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ABSTRACT

Anomalous microwave emission (AME) is believed to be due to electric dipole radiation from small spinning dust grains. The aim of this paper is
a statistical study of the basic properties of AME regions and the environment in which they emit. We used WMAP and Planck maps, combined
with ancillary radio and IR data, to construct a sample of 98 candidate AME sources, assembling SEDs for each source using aperture photometry
on 1°-smoothed maps from 0.408 GHz up to 3000 GHz. Each spectrum is fitted with a simple model of free-free, synchrotron (where necessary),
cosmic microwave background (CMB), thermal dust, and spinning dust components. We find that 42 of the 98 sources have significant (>507)
excess emission at frequencies between 20 and 60 GHz. An analysis of the potential contribution of optically thick free-free emission from ultra-
compact HII regions, using IR colour criteria, reduces the significant AME sample to 27 regions. The spectrum of the AME is consistent with
model spectra of spinning dust. Peak frequencies are in the range 20—-35 GHz except for the California nebula (NGC 1499), which appears to have
a high spinning dust peak frequency of (50 + 17) GHz. The AME regions tend to be more spatially extended than regions with little or no AME.
The AME intensity is strongly correlated with the sub-millimetre/IR flux densities and comparable to previous AME detections in the literature.
AME emissivity, defined as the ratio of AME to dust optical depth, varies by an order of magnitude for the AME regions. The AME regions tend
to be associated with cooler dust in the range 14—20K and an average emissivity index, Sq, of +1.8, while the non-AME regions are typically
warmer, at 20—-27 K. In agreement with previous studies, the AME emissivity appears to decrease with increasing column density. This supports
the idea of AME originating from small grains that are known to be depleted in dense regions, probably due to coagulation onto larger grains. We
also find a correlation between the AME emissivity (and to a lesser degree the spinning dust peak frequency) and the intensity of the interstellar
radiation field, Go. Modelling of this trend suggests that both radiative and collisional excitation are important for the spinning dust emission. The
most significant AME regions tend to have relatively less ionized gas (free-free emission), although this could be a selection effect. The infrared
excess, a measure of the heating of dust associated with HII regions, is typically >4 for AME sources, indicating that the dust is not primarily
heated by hot OB stars. The AME regions are associated with known dark nebulae and have higher 12 ym/25 um ratios. The emerging picture is
that the bulk of the AME is coming from the polycyclic aromatic hydrocarbons and small dust grains from the colder neutral interstellar medium
phase.

Key words. HII regions — radiation mechanisms: general — radio continuum: ISM — submillimeter: ISM

1. Introduction

* Corresponding author: C. Dickinson, Anomalous microwave emission (AME) has been observed in
e-mail: clive.dickinson@manchester.ac.uk a few directions of the Galaxy and is an important foreground
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for the cosmic microwave background (CMB) (Kogut et al.
1996; Leitch et al. 1997; Finkbeiner et al. 2002; Finkbeiner
2004; de Oliveira-Costa et al. 2004; Dobler & Finkbeiner 2008;
Miville-Deschénes et al. 2008; Gold et al. 2011). There is strong
evidence, particularly in the Perseus and p Ophiuchi clouds
(Watson et al. 2005; Casassus et al. 2008; Planck Collaboration
XX 2011), that AME is due to electric dipole radiation from
small spinning dust grains. Along these sight lines, there is
highly significant excess emission above free-free, synchrotron,
CMB, and thermal dust in the frequency range 10—100 GHz.
The spectral energy distributions (SEDs) are peaked at about
30GHz, and can be fitted by physically-motivated theoretical
models of spinning dust (Draine & Lazarian 1998; Ali-Haimoud
et al. 2009; Hoang et al. 2010, 2011). AME has been detected
in H1I regions (Dickinson et al. 2006, 2007, 2009; Todorovi¢
et al. 2010), dust clouds (Casassus et al. 2006, 2008; Scaife et al.
2009), a supernova remnant (Scaife et al. 2007), and in one ex-
ternal galaxy (Murphy et al. 2010a; Scaife et al. 2010b). There is
also evidence for AME in the diffuse emission at high Galactic
latitudes (Peel et al. 2012; Macellari et al. 2011; Ghosh et al.
2012).

Definitive evidence for spinning dust was provided by
Planck Collaboration XX (2011). Accurate SEDs of the Perseus
and p Ophiuchi clouds were easily fitted by a physically mo-
tivated model for the clouds, including spinning dust compo-
nents associated with the atomic and molecular phases of the
interstellar medium (ISM). The model was found to be an ex-
cellent fit with physical parameters that were reasonable for
these regions. Planck Collaboration XXI (2011) applied an in-
version technique to separate the various contributions of the
ISM in Galactocentric rings along the Galactic plane and found
that 25 + 5% of the 30 GHz emission comes from AME and was
consistent with spinning dust associated with atomic and molec-
ular gas but not with the ionized phase. Component separation
of the diffuse emission at intermediate latitudes in the southern
Gould Belt region (Planck Collaboration Int. XII 2013) revealed
an AME component consistent with spinning dust emitting at a
peak frequency of (25.5 + 1.5) GHz (in flux density units), com-
patible with plausible values for the local density and radiation
field.

To date there has been no detailed study of AME in a rea-
sonable sample of sources. Dickinson et al. (2007) observed
six southern HII regions with the Cosmic Background Imager
at 31 GHz and found tentative evidence for excess emission
from the RCW49 complex. Scaife et al. (2008) observed a sam-
ple of 16 compact HII regions at 15 GHz with the Arcminute
Microkelvin Imager (AMI) and found no evidence for excess
emission; the spectrum was consistent with optically thin free-
free emission from warm ionized gas. Todorovi¢ et al. (2010)
surveyed the Galactic plane at longitudes 27° < [ < 46° with
the Very Small Array (VSA) at 33 GHz and found statistical ev-
idence for AME in nine regions, but with an emissivity relative
to 100 um brightness that was 30—50% of the average high lati-
tude value.

In this paper, we have assembled a sample of 98 Galactic
clouds selected at Planck' frequencies to investigate their SEDs
and constrain the contribution of AME. Due to the large beam

' Planck (http://www.esa.int/Planck) is a project of the
European Space Agency (ESA) with instruments provided by two sci-
entific consortia funded by ESA member states (in particular the lead
countries France and Italy), with contributions from NASA (USA) and
telescope reflectors provided by a collaboration between ESA and a sci-
entific consortium led and funded by Denmark.
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size of the lowest WMAP/Planck channels and the low fre-
quency radio data, there is sometimes a mix of sources within
the beam. Many of the sources can be classed as diffuse HII re-
gions, although we have found a few AME sources with no ob-
vious associated HII region and very weak free-free emission.
Many of the regions are in large star-forming complexes, which
at 1° resolution contain many individual sources. These are of-
ten located in the vicinity of molecular clouds, which produce
strong thermal dust emission. Nevertheless, combining Planck
data with ancillary radio and far-infrared data we assemble their
SEDs from 0.408 GHz to 5000 GHz. We fit the SEDs with a sim-
ple model of free-free, synchrotron (where appropriate), thermal
dust, CMB, and AME (spinning dust) components to determine
whether there is evidence for AME at frequencies 20—60 GHz
and if so, if it agrees with spinning dust models. For the most
significant (>50) AME detections, we investigate the observa-
tional properties of these regions and compare them with each
other and with regions that do not show strong AME. In particu-
lar, we would like to distinguish AME and “non-AME” regions
using observational and physical properties. This is the first sta-
tistical study of AME regions to date.

In Sect. 2 we describe the Planck and ancillary data used in
our analysis. Section 3 describes the sample selection, aperture
photometry, and model-fitting. Section 4 presents the results of
the quantification of AME in these sources. Section 5 investi-
gates the correlation of AME with source properties. Section 6
gives a brief discussion and conclusions.

2. Data
2.1. Planck data

Planck (Tauber et al. 2010; Planck Collaboration I 2011) is
the third generation space mission to measure the anisotropy
of the CMB. It observes the sky in nine frequency bands cov-
ering 30—857 GHz with high sensitivity and angular resolution
from 31’ to 5’. The Low Frequency Instrument (LFI; Mandolesi
et al. 2010; Bersanelli et al. 2010; Mennella et al. 2011) cov-
ers the 30, 44, and 70 GHz bands with amplifiers cooled to
20K. The High Frequency Instrument (HFI; Lamarre et al.
2010; Planck HFI Core Team 2011a) covers the 100, 143, 217,
353, 545, and 857 GHz bands with bolometers cooled to 0.1 K.
Polarization is measured in all but the highest two bands (Leahy
et al. 2010; Rosset et al. 2010). A combination of radiative
cooling and three mechanical coolers produces the tempera-
tures needed for the detectors and optics (Planck Collaboration
11 2011). Two data processing centers (DPCs) check and cali-
brate the data and make maps of the sky (Planck HFI Core Team
2011b; Zacchei et al. 2011). Planck’s sensitivity, angular reso-
lution, and frequency coverage make it a powerful instrument
for Galactic and extragalactic astrophysics as well as cosmol-
ogy. Early astrophysics results are given in Planck Collaboration
VIII-XXVI 2011, based on data taken between 13 August 2009
and 7 June 2010. Intermediate astrophysics results are now be-
ing presented in a series of papers based on data taken between
13 August 2009 and 27 November 2010.

In this paper we use Planck data from the 2013 distri-
bution of released products (Planck Collaboration I 2014),
based on data acquired during the “nominal” operations pe-
riod from 13 August 2009 to 27 November 2010, and avail-
able from the Planck Legacy Archive?. Specifically, we use the
nine temperature maps summarized in Table 1. We also use a

2 http://www.sciops.esa.int/index.php?
project=planck\&page=Planck_Legacy_Archive
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Table 1. Sources of the datasets used in this paper, as well as centre frequencies, angular resolutions, and references.

Frequency

Telescope/Survey [GHz] Resolution ~ Coverage Reference
Haslam ......................... 0.408 51/0 Full sky Haslam et al. (1982)
Reich ........... .. ... ........... 1.42 354 Full sky Reich (1982); Reich & Reich (1986); Reich et al. (2001)
Jonas. ......... ... ... ... ... 2.3 200 Southern sky Jonas et al. (1998)
WMAPO-year .................... 22.8 51/3% Full sky Bennett et al. (2013)
Planck. . ......... ... . ... ... ... 28.4 323 Full sky Planck Collaboration I (2014)
WMAPO-year .................... 33.0 39/1% Full sky Bennett et al. (2013)
WMAPO-year .................... 40.7 30/8* Full sky Bennett et al. (2013)
Planck. ... ... ... ... .. ... ...... 44.1 271 Full sky Planck Collaboration I (2014)
WMAPO-year .................... 60.7 21712 Full sky Bennett et al. (2013)
Planck. ... ... ... ... .. ... ...... 70.4 133 Full sky Planck Collaboration I (2014)
WMAPO-year .................... 93.5 1482 Full sky Bennett et al. (2013)
Planck............. .. ... ... ...... 100 9!7 Full sky Planck Collaboration I (2014)
Planck. . ......... ... ... ... ... ... 143 7’3 Full sky Planck Collaboration I (2014)
Planck. ....... ... ... .. ... ...... 217 50 Full sky Planck Collaboration I (2014)
Planck. . ... ... ... ... .. ........ 353 4!8 Full sky Planck Collaboration I (2014)
Planck. ......... .. ... .. ... ...... 545 47 Full sky Planck Collaboration I (2014)
Planck.......................... 857 4!3 Full sky Planck Collaboration I (2014)
COBE-DIRBE.................... 1249 371 Full sky Hauser et al. (1998)
COBE-DIRBE.................... 2141 38!0 Full sky Hauser et al. (1998)
COBE-DIRBE.................... 2997 386 Full sky Hauser et al. (1998)
IRAS (IRIS) Band 4 (100um) . . . ... ... 3000 47 Near-full sky Miville-Deschénes & Lagache (2005)
IRAS (IRIS) Band 3 (60 um) . . . ... .. .. 5000 36 Near-full sky Miville-Deschénes & Lagache (2005)
IRAS (IRIS) Band 2 (25um) . . .. ... ... 12 000 3’5 Near-full sky Miville-Deschénes & Lagache (2005)
IRAS (IRIS) Band 1 (12pum) . . .. ...... 25000 3’5 Near-full sky Miville-Deschénes & Lagache (2005)
Spitzer IRAC/MIPS .. .............. 8, 24 um 2", 6" Partial Fazio et al. (2004); Rieke et al. (2004)

Notes. @ We use the symmeterized, 1°-smoothed version.

