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ABSTRACT

MADAM is a CMB map-making code, designed to make temperature and polarization maps of time-ordered data of total power
experiments like Planck. The algorithm is based on the destriping technique, but it also makes use of known noise properties in the
form of a noise prior. The method in its early form was presented in an earlier work by Keihänen et al. (2005, MNRAS, 360, 390). In
this paper we present an update of the method, extended to non-averaged data, and include polarization. In this method the baseline
length is a freely adjustable parameter, and destriping can be performed at a different map resolution than that of the final maps. We
show results obtained with simulated data. This study is related to Planck LFI activities.
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1. Introduction

MADAM is a map-making code, designed to build full-sky maps
of the cosmic microwave background (CMB) anisotropy. The
code was developed for the Planck satellite, but is applicable
to any total power CMB experiment. The code takes as input
the time-ordered data (TOD) stream, together with pointing in-
formation, and produces full-sky maps of CMB temperature and
polarization.

Planck data is contaminated by slowly-varying 1/ f noise,
which must be removed in the map-making process. The
MADAM algorithm is based on the destriping technique
(Burigana et al. 1997; Delabrouille 1998; Maino et al. 1999,
2002; Keihänen et al. 2004), where the correlated noise com-
ponent is modelled by a linear combination of some base func-
tions. Unlike conventional destriping, MADAM also makes use
of a priori information on the noise spectrum. A similar method
has recently been implemented by Sutton et al. (2009).

The MADAM map-making algorithm was first introduced by
Keihänen et al. (2005). Since then, the code has undergone sig-
nificant development. In the first paper, we applied the code to
coadded data, where data was averaged over the 60 scanning cir-
cles of the same “ring”, i.e., the data segment between two satel-
lite spin repointings, to reduce the data volume. The 60 scan-
ning circles were assumed to fall exactly on top of each other.
Improved computational resources now allow us to apply the
method to non-averaged data. Averaging the data reduced the
data volume by a large factor. On the other hand, not averaging
the data simplifies the analysis. It also lifts one non-realistic sim-
plification, since the subsequent scanning circles do no coincide
exactly in reality.

In the first paper we considered only total intensity maps. In
this study we also consider polarization.

When dealing with ring-averaged data, it was natural to use
the scanning ring length as a basic length unit. In the first paper
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Fig. 1. Time-ordered data. We show a 5-min excerpt of simulated 1/ f
noise, fitted with 1 min, 10 s, or 0.625 s baselines (black, purple, blue,
respectively). We show also the signal TOD (red). The vertical dotted
lines mark the beginning and end of 1 min scanning periods.

we fitted different base functions (Fourier components, Legendre
functions) to rings. In this study we abandon the concept of
“ring”, and make no assumptions on the scanning pattern. In
this approach it is a natural choice to fit the data with uniform
baselines only, but to vary their length. This also simplifies the
method.

Though the algorithm makes no assumptions on the scanning
pattern, the actual pattern will have an impact on the choice of
the optimal baseline length.
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We plot in Fig. 1 a 5-min excerpt of simulated 1/ f noise. We
show also 1 min, 10 s, and 0.625 s baselines fitted to the noise
stream. Short baselines naturally follow the actual noise stream
more closely. We show in the same figure also the signal TOD.

The signal shows a clear periodicity, following the 1 min
scanning period. The strong peaks in the signal are the galaxy.
The signal plotted here includes CMB and foreground, but no
dipole. The total observed TOD is a sum of the signal, 1/ f noise
with a knee frequency of 50 mHz, and white noise with a stan-
dard deviation of σ = 2.7 mK. We do not plot the white noise
component, which would obscure the figure.

In this paper we present results obtained with simulated
data. We demonstrate how changing various input parameters in
MADAM affects the quality of the output maps. The most impor-
tant input parameters are the baseline length and the destriping
resolution.

Since the purpose of this study is to present one map-
making method, rather than to demonstrate the performance of
the Planck experiment, we have ignored some systematic ef-
fects that are present in realistic data, but which MADAM does
not attempt to correct for. These effects include pointing errors,
asymmetric beams and finite integration time. Their impact on
the accuracy of CMB maps has been discussed in several papers
(Poutanen et al. 2006; Ashdown et al. 2007a,b, 2009).

2. Map-making problem

In the following we go through the maximum-likelihood analy-
sis on which our map-making method is based. Essentially the
same analysis was presented by Keihänen et al. (2005), but we
repeat it here for the sake of self-consistency, in a somewhat
more concise form. We widen the interpretation of various ma-
trices to include polarization, and extend the results to a case
where the final map is constructed at a resolution different from
the destriping resolution.

We write the time-ordered data (TOD) stream as

y = Pm+ n′. (1)

Here the first term presents the CMB signal and the sec-
ond term presents noise. Vector m presents the pixelized
CMB+foreground map, and pointing matrix P spreads it into
TOD. P is a matrix of size (Nt, 3Npix), where Nt is the length of
the TOD vector. If the analysis includes several detectors, they
can be thought as catenated into one vector.

Since we are including polarization, map m is an object of
3Npix elements, where Npix is the number of sky pixels. In each
pixel, the map consists of three values, corresponding to the
three Stokes parameters I, Q, U. The observed signal can be
written as

yt = It + Qt cos(2ψt) + Ut sin(2ψt). (2)

Here ψ is the orientation of polarization sensitivity, depen-
dent both on the momentary orientation of the spacecraft, and
on the detector’s orientation on the focal plane. The factors
1, cos(2ψt), sin(2ψt) constitute the pointing matrix P. If the de-
tector is not polarization sensitive, the cosine and sine terms are
dropped.

We divide the noise contribution into a correlated noise com-
ponent and white noise, and model the correlated part as a se-
quence of uniform baselines,

n′ = Fa + n. (3)

Vector a contains the unknown amplitudes of the baselines, and
matrix F spreads them into TOD. Matrix F consists of zeroes
and ones, indicating which samples belong to which baseline.

Assuming that the white noise component and the correlated
noise component are independent, the total noise covariance in
time domain is given by

Ct = 〈n′(n′)T 〉 = FCaFT + Cn (4)

where Cn = 〈nnT 〉 is the white noise covariance, Ca = 〈aaT 〉
is the covariance matrix for the baseline amplitudes a, and 〈x〉
denotes the expectation value of quantity x.

Maximum likelihood analysis yields the chi-square mini-
mization function

χ2 = (y − Fa − Pm)T C−1
n (y − Fa − Pm)

+aT C−1
a a. (5)

We want to minimize (5) with respect to both a and m.
Minimization with respect to m gives

m = (PT C−1
n P)−1PT C−1

n (y − Fa) · (6)

Substituting Eq. (6) back into Eq. (5) and minimizing with re-
spect to a, we obtain an estimate for the amplitude vector a. The
solution is given by

(FT C−1
n ZF + C−1

a )a = FT C−1
n Zy (7)

where

Z = I − P(PT C−1
n P)−1PT C−1

n . (8)

A similar analysis without the noise covariance term Ca was pre-
sented by Kurki-Suonio et al. (2009), along with an extensive
discussion of the properties of the various matrices involved.

