and 3 are uncorrelated with each
other. This division forms the basis of the discussion in the rest
of this paper. Approximation (46) corresponds to ignoring the
β-components. Components 1α and 2α are independent of scan-
ning strategy, which makes their properties easier to understand.
The β-components are related to how the baselines are solved
using crossing points and thus couple to the scanning strategy in
a complicated manner.

We turn now to our results with simulated data to see how
this comes out in practice, first for the noise part, and then for
the signal part.

In Fig. 10 we show a part of the simulated (1/ f + white)
noise stream n, both the reference and solved baselines, FRn and
FAn, and their difference F(R−A)n = F(A−R)nc+F(A−R)w,
for tbase = 15 s.

We consider now separately the white noise and 1/ f noise
parts.

5.4. White noise baselines

From Tables 2 and 3 we see that the white noise baselines track
their reference baselines well. The white noise reference base-
lines are just white noise themselves, their variance σ2

wr down
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Fig. 10. First 15 minutes of the (1/ f +white) noise stream (grey) and its
reference (black solid) and solved (black dashed) tbase = 15 s baselines.
Note that these two baseline curves are nearly on top of each other. The
difference of the curves is plotted as the red curve and corresponds to the
scale on the right. This represents the error in the approximation (46),
except for the signal contribution to it.

Table 2. Statistics of the white noise baselines.

tbase Eq. (29) σwr (reference) σwb (solved)
(μK) (μK) (μK)

2.5 s 194.856 194.845 195.115
15 s 79.550 79.551 79.631

1 min 39.775 39.766 39.808
1 h 5.135 5.130 5.399

Table 3. Stdev σwe of white noise baseline error.

tbase a and b (a + b)/2 (a − b)/2
(μK) (μK) (μK)

2.5 s 10.244 5.916 8.354
15 s 3.595 2.063 2.944

1 min 1.854 1.066 1.517
1 h 1.719 0.989 1.406

from the white noise variance σ2 by nbase. The white noise base-
line variance

σ2
wb ≈ σ2

wr =
σ2

nbase
=

(
fx

fc

)
σ2 =

σ2

fstbase
, (49)

is slightly larger. Table 2 shows the standard deviation (square
root of the variance) of the baselines, σwr and σwb.

In Table 3 we give the standard deviation σwe of the white
noise baseline error. We show it also for the average and the dif-
ference between the two polarization directions a and b, which
represent the contribution of this effect to the temperature and
polarization measurements.

The white noise reference baselines are completely uncor-
related with each other. This is not true for the solved white
noise baselines. The difference, the baseline errors, show sig-
nificant autocorrelation, see Figs. 11 and 12, and correlation be-
tween detectors 19 and 22, see Table 4. Although the white noise
baseline variance is not much larger than the white noise refer-
ence baseline variance, these correlations make the difference
between them important.

These correlation properties are easy to understand. While
the amplitude of the reference baseline arises from the noise of
the baseline segment itself, the error (A − R)w is caused by the
noise in the crossing baselines. Since the baseline segments that

Fig. 11. Autocorrelation function for the white noise baseline error
(A − R)w for tbase = 1 h (black), 1 min (red), 15 s (green), 2.5 s
(blue). The solid lines are for the “temperature” baselines (a + b)/2
and the dashed lines are for the “polarization” baselines (a − b)/2. For
the tbase = 15 s and 2.5 s cases, only lags that are multiples of 1 min
(≈the spin period) are included.

Fig. 12. Autocorrelation function for the white noise baseline error
(A − R)w for tbase = 2.5 s and detector 19a.

Table 4. Correlations between detectors 19 and 22.

tbase (a + b)/2 (a − b)/2 Overlap
2.5 s 0.826 –0.003 0.793
15 s 0.901 0.005 0.966

1 min 0.925 –0.011 0.991
1 h 0.998 –0.013 0.99986

are separated from each other by an integer number of spin pe-
riods, and not too many pointing periods, cross almost the same
set of other baseline segments, often in the same pixels, their
baseline errors (A−R)w are strongly correlated with each other.

In Fig. 12 we show the autocorrelation function of (A −R)w
for the case tbase = 2.5 s. For short lags, only baselines whose
lag is a multiple of 1 min (≈the spin period) show significant
correlation with each other. For longer lags this distinction dis-
appears due to random spin rate variations. Since these variations
have a rms which is about 1/60 of the spin rate, for lags around
30 min any one of the baseline segments within a spin period

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912361&pdf_id=10
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912361&pdf_id=11
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Fig. 13. First 10 min of the 1/ f noise stream nc together with its solved
and reference baselines for tbase = 1 min. The difference between the
1/ f noise and its reference baselines is the unmodeled 1/ f noise.

is about equally likely to land on a given location of the scan
circle. The correlation between two baselines that land on the
same location of the circle is much larger (presumably similar to
the tbase = 1 min and 1 h cases), but the way we calculate the
autocorrelation function (in time domain, not in the spin phase
domain) is not able to pick this out.

Also, since the corresponding baseline segments from the
horns 19 and 22 are only ωscan3.1◦ = 0.517 s shifted from each
other, they crossed almost the same set of other baseline seg-
ments, and are thus strongly correlated. The overlap fraction
1 − 0.517 s/tbase is given in Table 4. Note that this number does
not take into account that the hits from the two horns may still
be distributed differently to the pixels in the overlap region.

More exactly, the “temperature” combinations (a + b)/2
of (A−R)w are strongly correlated between 19 and 22, whereas
the “polarization” combinations (a − b)/2 are not. The polariza-
tion directions of the ab pairs 19 and 22 differ from each other
by 44.8◦ making their polarization measurements (a − b)/2 al-
most orthogonal. Thus they also pick almost orthogonal error
combinations from the crossing baseline segments, and remain
uncorrelated. This also explains why the stdev of the “polar-
ization baseline error” is larger than the “temperature” one in
Table 3. In effect, only half of the crossing baseline pairs ab con-
tribute to determining an (a − b)/2 baseline combination, so the
number of degrees of freedom is down by 1/2 and the variance
thus larger by 2.

5.5. Residual 1/f noise

Figure 13 shows the 1/ f part of the noise nc, its reference base-
lines ar and the solved 1/ f baselines, Anc. The difference be-
tween these two sets of baselines, 1/ f baseline error, is shown
in Fig. 14.

The 1/ f noise can be separated into reference baselines and
unmodeled 1/ f noise, nc = Far + (nc − Far). When we sep-
arate the 1/ f baseline error, (A − R)nc into the corresponding
components,

(A − R)nc = (A − R)Far + A(nc − Far), (50)

we note that the first term on the right hand side gives the same
contribution to each baseline (=− the mean of the 1/ f noise),
and is thus irrelevant. Thus the 1/ f baseline error arises from

Fig. 14. The 1/ f baseline error, i.e., the difference between the solved
and reference 1/ f baselines FAnc − Far. The top panel shows the case
for tbase = 1 h (red), 15 min (green), and 4 min (blue) from the first
10 h and from another set of 10 h from the second month of the sim-
ulation. The bottom panel shows the case for tbase = 1 min (red), 15 s
(green), and 5 s (blue) from the first 10 min and from another set of
10 min from the second month of the simulation. The horizontal line at
9.86 μK shows the mean difference that is due to the nonzero mean of
the 1/ f noise. Only the deviations from this mean are significant.

the unmodeled 1/ f noise, in the same manner as white noise
baseline error (A − R)w arises from white noise. (The reference
baselines of unmodeled 1/ f noise are zero).

5.5.1. Unmodeled 1/f noise

Since baselines can only model frequencies ≤ fx ≡ 1/(2tbase) and
do it better for lower frequencies, the power spectrum of the un-
modeled 1/ f noise nc −Far is equal to that of nc for f 
 fx and
falls rapidly towards smaller f for f < fx. See Fig. 15.

Since the reference baselines ar are obtained from the
stream nc, the power spectrum Pu( f ) of the unmodeled 1/ f noise
nc − Far can be obtained from the power spectrum Pc( f ) of nc
through a transfer function,

Pu( f ) = H( f )Pc( f ). (51)

This transfer function is

H( f ) =

[
1 − sin2(π f tbase)

(π f tbase)2

]2
· (52)
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Fig. 15. Power spectrum Pc( f ) of the 1/ f noise (black) and its unmod-
eled part Pu( f ) (red), for tbase = 1 min. The blue line is an analytical
estimate corresponding to Eqs. (32), (51), and (52).