CMB-subtracted version for testing the robustness of the de-
tections, using the SMICA CMB map (Planck Collaboration XII
2014). We use the standard conversion factors from CMB to
Rayleigh-Jeans (RJ) units and updated colour corrections de-
scribed in Planck Collaboration I (2014). The Planck bands
centred at 100 and 217 GHz are known to be contaminated by
CO lines. We corrected these channels using the Dame et al.
(2001) integrated CO map smoothed to 1° resolution and scaled
with the conversion factors described in Planck Collaboration
XIII (2014); however, for some sources, we still see discrepan-
cies with the spectral model at the >10% level. We therefore
did not include these two channels in our fitting of the spectral
model. The CO contamination in the 353 GHz channel is small,
typically <1% (Planck Collaboration XIII 2014), and we do not
see significant deviations in our SEDs. Therefore, no correction
was made for CO lines in the 353 GHz band.

Although we limit ourselves to bright Galactic regions with
typical flux densities at 30 GHz far greater than 10Jy, at 1° an-
gular scales the integrated flux density of CMB fluctuations
can be 10 Jy or more at 100 GHz, a significant fraction of
the total flux density of some of the sources in our sample.
CMB-subtracted maps would, in principle, be most appropriate
for our analysis. However, in bright regions near the Galactic
plane, significant foreground residuals remain in the CMB maps
produced by the Planck component separation codes in 2013
(Planck Collaboration XII 2014), which used only Planck data
and frequencies for separation. These regions can be masked for
cosmological work, but they are precisely the regions that we
need here. Investigations comparing CMB-subtracted with non-
CMB-subtracted maps revealed biases in the plane at the level
of 10—15%. Furthermore, incorrect subtraction, particularly at

frequencies near 100 GHz, resulted in high y? values for some
SEDs, and poorly fitted thermal dust components. We therefore
use the CMB-subtracted maps only for finding regions of AME,
and use non-CMB-subtracted maps for the photometric analy-
sis, where we fit for a CMB component in the spectrum of each
source, using the full data available in Table 1 (see Sect. 2.2). In
this way we do not bias the flux densities (due to the component
separation process), and more importantly, we can characterize
and propagate the uncertainty due to the CMB fluctuation. The
AME amplitudes from both datasets agree within a fraction of
the uncertainty for the majority of sources. In the future, Planck
component separation will also make use of many of the external
datasets listed in Table 1, and it may be possible to subtract the
CMB directly.

2.2. Ancillary data

We use a range of ancillary data to allow the SEDs to be
determined from radio (around 1 GHz) to far-infrared (around
3000 GHz). All ancillary data are summarized, along with the
Planck data, in Table 1. These data have been smoothed to a
common resolution of 1° since some of the maps have only
slightly higher resolution than this. The smoothing also reduces
the effects of any residual beam asymmetry in some cases, e.g.,
WMAP and Planck, where non-circular beams vary across the
map.

We analysed the northern sky survey at 12-18 GHz from
the COSMOSOMAS experiments (Gallegos et al. 2001);
however, due to the filtering of emission on large an-
gular scales and large intrinsic beam width, the majority
of the sources were strongly affected by negative filtering

A103, page 3 of 28



A&A 565, A103 (2014)

artefacts from neighbouring bright sources. The exceptions were
G160.26—18.62 and G173.6+2.8, which were previously re-
ported by Planck Collaboration XX (2011). We therefore did not
consider further the COSMOSOMAS data in our analysis.

In the following sections, we describe the ancillary data in
more detail.

2.2.1. Radio surveys

Data at low frequencies (around 1 GHz) are important for ex-
cluding regions with synchrotron emission, and for estimating
the level of free-free emission. Ideally, we would have sev-
eral frequency channels in the range 1-10 GHz; however, no
large area surveys exist above 2.3 GHz, except for higher reso-
lution surveys that do not retain large-angular-scale information.
We therefore use the three well-known surveys at 0.408, 1.42,
and 2.326 GHz.

The all-sky survey of Haslam et al. (1982) at 0.408 GHz is
widely used as a tracer of synchrotron emission at high Galactic
latitudes; however, it also contains strong free-free radiation
from the Galactic plane and from HII regions, where the free-
free typically dominates over synchrotron emission even at these
lower frequencies.

A number of different versions of the 0.408 GHz map are
available. The most widely used is the NCSA? destriped and des-
ourced version available on the LAMBDA website* at an angular
resolution of 1°. This map has been Fourier filtered to remove
large-scale striations, and bright sources have been subtracted,
including many of the bright HII regions. Since we want to re-
tain all the sources for this work, we use a less-processed ver-
sion of the map> at 51" resolution that was originally sampled
in a 2D Cartesian projection with 0233 x 0233 square pixels
and B1950 coordinate frame. This version retains all the bright
compact sources, although striations are much more visible by
eye. However, at low latitudes and in bright regions, the stria-
tions are negligible compared to the sky signal. This map was
regridded into the HEALPix format (Gérski et al. 2005) using a
procedure that computes the surface intersection between indi-
vidual pixels of the survey with the intersecting HEALPix pixels
(see Appendix A of Paradis et al. 2012a). After smoothing the
resulting map with a 3176 FWHM Gaussian kernel to bring it
to 1° resolution, this new map gave results more consistent with
the 1.42 and 2.326 GHz maps.

The Reich et al. full-sky 1.42 GHz map (Reich 1982; Reich
& Reich 1986; Reich et al. 2001) has 36’ resolution, and the
Jonas et al. (1998) 2.326 GHz map of the southern hemisphere
has 20" resolution. These have been destriped but not source-
subtracted. Although the 2.326 GHz map covers up to +15°, we
do not use declinations >+10° because the smoothing operation
affects the edges of the map.

The 0.408 GHz map is formally calibrated on angular scales
of 5° by comparison with the 404 MHz survey of Pauliny-Toth
& Shakeshaft (1962), while the 1.42 GHz and 2.326 GHz maps
are tied to absolute sky horn measurements by Webster (1974)
and Bersanelli et al. (1994), respectively. Our study is at 1° reso-
lution, with some regions being extended to 2—3°. Therefore one
would expect the brightness temperature (and thus flux density)

3 National Center for Supercomputing Applications (NCSA), located
at the University of Illinois at Urbana-Champaign; http://www.ncsa.
illinois.edu

4 http://lambda.gsfc.nasa.gov/

5> Available from the Bonn Survey Sampler webpage http://www.
mpifr-bonn.mpg.de/survey.html
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to be under-estimated for many of our sources. The maximum
correction factor is given by the full-beam to main-beam ratio,
which quantifies the power in the full beam (including sidelobes)
compared to the main beam. The largest correction factor we ap-
plied is 1.55 for the Reich et al. 1.42 GHz survey, based on com-
parisons with bright calibrator sources. We did not make any
corrections to the 0.408 and 2.326 GHz maps, since they were
found to be consistent to within 10% of the 1.4 GHz data for the
majority of the sources in our sample and for bright extragalac-
tic sources. We also note that the positional accuracy of these
maps, particularly the 0.408 GHz map, is not particularly good.
Visual inspection of the maps suggests inconsistencies of bright
sources at the level of up to 15" at 0.408 GHz. For our analysis,
however, this is not likely to be a major source of error, since our
integration aperture has a diameter of 2°.

We assumed a 10% uncertainty in the radio data at all three
frequencies. For the 408 MHz map, which has striations, we
added an additional 3.8 Jy uncertainty corresponding to the base-
line uncertainty of +3 K (Haslam et al. 1982) at 1° angular
scales. This is required to bring the y? value to within acceptable
levels for some sources. This additional uncertainty is not always
required for sources in our sample, and we find, in fact, that we
overestimated our uncertainties in many cases (see Sect. 4.4).

2.2.2. WMAP

WMAP 9-year data are included in our analysis (Bennett et al.
2013). The data span 23 to 94 GHz and thus complement
Planck data, particularly the K-band (22.8 GHz) channel. The
1°-smoothed maps available from the LAMBDA website are
used. We apply colour corrections to the central frequencies us-
ing the recipe described by Bennett et al. (2013); the local spec-
tral index across each band is calculated using the best-fitting
model (see Sect. 3.5). This does not exactly take into account
curvature of the spectrum, but is a good approximation given
that the colour corrections are typically a few percent. For the
majority of sources studied in this paper we are not limited
by instrumental noise and we assume a 3% overall calibration
uncertainty.

2.2.3. Submm/infrared data

To sample the peak of the blackbody curve for temperatures
greater than 15 K, we include the COBE-DIRBE data at 240 um
(1249 GHz), 140 um (2141 GHz), and 100 um (2997 GHz). The
DIRBE data are the Zodi-Subtracted Mission Average (ZSMA)
maps (Hauser et al. 1998) regridded into the HEALPix format
using the same procedure as used for the 408 MHz map de-
scribed in Sect. 2.2.1. Colour corrections are applied as de-
scribed in the DIRBE explanatory supplement version 2.3. Data
at higher frequencies are not included in the spectral fits, since
they are dominated by transiently heated grains not in ther-
mal equilibrium with the interstellar radiation field and there-
fore not easily modelled by a single modified blackbody curve.
Furthermore, at wavelengths <40um the spectrum contains
many emission/absorption lines, which complicates the mod-
elling. For the statistical comparison, we also include the shorter
wavelengths of DIRBE band 7 (4995 GHz) and the IRAS 12 ym
(25000 GHz) and 25 um (12 000 GHz) bands. We use the IRIS
maps of Miville-Deschénes & Lagache (2005), which have had
bright sources and a model of zodiacal light removed. Residuals
from zodiacal-light subtraction are known to be an issue at
wavelengths shorter than about 25 um, but are not expected
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to be significant for the bright regions in this study because
the zodiacal light is relatively smooth spatially except for a
narrow band at low ecliptic latitudes. We test this assump-
tion by comparing the flux densities from improved zodiacal-
light-subtracted maps (Marc-Antoine Miville-Deschénes, priv.
comm.) where the residuals are clearly much smaller. We ob-
tained consistent results within a fraction of the errors; the scat-
ter is less than 5% at the worst band (12 um). Sources were not
removed for |b| > 5° and therefore do not affect the majority of
the sources in our sample.

We use Spitzer data where available at 8 and 24 um as a dust
diagnostic for the polycyclic aromatic hydrocarbons (PAHs) and
very small grains (VSGs), respectively. The Spitzer data are ob-
tained from the Spitzer data archive®, and are reprocessed for the
purposes of this paper in order to mitigate possible systematics.
An extended emission correction is applied to the 8 ym data, and
the zodiacal light contribution is subtracted from both the 8 and
24 um data. Bright point sources are extracted from both bands
to enable us to investigate the extended emission, and an over-
lap correction is applied to ensure a consistent background level.
Finally, all the reprocessed data are combined to produce the fi-
nal maps used in this analysis; see Tibbs et al. (2011) for more
details. We are able to measure flux densities for 24 regions.