In some situations it is beneficial to solve the baselines
at a resolution different from the resolution of the final map.
Particularly, a strong signal error caused by a strong foreground
signal can be reduced by destriping at a high resolution. Signal
error is discussed in Sect. 6. We now extend our analysis to a
case where the two resolutions are different.

Matrix P depends on resolution. We define two different
pointing matrices: matrix Pc is constructed at the destriping res-
olution and matrix Pm at the map resolution.

We estimate the baseline amplitudes by solving vector a
from Eq. (7), where now

Z = I − Pc(PT C−1
n Pc)−1PT

c C−1
n . (9)

The final map is then constructed by binning the cleaned TOD
into a map at a different resolution as

m = (PT
mC−1

n Pm)−1PT
mC−1

n (y − Fa). (10)

Strictly speaking, separating the two pointing matrices breaks
the maximum likelihood analysis presented above, in the sense
that the map constructed through Eqs. (7), (9), and (10) is not
the solution of any maximum likelihood problem. In practice,
the division works well and is intuitive.

We define two other maps, which are useful for further anal-
ysis, and are products of the MADAM code. The binned map is
constructed without baseline extraction as

(PT
mC−1

n Pm)−1PT
mC−1

n y, (11)

and is useful in signal-only simulations. The sum map

PT
mC−1

n (y − Fa) (12)

is useful in the case of incomplete sky coverage, since it is
well-defined also in pixels with poor sampling of polarization
directions.
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3. Noise prior

We consider now the statistical properties of the correlated noise
component, assumed to be stationary, and derive a formula for
the noise prior Ca. In the first paper (Keihänen et al. 2005) we
presented a method for the computation of the noise prior for a
general baseline function. In the case of uniform baselines, the
covariance can be constructed by a simpler method as follows.

Let c(t) denote the auto-covariance function of the time-
ordered noise stream. That is, the expectation value of the prod-
uct of two samples of the noise stream, time t apart, is given by

c(t) = 〈y(t0)y(t0 + t)〉. (13)

The auto-covariance may be expressed as a Fourier transform of
the noise spectrum as

c(t) =
∫ ∞

−∞
P( f )ei2π f td f (14)

This sets the normalization convention applied in this paper.
We assume that the spectrum P( f ) is known. We study now

the covariance between two baselines of length T . We define the
reference value for a baseline offset, extending from time t to
time t + T , as an average of the noise stream,

â(t) =
1
T

∫ t+T

t
y(t′)dt′. (15)

We calculate the noise prior Ca as the covariance matrix between
these reference values.

Consider a sequence of baselines, starting at times t = t0, t =
t0 + T, t = t0 + 2T . . . The correlation between the two baselines
only depends on their distance. We denote by ca(k) any of the
elements of Ca on the k:th diagonal. We may write

ca(k) = 〈â(t)â(t + kT )〉. (16)

We need the inverse of matrix Ca, which appears in the destrip-
ing Eq. (7). The inverse is computed most effectively by the
Fourier technique. We thus actually need the spectrum of the
reference baselines, defined as

Pa( f ) =
∞∑

k=−∞
ca(k)e−i2πk f T . (17)

We now want to find a relation between Pa( f ) and P( f ). Using
the definition of â we write

ca(k) =
1

T 2

∫ T

0
dt

∫ T

0
dt′〈y(t0 + t)y(t0 + kT + t′)〉, (18)

which can be written in terms of the auto-covariance function
c(t) as

ca(k) =
1

T 2

∫ T

0

∫ T

0
dtdt′c(kT + t′ − t). (19)

We further express this in terms of the noise spectrum,

ca(k) =
1

T 2

∫ T

0

∫ T

0
dtdt′

∫ ∞

−∞
P( f )ei2π f (kT+t′−t)d f . (20)

The integrals over t and t′ can be carried out analytically,
yielding

ca(k) =
∫ ∞

−∞
P( f )ei2πk f T d f

1
(2π f T )2

(2 − 2 cos(2π f T )). (21)

We can now write out the baseline spectrum as

Pa( f ) =
∞∑

k=−∞

∫ ∞

−∞
P( f ′)ei2πk( f ′− f )T d f ′

2 − 2 cos(2π f ′T )
(2π f ′T )2

· (22)

The sum over k yields zero unless f − f ′ is a multiple of 1/T , in
which case it gives infinity. We may write, in terms of the delta
function,

∞∑
k=−∞

ei2πk( f ′− f )T =
1
T

∑
m

[δ( f ′ − f − m/T )]. (23)

Substituting this into (22) gives

Pa( f ) =
1
T

∞∑
m=−∞

P( f + m/T )
(2 − 2 cos(2π f T ))

(2π( f T + m))2
· (24)

To put this into a slightly more elegant form we use the formula
cos(2x) = 1 − 2 sin2 x and define

g(x) =
1

(πx)2
sin2(πx). (25)

The spectrum of the reference baselines can now be written in
the final form as

Pa( f ) =
1
T

∞∑
m=−∞

P( f + m/T )g( f T + m). (26)

If the noise spectrum decreases steeply with frequency, as is the
case with 1/ f noise, it is enough to evaluate only a few terms
around m = 0.

Once the spectrum (26) is known, it is straightforward to
compute the term Caa, needed in the evaluation of Eq. (7), for
an arbitrary baseline vector a, using the Fourier technique.

4. Implementation

MADAM is written in Fortran-90 and parallelized by MPI.
The code takes as an input the time-ordered data stream

(TOD) for one or several detectors, and pointing information,
which consists of three pointing angles θ, φ, ψ for each TOD
sample. Angles θ and φ define a point on the celestial sphere,
while ψ defines the orientation of the polarization sensitivity.
Alternatively, MADAM may construct the pointing angles from
satellite pointing data, using the known focal plane geometry.

The noise prior is constructed from a noise spectrum given
as input. MADAM does not make noise estimation herself. If the
noise spectrum is unknown, the user may optionally turn off
the noise prior, in which case MADAM becomes a traditional
destriper.

As output, the code produces full-sky maps of intensity
and Q and U polarization. As additional information, the code
may be set to output matrix (Pm

T C−1
n Pm), a hit count map, a sum

map and a binned map, and in case of incomplete sky coverage,
a sky mask. The code can also store the solved baseline offsets.

4.1. Solving the baselines

Matrices F and P, appearing in the destriping Eq. (7), are
very large, but sparse. MADAM solves the baseline offsets from
Eq. (7) by the conjugate gradient technique (CG), which is a
standard technique for solving sparse linear systems, (see, for
instance, Press et al. 1992). MADAM stores only the non-zero

Page 3 of 14



A&A 510, A57 (2010)

0 10 20 30 40 50 60
1.5

2

2.5

3

3.5

4

4.5

time (s)

si
gn

al
 [m

K
]

Fig. 2. Recovered 1/ f noise. We show a one minute excerpt of simu-
lated 1/ f noise (green), fitted with 0.625 s baselines (48 samples). The
blue curve shows the reference baselines. The gray curve shows the
combined 1/ f +white noise timeline, averaged over the baseline pe-
riod. The red curve above shows the baselines recovered by MADAM.
There is an offset between recovered and actual noise, due to the fact
that destriping cannot determine the mean of the noise stream. To help
the comparison, we show by red dashed line the recovered noise stream
lowered by 1 mK.

elements of the sparse matrices, and performs the matrix manip-
ulations algorithmically.