Table 5. Stdev σu of the unmodeled 1/ f Stream.

tbase Eq. (56) Eq. (51) Actual
(μK) (μK) (μK)

7.5 s 115.9 103.1 121.7
15 s 147.8 131.7 154.1

1 min 240.0 214.4 250.3
1 h 1006.0 897.3 938.0

For f � fx, H( f ) ∝ f 4, so the slope of Pu( f ) is 4−α for f � fx.
We get a rough estimate of the total power in nc −Far by in-

tegrating the original Pc( f ) from fx to fc and ( f / fx)4Pc( f ) from
fmin to fx,

σ2
u ≈

∫ fx

fmin

(
f
fx

)4
Pc( f )d f +

∫ fc

fx

Pc( f )d f

≈
⎧⎪⎪⎨⎪⎪⎩ 1

5 − α +
1

α − 1

⎡⎢⎢⎢⎢⎢⎣1 −
(

fx

fc

)α−1⎤⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭σ2 fk

fc

(
fk
fx

)α−1

= σ2

(
fk
fc

)α ⎧⎪⎪⎨⎪⎪⎩ 1
5 − α

(
fc
fx

)α−1

+
1

α − 1

⎡⎢⎢⎢⎢⎢⎣
(

fc
fx

)α−1

− 1

⎤⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ . (53)

For α = 1 this becomes

σ2
u ≈ σ2

(
fk
fc

) [
1
4
+ ln

fc
fk

]
· (54)

For our case, α = 1.7, σ = 2700 μK, and we can approximate

1 −
(

fx

fc

)α−1

≈ 1, (55)

so that Eq. (53) gives

σu ≈ 57.3 μK tbase(s)0.35 ∝ t(α−1)/2
base . (56)

In Table 5 we compare this approximation to a numerical in-
tegration of Eq. (51) and the actual standard deviation σu of
nc − Far from our simulated data. The last column is σu cal-
culated from the first 16 h of the simulated LFI-19a 1/ f stream.
We see that Eq. (56) is an underestimate. An exception to this
is the 1-h-baseline case; this is explained by the simulated noise
having less power at low frequencies than the noise model.

Table 6. Stdev σub of the 1/ f Baseline Error.

tbase a and b (a + b)/2 (a − b)/2
(μK) (μK) (μK)

5 s 1.790 0.995 1.486
15 s 1.894 1.075 1.557

1 min 1.404 0.765 1.177
1 h 1.360 0.726 1.142

Fig. 16. Same as Fig. 11, but now for the 1/ f noise baseline error.

5.5.2. 1/f baseline error

Since the unmodeled 1/ f noise is correlated, the properties of
1/ f baseline errors differ from white noise baseline errors. Over
timescales�tbase the unmodeled 1/ f is positively correlated, but
since it averages to zero over each baseline segment, there is a
net anticorrelation.

From Fig. 14 we see for short baselines a spin-synchronous
pattern. For baselines of tbase = 1 min, the remaining pattern
shows a 3-min period that comes from spin-axis nutation. For
even longer baselines the long-time-scale correlation shows up
clearly. 1/ f baseline error decreases for longer baselines, but
much less steeply than white noise baseline error. See Table 6,
where we show the standard deviation σub of the 1/ f baseline
error Anc − Rnc.

Figure 16 shows the 1/ f baseline error autocorrelation. For
white noise baseline error we noted that we get a correlation for
nearby baselines since they often cross the same other baseline
in the same pixel. Since unmodeled 1/ f noise is positively corre-
lated over short timescales, it is not necessary for this crossing to
occur in the same pixel to get the positive correlation. Therefore
we now get positive correlations for even longer timescales. This
makes 1/ f baseline error more important than its small vari-
ance suggests, since it is not averaged away when binned onto
the map.

In Fig. 17 we show the 1/ f baseline error for tbase = 1 h
over the full year of the simulation for the detector pair 19. The
effect of the 6-month period of the cycloidal scanning is clearly
visible.

5.6. Noise power spectra

We show the power spectra of the cleaned (destriped) noise
streams n−FAn for different baseline lengths in Fig. 18. They are
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Fig. 17. The 1/ f baseline error, FAnc − Far , for 1-h baselines for the
full 1-year simulation. We show the sum (red) and the difference (blue)
between the two polarization directions. The times when ring crossings
occur near the corners of the caustics around the ecliptic poles are cen-
tered roughly around hours 240, 1950, 4610, and 6340. Correlations in
baseline amplitudes are enhanced near these times.

Fig. 18. Effect of baseline subtraction on the noise power spectrum. The
solid black line is the spectrum of the original noise stream n. The col-
ored lines show the spectra of cleaned noise streams for different base-
line lengths. Solid lines are for the case of subtracting the solved base-
lines, n−FAn, and the dashed lines for subtracting reference baselines,
n− FRn.

compared to the spectrum of the original noise stream n and the
spectra where noise reference baselines are subtracted instead,
n− FRn.

Subtraction of baselines suppresses noise at f <∼ 1/tbase. For
lower frequencies the noise is suppressed more, as baselines can
model the lower frequencies better. When reference baselines are
subtracted, the noise power keeps going down toward lower fre-
quencies; however the solved baselines seem to be able to sup-
press noise power about 6 orders of magnitude only.

For shorter baselines, spectral features appear at special fre-
quencies. They do not appear when reference baselines are sub-
tracted, so they are clearly related to the scanning strategy.
1) There are peaks at f = 1/min and f = 1/(3 min) correspond-
ing to the spin and nutation frequencies, and their harmonics.

Fig. 19. Effect of subtracting both the white noise and the 1/ f baselines
on the power spectrum of the 1/ f noise. The solid black line is the
original 1/ f spectrum. The solid colored lines show the power spectra
of nc − FAn and the dashes lines the power spectra of nc − FRn.

2) There is a notch in power at f = 1/h, corresponding to the re-
pointing period, and its harmonics. These are easy to understand:

The solved baselines come from a noise estimate based on
subtracting from each sample the average of all samples that
hit the same pixel. Consider an ideal scanning where the same
pixel sequence is hit during each spin period within a repointing
period:

1) If the spin period is equal to or a multiple of the period of
a noise frequency component, all samples hitting the same
pixel during a given repointing period get the same value
from this noise component. Thus this noise component can
be detected as noise (and not signal) only by comparing hits
from different repointing periods, resulting in a much poorer
noise estimate.

2) On the other hand, if the repointing period is equal to or a
multiple of the noise period, but the spin period is not, then
the different samples hitting the same pixel average to zero.
This noise component is then recognized as noise in its en-
tirety, and the solved baseline becomes equal to the reference
baseline.

Since in our simulation the scanning deviated from ideal, these
features are weakened, but still clearly visible.

As mentioned in Sects. 1 and 5.3 and elaborated in Sect. 6,
the relevant residual noise is the stream nc − FAn where both
white noise and 1/ f baselines are subtracted from the 1/ f noise
stream. This is shown in Fig. 19. The subtraction of the white
noise baselines has added power to the cleaned 1/ f stream. At
low frequencies the spectrum appears now white, since the white
noise reference baseline stream is white at timescales longer
than tbase. The power of the baseline error rises towards the low-
est frequencies and shows up below 5× 10−5 Hz. The subtraction
of uniform baselines from the noise stream has a chopping effect
that transforms a part of the low frequency, f < 1/tbase, power
into high frequency, f >∼ 1/tbase.

5.7. Optimal baseline length

What is the optimal baseline length to use? A partial answer can
be found by minimizing the variance of the residual correlated
noise, i.e., the residual noise minus the original white noise,

nc −FAn = (nc −FRnc)−FRw−F(A−R)w−F(A−R)nc. (57)
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Fig. 20. Pixelization noise. In the top panel we show a piece of the orig-
inal signal stream s (black) and the pixelized signal stream PBs (red).
Their difference Zs = s − PBs is the pixelization noise (bottom panel).

The variances of the four components are σ2
u, σ2

wr , σ
2
we, and σ2

ub.
The first three components are uncorrelated, so that their total
variance is σ2

u + σ
2
wr + σ

2
we. Since σ2

we and σ2
ub are much smaller

than σ2
u + σ

2
wr , we make the approximation where we drop the

last two components.
Using Eqs. (49) and (53) we find that σ2

wr + σ
2
u is mini-

mized for

fx =
1

2tbase
=

(
1 +

α − 1
5 − α

)1/α
fk (58)

for which

σ2
wr + σ

2
u

σ2
≈
(

4
5 − α

)1/α
α

α − 1

(
fk
fc

)
− 1
α − 1

(
fk
fc

)α
· (59)

For α = 1 this becomes

fx =
1

2tbase
= fk (60)

and

σ2
wr + σ

2
u

σ2
≈
(

5
4
+ ln

fc
fk

)
fk
fc
· (61)

For fk = 50 mHz and α = 1.7 this gives tbase = 8.93 s, for which√
σ2
wr + σ

2
u = 0.05936σ = 160.3 μK. This result does not take

into account baseline errors and signal baselines (see Sect. 5.8).
However, because of the different correlation properties of

the different residuals, they have a different impact in map-
making, and it is not enough to consider the time-domain vari-
ance. So we need to return to this issue later, after we have stud-
ied the residuals in the map domain and their angular power
spectra.