3. Sample selection and SED fitting

In this section we cover the methods we use to create the
sample of sources. Section 3.1 describes the source detection
method that forms the main sample. Section 3.2 describes the
component subtraction method for detecting potential AME re-
gions. Section 3.3 summarizes the final sample of 98 sources.
Section 3.4 describes the aperture photometry method used to
extract the flux densities of the sources. Section 3.5 describes the
model-fitting that is adopted to quantify the various components
and to assess the contribution of AME. Section 3.6 presents ex-
ample SEDs’ and a summary of what is observed in our sample.

3.1. Detection of bright sources

At high radio frequencies (30-70 GHz), synchrotron and ther-
mal dust emission are expected to be relatively faint. The domi-
nant emission mechanism is thought to be optically thin free-free
emission (@ ~ —0.14, where S o v*), with a possible contribu-
tion from AME. Free-free emission is expected to be particularly
strong near the Galactic plane due to the presence of HII regions
and ionized gas near OB stars. This allows H1I regions to be de-
tected by simply searching for bright sources in individual fre-
quency maps. However, in this paper we are mainly interested in
constructing accurate SEDs across the radio/submillimetre/far-
infrared wavelength range, which requires the detection of the
brightest clouds at all WMAP/Planck frequencies. We used the
SExtractor software (Bertin & Arnouts 1996), which was used
in the “Sextra” pipeline for the Planck Early Release Compact
Source Catalogue (Planck Collaboration VII 2011), to detect
bright sources at each Planck frequency of the CMB-subtracted
maps.

We begin with a SExtractor catalogue of 1194 sources
detected at 70 GHz. To increase reliability and to ensure the

¢ http://sha.ipac.caltech.edu/applications/Spitzer/
SHA/

7 Strictly speaking, the SED is frequency multiplied by the flux density
(with units W m~2). Here we use the term for the flux density spectrum
(units Wm™2 Hz ™).

region is bright at all Planck frequencies, this catalogue is fur-
ther cross-matched with the 28.4 and 100 GHz catalogues, us-
ing a matching radius of the largest beam FWHM (16/38).
This results in 462 sources that are well-detected across the
30—-100 GHz range. We remove extragalactic sources by search-
ing the NASA Extragalactic Database (NED?®) for radio galax-
ies. Approximately half of all detected sources, and a majority at
|b| = 5°, are found to be extragalactic, most of which are likely
blazars. We also remove a small number of sources associated
with known bright supernova remnants (Green 2009) and plan-
etary nebulae (Acker et al. 1992). The SIMBAD? database is
found to be useful for confirming that a region is dominated by
Galactic emission and that many of our sources are in fact large
H 11 complexes or parts of molecular clouds. These regions often
contain several individual sources.

The final stage of catalogue trimming is made by visual in-
spection of the maps and preliminary SEDs made by aperture
photometry (Sects. 3.4, 3.5, and 3.6). We make visual inspec-
tion at this resolution, since the final SEDs are to be constructed
using 1°-smoothed maps (to ensure that the response to diffuse
emission is the same at all frequencies). To ensure a robust sam-
ple, sources that are not well-defined after smoothing to 1° (i.e.,
do not show a definite peak of emission on scales of <2°), or
are relatively faint («<10Jy at a frequency of 30 GHz), are dis-
carded, except for a few cases at several degrees distance from
the Galactic plane. We find a few sources whose positions are
not exactly centred on the peak of the emission at frequencies
of 20—60 GHz, with offsets as large as 10—20’. This can oc-
cur because of the complexity of the Galactic plane, which af-
ter filtering can produce multiple peaks in close proximity to
each other. In these cases, we manually shift the position to
the approximate centre of the hotspot. Since we are using a
large 1° radius aperture (see Sect. 3.4), this makes little differ-
ence to the SEDs. We identify 94 candidate AME sources using
this technique.

3.2. Detection of AME regions by component subtraction

We use a simple CMB/foreground subtraction method to iso-
late AME from the other diffuse components. This method is
essentially the same as was used by Planck Collaboration XX
(2011), where potential AME regions were located by a sim-
ple subtraction of the non-AME components from the 28.4 GHz
Planck CMB-subtracted map. The one difference is that here we
only use the 0.408 GHz map to trace the synchrotron emission,
which is extrapolated with a single power law and a spectral in-
dex B = =3.0 (T o v#). This is a typical value of the slope be-
tween 408 MHz and WMAP/Planck frequencies (Davies et al.
2006; Gold et al. 2011). The combination of the 1.4 GHz and
2.3 GHz maps is not used, as it creates large-scale artefacts.
Although there is some evidence of flattening (8 =~ —2.7) of
the synchrotron index at low Galactic latitudes (e.g., Gold et al.
2009), we use the typical high latitude value. For most sources
on the Galactic plane, the synchrotron emission is a minor com-
ponent at frequencies above 23 GHz. For the free-free compo-
nent we use the dust-corrected Hao map of Dickinson et al.
(2003). For thermal dust, we use model 8 of Finkbeiner et al.
(1999). Both are calculated at a frequency of 28.4 GHz.

We smooth the Planck CMB-subtracted maps to a res-
olution of 1° and subtract the non-AME components from
the Planck 28.4GHz map to create a map of residuals. A

8 http://ned.ipac.caltech.edu/
° http://simbad.u-strasbg.fr/simbad/
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Fig. 1. Map of residuals at 28.4 GHz after subtracting off synchrotron,
free-free, thermal dust, and CMB components (see text), in mK (R-J)
units. A 5°-smoothed version of the map is subtracted to remove ex-
tended diffuse emission to more easily identify bright, relatively com-
pact sources. This map is shown in the Mollweide projection, with
[ = 0° in the centre and increasing to the left.

5°-smoothed version is also created and subtracted from the
1° map to remove large-scale emission and highlight the com-
pact regions most suited for this analysis. The diffuse emission
removed here will be the focus of future papers.

The resulting map of residuals at 28.4 GHz is shown in
Fig. 1. The large-scale features, including negative artefacts,
are not of concern here. Instead, we used this map as a “find-
ing chart” to identify new regions that emit detectable levels of
AME. Approximately 100 bright well-defined sources are lo-
cated by eye and a spectrum is produced for each one using
aperture photometry (see Sect. 3.4). The well-known AME re-
gions in Ophiuchus and Perseus stand out in this map. Lots
of free-free emission (usually because it can be self-absorbed
at lower frequencies) and synchrotron point sources (with a
flatter spectral index than S = -3.0, and hence not removed
completely by extrapolating the synchrotron map assuming a
steep spectrum) can be found in this residual map. Most of
the 100 AME candidates are H1I regions; 20 sources show ev-
idence for excess emission at 30 GHz based on an initial spec-
tral fit, out of which 16 have already been identified using the
source-detection method (Sect. 3.1). The four additional sources
found using this technique are G037.79-00.11, G293.35-24.47,
G317.51-00.11, and G344.75+23.97.

3.3. Final sample

The final sample contains 98 sources, listed in Table 3. The
superscript letter after the name indicates which method the
source is chosen from. Most of the sources are located using
the SExtractor detection technique, with a few of the AME-
dominated sources being detected using the component sub-
traction method. We also indicate if a source is already known
from previous AME studies. A few previously identified AME
candidates are not on this list because they are not detected at
high significance in the Planck data, mostly due to the lim-
ited angular resolution of this study. These include RCW175
(Dickinson et al. 2009), LDN1621 (Dickinson et al. 2010), M78
(Castellanos et al. 2011), LDN1780 (Vidal et al. 2011), and
LDN1111/675/1246 (Scaife et al. 2009, 2010a). Associations
with known objects are listed in the notes column of Table 3.
The Planck CMB-subtracted map with the locations of the
sources is shown in Fig. 2. Most of the sources lie within a few
degrees of the Galactic plane. A few sources are in the well-
known regions of Ophiuchus (I = 0°), Perseus (I = 160°), Orion
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(I = 200°), and the Gum nebula (I = 260°). The most signifi-
cant (came > 5 and fUSHT < 0.25; see Sect. 4) AME sources
are shown as thick squares; sources that have excess emission
(ocame > 5) but have a potentially large contribution of opti-
cally thick free-free emission from ultra-compact Him (UCH 1)
regions (fUSHT > (.25) are shown as stars. It is interesting to
see that these AME-bright sources appear to cluster in certain
regions, particularly along the local Gould Belt region (Planck
Collaboration Int. XII 2013). There seem to be no bright AME
regions along the lines-of-sight to the local spiral arm at / = 90°
and [ = 270°. In general, few of the most significant AME
sources lie on the plane. This is partly explained by the removal
of AME sources that have a potential UCH II contribution, based
on infrared sources (see Sect. 4.2), which preferentially lie in
the Galactic plane. In addition, there is a selection effect, since
the high free-free brightness temperatures and overall confusion
in the plane make it more difficult to identify individual AME-
bright objects. It may also be that these sight-lines contain a
strong component of free-free emission from warm ionized gas,
which is thought to exhibit less AME than cold neutral medium
(CNM) or molecular clouds (Planck Collaboration XXI 2011).
With our incomplete sample, such claims cannot be confirmed
in this study.

3.4. Aperture photometry

We use the HEALPix aperture photometry code developed for
Planck Collaboration XX (2011) to extract the flux densities of
the regions from the maps. This software has also been used
to investigate at the polarization of AME from p Ophiuchi
in Dickinson et al. (2011). After converting from CMB ther-
modynamic units (Kcyp) to RJ units (Kgj) at the central fre-
quency, the maps are converted to units of Jypixel™! using
S = 2kTr;Qv?/c?, where Q is the HEALPix pixel solid angle.
The pixels are then summed in a circular aperture of 60" to ob-
tain an integrated flux density. An estimate of the background is
subtracted using a median estimator of pixels lying at radii be-
tween 80" and 100’. By using Monte Carlo injection of sources,
we find that this choice of aperture and annulus size provides
the least scatter in recovered flux densities, and is a reasonable
balance for obtaining an appropriate background level without
subtracting appreciable flux density from the source itself.

The flux density uncertainties are estimated from the rms
of the values in the background annulus and added in quadra-
ture to the absolute calibration uncertainties for each map (see
Sect. 2.2). Simulations of injected point-like sources show that
the flux density estimates are unbiased and that the uncertainties
are reasonable; however, the exact value of flux density uncer-
tainty for each source is difficult to quantify, since it depends
very strongly not only on the brightness of the source and back-
ground, but also on the morphology of the emission in the vicin-
ity of the source. This will be discussed further in Sect. 4.4.
Colour corrections, based on the local spectral index across each
band, are applied during the model-fitting, as described in the
next section.

3.5. Model fitting

We take the flux density S for each source from the aperture
photometry and fit a simple model of free-free, synchrotron
(where appropriate), CMB, thermal dust, and spinning dust
components:

S=Sﬁ+Ssync+Std+SCMB+Ssp~ (1)
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Fig. 2. CMB-subtracted Planck 28.4 GHz map covering the entire Galactic plane and latitudes |b| < 30°. The colour scale has a logarithmic stretch.
Regions with the most significant AME are highlighted as thick squares while the rest of the sample are shown as circles. Regions with significant
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max

excess emission but with a potential UCH II contribution (

The free-free flux density S is calculated from the brightness
temperature 7', based on the optical depth 7, using the standard
formula

_2kTR QY

S
2

, @)

where k is the Boltzmann constant, Q is the solid angle of the
aperture, and v is the frequency, with

Tg=Te(1—e™™), 3)
and the optical depth 74 is given by
74 = 5.468 x 1072 T, v EM gg, 4)

in which the Gaunt factor can be approximated'® by

3
gg = In (exp [5.960 - iln(zi Vo T4_3/2)
n

+ 2.71828). 5)

For the analysis of AME, we assume a fixed electron temperature
of 8000K for 7. for all regions, fitting only for the emission
measure (EM). Note that this is not the true EM, but an effective
EM over the 1° radius aperture. For compact sources, the quoted
EM will be underestimated.