The required number of iteration steps typically varies in the
range of 15–100, depending on the baseline length and other in-
put parameters. Once the baselines are solved, the final map is
constructed by a binning operation defined by Eq. (10). We re-
fer to these computation phases as the destriping phase and the
binning phase.

We show in Fig. 2 a one-minute excerpt of simulated 1/ f
noise, together with the corresponding component recovered
by MADAM. The recovered stream consists of baseline ampli-
tudes solved by the code. We show also the reference base-
lines, obtained by averaging the 1/ f noise over 0.625 s periods.
The reference baselines can be regarded as the goal of baseline
determination.

There is a global offset between the recovered and actual 1/ f
noise. This is due to the fact that destriping cannot distinguish
between a global offset in the observed signal due to 1/ f noise
and a similar offset due to a CMB monopole. In conventional
destriping (Burigana et al. 1997; Delabrouille 1998; Maino et al.
1999, 2002; Keihänen et al. 2004; Kurki-Suonio et al. 2009)
this manifests as a zero eigenvalue of the linear system to be
solved. When a noise prior is present, the linear system is math-
ematically well-conditioned, and all eigenvalues are positive, as
the prior forces the baseline average to zero. The actual noise
average, however, remains undetermined, as in conventional
destriping.

The sequence of solved baselines does not exactly follow
that of reference baselines, even if the global offset is subtracted.
This is due to the white noise component in the TOD, which
causes uncertainty in the determination of the baseline ampli-
tudes. The combined 1/ f +white noise curve, binned over the
baseline length, is shown Fig. 2 along with the recovered and
reference baselines.

4.2. Pixelization

The division into the destriping and binning phases is a char-
acteristic of the destriping technique. It opens interesting possi-
bilities for handling signal error, or gaps in the TOD. By signal
error we mean the error due to temperature variations within a
sky pixel.

Destriping and binning may be carried out at different resolu-
tions. MADAM makes use of the HEALPix pixelization1, where
the sky is divided into 12×nside2 equal-area pixels. The baseline
amplitudes are first solved at a destriping resolution, defined by
parameter nside_cross. The solved baselines are then subtracted
from the TOD, and the cleaned TOD is binned into a map at a
map resolution, defined by parameter nside_map, which may be
smaller or larger than nside_cross. We study the effect of varying
nside_cross in Sect. 8.

MADAM allows to exclude a part of the sky, for instance the
galaxy, defined by an input mask, in the destriping phase, while
including all pixels in the final map. This feature may be used
to reduce the effect of signal error, which for a large part comes
from the foreground-dominated parts of the sky. Signal error is
discussed in Sect. 6.

In our first paper (Keihänen et al. 2005) we considered only
temperature measurements. In that case it was possible to deter-
mine a temperature value for every sky pixel that is hit by any de-
tector at least once. An additional complication arises when po-
larization is involved. To accurately determine the three Stokes
parameters for all pixels, a sufficient coverage in polarization
angle is needed in every pixel. If that is not the case, the Stokes
parameters in a pixel become degenerate. This may happen for
instance, if a pixel is visited by only one Planck detector pair.
Such pixels may still be used for determination of the baseline
offsets. MADAM does this by dropping the (nearly) zero eigen-
values and the corresponding eigenvectors from the pixel matrix
in the destriping phase. In the binning phase the degenerate pix-
els must be excluded entirely.

4.3. Gaps

The division of noise into a white noise component and a cor-
related noise component offers a natural way of handling gaps
in TOD. By a gap we mean a sequence of samples which are
missing from the continuous TOD stream. The data may be cor-
rupted and useless for analysis, or missing entirely. If the data
sections on both sides of the gap are appended end-to-end, or
filled, gaps destroy the assumption of noise stationarity, which
leads to boundary effects around the gap. A more clever way
to handle gaps is to flag the corrupted samples, and to set the
variance of the white noise component to infinity for the flagged
samples. Remember that we assumed that the correlated noise
component is stationary, but we did not make the same assump-
tion for the white noise component. In practice this done by
pointing the flagged samples into a dummy pixel, which is ex-
cluded in matrix operations which involve picking a TOD from
a map. The flagged samples are effectively excluded from map-
making, while the correct statistical properties of the correlated
noise component are still preserved across the gap.

Two fundamentally different cases may be distinguished. If
a gap is longer than the chosen baseline length, some baselines
fall completely inside it. MADAM determines a constrained re-
alization of amplitudes also for these baselines, with the help of
the noise prior and the available data on both sides of the gap.

1 http://healpix.jpl.nasa.gov
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Fig. 3. Effect of gaps. We fit 0.625 s (48 samples) baselines to a re-
gion where part of the data is missing. We indicate the gaps by shading.
There is one wider gap (10 s), centered around t = 30 s, and 16 narrow
ones (12 samples). The thick blue curve shows the sequence of recov-
ered baselines in the case all data is there. The red curve shows the re-
covered baselines when the gaps are inserted. For comparison we show
(purple interrupted curve) a case where the data is appended end-to-end
and treated as continuous.

The baselines inside the gap do not contribute directly to the fi-
nal map, but they have an effect on the baselines solved on both
sides of the gap. If no noise prior is used, baseline amplitudes
become zero inside the gap.

If a gap is shorter than the baseline, some samples on the
baseline are missing, but the baseline amplitude may still be de-
termined based on the remaining samples, of course with less
accuracy.

We demonstrate this in Figs. 3 and 4. We have inserted one
“large” (10 s) gap and 16 small (12 samples, or 0.15 s) gaps. We
show the sequence of baselines in the case all data is there, and
in the case of gaps.

In Fig. 3 we show a one minute chunk of solved 0.625 s
baselines, with all the data present, or with gaps inserted. This
is the same data chunk as in Fig. 2. For comparison we also
show what happens if the data is appended end-to-end over the
gap. In the latter case, the discontinuity in data leads to a strong
boundary effect, which destroys the fit on both sides of the gap.
No such boundary effect is present when the gap is handled as
explained above.

In Fig. 4 we show a blow-up of the region where we have
inserted gaps shorter than the baseline. The effect is less dramatic
there.

4.4. Split-mode

Map-making with a short baseline requires a large run-time
memory. One way of reducing the memory requirement is the
split-mode. Data is split into small sections, each of which is de-
striped independently. Destriping in small pieces tends to leave
the lowest frequency component of each piece poorly deter-
mined, which shows as relative offsets in different parts of the
sky, when the data sections are combined into one map. We
therefore re-destripe the already cleaned TOD, this time simulta-
neously, but with a long baseline (typically 1 h). The total mem-
ory requirement in split-mode can be pushed significantly lower
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Fig. 4. Blow-up of the 3–12 s region of Fig. 3.

than in standard mode, at the cost of increased CPU time re-
quirement. Also the map quality suffers slightly as compared to
the standard mode.