5.8. Pixelization noise and signal baselines

Pixelization noise, Zs ≡ s − PBs, arises from signal gradients
through a combination of pixelization, scanning strategy, and
sampling frequency. These lead to correlations between close-by
samples, and also correlations between samples from the same
locations on the sky which are not close to each other in time
domain.

In Fig. 20 we show a short piece of the pixelization noise.
Its autocorrelation function is shown in Fig. 21. We see that

Fig. 21. Autocorrelation function of the pixelization noise. Note the al-
ternating correlation and anticorrelation for small lags, and the correla-
tions at 1 min lag, when the scanning returns to the same location on
the sky. Due to spin rate variations the correlations are spread around
the 1 min value, and more around 2 min.

neighboring samples (lag = 1 = (1/76.8) s) are anticorre-
lated, whereas we have a positive correlation for lag = 2. The
power spectrum is close to that of white noise, except that
there are some features near the Nyquist frequency due to these
correlations.

Comparing the pixel size θp = 6.87′ to the sample separation
θs = 4.68′ and remembering that the scanning direction is mostly
close to the direction of the pixel diagonal (both are often close
to the ecliptic meridians), so that the pixel geometry tends to
repeat at ∼√2θp = 9.71′ intervals, close to 2θs = 9.38′, we
see that a pair of samples with lag 2 tends to land in about the
same relative location within their respective pixels. With this
small separation there is a positive correlation in the CMB signal
gradient (smoothed with the beam). These combine to give a
positive correlation between lag 2 samples. On the other hand,
neighboring samples often land at opposite sides of the same
pixel, or of neighboring pixels, leading to a negative correlation
in their pixelization noise. These correlations would be different
for different ratios of sample separation to pixel size.

Since the pixelization noise arises from the signal, we ana-
lyze it in the combinations s+ ≡ (sa + sb)/2 (“temperature”) and
s− ≡ (sa − sb)/2 (“polarization”), so that

s+ = I and s− = Q cos 2ψa + U sin 2ψa. (62)

Each of the s+ and s− time streams contains nt/2 samples. For
the ideal detectors considered here, s+ arises from gradients in
the intensity of the signal, and s− from gradients in the polariza-
tion of the signal. We assume the signal is statistically isotropic,
and that CEB


 = 0.
We find that the expectation value for the variance of the

pixelization noise is

σ2
p(temp) ≈ (Γ − Λ)

∑



(2
 + 1)
(
 + 1)
8π

B2

C

TT



σ2
p(pol) ≈ (Γ − Λ)

∑



(2
 + 1) [(
 − 2)(
 + 3) + 2]
16π

× B2



(
CEE

 +CBB




)
(63)
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Fig. 22. Pixelization noise rms in map pixels for the two 10◦ ×
10◦ regions.

where

Γ =
1
nt

∑
p

∑
t∈p

|rt|2, Λ =
1
nt

∑
p

1
nhit,p

∑
tt′∈p

rt · rt′ , (64)

and rt ≡ nt − up. Here nt is the unit vector giving the point-
ing (θt, φt) of sample t, and up is the unit vector pointing to
the center of the pixel p hit by sample t. The approximation in
Eq. (63) is the small-pixel approximation |rt| � 1. For σp(pol)
we have also assumed an optimal distribution of polarization di-
rections ψt within each pixel.

This result, Eq. (63), can be compared to the variance of the
signal itself

σ2
s (temp) ≡ 〈I(n)I(n)〉 =

∑



2
 + 1
4π

CTT



σ2
s (pol) ≡ 〈Q(n)Q(n)〉 = 〈U(n)U(n)〉

=
∑



2
 + 1
8π

(
CEE

 + CBB




)
. (65)

Assuming the pixels are perfect squares, in the limit of a large
number of hits nhit,p uniformly distributed over the pixel we get

Γ ≈ Ωp

6
and Λ � Γ. (66)

Since HEALPix pixels are not square, but somewhat elongated,
we expect the actual Γ − Λ to be somewhat larger. In principle
it can be calculated from the pointing data for a chosen pixeliza-
tion.

For our input C
, setting Γ − Λ = Ωp/6, Eqs. (63) and (65)
give σs(temp) = 100.792 μK, σp(temp) = 13.332 μK, σs(pol) =
2.530 μK, and σp(pol) = 0.781 μK.

The actual pixelization noise level in the simulation was
σp(temp) = 13.516 μK and σp(pol) = 0.776 μK.

By definition, a binned map of pixelization noise vanishes,
BZs = Bs − BPBs = 0. Instead we can make a map of the rms
of the pixelization noise at each pixel, by squaring each element
of Zs, binning the resulting time stream into a map, and taking
the square root of each I pixel. See Fig. 22. Comparing to Fig. 3
we see that pixels of large pixelization noise tend to “outline”
hot and cold spots of the signal.

Signal baselines arise from the pixelization noise in the same
manner as white noise baselines arise from white noise, and
we can divide them into the reference baselines of pixeliza-
tion noise, and signal baseline errors, As = RZs + (A − RZ)s.

Table 7. Stdev of contributions to signal baselines.

tbase Eq. (67) RZs (A − RZ)s As As (G)
(μK) (μK) (μK) (μK) (μK)

temperature stream (a + b)/2
2.5 s 0.962 0.972 0.672 1.297 . . .
5 s 0.680 0.686 0.300 0.831 . . .

15 s 0.393 0.396 0.121 0.461 . . .
1 min 0.196 0.200 0.075 0.248 0.243

1 h 0.136 0.075 0.199 0.196
polarization stream (a − b)/2

2.5 s 0.0564 0.0560 0.0277 0.0701 . . .
5 s 0.0399 0.0396 0.0145 0.0476 . . .

15 s 0.0230 0.0229 0.0068 0.0269 . . .
1 min 0.0115 0.0115 0.0043 0.0144 0.0147

1 h 0.0083 0.0043 0.0120 0.0124

Approximating the pixelization noise as white, we get an esti-
mate for the standard deviation (stdev) of RZs

σpr(temp) ≈ σp(temp)√
nbase

≈ 1.521 μK tbase(s)−1/2,

σpr(pol) ≈ σp(pol)√
nbase

≈ 0.0891 μK tbase(s)−1/2. (67)

In Table 7 we show the stdev of the signal baselines As and
their two contributions RZs (reference baselines of pixelization
noise) and (A − RZ)s (signal baseline error), and compare them
to the estimate (67) for RZs. We see the estimate is quite good
for RZs. The estimate is slightly off mainly because the ac-
tual pixelization noise was slightly larger for temperature and
slightly smaller for polarization than the analytical estimate (63).
The column marked “(G)” was obtained using galactic coordi-
nates for the HEALPix maps.

In Fig. 23 we show the autocorrelation functions of the refer-
ence baselines of pixelization noise and the signal baseline error.
Unlike for white noise, now also the reference baselines are cor-
related. This correlation extends over several repointing periods.
These correlations enhance the relevance of the signal baselines
in the map domain.

6. Map domain

Destriping is a linear process. The output map can therefore be
viewed as a sum of component maps, each component map be-
ing a result of destriping one individual TOD component: signal,
1/ f noise and white noise:

mout = B(s − FAs) + B(nc − FAnc) + B(w − FAw). (68)

As the three TOD components are statistically independent, so
are the corresponding component maps. The expectation value
of the map rms is thus obtained as the root sum square (rss) of
the expectation values of the rms of the component maps.

In this paper we have considered a single 1-year realization
of each TOD component only. There are likely to be random
correlations between the component maps. However, the output
map and residual map rms we get when we produce maps from
the full TOD, agree to better than 0.5% with the rss of the rms
of the corresponding maps produced from component TODs.

6.1. Linearity

In practice the linearity of destriping is affected by the numer-
ical accuracy of the baseline calculation, which depends on the
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Fig. 23. Correlations in the signal baselines. The top panel shows the
autocorrelation function of the reference baselines RZs of pixelization
noise, and the bottom panel that of the signal baseline error (A −RZ)s.
The colors and line styles are as in Fig. 11.

convergence criterion for the conjugate gradient iteration. We
checked the linearity by comparing the sum of the component
maps to a map obtained directly from the sum of the compo-
nent TODs. The difference is well below the nK level, except for
baselines shorter than 10 s. See Fig. 24.

6.2. Splitting the residual map into components

The three component maps can each be further divided into a
binned map and a baseline map.

The correlation properties of these components are different
in the map domain from the TOD domain.

While the white noise baselines FAw are correlated with the
white noise w in the TOD, the correlation vanishes in the map:
writing

Bw =M−1PTC−1
w w (69)

BFAw =M−1PTC−1
w FD−1FTC−1

w

(
I − PM−1PTC−1

w

)
w (70)

we get that

〈(Bw)(BFAw)T〉 = M−1PTC−1
w 〈wwT〉

(
I − C−1

w PM−1PT
)

C−1
w FD−1FTC−1

w PM−1. (71)
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Fig. 24. Linearity of destriping. The three thin black lines at the bottom
shows the rms difference between the “full” map, obtained from the sum
of the component TODs, and the sum of the component maps. This is
compared to the signal and noise levels in the maps; different colors
showing the different components and the thick black line the full map;
different line styles correspond to the three Stokes parameters.