For six sources, we also include a synchrotron component
modelled as a power law with amplitude Ay, and variable flux
density spectral index «,

The thermal dust is fitted using a modified blackbody model,

Ssync = Async (

3
v

- A B

Sw=2h 3 kT, — ] 750 (v/1.2THz)™ Q, @)
fitting for the optical depth 7,5, the dust temperature 7y, and the
emissivity index S4. The CMB is fitted using the differential of a
blackbody at Tcyp = 2.7255 K (Fixsen 2009)

2kQV?
Scms = =2

)ATCMB. @®)

Here ATcmp is the CMB fluctuation temperature in thermody-
namic units. The spinning dust is fitted using

S sp = ASP j(V + Vshift) Q, 9

10 Here we use the approximation given by Draine (2011), which is ac-
curate to better than 1% even up to frequencies of 100 GHz and higher.

> 0.25) are shown as star symbols (see Sect. 4.2).

where we use a model for j, calculated using the SPDUST (v2)
code (Ali-Haimoud et al. 2009; Silsbee et al. 2011). We choose a
model corresponding to the warm ionized medium (WIM) with a
peak at 28.1 GHz to give the generic shape, and allow for a shift
of this model with frequency. We therefore fit for two parame-
ters corresponding to the AME amplitude Ay, and a frequency
shift vif. Note that the units of A, are formally of column den-
sity (cm™2). If the spinning dust model was appropriate for the
line-of-sight, and no frequency shift was applied, then this would
indeed be the column density Ny; however, since this quantity is
model-dependent and there is potentially a shift in frequency, we
do not take this to be a reliable estimate of Ny. Similarly, in this
paper we do not attempt to fit specific spinning dust models to
each source, hence the derived column density is not necessarily
physical; Ay, is essentially the flux density at the peak normal-
ized to the spinning dust model. Given the large uncertainties
and difficulty in separating the various spectral components, we
have not attempted to look for deviations from the basic spinning
dust model (Hoang et al. 2011).

The least-squares fit is calculated using the MPFIT'!
(Markwardt 2009) package written in IDL, with starting val-
ues estimated from the data and with amplitude parameters con-
strained to be positive except for the CMB, which is allowed
to go negative. MPFIT also provides estimates of the 1o~ uncer-
tainties for each parameter, taken as the square root of the di-
agonal elements of the parameter covariance matrix. We note
four special cases in Table 3 (G068.16+01.02, G076.38-00.62,
G118.09+04.96 and G289.80-01.15) where the fitting returned
Agp =0.0£0.0. These could be mitigated by removing the posi-
tivity prior, with best-fitting negative values still being consistent
with zero. Instead, for these special cases, we fixed Ay, to zero
to make the fits more physically meaningful, since the spinning
dust spectrum should not go negative.

3.6. Example SEDs

Some example SEDs for regions with weak AME are shown in
Fig. 3; see Sect. 4.3 and Fig. 8 for SEDs with significant AME.
Filled circles are used for data included in the fit, and unfilled
circles are for display purposes only. We begin by including data
from 0.408 GHz up to 3000 GHz and make a least-squares fit
to the data. In general, the SEDs are well-fitted by our simple
model, although the uncertainties appear to be over-estimated.
This can be seen in some of the example SEDs in Fig. 3 and in
the reduced Xz values in Table 3; the mean value for the entire

" http://purl.com/net/mpfit
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Fig. 3. Example SEDs (see text for description of individual SEDs) of sources with little or no AME (see Fig. 8 for SEDs with significant AME).
Data points are shown as circles with errors and are colour-coded for radio data (cyan), WMAP (red), Planck (blue), and DIRBE/ IRAS (black).
The best-fitting model of free-free (dotted line), synchrotron (long-dashed line), thermal dust (short-dashed line), CMB (triple-dot-dashed line),
and spinning dust (dot-dashed line) are shown. Data included in the fit are shown as filled circles, while the other data are unfilled. The residual
spectrum, after subtraction of free-free, synchrotron, CMB and thermal dust components, is shown as an insert.

sample is y2 = 0.59. However, our uncertainties are justified for
some sources where the scatter is consistent with our assigned
uncertainties. An example of this is G017.00+00.85, where there
is considerable scatter at low frequencies.

All sources show a strong thermal dust component peaking
at about 2000-3000 GHz, indicative of dust grains at 74 ~20 K.
The one-component modified blackbody function reproduces
the spectrum above 100 GHz remarkably well for the majority
of our sources; however, the 100/217 GHz data points are of-
ten inconsistent with the model due to the CO line contamina-
tion within the Planck bands. For this reason, as previously ex-
plained, we exclude the 100/217 GHz data from all our fits.

Another effect seen in our SEDs is that of the fluctuations
in the CMB. Although the CMB fluctuations are faint (with an
rms of 70 uK at 1° scales), the large aperture that we integrate
over results in a typical integrated CMB flux density of 7Jy
at 100 GHz, based on the standard deviation of flux densities
from Monte Carlo simulations of a CMB-only sky, assuming the
WMAP 7-year power spectrum (Larson et al. 2011). It is impor-
tant to note that these fluctuations are about the mean CMB tem-
perature, and thus can be negative or positive. Figure 3 shows ex-
amples of both; G209.01-19.38 contains a large positive CMB
fluctuation (ATcyp = 371 + 102uK), and G274.01-01.15,
showing a strong negative fluctuation (ATcpmp = —37 = 10 uK).
The negative CMB flux densities cause a dip in the spectrum
at frequencies near 100 GHz, which could be misinterpreted as
spinning dust at lower frequencies.
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Similarly, over-fitting by a strong positive CMB fluctuation
could affect the AME intensity. This could happen when there
is a flattening of the thermal dust spectral index at frequen-
cies below 353 GHz (Planck Collaboration, in prep.), which can
be accounted for by the CMB component. A clear example of
this is G015.06—00.69, shown in Fig. 3. There is an appar-
ent flattening of the thermal dust spectral index, which appears
as an excess at frequencies ~100—353 GHz relative to the one
component dust model, an effect that has been observed before
(Paradis et al. 2009, 2012b). In this case, the fitted CMB tem-
perature, ATcvs = (533 + 251) uK, is larger than what could
realistically be attributed to a pure CMB fluctuation (>150 uK).
Fortunately, because the uncertainties are large and the CMB
does not contribute strongly at frequencies where AME is dom-
inant (10—60 GHz), this does not have a major impact on the
AME results. This will be discussed further in Sect. 4.4.

At frequencies below 100 GHz, optically thin free-free emis-
sion is seen in many sources and is sometimes consistent with
the low frequency radio data at 1 GHz and WMAP/Planck data
at 20-100GHz (e.g., G265.154+01.45 and G289.80-01.15 in
Fig. 3). These sources justify our use of the 0.408, 1.42, and
2.326 GHz data, and show that the overall calibration factors are
within the uncertainties assumed in this study. Where there is
evidence of absorption at low frequencies, or if there is a dis-
crepancy between 0.408 GHz and the other low frequency data
at 1.4/2.3 GHz, we omit the 0.408 GHz data point (and occasion-
ally the 1.42GHz data point) in the fit (e.g., G123.13-06.27,
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G209.01-19.38, and G274.01-01.15 in Fig. 3). For some
sources (e.g., G015.06—00.69), we choose not to include the
0.408 and 1.42 GHz data, since they both show evidence of ab-
sorption. At 2.3 GHz, the data are consistent with optically thin
free-free emission and are a good match to the WMAP/Planck
data. This is acceptable since the free-free component usually
contains only one free parameter (i.e., EM). Sometimes this is
necessary because the maps show considerably higher back-
ground relative to the source itself, due to the high levels of
synchrotron emission at frequencies <1 GHz. This can affect the
estimated flux density both inside the aperture and also in the
background annulus, resulting in a bias that can be either high or
low and may account for data points that are discrepant with the
other low frequency data, particularly at 0.408 GHz.

Figure 3 shows examples of other situations. Synchrotron-
dominated sources are omitted in our sample except for
six sources where the low frequency data are seen to
be a good fit to a power-law (amplitude and spectral in-
dex) by visual inspection. These sources are G010.19-00.32
(Fig. 3), G008.51-00.31, G012.80-00.19, G037.79-0.11,
G344.75+23.97, and G355.44+0.11. No strong supernova rem-
nants are included in our sample; however, weak supernova rem-
nants (SNR) are identified (see the Notes column of Table 3) in
some regions. We obtain flux density spectral indices that are in
the expected range (—0.7 to —1.2) for supernova remnants, with
a mean value of —0.9.

4. Regions of AME
4.1. Significance of AME detections

Visual inspection of the SEDs suggests that a large fraction
(at least half) of the regions chosen for this study may ex-
hibit excess emission at frequencies in the range 20—60 GHz.
All sources have a bright thermal dust component that peaks at
2000-3000GHz and becomes subdominant at frequencies be-
low 100 GHz; most have a contribution of free-free emission.
Approximately half of the 98 sources appear to contain more
emission at 20—60 GHz compared to a simple extrapolation of
optically thin free-free and thermal dust components.

To quantify the level of AME and its significance, we use
the spinning dust amplitude A, and its uncertainty o4, directly
from the SED fitting. These are listed in Table 3, along with the
significance level of the AME detection, came = Agp/ oA, We
also tried subtracting the non-AME components in the SED, thus
leaving the AME residual, which gave similar results.

We focus on the AME detections that are at >50. Of the
98 sources, 42 initially show highly significant (camg > 5) evi-
dence for AME while 29 do not exhibit strong AME (oamE < 2).
Hereafter, we will refer to these as “AME regions” (shown in
boldface in Table 3) and “non-AME regions”, respectively. This
leaves 42 sources that show some evidence (oamg = 2-5) of
excess emission attributable to AME, which will be referred to
as “semi-significant AME regions”. Note that we reclassify 15
of the AME sources into the semi-significant category due to
the potential contamination from UCH 11 regions and this will be
discussed in Sect. 4.2. This leaves 27 that we classify as strong
AME detections.

Figure 4 shows a histogram of the AME significances, o amg-
As discussed in Sect. 4.4, although there are some concerns for a
few sources regarding possible modelling and systematic errors
that could be contaminating our results, there is strong evidence
for AME in a number of sources.
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Fig. 4. Histogram of the AME significance values, oamg, for the sample
of 98 sources. The 5o limit is shown as a dashed line. Sources that
are significant and have a maximum contribution from UCHII regions
(fUCHI < (.25) are shown as the filled histogram.
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Two of the strongest detections are the well-known
sources within the Perseus (G160.26—18.62) and p Ophiuchi
(G353.05+16.90) clouds, studied by Planck Collaboration XX
(2011). These are the most easily detectable AME-dominated
sources in the sky, exhibiting 70—80% of AME at 30 GHz, and
are detected at a level of 300 and 170, respectively. We detect
them at higher significance in this paper due to using the spin-
ning dust fit amplitude directly (rather than subtracting the best-
fitting model and determining the significance from the residuals
over a restricted frequency range). For p Ophiuchi the best-fitting
dust temperature and spectral index are consistent with the val-
ues from Planck Collaboration XX (2011), while for Perseus the
spectral index is somewhat different; we attribute this to the fil-
tering that was applied in that paper to allow the inclusion of the
COSMOSOMAS data. The thermal dust optical depth 7,59 was
higher in the analysis from the early paper. In the early paper,
the quoted optical depth was the value calculated from the mod-
elling of the spinning dust, assuming a given PAH abundance,
rather than from the thermal dust component of the SED. For
these sources, the bulk of the AME was modelled as originat-
ing from the denser molecular component, which has a higher
optical depth associated with it.