4.5. Computational resources

The memory requirement of the code is in most cases dominated
by the storage of pointing information. Our simulation data set
contains 16 months of data for 4 detectors, at a sampling fre-
quency of 76.8 Hz. The pointing information for each sample
consists of a pixel number (4 bytes) and factors cos(2ψ) and
sin(2ψ) (4 bytes each). The pointing information for the whole
488-day data set takes 488× 24× 3600× 76.8× 4 bytes, 145 gi-
gabytes alltogether.

TOD is read into a buffer a small piece at a time, and binned
to form the right-hand-side of the destriping equation. Pointing
data instead, must all be kept in memory simultaneously.

When the baseline length exceeds the scanning period, sev-
eral samples on one baseline may fall on the same pixel. In
such a situation MADAM combines the samples to reduce the
memory requirement. The compression is lossless, i.e. the com-
pression has no effect on the output map, just on the resource
requirement. Compression reduces the memory requirement sig-
nificantly when using long baselines.

All our simulations were run on the Cray XT4/XT5 “Louhi”
system of CSC (IT Center for Science), Finland. We used
from 32 to 128 processors. The number of processors was se-
lected according to the memory requirement.

In Table 1 we list the computational resources for various
runs. In all the listed cases, we built intensity and polarization
maps of the full data set (488 days, 4 detectors at sampling fre-
quency of 76.8 Hz). We vary the baseline length and destriping
resolution. In the first column we show the parameter we have
varied, that is the baseline length, resolution in the destriping
phase, or the number of data chunks in split-mode. The other
columns show the number of conjugate-gradient iteration steps,
total memory usage, number of processors, and CPU time usage
as wall-clock time and as CPU hours.

The memory requirement depends strongly on the chosen
baseline length at long baselines (above 60 s) because the ef-
fectiveness of data compression strongly depends on how many
samples on a baseline fall on the same pixel.
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Table 1. Computational resources for various combinations of input pa-
rameters.

Varying baseline, noise prior OFF. Nside= 512
Baseline (s) Iter Mem (GB) Procs Time (s) CPUh

3600 17 7.1 32 340.6 3.03
600 17 19.1 32 287.5 2.56
60 17 89.1 128 125.3 4.46
10 30 89.8 128 147.2 5.23
2.5 87 92.3 128 184.8 6.57

1.25 131 95.5 128 267.0 9.49
Varying baseline, noise prior ON. Nside= 512
Baseline (s) Iter Mem (GB) Procs Time (s) CPUh

60 17 89.1 128 123.6 4.39
10 24 89.8 128 138.9 4.94
2.5 30 92.3 128 154.7 5.50

1.25 32 95.6 128 172.0 6.12
0.625 33 102.1 128 166.1 5.91
0.156 36 142.6 256 214.4 15.24

Varying destriping resolution
Baseline length 0.625 s, noise prior ON. Nside_map= 512.
Nside_cross Iter Mem (GB) Procs Time (s) CPUh

2048 35 124.7 256 390.9 27.80
1024 35 106.6 128 320.5 11.4
512 33 102.1 128 243.7 8.67
128 33 102.6 128 236.6 8.41

Split-mode
Baseline length 0.625 s, noise prior ON, nside= 512.

Split Mem (GB) Procs Time (s) CPUh
2 55.1 128 267.1 9.50
4 29.9 128 348.1 12.38
8 16.7 32 1288.9 11.46

61 5.7 32 2059.8 18.31

The split-mode offers a trade-off between memory and CPU
time usage. When data is destriped in small chunks, memory
usage can be pushed very low, but at the same time the required
CPU time increases drastically.

5. Simulations

We created a set of simulated time-ordered data, mimicking the
data from the Planck LFI (Low-Frequency Instrument) 70 GHz
channel. The TOD was produced using Planck LevelS sim-
ulation software (Reinecke et al. 2006). We created data for
16 months for four detectors, corresponding to the LFI horns 19
and 22.

We ran MADAM on this simulation data with different pa-
rameter settings. Results are discussed in the following sections.

For each of the four detectors, we created four TOD streams
of 16 months duration: a CMB signal, a foreground signal,
1/ f noise, and white noise. Each TOD consisted of 488 × 24 ×
3600 × 76.8 = 3.24 × 109 samples. Storing the TOD compo-
nents separately allowed us to do noise-only and signal-only
simulations.

Pointing information was stored in the form of satellite
pointing, sampled at 1 s intervals. MADAM constructed detec-
tor pointings, sampled at the sampling frequency 76.8 Hz, with
the help of focal plane parameters.

The same data set was used by Kurki-Suonio et al. (2009),
with the exception that in this work we used 16 months of data
(instead of 12). We have also included a foreground component.

5.1. Scanning

The scanning strategy imitates that of the actual Planck space-
craft (Dupac & Tauber 2005). The spin axis rotated around
the anti-Sun direction once every six months, in a circle of ra-
dius 7.5◦. When projected onto the sky, this creates a cycloidal
path. The spin axis was repointed at fixed intervals of one hour.
Between repointings, the spin axis nutated with a mean ampli-
tude 1.6′.

The detectors scanned the sky almost along great circles.
The satellite rotated around the spin axis with a mean rate of
fsp = 1/60 Hz (one rotation per minute). The detectors were
pointed θdet = 87.77◦ away from the spin axis. Small variations
(rms 0.1◦/s) were added to the spin rate. Because of the nutation
and the spin rate variations, adjacent scanning circles did not fall
exactly on top of each other.

The two detectors belonging to the same horn shared the
same pointing (θ, φ) on the sky, but the polarization angles were
different by 90.0◦. The two horns followed the same path, but
one horn trailed the other by 3.1◦. The polarization angles of the
two horns were roughly at 45◦ angles, so that the polarization
measurements of the two horns complemented each other. For
a more detailed description of the scanning strategy see Kurki-
Suonio et al. (2009).

During the 16 month observation time the four detectors cov-
ered each pixel on the sky at resolution nside_map= 512 in mul-
tiple polarization directions. Therefore we were able to deter-
mine the three Stokes components in every pixel.

5.2. Signal

Our simulation data set contained signal from CMB and from
foregrounds. No dipole signal was included. We used the
CAMB2 code to produce a theoretical CMB angular power
spectrum with cosmological parameter values Ω0 = 1,ΩΛ =
0.7, ωm = 0.147, ωb = 0.022, τ = 0.1. We then created a re-
alization of coefficients aT

lm and aE
lm. No B mode polarization

was included. We constructed a TOD with sampling frequency
fs = 76.8 Hz, smoothing with a symmetric Gaussian beam with
FWHM= 12.68′ (Wandelt & Górski 2001; Challinor et al. 2000).

The foreground signal included Galactic emission from ther-
mal and spinning dust, synchrotron radiation, and free-free scat-
tering. On top of the galactic signal we added a Sunyaev-
Zeldovich signal, and weak point sources. We constructed an
nside = 2048 sky map including these components, using the
Planck sky model, PSM, version 1.6.33. The map was smoothed
with a symmetric gaussian beam. We then constructed the fore-
ground TOD by picking values from the input map according to
the scanning pattern.