By substituting 〈wwT〉 = Cw one readily sees that the correlation
vanishes,

〈(Bw)(BFAw)T〉 = 0. (72)

Because the binned white noise map and the white noise baseline
map are independent, the (expectation value of) the rms of the
residual white noise map Bw − BFAw is obtained as the rss of
the rms of the two maps.

This means, that while subtracting the white noise baselines
removes power from the TOD, it adds power to the map. If the
noise is pure white, naive binning produces a better map than
destriping. On the other hand, baselines of the 1/ f noise are cor-
related with the 1/ f noise itself both in the TOD and in the map.

We can use the rms value taken over all the residual map
pixels as a figure-of-merit for the map-making method. We cal-
culate it separately for the three Stokes parameters, I (tempera-
ture), Q, and U. Note that we subtract the I monopole from the
residual map before calculating the rms, since it is irrelevant for
CMB anisotropy and polarization studies, and destriping leaves
a spurious I monopole in the map. See Figs. 25−27.

The difference between the output map and the binned signal
map

mout − Bs = Bw − BFAw + B (nc − FAnc) − BFAs (73)

is the residual map including binned white noise. We see that it
can be divided into four uncorrelated contributions: the binned
white noise map, the white noise baseline map, the residual
1/ f noise map, and the signal baseline map.

The mout − Bs I map is shown in Fig. 28. This map is dom-
inated by the binned white noise map, which is independent of
the baseline length. Therefore the visual appearance of the resid-
ual map is the same for all baseline lengths, as it looks the same
as the white noise map. Also the residual Q and U maps look the
same, just with ∼√2 larger amplitude.

The binned white noise map is independent of the baseline
length, and it is an unavoidable component of the residual map,
uncorrelated with the other components. Therefore we focus on
the rest of the residual map, without the binned white noise com-
ponent, i.e.,

mout − Bs − Bw = −BFAw + B (nc − FAnc) − BFAs. (74)

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912361&pdf_id=23
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912361&pdf_id=24


H. Kurki-Suonio et al.: Destriping CMB temperature and polarization maps 1527

10 100 1000

55.4

55.6

55.8

56

m
ap

 r
m

s 
[μ

K
]

Total residual noise

Map residuals

10 100 1000
baseline length [s]

0

2

4

6

8

10

m
ap

 r
m

s 
[μ

K
]

Total residuals w/o binned white
signal baselines
white noise baselines
residual 1/f noise

Fig. 25. Residual temperature map rms as a function of baseline length.
The top panel is for mout − Bs, which is dominated by the binned white
noise map, whose rms is 55.19 μK independent of tbase. The bottom
panel shows the other three components, and their root sum square,
which is the rms of the residual map mout − Bs − Bw.

Fig. 26. Same as the bottom panel of Fig. 25, but now we have further
separated the residual 1/ f noise into unmodeled 1/ f noise (dashed)
and 1/ f baseline error (dot-dashed); the white noise baselines into ref-
erence baselines (dashed) and baseline error (dot-dashed); and signal
baselines (shown here in green) into reference baselines of pixelization
noise (dashed) and baseline error (dot-dashed). The dotted lines show
the rss of the dashed and dot-dashed lines. For white noise it falls on the
solid line, showing that the two white noise residual map components
are uncorrelated. For 1/ f noise and pixelization noise the two compo-
nents are positively correlated. The black dotted line is the analytical
approximation Eq. (86).

For the rest of this paper, the residual map without further qual-
ification, refers to this map. See Figs. 29 and 30.

We divide this further into

mout − Bs − Bw = −BFRw − BF(A − R)w

+B(nc − Far) − BF(Anc − ar)

−BFRZs − BF(A − RZ)s, (75)
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Fig. 27. The rms of the residual I, Q, and U maps, and their different
components. The overall residual power in a destriped polarization map
is higher than in a temperature map. The CMB signal residual in turn
is much weaker. Note how Q is larger than U in the signal baselines.
Smoothing the residual maps with a Gaussian beam (dashed lines) re-
moves excess power at sub-beam scales.

Fig. 28. Residual I map including binned white noise, mout − Bs, for
tbase = 1 min. It looks the same for other baseline lengths. Also the
binned white noise map Bw looks the same, as it is the dominant com-
ponent in the residual map. The Q and U maps look the same, but have
a larger amplitude.

in analogy with Eq. (48). Of these six components, the unmod-
eled 1/ f map B(nc − Far) is correlated with the 1/ f baseline
error map BF(Anc − ar), and the pixelization noise reference
baseline map BFRZs is correlated with the signal baseline er-
ror map BF(A − RZ)s. Otherwise the components are uncor-
related with each other. The division is useful, since the differ-
ent components have a different structure in the map domain.
The unmodeled 1/ f map consists of different noise frequencies
with half-wavelength mostly of the same order or shorter than
the baseline (Fig. 15). The other 5 components consist of base-
lines laid on the map. For the white noise reference baseline
map, these baselines are uncorrelated with each other, the other
4 components have different levels of correlation. In Fig. 31 we

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912361&pdf_id=25
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Fig. 29. Residual I map (with binned white noise subtracted),
mout − Bs − Bw, for different baseline lengths (from top down:) 1 h,
1 min, 15 s, and 2.5 s. The Q and U maps look the same with ∼√2
larger amplitude.

show each of the six components for a 10◦ × 10◦ region of the
I map.

In Fig. 26, we show separately the rms of these components.

6.3. Analytical estimates

6.3.1. White noise baselines

We show in Table 8 the rms of the white noise reference baseline
maps. Since the white noise reference baselines are uncorrelated

Fig. 30. Same as Fig. 29 but for the 10◦ × 10◦ region near the ecliptic.
Top left: tbase = 1 h. Top right: tbase = 1 min. Bottom left: tbase = 15 s.
Bottom right: tbase = 2.5 s.

with each other, these map rms can be estimated analytically. If
all hits to a pixel came from a different baseline, we could treat
them as white noise, with the white noise reference baseline vari-
ance σ2

wr = σ
2/nbase. Thus the variances of Ip, Qp, and Up would

be just (Mp)−1(1, 1)/nbase ≈ σ2/nbase/nhit,p, (Mp)−1(2, 2)/nbase ≈
2σ2/nbase/nhit,p, and (Mp)−1(3, 3)/nbase ≈ 2σ2/nbase/nhit,p.

For baseline lengths less than or equal to the spin period,
tbase ≤ 1 min, this holds if the sample separation is larger than
the pixels, θs 
 θp. However, in our case θs < θp, and two or
three successive samples may hit the same pixel. These succes-
sive hits are then almost always from the same baseline, and, for
the baseline components, fully correlated, i.e., equal.

Denote by n fn the fraction of hits to a pixel that belong to a
sequence of exactly n successive hits to the same pixel, i.e, there
are fnnhit,p such sequences, and

∑
n n fn = 1. The variance of Ip

is then

〈I2
p〉 =

⎛⎜⎜⎜⎜⎜⎝∑
n

(n2 fn)

⎞⎟⎟⎟⎟⎟⎠ σ2
wb

nhit,p
, (76)

where
∑

n(n2 fn) ≥ 1.
With Eq. (49) we have for the I map rms

Irms ≈
√〈∑

n2 fn
nhit

〉
σ√
nbase

· (77)

To get an estimate for 〈∑n(n2 fn)〉 we assume a square pixel and
a uniform hit probability distribution within the pixel area.

For scanning in the direction of the pixel diagonal, for θs >√
2θp there are no successive hits to the same pixel and f1 =∑
n(n2 fn) = 1. For θp/

√
2 < θs <

√
2θp there can be a maximum

of two hits, with 〈 f2〉 =
(
1 − r/

√
2
)2

and∑
n

n2 fn = 3 − 2
√

2r + r2; (78)
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Fig. 31. The six components of the residual I map shown for the
10◦ × 10◦ region near the ecliptic (tbase = 1 min). Top left: unmodeled
1/ f noise B(nc − Far). Top right: 1/ f baseline error BF(Anc − ar).
Middle left: white noise reference baselines −BFRw. Middle right:
white noise baseline error −BF(A − R)w. Bottom left: pixelization
noise reference baselines −BFRZs. Bottom right: signal baseline er-
ror −BF(A − RZ)s.

and with
√

2θp/3 < θs < θp/
√

2 a maximum of three hits, with
〈 f1〉 = r2, 〈 f2〉 = 3

√
2r − 1 − 7r2/2 and∑

n

(n2 fn) = 5 − 6
√

2r + 5r2; (79)

where r ≡ θs/θp.
For scanning in the direction of the pixel side, two hits, but

no more, are possible for θp/2 < θs < θp with f2 = 1 − r.
For our case,

√
2/3 < 1/2 < r = 0.682 < 1/

√
2, which gives〈∑

n

(n2 fn)

〉
= 1.54 = (1.24)2 (80)

for scanning in the diagonal direction, and 〈∑n(n2 fn)〉 = 1.64 =
(1.28)2 for the pixel side direction.