The two new sources detected by Planck Collaboration XX
(2011),G107.20+05.20 and G173.62+02.79, are also high in the
significance list at 9.90 and 5.60, respectively. Note that the de-
tails of the SEDs are not identical to those presented in Planck
Collaboration XX (2011) because the size of the background an-
nulus has changed and the Planck maps have been updated; how-
ever, the differences are small and within the stated uncertainties.

4.2. Ultra-compact Hll regions (UCHII)

Optically thick free-free emission at frequencies above a few
GHz can come from UCHTI regions with EM > 107 cm™® pc,
which can be optically thick up to 10 GHz or higher (Kurtz
2002, 2005). A nearby UCHTI region with typical parame-
ters (T, = 8000K, angular size 1) could have a flux den-
sity of up to 10Jy at LFI frequencies, while most are at <1 Jy
(Wood & Churchwell 1989b). However, in our low resolution
analysis there could be numerous sources within the aperture
that may be contributing at frequencies >10GHz. Since no
high resolution radio surveys exist at frequencies above a few

A103, page 9 of 28


http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201322612&pdf_id=4

A&A 565, A103 (2014)

3F ‘ :
2f
AL el R ]
s 1F .
2 F ]
g | ]
2 0OF E
E oA 1 1 1 1 3
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Log o(S2s/S12)

Fig. 5. Colour—colour plot of IRAS PSC sources (grey plus symbols)
that lie within the apertures of all 98 sources in our sample. UCHII
candidates (solid black squares) tend to have ratios log,,(Seo/S 12) >
1.30 and log,,(S25/S12) = 0.57, corresponding to the top-right hand
corner of this plot (marked with a dashed line).

gigahertz'2, we use the IRAS Point Source Catalogue (PSC;
Beichman et al. 1988) to identify UCH 11 candidates within each
aperture. Wood & Churchwell (1989a) found that due to the
warmer dust temperatures in the vicinity of OB stars, UCHII re-
gions tend to have IRAS colour ratios of log;,(Se0/S12) = 1.30
and 1Og10(525/S 12) > 0.57.

Figure 5 shows the distribution of these colour ratios for all
sources that lie within the apertures of our sample. It can be seen
that about 20% of sources lie in this region of colour—colour
space. To identify UCHTI regions we choose sources that lie
within this colour-colour range, but exclude sources that are
identified as extragalactic (IRAS IDFLAG =0) or are upper
limits at either 25um or 60um. Candidate UCHII regions
are marked as solid black squares in Fig. 5. For each of our
98 sources, we typically find 10—50 matched IRAS PSC sources
and a few UCH 11 candidates within the aperture. Some apertures
contain no apparent UCH 11 regions, while a few have 10—20; the
median value is three UCH 11 candidates for each aperture.

To quantify how much of the radio flux density at frequen-
cies 210 GHz could be attributed to UCH 11, we use the 100 um
flux densities of UCH 11 candidates to predict the maximum flux
density at a wavelength of 2cm (15 GHz). Kurtz et al. (1994)
measured the ratio of 100 um to 2 cm flux densities, and found
it to lie in the range of 1000 to 400 000, with no UCH II regions
having S 100/S2 < 1000. We can therefore sum up S ;o9 for all
UCH candidates within each aperture and use the factor of
1000 to give a maximum 15 GHz flux density from UCHII re-
gions, S VCHI (Dickinson 2013). Strictly speaking, this is an es-
timate at 15 GHz, but most H1I regions are in the optically thin
regime (i.e., have turned over) at frequencies >15 GHz (Kurtz
et al. 1994). This is therefore very likely to be an over-estimate
in many cases. First, some of the IRAS PSC sources will not be
UCH, as discussed by Wood & Churchwell (1989a). Ramesh
& Sridharan (1997) suggested that only about one quarter of
these candidates were indeed UCH I regions, due to contam-
ination by cloud cores with lower mass stars, while Bourke
et al. (2005) showed that the contamination by low-mass (i.e.,

12 The CORNISH 5 GHz source catalogue (Purcell et al. 2013) cover-
ing / = 10°-65° has recently been published and provides useful addi-
tional information. The two significant AME sources that are covered
by CORNISH (G017.00+00.85 and G062.98+00.05) do not contain any
bright (>11Jy) sources at 5 GHz.
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Fig. 6. Estimated maximum contribution from UCHII regions plotted
against 28.4 GHz AME residual flux density. The most significant AME
sources (oame > 5 and focHI < (0.25) are shown as filled black cir-
cles, while non-AME regions (0ame < 2) are shown as unfilled circles.
Semi-significant AME sources (oame = 2-5) are shown as filled grey
circles. Significant AME regions that have a potentially large contri-
bution from UCHIT (fJSHY > 0.25) are re-classed as semi-significant
(grey circles) and are highlighted by star symbols in this plot. Regions
with no matched UCH II regions are set to 0.01 and lie on the bottom
of the plot. The dashed lines correspond to different maximum fractions
of UCH I flux density: 1, 10, 25 (solid line), and 100% of the 28.4 GHz
residual flux density. The Perseus (P) and p Ophiuchi (R) clouds are
indicated.

non-ionizing) protostars is at the 10% level or greater. On the
other hand, such sources are typically weak and will therefore
limit such a bias. Second, the average value of S go is 23000,
with a tail to higher values (Kurtz et al. 1994). Therefore, our
maximum UCHII flux density determination is very conserva-
tive and is likely to be a factor of a few above the true value.
We define the maximum fractional contribution at 28.4 GHz,
o = gUCH /g 284 where 1.0 represents a possible 100%
contribution of UCHT to the AME amplitude. Figure 6 plots
S UCHI aoainst the 28.4 GHz AME residual flux density; the val-
ues of fUSHI for 1,10, 25, and 100% are shown as straight
lines. A wide range of values is seen, with some regions hav-
ing no UCH I matches and therefore no contribution (they are
set to 0.01Jy in Fig. 6), while many other sources have a po-
tentially significant contribution from UCH 11. Out of the 42 re-
gions that have o-avg > 5, four sources have fUSHT > 1 nine
have fUSHI > 0.5, fifteen have fUSHT > 0.25, and eighteen have

UCHI max
FUCHT'S 0 1 (Table 3).

max
We choose to remove the fifteen sources with fUSHT >
0.25 from the significant AME list and re-classify them as
semi-significant hereafter. Therefore they appear as grey cir-
cles in subsequent plots, and in Fig. 6 highlighted with star
symbols. This cut-off value is chosen to keep G353.05+16.90
(o Ophiuchi) in the significant AME sample, since there is good
evidence for it not to harbour UCHII regions (Casassus et al.
2008). Inspection of the SEDs of those sources with high fUCH1
reveals cases where the spectrum at frequencies between 20 and
60 GHz is indeed very flat (as expected from optically thin free-
free emission from HII regions). The most prominent exam-
ple of this is the source G213.71-12.60, which has the high-
est fUCHI yalue of 3.9, and a high apparent excess significance
of 150. This is likely to be mostly dominated by UCH I at these
frequencies.
We note in this section that the two new AME regions re-

ported by Planck Collaboration XX (2011), G107.20+05.20 and
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G173.62+02.79, have among the highest values of fUCH!

(Table 3). A preliminary analysis of high resolution (2’) follow-
up observations at 15 GHz with the AMI (Perrott et al. 2013)
indicates that for both these sources, the bulk of the Planck flux
density is diffuse (on scales larger than 10 arcmin), making it
unlikely for UCH I to explain the excess. They found that while
G107.2+5.2 may harbour a hyper-compact Hit (HCH1I) region
with a rising spectrum at 15 GHz, but with a flux density <1 Jy,
a spinning dust model is preferred.

To quantify possible UCHII regions (or other compact
sources) at high latitudes, we searched the NED to look for
compact radio sources and, where available, the GB6/PMN
4.85GHz maps'? (Condon et al. 1991, 1993, 1994). Within
1° of the central position there are typically two to five com-
pact sources with flux densities in the range 0.03 to 0.1Jy.
Most of these are already identified as extragalactic sources
(therefore not UCH II regions) and typically have flat or falling
spectra. For example, near G023.47+8.19 lies the radio source
PMN J0805-0438 with a flux density 0.193Jy at 4.85GHz.
Comparison with measurements at 1.4 GHz yields a spectral in-
dex of —0.8 + 0.2 for this source, implying a negligible con-
tribution to the flux density at 23 GHz. The most significant
case is the flat-spectrum radio source PKS 1552-033 near
G005.4+36.50, which has a flux density of 0.26Jy at 20 GHz
(Murphy et al. 2010b). This source contributes 15% of the AME
flux density of 1.7 + 0.3 Jy, but is within the uncertainty of the
residual AME.

~ 1

4.3. Maps and SEDs of most significant AME detections

Figure 7 presents maps of some of the most statistically signif-
icant AME regions, excluding the previously known sources in
Perseus and p Ophiuchus. The Planck maps have been CMB-
subtracted. The brighter emission at 20-60 GHz can sometimes
be seen visually. In the most significant AME sources there
is little or no discernible emission at low radio frequencies
(<2.3GHz), but there is almost always strong thermal dust emis-
sion at high frequencies (3143 GHz). Good examples of this
include G005.40+36.50, G023.47+08.19, G192.34—11.37, and
G219.18-8.93. In other sources the picture is not so clear, due
to strong backgrounds (e.g., in G355.63+20.52) or because the
source is not so well-defined. For example, G004.24+18.09 ap-
pears as a spur emanating from a diffuse region. The images
show that many of the AME sources are not compact, but rather
diffuse and extended. This will be quantified in Sect. 5.1.1.
Figure 8 shows SEDs for some of the most significant AME
regions found in this study, excluding the previously known
sources. The inset is the residual spectrum after subtraction of
free-free, thermal dust, and CMB components. The error bars
in the residual spectrum include the additional uncertainty in
the model by simple propagation of errors. For these regions
the residual spectrum shows significant flux density, although the
uncertainties are larger than in the raw spectrum due to subtrac-
tion of the model. Nevertheless, the best-fitting spinning dust
spectrum is seen to be a remarkably good fit to these residuals.
Similar to the example SEDs of the whole sample (Fig. 3),
the SEDs of the AME regions exhibit a wide range of phenom-
ena. In some regions (e.g., G004.24+18.09, G023.47+08.19,
G192.34-11.37, and G219.18-08.93), there is little radio emis-
sion at frequencies near 1 GHz, resulting in the majority of the
flux density at 30 GHz being assigned to spinning dust, and

13 Maps downloaded from the SkyView: http://skyview.gsfc.
nasa.gov

possibly a contribution from the CMB above about 70 GHz.
Other regions have a reasonably well-defined level of free-free
emission, but the 20-100 GHz flux density is much higher than
the extrapolation of the free-free and thermal dust models (e.g.,
G204.70-11.80 and G234.20-00.20).

4.4. Robustness and validation

Throughout the analysis we have taken a conservative approach
to the estimation of uncertainties. A critical part of the analysis
is the extrapolation of synchrotron and free-free emission from
low radio frequencies (~1 GHz) to WMAP/Planck frequencies.
We believe that our simple models of the synchrotron and free-
free emission spectral laws are appropriate based on many other
studies, both experimental and theoretical; see Bennett et al.
(2003) for an overview. The contribution from UCHTII regions
at WMAP/Planck frequencies could be important for a fraction
of the sample, but is not thought to be a major contribution in
general (see Sect. 4.2).