5.3. Noise

We generated 1/ f noise by the SDE (Stochastic Differential
equation) algorithm, which builds the noise stream as a lin-
ear combination of a number of low-pass filtered white noise
streams (Reinecke et al. 2006). We used the following input
parameters: knee frequency of fkn = 0.05 Hz, sampling fre-
quency fs = 76.8 Hz, slope α = −1.7, and minimum frequency
fmin = 1.15 × 10−5 Hz. On top of the 1/ f noise we added

2 http://camb.info
3 http://www.apc.univ-paris7.fr/APC_CS/Recherche/
Adamis/PSM/psky-en.php
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Fig. 5. Noise spectrum. The dashed red line shows the analytical
1/ f noise model used when constructing the noise prior. The solid blue
line gives the actual spectrum of the input noise, computed as an av-
erage over 32 noise realizations. The dash-dotted purple line presents
the numerically predicted SDE spectrum. We show also the white noise
spectrum (dashed blue) and the sum of the white and 1/ f noise (solid
black).

Gaussian white noise with a standard deviation of σ = 2.7 mK
and zero mean.

We have chosen a high knee frequency in order to show
clearly the effect of correlated noise in the output maps. The
purpose of these simulations is not to demonstrate the actual per-
formance of the Planck experiment, but to give a quantitative
picture of how changing the various parameters which control
the MADAM algorithm affects the quality of output map and the
required computational resources.

We show the noise spectrum in Fig. 5 together with the an-
alytical model used to construct the noise prior. We computed
the noise spectrum through the Fourier technique from noise
streams of 366 h, averaging over 32 independent noise realiza-
tions, at 100 distinct frequencies. The analytical model describes
the noise well at high frequencies, but differs somewhat at low
frequencies. The analytical model is given by

P( f ) =
σ2

fs

(
f

fkn

)α
( f > fmin) (27)

P( f ) =
σ2

fs

(
fmin

fkn

)α
( f < fmin).

It is possible to theoretically predict the spectrum produced by
the SDE algorithm. The prediction is plotted in the same figure,
and agrees well with the actual spectrum.

6. Residual error

To assess the quality of the destriped map, we study first the
residual error map, which we compute as the difference between
the destriped map and the binned noiseless map. The binned
noiseless map is obtained by binning the simulated signal TOD
into a map as by Eq. (11).

The top panel of Fig. 6 shows the binned noiseless map.
We show also the map binned from noise-contaminated TOD,
and the destriped map. The map binned from noisy data is

Fig. 6. Full-sky maps. From top to bottom: binned noiseless map (total
intensity), map directly binned from TOD, and destriped map (base-
line length 0.625 s). The binned map is contaminated by stripes due to
1/ f noise.

contaminated by stripes due to 1/ f noise. The difference be-
tween the bottom and top panels is the residual error map.

The residual error map can further be divided into two sta-
tistically independent components: the signal error map and the
residual noise map. The signal error map is obtained by destrip-
ing the signal-only TOD and subtracting the binned noiseless
map from it. The residual noise map is obtained by destriping
the noise-only TOD. Because destriping is a linear process, the
total residual error is a sum of signal error and residual noise.

Signal error arises from temperature variations within a
pixel, which the code interprets as noise and which lead to non-
vanishing baseline amplitude estimates even in absence of noise.
The signal error has the undesired effect of spreading sharp fea-
tures in the signal map along the direction of the scanning ring.

Residual noise is strongly dominated by white noise. Though
it is the dominant component, it is rather simple to handle at later
data processing levels, for instance power spectrum estimation.
We are more interested how much correlated noise there is left
in our output maps. We therefore subtract the binned white noise
map from the residual noise map, and study the remaining cor-
related residual noise (CRN) map separately.
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Fig. 7. Residual noise. Upper map shows the residual noise map. The
bottom map shows the correlated residual, which we obtain by sub-
tracting the binned white noise from the residual noise map. Note the
difference in scale.

The residual noise map, as well as its correlated component,
are depicted in Fig. 7.

It can be shown that the CRN map and the binned white noise
map are statistically independent, if the final map is binned to a
resolution equal to or lower than the destriping resolution. The
proof was presented by Kurki-Suonio et al. (2009) for the case of
equal resolutions. Here we show that the maps are independent
also if the destriping resolution is higher than the map resolution.

The binned white noise map is proportional to the quantity

mb ∝ PT
mC−1

n w (28)

where w is the white noise TOD. Since the binned white noise is
obviously uncorrelated with 1/ f noise and signal, it is enough to
study its correlation with the CRN map one obtains destriping a
white noise TOD alone. This is proportional to the quantity

mc ∝ Zw =
(
I − Pc

(
PT

c C−1
n Pc

)−1
PT

c C−1
n

)
w (29)

The correlation between the two maps is proportional to

〈mcmb〉 ∝ Z〈wwT 〉CnPm = ZPm. (30)

From the definition of Z one sees that ZPc = 0. If now the map
resolution is lower than or equal to the destriping resolution, one
can write Pm = PcS, where the effect of matrix S is to downgrade
matrix Pc to a lower resolution by summing columns. One then
readily sees that the correlation vanishes.

If the map is binned to a resolution higher than the destriping
resolution, we have the opposite relation Pc = PmS. In that case,
the correlation between the CRN map and the binned white noise
map does not vanish. This has some interesting consequences,
which are discussed in Sect. 8.

Residual noise does not share the symmetry of the original
noise. Residual noise is not stationary in the time domain, like

the original 1/ f noise. Note also that no noise component is sta-
tistically isotropic in the map domain. A complete description
of the residual noise requires the calculation of the noise covari-
ance matrix (NCVM), which is outside the scope of this paper.
Computation of the NCVM for low-resolution maps is discussed
by Keskitalo et al. (2009).

In this paper we calculate some simple figures of merit,
which describe different aspects of the residual noise. In cases
where the binned white noise map and the CRN map are inde-
pendent, the variance of the CRN map is a useful number. It has
the benefit of describing the residual noise level as one number,
which can be plotted as a function of various parameters. We cal-
culate the variance of the CRN map for the three Stokes maps,
I, Q, U, separately.

Variance is an additive number. When the residual error map
can be divided into independent components, we compute and
plot the variance of each individual component separately. The
total variance of the residual error is obtained as the sum of vari-
ances of the individual components.

When destriping is performed at a resolution lower than the
map resolution, the CRN map and binned white noise are corre-
lated. In this situation also the covariance between the two maps
is an important quantity. The covariance is expressed in the same
units as the variance, which makes it easy to compare the two.
This is the main reason why we have chosen to use the variance
as the main figure of merit, instead of rms. The covariance is
computed by averaging over all sky pixels the product of tem-
perature values of the two maps in question.

We calculate also the spectrum of the residual noise in time
domain, as a square of the Fourier transform of the noise stream.
Neither this is a complete description of the residual noise, be-
cause the residual noise is not stationary (not diagonal in Fourier
domain).

Finally, we calculate the angular power spectrum of the
residual noise map. Again, because the residual noise is not sta-
tistically isotropic, the angular power spectrum does not fully
describe the noise, but gives an idea at which scales the noise is
distributed in the map domain. It also gives the noise bias which
should be subtracted from the spectrum of the destriped map to
get an unbiased estimate of the power spectrum of the underly-
ing signal map.