However, HEALPix pixels are not square, but can be signif-

icantly elongated. In principle, the mean value 〈
∑

n2 fn
nhit
〉 could be

calculated from the pointing data and the chosen pixelization.
Here we just take it by comparing the actual Irms from the maps

Table 8. rms of the white noise reference baseline maps.

tbase Irms 〈〈∑n n2 fn〉〉 Qrms Urms

(μK) (μK) (μK)
2.5 s 4.947 1.542 6.974 7.072
15 s 2.006 1.521 2.846 2.914

1 min 1.003 1.522 1.435 1.466
1 h 0.895 1.289 1.320

Table 9. rms of the white noise baseline error maps.

tbase Irms c Qrms Urms

(μK) (μK) (μK)
2.5 s 4.543 0.168 6.223 6.433
15 s 1.165 0.092 1.664 1.666

1 min 0.634 0.102 0.881 0.904
1 h 0.630 0.875 0.898

to Eq. (77). (See Table 8, where the third column is an estimate
of 〈

∑
n2 fn

nhit
〉/〈n−1

hit〉 obtained this way.) This gives (from tbase = 15 s

and 1 min)
〈∑

n2 fn/nhit

〉
≈ 0.000636 ≈ 1.52〈n−1

hit〉 ≈ (0.025)2.
We denote〈〈∑

n2 fn

〉〉
≡
〈∑

n2 fn
nhit

〉 /
〈n−1

hit〉 ≈ 1.52. (81)

Equation (80) is quite close to this.
For the other Stokes parameters, we expect

Qrms ≈ Urms ≈
√

2Irms (82)

where the approximation corresponds to assuming an ideal dis-
tribution of polarization directions. We expect this approxima-
tion to be good for the full year data, since most pixels have
rcond values close to 0.5.

For baselines longer than the spin period, contributions to a
pixel from successive scan circles tend to come from the same
baseline, so the reduction in the white noise baseline variance
is canceled by the reduction in the number of contributing base-
lines. Thus the map rms from white noise baselines is almost flat
between tbase = 1 min and tbase = 1 h.

Table 9 shows the rms of the white noise baseline error maps.
Although in the time domain the white noise baseline error is
much smaller than white noise reference baselines, their corre-
lations make them important in the map domain. Assuming the
correlation between (a+ b)/2 baselines contributing to the same
pixel were c, the expected variance of the white noise baseline
error map would be

〈I2
s−r〉 = 〈I2

ref〉
2σ2

we+

σ2
wr

⎛⎜⎜⎜⎜⎝1 + c

〈n−1
hit〉
⎞⎟⎟⎟⎟⎠ , (83)

where σwe+ is the stdev of the (a + b)/2 white noise baseline
errors, given in Table 3. Assuming Eq. (83) to hold for our maps,
we have solved for c for different tbase (third column in Table 9).
These numbers can be compared to Fig. 11 and Table 4.

Since the white noise reference baselines and the white
noise baseline errors are uncorrelated, the full white noise base-
line map rms is close to the rss of these two components. See
Table 10.

6.3.2. Unmodeled 1/f noise

Most of the power in unmodeled 1/ f noise is in frequencies
near 1/(2tbase). Therefore, for θp � θbase successive hits to the
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Table 10. rms of the white noise baseline maps.

tbase Irms Qrms Urms

(μK) (μK) (μK)
2.5 s 6.729 9.303 9.580
15 s 2.319 3.291 3.356

1 min 1.181 1.678 1.715
1 h 1.088 1.552 1.590

Table 11. rms of the unmodeled 1/ f noise maps.

tbase Eqs. ((56), (84)) Eq. (84) Irms Qrms Urms

(μK) (μK) (μK) (μK) (μK)
7.5 s 2.994 3.081 3.062 4.314 4.358
15 s 3.727 3.901 3.852 5.450 5.526
1 min 6.053 6.313 5.778 8.128 8.225
1 h 9.357 13.02 13.178

same pixel should be almost fully correlated. When tbase is much
below the spin period, hits from different spin periods should
be almost uncorrelated. Thus we can estimate the unmodeled
1/ f noise map rms in the same manner as the white noise base-
line map, as

Irms ≈
√〈∑

n2 fn
nhit

〉
σu ≈ 0.025σu. (84)

When tbase is comparable to the spin period, there will be cor-
relations (positive or negative) between hits from nearby spin
periods. We compare Eq. (84) to the actual binned maps of un-
modeled 1/ f noise in Table 11. The second and third columns
in the table are estimates for the I rms based on Eq. (84), with〈∑

n2 fn
nhit

〉
taken from Table 8. The third column uses the actual σu,

whereas the second column uses the analytical estimate (56). We
see that for tbase = 1 min, Eq. (84) is an overestimate, indicat-
ing that there are negative correlations between hits from nearby
spin periods.

6.3.3. Ideal scanning

We define ideal scanning so that the pointings from the differ-
ent scan circles of the same repointing period fall on top of each
other, i.e., there is no nutation and the sampling is synchronized
with the spin period. In this case, the part of the unmodeled
1/ f noise for long baselines (tbase a multiple of the spin period)
that is modeled by 1 min baselines gets totally averaged out, so
that the contribution from unmodeled 1/ f noise to residual maps
would stay constant from tbase = 1 min to tbase = 1 h. In our non-
ideal case, some of this noise leaks out, so that the unmodeled
contribution rises slowly in this range also. See dashed red line
in Fig. 26.

Likewise, for an ideal scanning, the white noise reference
baselines make an equal contribution to the map for any baseline
length that is an integer multiple of the spin period, and fits into
the repointing period an integer number of times.

6.3.4. Total noise

From Fig. 26 we see that the two dominant contributions to the
residual maps are the white noise reference baselines and the
unmodeled 1/ f noise. For both of them we have analytical esti-
mates, and both of them map from time domain to map domain

in roughly the same way. Thus we get an analytical estimate
for the residual I map rms by multiplying the

√
σ2
wr + σ

2
u esti-

mate from Eqs. (49) and (53) with
√〈∑

n2 fn
nhit

〉
≈ 0.025 for tbase ≤

1 min. When α > 1 and tbase 
 tsample, so that ( fx/ fc)α � 1,
we have

I2
rms ≈ σ2

〈〈∑
n2 fn

〉〉
〈n−1

hit〉
[

1
fsampletbase

+

(
2 fk

fsample

)
(2 fktbase)α−1

(
4

(5 − α)(α − 1)

)]
· (85)

This gives for our case (σ = 2700 μK, 〈〈∑ n2 fn〉〉 = 1.52, n−1
hit =

0.000418, fsample = 76.8 Hz, α = 1.7),

I2
rms ≈ 60.3t−1

base + 2.08t0.7
base (86)

where tbase is given in seconds. (For tbase ≥ 1 min, our analytical
treatment can just estimate that the map rms should stay constant
from tbase = 1 min to tbase = 1 h.)

However, this estimate is not as good as in the time domain,
since the importance of the neglected components, the baseline
errors, has grown dramatically when going from the time domain
to the map domain. See Fig. 26. Since these components rise
towards shorter baselines, the residual map rms is minimized at
a somewhat larger tbase than Eq. (58) gives.

6.4. Pixelization noise and signal baselines

For pixelization noise, already the reference baselines are
strongly correlated (see Fig. 23) and therefore their map rms
cannot be estimated like for white noise reference baselines and
unmodeled 1/ f noise. Due to these correlations their impact in
the map level is significantly larger than their small variance in
the time level (see Table 7) would indicate. Instead, for both the
pixelization noise reference baselines and the signal baseline er-
ror, the situation is similar to white noise and 1/ f noise baseline
error.

For the residual 1/ f and white noise baselines, the Q and
U maps look the same as the I maps, just with a factor ∼√2
larger amplitude, since they originate from the same time-
domain noise, which is independent for each detector.

For the signal baselines (see Fig. 32) the situation is, how-
ever, different, since they originate from the signal, where Q and
U are much smaller than I. We also note that Q is much larger
than U, although they are of same magnitude in the signal. This
is related to the coordinate dependence of the definition of the
Stokes parameters Q and U together with a combination of fac-
tors in our study. First, the signal contains only E mode polar-
ization, which means that Q has structures along the coordinate
lines, whereas U has structures oriented 45◦ from them. Second,
we are using ecliptic coordinates, and we have employed a scan-
ning strategy, where the scanning goes almost parallel to the
lines of longitude for a large part of the sky. The signal baselines
originate from the signal gradients within pixels. For a signal
structure oriented along the scanning direction, the signal gradi-
ent structure remains similar for a sequence of pixels along the
scanning. Thus the measurement differences between different
scans through these pixels are similar for a sequence of pixels,
favoring their misinterpretation as noise baselines.