We find that for the majority of the sources in this study,
y*/d.of. < 1 (see Table 3), with a mean value y2/d.o.f. = 0.59.
For a number of sources it is clear that the uncertainties are
overestimated, as the scatter in the flux densities relative to our
model is much smaller than the error bars would suggest. In
many cases this can be attributed to bright backgrounds near the
region of interest. Also, the calculation of ,\(2 assumes that the
errors are uncorrelated, while the errors will certainly be corre-
lated to some degree due to similar backgrounds and also simi-
lar absolute calibration values from frequency to frequency. The
contribution to the y? from various frequency ranges is found
to be approximately equal (e.g., by comparing the y? values for
data between 0.4 and 2.3 GHz and between 353 to 857 GHz).
Therefore, we do not appear to be systematically over-estimating
(or under-estimating) the errors in any particular range of
frequencies.

We made a number of tests to check that our main results
are not grossly affected by our assumptions and fitting methods.
These include changing our assumed calibration uncertainties,
aperture radii, background annulus radii, spinning dust model,
and starting values for the fitting algorithm. In all cases, we
find that the general trends presented here are unchanged and
the SEDs do not change appreciably; however, we note that in a
few individual cases, the spectral model does vary depending on
some details of the analysis. These cases are mostly related to
the low frequency components, specifically the free-free level,
which is not always well-constrained by the data. The uncertain-
ties reflect this, and we are confident in most of the AME detec-
tions presented here. Nevertheless, we recommend caution when
examining individual sources in detail. Follow-up observations
should be made for all our high significance regions.

For most sources, we find the CMB fluctuation tempera-
tures are within the expected range —150 < ATcmp < 150 uK.
From Monte Carlo simulations, one would expect a fluctuation
outside this range only 0.7% of the time; however, in some
cases the fitted CMB temperatures (see Table 3) are found to
be larger than expected. Furthermore, a correlation between
the AME amplitude and CMB is observed. Figure 9 shows
the correlation between the AME amplitude and CMB fluctu-
ation temperature for the entire sample. The AME regions (solid
filled circles) are mostly within the expected range, with rela-
tively small uncertainties; however, the highest AME amplitudes
(Agp > 20X 10%° cm~?) also have the highest CMB temperatures,
which are well above what can be reasonably expected from the
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Fig.7. Maps of example sources with significant (camg > 5) excess emission. Each row is a gnomic map in Galactic coordinates, 5° on a side,
and centred on each source, labelled in the 0.408 GHz map. The maps from left to right are 0.408, 1.42, 22.7, 28.4, 44.1, and 143 GHz. The
WMAP/Planck maps have been CMB-subtracted. The colour-scale is linear, and ranges from the minimum to maximum value within each map.
The aperture is shown as a solid line; the background annulus as dashed lines. The strong AME at frequencies around 30 GHz is evident.
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Fig.8. SEDs for the sources with very significant AME and fuSH™ < 0.25. Data points are shown as circles with errors and are colour-coded
for radio data (light blue), WMAP (red), Planck (blue), and DIRBE/ IRAS (black). The best-fitting model of free-free (dotted line), thermal dust
(short-dashed line), CMB (triple-dot dashed line), and spinning dust (dot-dashed line) is shown. Data included in the fit are shown as filled circles,
while the other data are unfilled. The residual spectrum, after subtraction of free-free, synchrotron, CMB, and thermal dust components, is shown

in the insert. The best-fitting spinning dust model is also shown.

CMB alone (ATcmp > 150 uK). As discussed in Sect. 3.6, some
regions exhibit a flattening of the thermal dust spectral index at
frequencies in the range 100—353 GHz (Planck Collaboration,
in prep.) that can be artificially accounted for by a stronger
positive CMB fluctuation. This then results in a positive bias
at frequencies <100 GHz, which increases the AME amplitude.
Some of the sources with high CMB temperatures also have
high £UCHT: these are shown as star symbols in Fig. 9. We do not
believe this is a major effect on our most significant AME sam-
ple (i.e., oame > 5 and fUSHT < 0.25), since none of the AME
sources has an anomalously high CMB temperature. Although
the CMB has a stronger effect on the semi-significant AME re-
gions, the uncertainties associated with it are larger than for the
rest of the sample, as can be seen in Fig. 9.

To test robustness, the entire analysis was repeated with-
out fitting for a CMB component (ATcyp = 0uK); the results
do not change substantially. We do find an additional source in
G102.88—-00.69 with a significance of oamg = 6.9, but this is
clearly due to a negative CMB fluctuation (ATcyg = —60
17 uK). For the largest fitted CMB temperature of ATcmp
603 + 180 uK in G030.77—-00.03, we find an AME amplitude
of (194 + 22) x 10?° cm™2 (8.50). Without a CMB component
(ATcme = 0), the AME amplitude is (154 + 20) x 10%° cm™2
(7.60). In this case the CMB does not appear to be causing a
large bias, although there is a ~1-20¢ bias in a few sources. This
justifies our high cut-off threshold of 5o-. We also verify that the
general trends presented in our analysis still hold when not tak-
ing into account the CMB.
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Fig. 9. Correlation plot between the AME amplitude, Ay, and the fit-
ted CMB fluctuation temperature. Symbols are as in Fig. 6. For most
sources, the fitted CMB temperatures are within the expected range
shown as dashed lines (JATcmp| < 150 4K) and are not strongly cor-
related with the AME flux density. However, for some sources, there
is a strong positive correlation with CMB temperatures that are higher
than expected, but associated with larger uncertainties.

In summary, we are confident in the robustness of our AME
detections, particularly those at camg > 5. We have been conser-
vative with the uncertainties in the photometry, and in most cases
our SEDs do not change appreciably when changing the details
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of the analysis. In fact, we believe that many of the regions with
oaME = 2-5 (“semi-significant”) are likely to be “real” detec-
tions of AME, which can be seen in many of the subsequent plots
to be consistent with the higher-significance AME sources.

5. Statistical study of AME regions

In this section we study statistically a number of the
observational-based parameters and correlations in AME and
non-AME regions, and try to investigate the nature of the AME
sources and the role that the environment plays.

5.1. Nature of the sources
5.1.1. Angular sizes

First, we would like to know whether the sources are extended or
compact relative to the analysis resolution of 1°. We have seen
already that there is visual evidence that the strongest AME re-
gions appear to be extended. This tendency for AME/spinning
dust to originate mostly from the diffuse/extended emission has
been seen in several previous studies. The majority of AME
sources are diffuse, including the Perseus and p Ophiuchi clouds;
Tibbs et al. (2010) found that in the Perseus molecular cloud at
least 90% of the AME comes from diffuse extended emission.
Surveys at higher resolution do not appear to detect strong AME;
Scaife et al. (2008) found little or no detectable AME from a
sample of relatively compact (<1”) H1I regions.

To estimate the size of each source, an elliptical Gaussian
is fitted to the pixels within the photometric aperture of ra-
dius 1°, taking into account an offset and gradient in the back-
ground. We take the average size, defined as the mean of the
major and minor FWHM axes derived from the Gaussian fit to
the Planck 28.4 GHz map, and deconvolve this from the map

resolution, as § = VFWHM? — 12; these values are listed in
Table 3. The uncertainties are estimated from the average noise
level at 28.4 GHz. We repeat the analysis at other frequencies
and obtain similar results, with most sources agreeing in size to
within 02 1-0°2. Derived values greater than 2° are not found to
be very robust, but they nevertheless indicate that the source is
very extended.

Figure 10 shows the distribution of deconvolved sizes for the
entire sample. There is a clear tendency for the AME sources
to be more extended, while non-AME sources tend to be com-
pact, relative to the beam. The AME sources have a mean size
of 1239 + 0209, while the non-AME sources are at 0°86 + 0°11,
with many of them essentially unresolved in maps at 1° resolu-
tion. Semi-significant sources have a mean size of 1?21 + 0°08.
As mentioned earlier, this is a trend that is becoming increas-
ingly apparent in studies of AME. It could of course be a se-
lection effect, since the dust grains around young and therefore
compact HII regions are known to be different to the dust grains
in the ISM environment away from hot OB stars. For example,
the PAH population is depleted in close proximity to hot OB
stars (Boulanger et al. 1988; Povich et al. 2007). This could be
important for understanding the dust grain population and en-
vironments responsible for exciting the grain rotation. Indeed,
Planck Collaboration XXI (2011) found that there was little or
no AME associated with the warm neutral medium (WNM) or
WIM phases.
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Fig. 10. Histogram of average deconvolved FWHM sizes for AME
and non-AME sources, as derived from Gaussian fitting to the
Planck 28.4 GHz map at 1° resolution. Sources with FWHM > 2°are
plotted as having a FWHM = 2°. The most significant AME sources are
shown as the hatched histogram, while the non-significant (non-AME)
sources are shown as the grey histogram. The strongest AME sources
are, in general, extended, while non-AME sources tend to be relatively
compact.
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5) AME sources are in the hatched region.

5.1.2. AME fraction and IRE — H 1l or molecular dust clouds?

We would like to establish how much of the total emission, at
a given frequency, is due to AME. At frequencies near 30 GHz,
the dominant emission will be due to either AME or free-free
emission. H II regions will exhibit strong free-free emission from
warm (T, ~ 10*K) ionized gas, while dust clouds without mas-
sive star formation will have little or no associated free-free
emission.

To calculate the AME fraction we subtract the non-AME
components at 28.4 GHz and propagate the uncertainties to leave
the 28.4 GHz AME residual, $2% . and its uncertainty, 028 .
We then estimate the AME fraction from the ratio of the AME
residual to the total flux density at 28.4 GHz. The histogram of
the 28.4 GHz AME fraction is shown in Fig. 11. As expected,
the AME sources exhibit a much higher fraction of AME at
28.4GHz; in many, at least half of the 28.4 GHz flux density
could be due to AME.

The weighted mean AME fractions are 0.50 = 0.02 (AME)
and 0.06 + 0.02 (non-AME).This can be compared with the


http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201322612&pdf_id=10
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201322612&pdf_id=11

Planck Collaboration: A study of AME in Galactic clouds

study of H1 regions by Todorovi¢ et al. (2010), who found
an average AME fraction at 30 GHz of 0.41 + 0.10. Dickinson
et al. (2009) found that approximately half the 30 GHz flux den-
sity from the HII region RCW175 was due to AME. The av-
erage value in the Galactic plane appears to be lower; Planck
Collaboration XXI (2011) found that 0.25 = 0.05 of the 30 GHz
flux density was due to AME within the inner Galactic plane,
while Planck Collaboration (in prep.) found a value of 0.42 +
0.02. Although this is a considerable fraction, it is less than what
has been observed in the diffuse Galactic foreground at high lat-
itudes, where the dust-correlated AME is the dominant compo-
nent and accounts for approximately 75% of the total 30 GHz
emission (Davies et al. 2006; Ghosh et al. 2012). On the other
hand, other measurements (Dickinson et al. 2007; Scaife et al.
2008) have found much less or no AME as a fraction of the total
flux density. Sources with a smaller AME fraction ($20%) may
be prevalent, but are much more difficult to detect since the other
non-AME components must be accurately removed first. The
weighted average AME fraction for the semi-significant AME
sources is 0.25 + 0.02 in this study.