In Fig. 8 we show first the spectrum of the CRN map for
0.625 s baseline length, together with the spectrum of the binned
noiseless map. We show also the white noise level.

7. Effect of baseline length

7.1. Map domain

In this section we study the effect of baseline length on the resid-
ual noise. We destripe and bin the final map at a fixed resolution
nside_cross= nside_map= 512. The destriped map consists of
3 million pixels (12 × 512 × 512 = 3 145 728) for each of the
three Stokes components.

Since we destripe and bin the map at the same resolution, the
binned white noise map and the correlated residual noise (CRN)
map are statistically independent.

In Fig. 9 we plot the variance of various components of the
residual error map, as a function of baseline length. We show the
variance of the signal error map, CRN map, and binned white
noise map, for the three Stokes parameters (I, Q, U). We show
results both with and without noise prior. The total variance is
the sum of the three components.
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Fig. 8. Angular power spectrum of signal and residual noise. We show
TT and EE spectra of the correlated residual noise (CRN) map (blue
curve), together with the spectra of the binned noiseless CMB map
black. Also shown is the white noise level (purple dashed line). The
baseline length was 0.625 s.

We discuss in the following the dependence of the results on
baseline length. Some features are readily visible.

The variance of the binned white noise is, obviously, inde-
pendent of baseline length.

As a general trend, correlated residual noise decreases with
decreasing baseline length, as the noise becomes better modelled
by the selected baselines. Baseline lengths which are an integer
fraction of the repointing period (1 h), give a local minimum.
Below 1 s the results converge. In the remainder of this paper we
often use baseline length 0.625 s (48 samples) as an example of a
very short baseline. At this baseline length, results have already
converged with respect to baseline length, but requirements for
computational resources are still moderate.

As opposite to residual noise, signal error increases with de-
creasing baseline length, but remains always below the noise
level. Signal error becomes more important if destriping is per-
formed at a low resolution. We discuss this in Sect. 8.

The noise prior has a negligible effect on results above 1 min
(	1/ fkn) baseline length. At short baselines (<1/ fkn), on the
contrary, the noise prior becomes important. When the noise
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Fig. 9. Effect of baseline length on residual error. The residual error map
is divided into three components: binned white noise (above), correlated
residual noise (middle), and signal error (below). We show the vari-
ance of each residual component map, as a function of baseline length.
Binned white noise is independent of baseline length, and its variance
is shown by a straight line. We show the three Stokes parameters I, Q,
U (blue solid, purple dashed, and red dash-dotted line, respectively).
The dotted lines show the effect of turning the noise prior off. At long
baselines results with and without noise prior coincide.

prior is turned off, the required CPU time increases steeply with
decreasing baseline length, as the algorithm requires a large
number of iteration steps to converge. Therefore we have not
computed results without the noise prior at the very shortest
baseline lengths.

The variance of residual noise for Q and U is above that
of I, roughly by a factor of 2. This reflects the fact that Q and
U contribute to the observed signal weighted by factors sin(2ψ),
cos(2ψ) (Eq. (2)) relative to I.

The signal error in Q and U is well below that of the tem-
perature component. This follows directly from the fact that the
polarization signal is weaker than the intensity signal.

To show the behaviour of the CRN curve more clearly, we
plot it separately for long and short baselines in Figs. 10 and 11.

Baseline lengths which are an integer fraction of the repoint-
ing period (here 1 h), give a clear and sharp local minimum. The
minimum is deepest at 1 h baseline length, but strong dips can
also be seen at baseline lengths 30 min, 20 min, 15 min, 12 min
and 10 min.

The dip structure is obviously related to the scanning strat-
egy. Why the use of baselines that fit into destriping periods
is better than the use of ones that do not, can be understood
when thinking of an ideal scanning, where scanning rings fall
exactly on top of each other. The noise stream can be thought
as composed of two components: an “offset” component con-
sisting of 1 min reference baselines, defined as averages of the
noise stream over 1 min periods, and a second component which
contains the remaining high-frequency noise. The offset com-
ponent dominates the noise. When the noise stream is averaged
over 60 adjacent scanning circles, the offset component produces
a residual offset, equal to the average of 60 adjacent reference
baselines. When the data is destriped with a one-hour baseline,
destriping effectively removes the residual offset. If the base-
line length differs from one hour, a time offset develops between
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Fig. 11. Short baselines. We show the CRN variance as a function
of baseline legth, for short baselines. This is a blow-up of the short-
baseline part of the CRN curves in Fig. 9. We show again the three
Stokes parameters with different line types. The upper, thin lines show
the effect of turning off the noise filter.

baselines and repointing periods, with the result that noise off-
sets do not cancel out.

In this work we have assumed a scanning strategy, where the
repointing period is constant at 1 h, as was originally planned
for Planck, and study only constant baseline lengths. In reality,
Planck is likely to use a scanning pattern where the repointing
period varies. We have not run simulations with a variable point-
ing period, but based on the results presented here, we expect
that for optimal results the baseline length should follow the re-
pointing period, if a long baseline length is required. A varying
baseline length has therefore been implemented in MADAM for
the use of the Planck experiment.

When no noise prior is used, the CRN variance as a function
of baseline length has a global minimum, as a result of two com-
peting effects. When moving towards shorter baselines, noise
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Fig. 12. Ideal noise. We show the CRN variance as a function of base-
line length for real noise (same as in Fig. 9) and for idealized noise,
composed of reference baselines.

becomes better modelled. On the other hand, the shorter the
baselines, the more there are unknowns (baseline amplitudes)
to be solved, while the amount of data remains fixed. With our
data set the optimal baseline length was 10 s. Kurki-Suonio
et al. (2009) split the CRN map further into residual 1/ f noise
and white noise baselines to study these competing effects more
deeply. The optimal baseline length depends on the knee fre-
quency of the 1/ f component.

With the noise prior, results continue to improve at least until
baseline lengths of 0.1 s, which is the limit where we could bring
our computations. The noise prior has the effect of restricting
the baseline solution in such a way that the effective number of
unknows does not follow the number of baselines.

In order to study the importance of the high-frequency part of
the noise spectrum, which is not well modelled by baselines, we
made a simulation where we removed the part of noise not mod-
elled by the baseline approximation. For each baseline length,
we replaced the 1/ f noise component by a sequence of baselines
of the same length as the baseline length used in destriping. The
results are shown in Fig. 12, together with results obtained with
realistic noise. The difference between the two sets of curves is
the contribution of noise not modelled by baselines. We see that
this component becomes very important at long baselines.

In Fig. 13 we show results obtained by applying the split-
mode. Data was divided into chunks which were first destriped
separately with a 0.625 s baseline. In the second phase we com-
bined the chunks, and re-destriped the data with 1-h baselines.
The rightmost points correspond to a case where the data was
destriped in 1-day chunks. The leftmost point corresponds to
the standard case, where the whole 488-day data set is destriped
once. The CRN variance in split-mode is higher than in the stan-
dard mode. This reflects the fact that the split-mode does not
exploit all information in the data. The benefit of the split-mode
is that it requires less memory than the standard mode, as can be
seen from Table 1.