To verify the effect of the coordinate system, we redid the
tbase = 1 h and 1 min cases using galactic coordinates. See
Table 12 (E = ecliptic, G = galactic). Note that the map rms
is given in nK (not in μK, like the other tables). P stands for
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Fig. 32. Signal baseline I (top), Q (middle), and U (bottom) maps
−BFAs (tbase = 1 min) for the two 10◦ × 10◦ regions.

Table 12. Effect of the coordinate system on the signal baseline maps.

tbase Coord. I rms Q rms U rms P rms
(nK) (nK) (nK) (nK)

1 min E 123.3 9.4 4.5 10.4
1 min G 115.9 6.8 7.9 10.4

1 h E 124.0 9.4 4.6 10.5
1 h G 116.5 6.9 7.9 10.5

√
Q2 + U2. We see that the asymmetry between Q and U largely

disappears, but the total polarization signal residual is not much
affected. For the temperature residual we see a small improve-
ment. This is partly explained by the reduction of the signal base-
line variance, seen in Table 7.

6.5. Residuals at different angular scales

The residual map rms alone is a poor measure of the quality
of the output map. Since the nature of the residual (see Figs. 29
and 30) is different for different baseline lengths, we need to look
at the structure of the different map residuals in more detail.

For long baselines, the residual mostly comes from the part
of the 1/ f noise that cannot be modeled with baselines, and
appears mostly at very small angular scales on the map, near

the pixel scale; whereas for shorter baselines it comes from un-
wanted baselines, which appear as larger scale structures. This
can be seen from Fig. 27, where we have smoothed the residual
map with the detector beam, before taking the rms. This smooth-
ing almost erases the difference between the 1/ f residuals for
baseline lengths from tbase = 1 min to 1 h. This is because the
1 min scanning circles fall almost on top of each other during
the 1 h repointing period, and the width (due to nutation) of the
ring on the sky traced by the beam center during a repointing pe-
riod is less than the beam width. Beam-smoothing has much less
effect on the white noise baseline map and the signal baseline
map. Baseline lengths tbase = 10 s to 15 s still give the smallest
total residuals, but the difference from longer baselines is much
reduced by beam-smoothing. Since residuals at larger scales are
for most purposes more harmful than sub-beam residuals on the
map, we conclude that it is better to choose a somewhat longer
baseline than what would minimize the residual map rms.

6.6. Angular power spectra of map residuals

Since we are considering full-sky maps, their angular power
spectra CXY


 can be calculated directly from them (we used
anafast of the HEALPix package).

We plot the angular power spectra of the residual maps in
Figs. 33 and 34 for different baseline lengths. It is clear that base-
lines shorter than tbase = 10 s, lead to more large scale structure
in the residuals. Long baselines lead to a high-
 tail in the resid-
ual that appears much like white noise (flat C
).

In Figs. 35 and 36 we show angular power spectra CTT



and CEE

 of different map components for the cases tbase = 1 h,

1 min, 15 s, and 5 s.
For baselines that are multiples of the spin period (1 min

and 1 h) we see the characteristic even-odd variation in the C


of the baseline components. If the scanning circles had the full
90◦ radius, they would contribute only to the even multipoles.
In our case the circle radius is 87.77◦ = 90◦−2.23◦, and there-
fore we see a beat pattern, where the maximum even-odd multi-
pole difference occurs at multipoles 
 that are near multiples of
90◦/2.23◦ = 40.4. For the low 
 of the unmodeled 1/ f contribu-
tion we see the opposite pattern, since the unmodeled 1/ f con-
tains mostly frequencies which vary just over those timescales
over which the baseline contributions are constant.

The angular power spectrum of full-circle uncorrelated base-
lines goes as

C
 ∝ 1
2
 + 1

, (87)

(Eftstathiou 2005). Therefore we have plotted (2
 + 1)C
/π in
Figs. 35 and 36. We see that Eq. (87) indeed holds well for
white noise reference baselines; even for tbase � 1/ fspin, al-
though these have less power at the lowest 
. Although the un-
modeled 1/ f contribution does not consist of constant baselines,
the correlations of the parts between different baseline segments
are weak (nonexistent for tbase � 1/ fspin). Therefore Eq. (87)
holds fairly well for the unmodeled 1/ f also; except at low 
 for
short baselines, where there is a lack of power since the unmod-
eled 1/ f varies more rapidly along the scan path; and for high 

for tbase 
 1/ fspin, which have excess power at high 
, related to
imperfect superposition of the different scan circles of the same
ring, mainly due to nutation.

The other contributions have different angular scale depen-
dencies, related to the correlations between baselines. We see
that the baseline error components have steeper spectra than the
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Fig. 33. Angular power spectra of the residual temperature maps for
different baseline lengths: 1 h (black), 4 min (blue dashed), 1 min (light
blue), 30 s (light green), 15 s (green), 7.5 s (pink), and 5 s (red dashed).
The black horizontal line is the white noise level and the black dot-
dashed line is the theoretical CMB input spectrum smoothed with the
beam and pixel window functions. Top: residual map including white
noise, mout − Bs. Bottom: residual map mout − Bs − Bw (binned white
noise subtracted).

reference baseline and unmodeled 1/ f contributions. This makes
them important at large scales (low multipoles), where they are
comparable or even stronger than the white noise reference base-
line and unmodeled 1/ f components, which dominate at high 

and contribute most to the residual map rms. If one considers
just the signal baselines, the baseline error completely dominates
over the reference baselines for short tbase and low 
.

For long baselines (∼1 min or longer), the unmodeled
1/ f noise dominates the residuals for 
 > 10, but the 1/ f base-
line error contribution can be comparable for 
 < 10. For shorter
baselines, the white noise baselines become more important.

The CBB

 spectra of different residual components look qual-

itatively like CEE

 , except for the signal baseline components,

which have less power, reflecting the lack of B-mode signal in
the input. Therefore we have not plotted the CBB


 spectra, except
for these signal baseline components, which we have included
in Fig. 36 along with the CEE


 spectra.

Fig. 34. Same as Fig. 33 bottom panel, but for the polarization E and
B mode spectra.

Because of large 
-to-
 variations in the residual C
, these
plots are difficult to read. Therefore we also plot (Fig. 37) square
roots of the cumulative angular power spectra,√√√


∑

′=1

2
′ + 1
4π

CTT

′ ,

√√√

∑


′=2

2
′ + 1
4π

(
CEE

′ +CBB


′
)
, (88)

which give the total contribution to the residual I and P map rms
from multipoles up to 
, and√√√


∑

′=2

2
′ + 1
4π

∣∣∣CT E

′
∣∣∣. (89)

The beam fwhm θ = 12.68′ corresponds to multipole 
 =
180◦/θ ∼ 850, so we are more concerned about the behavior
up to this 
 than above it.

Figure 37 provides probably the most concise meaningful
comparison of the quality of maps vs. baseline length. The tbase =
15 s case appears the best in terms of cumulative residual power
in the map for the relevant multipoles. Although tbase = 10 s pro-
duces a smaller residual map rms, it is only because of its small
sub-beam-scale residuals. Interestingly, the tbase = 1 h base-
line seems to be the best for minimizing residual temperature-
polarization correlations at intermediate scales. It is also better
overall than the tbase = 1 min and 4 min cases for 
 < 300.
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Fig. 35. Angular temperature power spectra CT T

 of different map com-

ponents for four different baseline lengths: 1 h (top panel), 1 min, 15 s,
and 5 s (bottom panel). Solid black: residual map (with binned white
noise subtracted). This can be split into the following six components:
red dashed: unmodeled 1/ f noise. Pink: additional effect of 1/ f base-
line error. Blue dashed: white noise reference baselines. Light blue:
white noise baseline error. Green dashed: reference baselines of pix-
elization noise. Light green: additional effect of signal baseline error.
The smooth black curve is the white noise level.

Fig. 36. Same as Fig. 35 but for the E mode polarization spectrum CEE

 .

We also show the two signal baseline contributions of the B mode polar-
ization spectrum CBB


 . They are the lower blue curves: blue: reference
baselines of pixelization noise. Light blue: additional effect of signal
baseline error.
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Fig. 37. Square roots of the cumulative angular power spectra (see
Eqs. (88) and (89)) for the residual temperature (top panel) and po-
larization (middle) maps and T E correlation (bottom), up to a given
multipole 
, plotted as a function of 
 for different baseline lengths: 1 h
(black), 4 min (blue dashed), 1 min (light blue), 30 s (light green), 15 s
(green), 10 s (green dashed), 7.5 s (pink), and 5 s (red dashed). The
black dot-dashed line corresponds to the theoretical input CMB spec-
trum. The dotted line is calculated from the binned white noise map.