Most of our sources appear to be associated with HII re-
gions as well as molecular clouds within giant molecular
complexes (GMCs). The fact that most bright FIR sources
are coincident with HII regions is well-known (e.g., Myers
et al. 1986); however, a few AME sources in our sam-
ple appear to have very little free-free emission, leav-
ing the bulk of 23GHz emission as AME. These re-
gions tend to be associated with dark nebula (Lynds 1962)
with no known HI regions present. The highest signifi-
cance examples of these are LDN137/141 (G004.24+18.09),
LDN134 (G005.40+36.50), LDN1557 (G180.18+04.30), and
LDN1582/1584 (G192.34—11.37). Many of the other AME re-
gions do have strong free-free emission and can be associated
with H1I regions. The most notable associations of dark nebulae
and H1I regions are given in the Notes in Table 3.

To investigate the nature of the heating of the dust, we es-
timate the infrared excess, defined by Mezger (1978) as IRE =
Lrr /Liye. The IRE is a measure of the heating of dust asso-
ciated with H1I regions. If IRE = 1, the FIR luminosity can
be explained by stellar Lya photons, which, after absorption by
the gas and degradation to Lya, are absorbed by dust grains.
If IRE > 1, either direct dust absorption of stellar photons or
additional stars producing little ionization, or both, are needed
(Myers et al. 1986).

As a proxy for Lgr, we estimate the total flux in the FIR
by integrating the best-fitting thermal dust model across all fre-
quencies. As a proxy for Liy,, we use the best-fitting free-free
model to calculate the 5 GHz flux density. Both these quantities
depend on the square of the distance, which cancels out in the
IRE. Figure 12 shows these two quantities plotted against each
other. There is a wide range of IRE values covering 1 to greater
than 100. Sources with IRE > 100 are unlikely to harbour strong
H1I regions, and are mostly molecular dust clouds with no high-
mass star formation; p Ophiuchi lies in this region. AME sources
tend to have higher IRE values compared to the rest of the sam-
ple with most AME sources at IRE > 4, with a median value
of 14.8; most of the non-AME sources are at IRE < 10, with
a median value of 2.6. This suggests that AME comes from the
molecular cloud dust or PDR, but not from within HII regions
themselves. This fits with the general idea that PAHs are de-
stroyed in H1I gas, and that AME emissivity is lower in the ion-
ized phase of the ISM.

FIR ( LFIR)

= 10"

1018

0.1 1.0 10.0 100.0

Free—free @ 5 GHz (Ly,,)

Fig. 12. Integrated FIR flux (proxy for FIR luminosity) plotted against
the free-free flux density at 5 GHz (proxy for Ly luminosity). Symbols
are as in Fig. 6. Perseus (P) and p Ophiuchi (R) clouds are marked. IRE
values of 1, 10, and 100 are shown as straight lines. Most AME sources
have IRE > 4.

5.1.3. Dust properties

Next we look at the basic dust properties from the fitted model of
thermal and spinning dust components and IRAS colour ratios.
We emphasize that the dust properties are strictly related to the
big dust grains and are not thought to be directly responsible for
the AME, which will be from the smallest dust grains and PAHs
if due to spinning dust. Furthermore, for some sources it is pos-
sible that the FIR dust emission is not spatially coincident with
the AME. Nevertheless, we expect that the global dust properties
will be indicative of the environment close to where the AME is
originating.

Figure 13 shows the dust temperature (74) against the fit-
ted thermal dust emissivity index (84). The dust temperatures
are as expected for evolved diffuse HII regions and molecular
clouds, in the range ~15-30 K, with a weighted mean of 18.5 K.
This is slightly cooler than the average expected for typical HII
regions, and is close to the average value found in the diffuse
ISM (Planck Collaboration XI 2014). This is probably due to
the fact that we are measuring the average temperature over a
relatively large area, and are therefore sensitive to the diffuse
dust in the large-scale environment, as opposed to the dust in the
direct vicinity of hot stars. The dust emissivity index is also in
the expected range (for a single component fit) of 84 = 1.4-2.4,
with a weighted mean of 1.76. This is similar to the value of 1.78
found in nearby molecular clouds in Planck Collaboration XXV
(2011). We note that more recent studies have found a flatten-
ing of the thermal dust emissivity index at frequencies around
100 GHz to values in the range 1.5—1.7 (Planck Collaboration,
in prep.). This may make a small difference to the overall fits
presented here, but will have a very small or negligible impact
on the AME flux density at frequencies of 20—60 GHz.

Figure 13 shows two trends. First, the most significant AME
sources tend to be associated with cooler dust temperatures.
Most of the AME sources are in the range 14 < T4 < 20K,
with a weighted mean of 16.6 K, compared to 22.0K for the
non-AME regions. This is in line with the results of Planck
Collaboration XXI (2011), in which it was found that the AME
sources are dominated by emission from the molecular phase
and that hotter dust has little or no AME. However, it is the op-
posite of what is found at smaller angular scales in the Perseus
molecular cloud (Tibbs et al. 2011), where the AME-dominated
regions are slightly warmer on average, (20.2 + 0.5) K, than the
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Fig. 13. Big grain dust temperature (7) vs. thermal dust emissivity in-
dex (B4). The symbols are as in Fig. 6. Perseus (P) and p Ophiuchi (R)
clouds are marked. There is no strong trend with 34, while the most sig-
nificant AME regions (filled black circles) tend to be associated with
colder dust.

non-AME regions (17.7 £ 0.7) K. The Perseus AME clouds are
within the range of temperatures for AME sources in our sam-
ple. Second, there is a trend of the AME amplitude with increas-
ing dust temperature, which is related to the interstellar radiation
field (ISRF) Gy. This will be discussed in Sect. 5.4.

In terms of the dust emissivity index, there is no strong cor-
relation, except that the AME regions tend to have a higher
value of B4 that the non-AME regions; AME regions have 4 =
1.80 + 0.02, while the non-AME regions have 83 = 1.72 + 0.02.
The non-AME regions are dominated by bright HII regions,
and the emissivity index range is similar to those found by
Dupac et al. (2003) for clouds with relatively cool tempera-
ture (T = 11-20K). For the ionized gas associated with pure
H1I regions, there should be less AME (Planck Collaboration
XXI2011).

If AME were due to PAHs and small grains, we would
naively expect a tighter correlation of AME with the emission
from the shorter wavelengths of IRAS; the 12 um and 25 um
bands trace smaller dust grains; however, H1I regions are known
to be depleted of PAHs and the smallest grains, as traced by their
12 um/25 pum ratios (Boulanger et al. 1988; Chan & Fich 1995;
Povich et al. 2007). Given that spinning dust requires small dust
grains, one might expect a separation of AME and non-AME
regions via their IRAS ratios.

Previous studies have found that there is an apparent se-
quence in the IRAS colours given by the 12ym/25um and
60 um/100 um ratios. This has been seen in H1I regions, ISM
clouds (Chan & Fich 1995; Boulanger et al. 1988), and ex-
ternal galaxies (Helou 1986), where large 60 um/100 um ra-
tio means smaller 12 um/25 um value and vice versa, i.e., an
anti-correlation. The explanation is closely connected to the
ISRF and the exciting star(s), since hotter grains have higher
60 um/100 um ratios, while close to the star the smallest grains
(and PAHs) are destroyed, leading to smaller 12 ym/25 um ra-
tios. We see the same trend in our sample as a whole, as shown
in Fig. 14. This is expected, since a large fraction of our sample
contains a component from H1I regions.

It can also be seen that the AME sources generally have a
higher 12 yum/25 pm ratio (~0.6—1.0) than the rest of the sam-
ple (=0.2—0.6). We interpret this as confirmation of the spinning
dust model, where the very smallest grains (and PAHs) must be
responsible for the bulk of the AME at frequencies >20 GHz. At
this resolution, we cannot rule out ionic/stellar contamination
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Fig.14. Colour—colour plot of IRAS 60um/100um vs. IRAS
12 um/25 ym. Symbols are as in Fig. 6. The Perseus (P) and
p Ophiuchi (R) clouds are marked.

of the 12 um IRAS band, although the stellar contribution is
expected to be minor. Previous studies (Sellgren et al. 1985;
Boulanger & Perault 1988) have shown that in bright nebulae,
the bulk of the 12 yum emission comes from the PAH bands at 7.7,
8.8, and 11.3 um; however, inspection of the sources with the
highest 12 um/25 um ratios (>0.8) reveals that these are not the
brightest free-free emitters of our sample but are in fact some of
the most AME-dominated sources. These therefore do not ap-
pear to be dominated by ionized gas from H1I regions, which
suggests that ionic/stellar contamination is not a prominent ef-
fect here. One exception to this is the source G239.40—-04.70,
which contains the luminous supergiant V* VY Canis Majoris,
explaining the a 12 ym/25 pm ratio of 1.62; this source should
be excluded from any mid-infrared analysis (see Sect. 5.2).

5.1.4. The interstellar radiation field: G

An important parameter in studies of ISM clouds is the relative
strength of the ISRF, Go'*. This parameter is important for spin-
ning dust, since the ISRF plays a key role in rotationally exciting
small grains, charging PAHs, and in the destruction of the small-
est grains. While we assume the same form for the shape of the
ISRF spectrum here, it should be noted that the intensity and
hardness of the ISRF are important.

An estimate of G can be obtained from the equilibrium dust
temperature of the big grains (Tgg) compared to the average
value of 17.5K, i.e., Gy = (Tgg/17.5K)*B9 We used the fit-
ted dust temperature from our SEDs as a proxy for the big grain
temperature, i.e., Tgg ~ T4. We kept the dust emissivity index
constant at 84 = 2 to protect against mixing of multiple dust
components with a range of dust temperatures that could flatten
the index. This allows an estimate of the average G for each
source (Table 3). As with other FIR properties, we note that in
some regions these properties may not be related to the exact
environment where the AME is arising.

Figure 15 shows the AME fraction at 28.4 GHz, defined as
the AME residual flux density (S2%:) divided by the total flux
density at 28.4 GHz, against the estimate of Gy. The most strik-
ing feature is that sources with low Gy are those with the high-
est AME fractions; the majority of strong AME regions are at

14 Gy is a common scaling used for measuring the ISRF, and is inte-
grated between 5 and 13.6 eV (Mathis et al. 1983). A standard value of
Gy = 1 is representative of the diffuse ISM (away from hot stars), and
corresponds to 1.2 x 107 ergs™!ecm™2.
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Fig.15. AME fraction at 28.4 GHz as a function of estimated G,. The
symbols are as in Fig. 6. The Perseus (P) and p Ophiuchi (R) clouds are
indicated. The best-fitting power laws to the AME regions (solid line)
and semi-significant AME regions (dashed line) are overplotted.

Gy < 4, while non-AME regions are almost always at Gy > 1.
There is a general trend of decreasing AME fraction with Gy.
When including semi-significant AME sources, there is also a
definite trend of decreasing AME fraction with increasing Go.
The best-fitting power law has a slope of y = —0.59 +0.11; how-
ever, taking only the strongest AME sources yields a slope of
y = —0.11 £0.04. This suggests that there is a much flatter slope
for AME strong sources, and that the AME sources are different
in nature to the rest of the sources in the sample.

We caution that this trend could be entirely due to selection
effects, because AME is more difficult to detect when there is
strong free-free emission. Also, the thermal dust could be com-
ing from a different region of space compared to the AME, and
thus the relation between Gy and AME might be entirely coin-
cidental. Despite that, the effective free-free EM from our pho-
tometry and Gy are positively correlated as one would expect.
The role of the ISRF will be discussed further in Sect. 5.4.