7.2. Time domain

Next we consider the residual noise in the TOD domain. We sub-
tract the solved baselines from the combined white noise plus

Page 10 of 14

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912813&pdf_id=10
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912813&pdf_id=11
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912813&pdf_id=12


E. Keihänen et al.: Making cosmic microwave background temperature and polarization maps with MADAM

10
0

10
1

10
2

10
3

0

5

10

15

20

25

30

35

40

n
split

m
ap

 v
ar

ia
nc

e 
[μ

K
2 ]

I

Q

U

Fig. 13. Split-mode. Residual correlated noise variance for split-mode,
as a function of the splitting factor. In the first phase data was destriped
in chunks of length 488 days/nsplit . The line types correspond again to
three Stokes parameters: I (solid), Q (dashed) and U (dash-dotted).

10
−6

10
−4

10
−2

10
0

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

f (Hz)

sp
ec

tr
um

 [K
2 /H

z]

 

 

1 h
15 min
4 min
1 min
15 s
2.5 s
0.625 s

Fig. 14. Effect of baseline length on residual noise spectrum. We
subtract the solved baselines from the noise TOD (white noise and
1/ f noise) and plot the spectrum of the residual. We show results for
7 baseline lengths, from above: 1 h (black), 15 min (yellow, 4 min (pur-
ple), 1 min (cyan), 15 s (red), 2.5 s (green) and 0.625 s (blue). Solid and
dashed lines show results with and without noise prior, respectively.
With 1 min baselines and longer, the dashed and solid curves (noise
prior on/off) are on top of each other. The 0.625 s case with noise prior,
which of the studied cases gives the lowest residual noise variance in
map domain, is shown by a thick linetype. Also shown are the original
noise spectrum (black dashed) and the analytical approximation given
by Eq. (31) (black dash-dotted).

1/ f noise TOD, and compute the spectrum of the residual. We
plot the spectrum for various baseline lengths in Fig. 14. We
show results both with and without noise prior. At long baselines
(1 min and above) results with and without noise prior cannot be
distinguished. When we move towards shorter baselines, differ-
ences appear. Without noise prior, residual noise power system-
atically decreases with decreasing baseline length. A peak struc-
ture appears at shortest baselines. When a noise prior is used,

the spectrum of residual noise converges towards the spectrum
shown by a thick line in the figure.

It is interesting to note that with a given baseline length, not
applying a noise prior gives lower residual noise power in TOD
domain. The situation becomes the opposite when the cleaned
TOD is binned into map: using a noise prior leads to lower resid-
ual noise in map domain. This is related to the correlation prop-
erties of the destriped TOD. When a noise prior is applied, the
residual TOD comes out less strongly correlated than without
noise prior, and its spectrum closer to that of white noise. The
TOD thus averages out more efficiently when binned into a map,
leading to a lower noise level in map domain.

We plot in the same figure an analytical approximation

Papp( f ) =
P2

wn

Pwn + Poof( f )
(31)

where Pwn and Poof are the spectra on the white noise component
and the 1/ f component, respectively. The approximation is ob-
tained by setting F = I and Z = I in the destriping Eq. (7). This
approximation corresponds to making the following to assump-
tions: 1) Assuming that the baseline length is one sample, so that
the baseline vector has the same length as the TOD itself. This
assumption can be expressed as F = I. 2) Assuming that there
are an infinite number of observations per pixel, so that we can
ignore the pointing matrix term in the definition of the Z matrix
in Eq. (8) when Z is acting on noise, and set Z = I. These are se-
rious approximations, but the analytical model agrees well with
the residual spectrum at high frequencies, at the short-baseline
limit. At low frequencies the approximation is poor.

The behaviour of the residual noise spectrum in the absence
of noise prior is discussed in detail by Kurki-Suonio et al. (2009).

7.3. Cl domain

Finally we study the residual noise in the Cl domain. We com-
pute the TT and EE angular power spectra of the CRN map using
the Anafast tool which is part of the HEALPix package.

In Fig. 15 we plot the spectrum of the CRN map for three
distinct baseline lengths (1 h, 1 min, and 0.625 s) together with
the spectrum of the binned noiseless map. Destriping resolution
was nside_cross= 512. We show low and high multipoles sep-
arately. At high multipoles we bin the spectra over 16 adjacent
multipoles, in order to show the differences more clearly. The
TT plots begin at multipole l = 1, the EE plots at l = 2.

We show also the effect of a high destriping resolution
(nside_cross= 2048). This case is discussed in more detail in
Sect. 8. All spectra were computed from maps with resolution
nside_map= 512.

We see that a short baseline (0.625 s) gives systematically
lower residual noise than a longer one (1 min or 1 h) at all but the
very lowest multipoles, though the difference is small as com-
pared to the white noise level. In the EE spectrum the differences
are comparable to the underlying CMB signal.

At the very lowest multipoles the situation is not that clear,
but we remind here that we have one noise realization only, so
the effects seen at lowest multipoles may be somewhat random.

8. Destriping resolution

In this section we study how varying the destriping resolution
affects the residual noise. We also study the effect of applying a
galactic mask in the destriping phase.
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Fig. 15. Noise bias. We show TT and EE spectra of the CRN (correlated residual noise) map. All spectra were computed from
nside_map = 512 maps. We compare three baseline lengths: 0.625 s (solid blue line), 60 s (solid magenta line), and 3600 s (dashed red line).
Destriping resolution was nside_cross= 512 for these three curves. We show also the effect of a high (nside_cross= 2048) destriping resolution
(green dashed line.) Also shown is the spectrum of the binned CMB map (black solid line) and the white noise level (black dashed line). The
leftmost panels show the spectra at low multipoles in logarithmic scale. The rightmost panels show the spectra at high multipoles in linear scale.
For clarity, the CRN spectra were averaged over 16 adjacent multipoles.

We vary the destriping resolution nside_cross, which defines
the crossing points, but bin the final map at a fixed resolution
of nside_map= 512. We use baseline length 0.625 s and a noise
prior. The effect of destriping resolution in traditional destriping
was studied earlier by Maino et al. (2002).

In Fig. 16 we show the variance of different residual error
components as a function of destriping resolution. We destriped
the data with 7 distinct HEALPix resolutions: (from left to right:
nside_cross= 32, 64, 128, 256, 512, 1024, 2048.) Maps were
binned to resolution nside_map= 512. We plot the residual noise
variance against the base-2 logarithm of the nside_cross param-
eter, for total intensity. We show the signal error, CRN, and co-
variance between CRN and white noise. The total variance is
the sum of these three and the variance of white noise, which
is 2478 μK2. The signal error in the I map increases rapidly
with decreasing resolution, being 189 μK2 at nside_cross= 32.
Baseline length was 0.625 s.

When the TOD is destriped at a resolution lower than the
map resolution, the binned white noise map and the CRN map,
which is obtained by subtracting the binned white noise map
from the total residual noise, become correlated. For this reason,
the variance of the CRN map alone is not a good figure-of merit.
In addition to the CRN variance we compute the covariance be-
tween the CRN map and the binned white noise map, and plot
the it together with the CRN variance.

We show in the same plot the sum of the CRN variance and
twice the covariance between CRN and binned white noise. The
total variance of the residual noise map is the obtained by adding
the variance of the binned white noise map to this sum. The
white noise level is a constant when nside_map is fixed.