If one is only interested in large-scale features (low 
) there
are no big differences between any of the baseline lengths from
15 s to 1 h, but 10 s or less should be avoided. For the low-
est multipoles there is some randomness in the results, since we
studied only one noise realization, so one should not try to draw

conclusions from the small differences seen there for tbase = 15 s
to 1 h. (The noise residuals, for the cases tbase = 1 min and
tbase = 1.25 s with noise prior, have been studied via Monte Carlo
in Keskitalo et al. 2009.)

The signal baseline contributions appear a minor effect at
all scales. In this study the signal contained only the CMB.
In reality, the gradients in the signal are often dominated by
foregrounds, and therefore the signal baseline effect is larger.
Foreground signals are considered in Keihänen et al. (2009).
Foregrounds were also included in the map-making studies of
Ashdown et al. (2007b, 2009), and especially in the former there
was a detailed study on the signal baseline contribution and how
it could be minimized.

Map residuals influence the precision at which we are able
to determine the angular power spectrum of the CMB map.
We can subtract the expectation value of the C
 of the resid-
ual from the map spectrum, but individual realizations deviate
from this expectation value, leading to an error in the CMB C


estimate. A multipole 
 of a map has at best 2
 + 1 degrees
of freedom. Statistically isotropic signals (e.g. CMB or a white
noise map of uniform pixel variance) have these degrees of free-
dom. Deviations from the statistical isotropy may lead to corre-
lations in the m-modes of a multipole which in turn decreases
the degrees of freedom and therefore increase the error in C
.
Fortunately the strongest correlations of the map residuals occur
nearly along the ecliptic meridians. Correlations along meridi-
ans do not lead to correlations in the m-modes. Therefore we
can expect that the m-mode couplings due to map residuals are
weak and the excess spectrum error is small. For now, we did not
investigate these errors any further, but decided to leave this for
future studies.

6.7. Low multipoles of I, Q, and U maps

For cosmological purposes, one calculates the CTT

 , CT E


 , CEE

 ,

and CBB

 angular power spectra of the output maps, which repre-

sent the fundamental properties of the temperature and polariza-
tion field, and are coordinate independent. However, for analyz-
ing residual map structure, it may be more intuitive to consider
the Q and U maps as two separate maps of a scalar quantity, and
calculate their ordinary (spin-0) angular power spectra.

The Q and U are given in terms of the aE

m and aB


m as
(Zaldarriaga & Seljak 1997)

Q + iU = −
∑(

aE

m + iaB


m

)
2Ym


 , (90)

where the

2Ym

 (θ, φ) ≡

√
2
 + 1

4π
eimφd
m,−2(θ) (91)

are the spin-2 spherical harmonics (Newman & Penrose 1966;
Goldberg et al. 1967) and the d
m,m′(θ) are the Wigner d-functions
(we follow Varshalovich et al. 1988), which are real.

Thus the monopoles Q̄ and Ū of the Q and U maps are
given by

Q̄ + iŪ = −
∑(

aE

m + iaB


m

)
2Ȳm


 , (92)

where

2Ȳm

 ≡

1
4π

∫
2Ym


 (θ, φ)dΩ

= δm0

√
2
 + 1
16π

∫ π

0
d
0,−2(θ) sin θdθ, (93)
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Fig. 38. Effect of destriping on the low multipoles of I (blue), Q (red),
and U (green) maps. The solid lines give the multipoles of the binned
signal (CMB) map, where the monopoles of I and U, and the dipole of
I should ideally vanish in our case. The dashed lines are for the naive
binned map including the noise, and the dot-dashed lines are for the
destriped (tbase = 1 min) map. The dotted lines are for the binned white
noise map. The horizontal black lines give the expected white noise
levels.

which are real. Thus the Q and U monopoles are

Q̄ = −
∑



aE

0 2Ȳ0


 and Ū = −
∑



aB

0 2Ȳ0


 . (94)

Since in our case the input spectrum contained no B mode, the
monopole vanishes in the input U map.

Figure 38 illustrates the effect of destriping on the I, Q, and
U maps. Destriping is not able to remove the noise monopole
of the I map (the monopole does change but does not become
small), but the noise monopoles of Q and U maps are removed,
about equally well as the other low multipoles.

The low multipoles of the residual maps are shown in
Fig. 39, divided by the white noise level. We see that the resid-
uals at lowest multipoles are larger than the white noise level.
The baseline length does not make a large difference for these
low multipoles, except that too short baselines (less than 15 s,
not included in Fig. 39) should be avoided.

7. Effect of noise knee frequency

The importance of the correlated 1/ f noise depends on its am-
plitude and spectrum. In this paper we do not consider the effect
of possible spectral features in the noise, and we have parameter-
ized the noise just by the 1/ f slope −α, knee frequency fk, and
white noise level. Since we produced the simulated 1/ f noise
separately from the white noise, we can change fk simply by
multiplying the 1/ f part by

r1→2 =

(
fk,2
fk,1

)α/2
· (95)

This will change the residual 1/ f contribution to the residual
map by the same factor, while the white noise baseline and sig-
nal baseline contributions are unaffected (unless one changes to
a different tbase). For angular power spectra the 1/ f contribu-
tions are rescaled by the square of this factor. See Fig. 40, where
we have plotted the residual map rms as a function of tbase for
fk = 100 mHz and 25 mHz, besides the case of fk = 50 mHz,

Fig. 39. The I, Q, and U low multipoles of the residual maps (with
binned white noise subtracted) for different baseline lengths: 1 h
(black), 4 min (blue), 1 min (light blue), 30 s (light green), and 15 s
(dark green). For this plot they are divided by the white noise level. The
top panel shows I, the bottom panel Q (solid) and U (dashed).
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Fig. 40. Effect of knee frequency on the residual noise in the I map.

which we have so far considered. A higher fk favors shorter base-
lines, since the stronger 1/ f noise at relatively high frequen-
cies needs to be modeled better. Reducing the amount of cor-
related noise (and hence the knee frequency) causes the white
noise baseline contribution to exceed residual 1/ f contribution
at longer baselines. Therefore a lower fk favors longer baselines,
as the white noise and signal baselines are relatively more im-
portant. For fk ∼ 10 mHz the minimum rms would move to
tbase ∼ 1 min.
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Fig. 41. Same as Fig. 39, but for a lower knee frequency fk = 25 mHz
(and a smaller selection of baseline lengths).

In Fig. 40 we show also the rms of the binned 1/ f noise map.
As we lower fk it moves down. For very small fk it would fall
below the white noise baseline rms. At this point simple binning
would produce a better result than destriping. For our simulated
1/ f noise, and for long baselines, this would happen at the ex-
tremely low fk = 21.6 μHz. It should be noted however, that in
our case the binned 1/ f rms is heavily dominated by the lowest
frequencies, and in other cases (smaller slope α, larger fmin) the
relevant 1/ f rms could be smaller for a given fk, so that simple
binning could become superior already at a higher fk.

In Fig. 41 we show the low multipoles of the residual I, Q,
and U maps recalculated for fk = 25 mHz.

8. Effect of noise prior

Although short baselines can potentially model correlated noise
better, they fail because of the large random amplitudes they pick
from white noise. This can be remedied by applying prior infor-
mation on the noise spectrum to prevent too large differences
between amplitudes of nearby baselines. This is discussed in de-
tail in Keihänen at al. (2009), but we give a short preview of the
results here. See Figs. 42−44. The noise prior has little effect for
tbase 
 1/ fk, but for short baselines the effect is dramatic. We
note that now the results keep improving as the baseline is short-
ened, at least until tbase = 2.5 s, the shortest we tried. (Using
very short baselines with the noise prior makes the code more
resource intensive.) For the very lowest multipoles, the results
with the short baselines do not, however, become much better
than the ones obtained with longer baselines (with or without
noise filter). Compare Figs. 44 to 39 and 41.

Fig. 42. Same as the bottom panel of Fig. 25, but the solid lines cor-
respond to using a noise prior. The dashed lines are from Fig. 25, and
correspond to the case without noise prior. Black lines show the rms of
the residual I map without the binned white noise component. Red is
for the unmodeled 1/ f map, blue for the white noise baseline map, and
green for the signal baseline map. The noise prior has practically no
effect for tbase ≥ 1 min.

Fig. 43. Same as top panel of Fig. 37 but for the case of using the noise
prior. The colors and linestyles are the same as in Fig. 37, except we
have added the tbase = 2.5 s case (solid red), which is the lowest curve.

9. Maps from shorter survey segments

We now consider making maps from a shorter time segment of
the data. In a full year of observations, for a Planck-like scan-
ning strategy, all parts of the sky are looked at two different sea-
sons. About 7 months is needed to observe the full sky. Maps
from a shorter segment cover just a part of the sky.