At low resolutions the sum curve falls below zero. This indi-
cates an interesting phenomenon. Destriping with a low resolu-
tion actually leads to a residual noise variance below the white
noise level. This contradicts the often-heard claim that the white
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Fig. 16. Effect of destriping resolution on residual noise. We plot the
residual noise variance against the base-2 logarithm of the nside_cross
parameter, for total intensity. We show the signal error (red, open cir-
cles), CRN (blue, solid circles), and covariance between CRN and white
noise (purple, squares). The black dashed line shows the sum of the
CRN variance and twice the covariance between CRN and white noise.

noise level sets a lower limit for the residual noise level that can
be achieved by any map-making method. The drawback is of
course that the residual noise is correlated.

The signal error depends on the resolution much more
steeply than the residual noise. Larger pixels give rise to a larger
signal error, as temperature variations within a pixel become
more important. The signal error for the polarization maps is
well below that of the intensity map, as we showed in Sect. 7.
This reflects the fact that the polarization signal is weak com-
pared to the total intensity.

The signal error is difficult to remove at later data processing
steps, and hard to model reliably. It may cause undesired artifacts
in the output map. For instance, signal error tends to spread the
image of a strong point source into a line following the scanning
pattern. It is desirable to minimize the signal error at the map-
making level, by destriping at a sufficiently high resolution.

The signal error may be further reduced by masking out the
pixels with highest temperature variation.

Differences in signal error above resolution
nside_cross= 512 are hardly visible in Fig. 16. We study
now the high resolution range (nside_cross= 512–2048) more
closely.

We show our results for the high resolution regime in
Table 2. We show the rms of the signal error and CRN maps,
for total intensity and Q polarization. Here we have chosen to
show the rms, instead of the variance, in order to have numbers
comparable in magnitude. Maps were binned to a common reso-
lution nside_map= 512. Baseline length was 0.625 s in all cases.

We show also the effect of applying a galactic mask in the
destriping phase. We mask out 5% or 10% of the most strongly
foreground-dominated pixels when solving the baseline offsets,
but include them again when binning the cleaned TOD into the
final map.

The reduction in signal error with increasing destriping reso-
lution continues until our highest resolution nside_cross= 2048.
in the same time, the residual noise increases slightly. Masking
the galaxy reduces the signal error in the intensity map signif-
icantly. The difference between 5% and 10% masks is small.

Table 2. Reducing signal error.

I Q
Nside mask Signal CRN Signal CRN

512 0% 0.264 3.46 0.023 4.93
512 5% 0.076 3.50 0.021 4.97
512 10% 0.077 3.54 0.021 5.02

1024 0% 0.153 3.58 0.007 5.09
1024 5% 0.077 3.62 0.006 5.13
1024 10% 0.078 3.66 0.006 5.15
2048 0% 0.045 3.68 0.002 5.26
2048 5% 0.026 3.72 0.002 5.30
2048 10% 0.026 3.76 0.002 5.34

We show the signal error and CRN rms (μK) for total intensity and
for Q polarization, for various parameter settings. First column is the
destriping resolution.
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Fig. 17. Effect of destriping resolution on the residual noise spectrum.
We plot the spectrum of residual noise TOD, obtained by subtracting
the solved baselines from the original noise TOD. The baselines were
solved at resolution (from top down) nside= 2048 (green), 512 (blue)
or 128 (red). The black dashed line presents the analytical approxima-
tion given by Eq. (31).

Because our simulation data set did not include polarized
foregrounds, masking the galaxy has little effect on the signal
error in the polarization map.

As in the previous section, where we studied the effect of
baseline length, we study the noise residual also in the time
domain and in the Cl domain. In Fig. 17 we plot the spec-
trum of the residual noise TOD for three destriping resolutions,
nside_cross= 2048, 512, 128. Baseline length was again 0.625 s
in all cases. We show also the analytical approximation given by
Eq. (31).

A high destriping resolution clearly leaves more noise in the
TOD at intermediate scales.

Going from resolution nside_cross= 512 to
nside_cross= 128 has little effect on the spectrum above
1 mHz, but brings the spectrum down at lower frequencies. At
the same time, the peaky structure in the spectrum becomes
more pronounced.

Note that the spectrum of the residual noise TOD is only
dependent on the destriping resolution nside_cross, and has
nothing to do with the map resolution. Thus the dependence or
independence of CNR and white noise in the map domain plays
no role here.
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Though the difference between nside_cross= 512 and
nside_cross= 2048 shows clearly in the residual noise spectrum,
the effect is less dramatic in the angular power spectrum of the
CRN map. We compare the two cases in Fig. 15. The higher de-
striping resolution leaves slightly more noise at nearly all mul-
tipoles, but the effect is small compared with the effect of the
baseline length.

9. Conclusions

We have presented an update of the MADAM map-making
method and applied it to simulated Planck-like data. We pro-
duced maps of total intensity and Q and U polarization.

The MADAM algorithm is tuned by selecting values for a set
of input parameters. We have studied the effect of baseline length
and destriping resolution on residual error.

MADAM differs from traditional destripers in that it uses a
noise prior, which allows to extend the method to very short
baselines, which model the noise better. The noise prior has little
effect on the results at baseline lengths longer than the inverse of
the knee frequency, but becomes important at short baselines.

We varied the baseline length from 0.1 s to over one hour.
We obtained best results when the baseline length was below one
second. Our simulations assumed a knee frequency of 50 mHz.

For a Planck-like scanning strategy, long baselines, longer
than the spin period, up to the repointing period, allow a signif-
icant reduction in the computer memory requirement. For these
long baselines, the level of residual error depends strongly on
the baseline length. This is related to the sky scanning pattern.
Baseline lengths which are an integer fraction of the repointing
period, are strongly favored over other baseline lengths.

The strength of MADAM is in its flexibility in the choice of
baseline length. A long baseline gives a quick-and-dirty map,
while a short baseline gives a high accuracy map. Some guide-
lines for the selection of baseline length can be given. When
working with a new data set, it us usually safe to start with an
intermediate baseline length (1 min or equal to the scanning pe-
riod) and to do the destriping without noise prior. If the noise
properties of the data are well known, and if computational re-
sources allow, the best accuracy is obtained with a noise prior
and with a very short baseline, which models the non-white part
of the noise. A long baseline (longer than the scanning period)
allows to significantly reduce the memory requirement, but then
it is important to keep in mind that the accuracy of the result-
ing map may depend strongly on the scanning pattern. The split-
mode offers another means of reducing the memory requirement.

MADAM allows to build the output map at a resolution dif-
ferent from the destriping resolution. We found that if destriping
is performed at a resolution lower than the map resolution,
the residual noise power may fall below the white noise level.

Real maps, however, are unlikely to be build this way, since the
control of signal error requires that destriping is done at high
resolution.

The signal error can be reduced by destriping at a high reso-
lution, and by applying a galactic mask in the destriping phase.

We studied the properties of residual error in terms of the
variance of the residual map, spectrum of residual noise, and
the angular power spectrum of the residual noise map. All these
demonstrate different aspects of the residual error.
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