When maps are made from a shorter observation period, the
number of crossing points is reduced and their pattern is differ-
ent. Destriping 7 months of data differs qualitatively from the
case of a full year, since for a large part of the sky the second-
season observations are missing. We expect the loss of the cor-
responding crossing points to result in a loss of output map qual-
ity due to larger baseline errors. Destriping relies then more on
the crossing points which are near the ecliptic poles. When the
observation period is shortened further, only part of the sky is
covered. Since the crossing point structure is not necessarily
changed qualitatively, we expect the map quality to worsen more
slowly as a function of survey duration. Because of the cycloidal

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912361&pdf_id=41
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Fig. 44. Same as Fig. 39, but with the noise prior, and using a short
baseline tbase = 2.5 s. The Stokes parameters are now indicated by the
colors: blue for I, red for Q, and green for U. The solid lines are for
fk = 50 mHz, and the dashed lines for fk = 25 mHz.

Fig. 45. Same as the bottom panel of Fig. 25, but now we have included
results from 7-month (dashed) and 1-month (dot-dashed) survey seg-
ments also. The 1-month results show averages from all 12 months of
the survey.

scanning strategy, the crossing point structure, however, changes
with a 6-month period, so it will be different for different weeks
or months.

In Fig. 45 we show the residual I map rms as a function of
tbase for 1-month, 7-month, and 1-year surveys. The results for
the Q and U maps look qualitatively the same, except that the
signal baseline contribution is, of course, much lower. We have
excluded all pixels with rcond ≤ 0.4 or nhit ≤ 400 from the
residual maps.

There are basically two kinds of effects contributing to these
results. The more trivial effect is that of the lower hit count. The
average number of hits per pixel in the 7-month survey is 7/12 of
that of the full-year survey, so we expect that alone to increase
the residual map rms by a factor of

√
12/7 = 1.31. This, indeed,

accounts for most of the change in the unmodeled 1/ f contribu-
tion to the residual map rms. When the survey segment is short-
ened below 7 months, the number of included pixels falls almost
in line with the number of samples, so the hit count per pixel
stays now roughly constant, and there is not much additional ef-
fect when going from 7 months to 1 month.

The other effect is that of the change in the pattern of cross-
ing points on solving the baselines. This shows clearly in the

Fig. 46. Linear hit maps near the ecliptic North Pole for the one-month
surveys corresponding to the first (left) and second (right) month of the
full year survey.

white noise baseline and signal baseline contributions, where
baseline errors were important already for the full 1-year survey.
Here the change from 7 months to 1 month brings also a signifi-
cant change. A closer inspection of the different months reveals,
however, that it is only some of the months that are clearly worse
than the 7-month case.

The first and the second month represent the two extreme
cases. See Fig. 46. Note how different is the structure of cross-
ing points between these two months. The same happens near
the South Pole. For the first month we are close to the situation
where all scanning circles cross each other at the same pixel.
The effect of this is the most striking for the signal baseline
component, for which it couples to the signal gradients in those
few pixels where the circles cross and the pattern of hits within
those pixels. In the second month the crossings are spread over
a wide arc.

To study the effect of the length of the survey segment, and
also its timewise location with respect to the cycloid, we fixed
the baseline length to tbase = 1 min, and considered survey seg-
ments of 1, 2, 4, 6, 8, 10, 16, 24, 32, 40, 48, 64, 128, 256, and
366 days. We also considered the effect of extending the mission
to 488 days (16 months). Moreover, for each survey segment
length (except the 16 month one) we considered three differ-
ent starting points for the segment. To separate the effect of the
change in hit count from the effect of crossing point structure on
solving baselines, we plot first the rms of the binned white noise
map, which has only the first effect, in Fig. 47.

The binned white noise map rms is given by σ〈n−1
hit〉1/2, cal-

culated over the included pixels. Thus it falls and rises in inverse
relation to the mean hit count. In Fig. 47 we see it first falling,
since additional rings partially overlap preceding rings and thus
do not bring in new pixels to the map as fast as new samples ac-
cumulate. The rms begins to rise after the first three months since
the cycloidal scanning strategy brings then the satellite spin axis
south of the ecliptic, where the spin axis repointing step is larger,
causing new pixels to be added to the map at a faster rate than
when the spin axis was north of the ecliptic. After a little over
half a year, the whole sky is covered, and new samples just in-
crease the hit count causing the rms to fall.

To see the second effect, we consider the ratio of the resid-
ual map rms to the rms of the binned white noise map from the
same data. This tells us how well we are doing compared to the
white noise level. See Fig. 48. We see that for all three start-
ing points, the relative map quality consistently improves after
128 days with further increase in the survey length up to a full
year. The relative quality (with respect to binned white noise) of
the 16-month map is the same as the 12-month map.
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Fig. 47. Binned white noise map rms as a function of survey length
for tbase = 1 min. Three different starting points were considered: from
the beginning of the simulated mission (solid), starting 30 days later
(dashed), and starting 61 days later (dot-dashed). The black lines are
for the Stokes I map, red for Q, and green for U.

For shorter survey pieces the behavior as a function of sur-
vey length depends on the starting point. For Q and U, short
segments, 10 days or less, are clearly much worse than longer
ones. For the I map, the relative quality in some cases worsens
with time up to about 40 days. This is related to the changing
pattern of crossing points in the cycloidal strategy. For some
periods of time the pattern is more ill-conditioned and adding
data from such a period to another short period makes things
worse rather than better. From Fig. 49 we can conclude that one
such period is somewhere between days 1 and 24 and another
somewhere between days 70 and 101 of the simulated mission,
since the residual I map rms is increasing during those periods.
These coincide with the times when the cycloidal scanning strat-
egy is producing a clustering of crossing points of nearby scan-
ning rings at the corners of caustics around ecliptic poles. The
baselines can be better solved from a more widely distributed
set of crossing points (Wright 1996). We can see from Fig. 48,
that the unmodeled 1/ f and reference baseline contributions stay
relatively constant, so the variation indeed comes from baseline
error.

10. Conclusions

We have described our destriping map-making method
(Polar/Madam) for CMB surveys. The method has a parame-
ter, the baseline length tbase, that affects the performance of the
method. With long baselines, the Madam code is faster and re-
quires less computer memory. The computer time and memory
requirements of the code are discussed in Ashdown et al. (2009),
where it is compared to other codes and methods.

Here we have done a detailed analysis of the residual errors
in maps produced with the method. In this paper we concen-
trated on destriping without a noise prior. For short baselines
the results can be improved by utilizing prior information on the
noise spectrum. This will be described in (Keihänen et al. 2009).

We have divided the destriping residuals into six compo-
nents. Three of them, white noise reference baselines, unmod-
eled 1/ f noise, and pixelization noise reference baselines, are
easy to estimate analytically from the noise power spectrum
and the signal angular power spectrum. In the map domain the
baseline components appear as a superposition of thin constant

Fig. 48. Ratio of the residual map rms to the binned white noise map
rms (see Fig. 47) as a function of survey length for tbase = 1 min. The
black line is for the full residual (excluding binned white noise), blue
for the white noise baseline map, red for residual 1/ f , and green for
signal baseline map. We show also separately the reference baseline
contributions (dashed). The top panel is for the Stokes parameter I, the
bottom panel for Q. Results for U are qualitatively the same as for Q.
For Q, the signal baseline component is plotted multiplied by a factor
of 100 also (dotted).

Fig. 49. The top panel of Fig. 48 replotted so that the horizontal axis
corresponds to the distance of the end of the included data from the
beginning of the simulated mission, so only for the case of the first
starting point does it correspond to the length of the data used.

stripes of length θbase, whereas the unmodeled 1/ f noise varies
along such stripes with a period comparable to θbase.
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The three other components are related to how accurately
baselines can be solved from crossing points, and depend on
the scanning strategy. These baseline error components are min-
imized when there are very many crossing points widely dis-
tributed. Especially when making partial sky maps from short
survey segments around a time when ring crossings cluster in
the same small region of the sky these errors may blow up. Since
the baseline errors are correlated over long time scales, they pro-
duce wide bands in the map domain and are important for low
multipoles.

The relevance of this analysis is that it guides us in what
kind of noise residuals to expect in the maps for given detec-
tor noise spectra, and what baseline length to use in destriping
map-making.

For long surveys, with a good distribution of crossing points,
the dominant residual error components are the white noise base-
lines and unmodeled 1/ f noise. Their combined effect can be
minimized, when the baseline length is chosen according to
Eqs. (58) or (60), which put it close to tbase ≈ 1/(2 fk), where fk
is the knee frequency of the noise. Because of the other error
components, one should choose a somewhat longer baseline than
this. (When a noise prior is used, shorter baselines are better.)

For a Planck-like scanning strategy, where the same cir-
cle of the sky is observed many times, the difference between
baseline lengths from the spin period to the repointing period is
mainly due to nutation, and is small when the nutation is small
compared to the map pixel size. If the knee frequency is com-
parable to, or smaller than, the spin frequency, then the baseline
length should be chosen from this range, if no noise prior is used.
For a higher knee frequency the residual errors are larger, and a
shorter baseline is better.
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