5.1.5. Peak frequency of spinning dust

As discussed in Sect. 3.5, as well as fitting for a spinning
dust amplitude, we also fit for a possible shift in the spinning
dust peak frequency. This allows us to determine the peak fre-
quency vy for each SED, which is listed in Table 3 for sources
with oamg > 2. Visual inspection of the SEDs indicates that al-
lowing this freedom provides a better fit to the data, where a few
sources are clearly not peaking at the starting value of the fitted
curve, at 28.1 GHz.

Figure 16 shows the histogram of spinning dust peak fre-
quencies. The AME sources peak in the range 20—35 GHz, with
a weighted mean of 27.9 GHz. Although the formal uncertain-
ties do not suggest that these are highly statistically signifi-
cant, it is clear that the data sometimes prefer spinning dust
that is at a different frequency from the starting value 28.1 GHz.
Examples of small shifts can be seen by careful examination
of the SEDs in Fig. 8. A particularly clear example, previ-
ously commented on by Planck Collaboration XX (2011), is
G160.60—12.05 (the California nebula/NGC 1499). The SED is
plotted in Fig. 17. The spinning dust detection is at a level of
oame = 5.1, and the SED shows a peak at a higher frequency
compared to the rest of the sample. The best-fitting peak fre-
quency is vp = (50 = 17) GHz. Notice that the reduced value
is x> = 0.33, and thus the significance is likely underestimated.
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Fig. 16. Histogram of spinning dust peak frequencies, v,,. The unfilled
histogram is for both AME and semi-significant AME regions, while the
hatched region is for the AME sources only. The best-fitting Gaussians
for these two histograms are overplotted. The source at vy, = 50 GHz is
G160.60—12.05 (California nebula).
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Fig.17. SED for G160.60—12.05 (California nebula). The curves and

symbols are as in Fig. 8. AME is detected at a level of o-ame = 5.0, and
the best-fitting spinning dust peak is shifted to vy, = (50 + 17) GHz.

As discussed earlier, COSMOSOMAS data at 12—18 GHz are
not included here because the filtering required causes problems
at frequencies above 100 GHz, resulting in negative flux densi-
ties. This is due to a lack of dust emission in the centre of the
nebula where most of the free-free emission comes from, and
nearby dust emission appearing near a negative lobe caused by
the COSMOSOMAS harmonic filtering; however, the shape of
the spectrum at 12—18 GHz is consistent with a free-free spec-
trum (Planck Collaboration XX 2011).

The reality of this shift to higher frequency, and its possi-
ble explanation, are not clear and require a more detailed study.
Despite that, the conditions in this diffuse H1I region may well
be conducive to the production of higher frequency emission.
The ISRF comes mostly from the ionizing star ¢ Per, where the
density is ~1 cm™3, and goes up to 50 cm™~> on the brightest fila-
ments in the PDR (Boulanger et al. 1988), where the AME may
be originating. Similarly, there is a range of temperatures, cov-
ering 20—-50K. Our fitted parameters of Tg4 = (21.7 = 1.6) K,
Go = 3.7 = 1.7 are an average of these, and may well not be ap-
propriate for conditions in the AME-emitting region, especially
as much of the cooler dust emitting at ~x1000 GHz is coming
from an adjacent dust cloud. Higher resolution observations of
this cloud are needed to investigate this further.
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Table 2. Spearman rank correlation coefficients between the AME amplitude (A,) and IR/submillimetre flux densities.

Spearman rank correlation coefficient,

Wavelength All AME Non-AME
100pum . ...... 0.85+0.02 (0.90 +0.02) 0.83 £0.03 (0.68 +0.06) 0.84 £0.07 (0.81 +£0.08)
60um ....... 0.81 +£0.03 (0.89 +0.02) 0.80 +£0.03 (0.78 +0.05) 0.81 +0.07 (0.82 +0.08)
25um ....... 0.82 £0.03 (0.89 +0.03) 0.84 £0.03 (0.74 £ 0.05) 0.82 £0.07 (0.85 +0.08)
Rum ....... 0.84 +0.03 (0.86 +0.03) 0.78 £0.03 (0.58 +0.06) 0.85+0.07 (0.83 +0.08)

Notes. The correlation for AME regions is much stronger. In parentheses is the correlation coefficient after dividing the IR/submillimetre flux
density by Gy to account for the variation in the interstellar radiation field. Generally, the correlation is tighter after dividing by G,. Note that we
have omitted the outlier source G239.40—04.70 at 12 um and 25 um (see text).

5.2. Dust correlations

There should be a very strong correlation between the AME and
the thermal dust emission, since the AME is thought to be due
to spinning dust grains. Figure 18 shows the correlation of the
AME amplitude (Ag,) with the flux density at 100 um, 60 um,
and 12 ym from the aperture photometry. A strong correlation is
seen between the AME and IR/submillimetre brightness for the
AME bright regions (black filled circles). The tight correlation
also holds for the semi-significant AME regions (grey filled cir-
cles), while non-AME regions (unfilled circles) are weaker and
more scattered, partly due to the intrinsic noise.

To quantify the strength of the correlations, we compute the
Spearman rank correlation coefficient (in log space), rg, for the
significant AME regions, which are listed in Table 2. This quan-
tity, unlike the Pearson correlation coefficient, does not rely on
a linear dependence between two variables (we obtained simi-
lar results using either statistic). Average uncertainties on ry are
calculated using 1000 Monte Carlo simulations based on their
formal uncertainties. There is a relatively strong correlation for
sources with significant AME (ry = 0.8), although non-AME
sources are not less correlated. For the AME-bright regions,
there is no strong preference for them to correlate better with
any particular FIR band.

If the AME is due to the smallest dust grains emitting electric
dipole radiation, the best correlation should be with the shorter
IRAS wavelengths at A < 60 um. This has been observed in pre-
vious studies at higher angular resolution (e.g., Casassus et al.
2006; Ysard et al. 2010). We do not find such a clear trend,
with the worst correlation occurring for the IRAS 12 ym band.
Figure 18 shows the correlation of the AME amplitude against
the 12 um flux density. There is a reasonably strong correlation
but there is also considerable scatter.

It has been discussed in several works (e.g., Ali-Haimoud
et al. 2009; Ysard et al. 2010) that spinning dust emissivity (per
column density) at frequencies 10—30 GHz is not particularly
sensitive to the ISRF intensity, Gy. On the other hand, the ther-
mal dust emission is strongly dependent on Gy, since it is the UV
radiation that governs the dust grain temperature. The nanoscale
dust particles (PAHs and VSGs) are proportional to G (Sellgren
et al. 1985) when Gy < 10. Previous studies (e.g., Ysard et al.
2010; Vidal et al. 2011) have found that a better correlation can
be obtained with the infrared by dividing far-infrared flux den-
sity by Go.

The Spearman rank correlation coefficients for all infrared
bands divided by Gy are given in Table 2 in parentheses. In gen-
eral, we do not see a significant increase in the correlation after
dividing by Gy. There is a general increase within the sample as
a whole (75 = 0.9), but no improvement for the AME sample.
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We suspect that some of the correlation scatter with the IRAS
bands, particularly at 12 yum and 25 um, is due to contamination
from stellar emission or from fine-structure lines. Shipman &
Carey (1996) predicted that for bright HII regions, line contam-
ination could account for most of the flux densities at 12 um
and might even affect the longer IRAS wavelengths. Sellgren
et al. (1985) found that the 12 yum band flux densities in bright
reflection nebulae could be explained by approximately equal
amounts of continuum and line emission from PAHs. Infrared
spectra of the Omega nebula (M17) showed that PAHs domi-
nate the mid-infrared in the neutral PDR beyond the ionized gas
of H1I regions (Povich et al. 2007). Also, for many regions in
our sample, we are looking at a complex integration of envi-
ronments including molecular clouds, CNM, and WIM. On the
other hand, spinning dust predictions are local (i.e., for a partic-
ular environment).

Evidence of a particular example of contamination can be
seen in Fig. 18, where there is a source (G239.40—04.70) that
has a much higher 12 um flux density than the rest of the sam-
ple. This is due to one of the most luminous supergiants known,
V* VY Canis Majoris (CMa), which has a 12 ym flux density of
10000Jy (Helou & Walker 1988) and accounts for the bulk of
the flux density in this band. We therefore omit this source for the
correlation values (Table 2) and power-law fits (Fig. 18) at 12 um
and 25 um. Although this is an extreme object, this clear case of
contamination does question the robustness of the IRAS 12 um
flux density, and partly the 25um band, for low latitude
sight-lines.

We also investigated the ratio of 8 um/24 um using the
Spitzer data. This ratio is diagnostic of the PAH fraction com-
pared to that of the small grains. Only 24 sources had coverage
and of these only three are AME regions. This makes it difficult
to distinguish any trends between AME or non-AME regions.
We find no distinction in the 8 um/24 ym ratio for AME vs. non-
AME regions; however, we note that p Ophiuchi has one of the
highest ratios, 1.09 £ 0.15, compared to the sample weighted av-
erage of 0.28 + 0.01. One particular outlier is G023.47+08.19,
which has a much higher ratio of 10.6 = 1.5 due to the source
being very faint in the Spitzer maps.

5.3. AME emissivity

Next, we would like to compare the AME amplitude to values
in the literature. A common way of normalizing the emissivity
is to take the ratio of AME flux density to 100 um (3000 GHz)
flux density. Since the far-infrared emission is optically thin for
a given dust temperature and composition, this will be propor-
tional to the column density of dust along the line of sight. If
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Planck Collaboration: A study of AME in Galactic clouds
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Fig. 18. Top row: AME amplitude (A,) as a function of the 100 um (left), 60 um (middle), and 12 um (right) flux density. Bottom row: same as
top row, except that the FIR flux densities have been divided by G(. Symbols are as in Fig. 6. The best-fitting slope fitted to the significant AME
regions only is plotted. The Perseus (P) and p Ophiuchi (R) clouds are indicated. There is a strong correlation between the AME intensity and
infrared tracers of dust, with an improved correlation after dividing by Gy. At 12 um the fit is made excluding the outlier source G239.40-4.70

(marked).

AME is due to spinning dust emission, we would therefore ex-
pect a strong correlation with the 100 um brightness (Fig. 18).

We begin by choosing the 28.4 GHz AME flux density, de-
fined as the residual at 28.4 GHz after subtracting the non-AME
components for each source. This allows a comparison with pre-
vious works, where frequencies near 30 GHz have been used
extensively. Note that using the 28.4 GHz AME residual is al-
most identical to using the AME amplitude (Agp) directly from
the fit, since they are highly correlated. Figure 19 shows the ra-
tio of 28.4 GHz residual flux density to the 100 um (3000 GHz)
flux density as a function of the AME significance, oamg. The

ratio S rzegs'i‘;GHz/S 100 for the AME regions has a large range of

values covering the range (1-15) X 1074, with a weighted aver-
age of (2.5 + 0.2) x 107*. This is higher than in the H1I regions
of Todorovi¢ et al. (2010), but less than the average from high
latitude AME (Davies et al. 2006), as shown in Fig. 19. It can
be seen that the weighted average is actually lower than many
of the AME regions, due to a few sources having a relatively
small uncertainty and lower emissivity values of (1-2) x 1074,
including p Ophiuchi (G353.05+16.90) at (1.5 + 0.2) x 10*. The
unweighted average is (5.8 + 0.7) x 1074, which is consistent
with the 6.2 x 10~* value of Davies et al. (2006) for the diffuse
high latitude AME.

The best-fitting power law to the Si00 vs. AME ampli-
tude (Agp) yields a power-law index of +0.67 + 0.03 for AME
regions, suggesting that there is not a simple, one-to-one ra-
tio between the AME brightness and 100 um brightness. This
is not surprising, given that different dust temperatures will af-
fect a given frequency, particularly near the peak of the thermal
dust spectrum where it is very sensitive on the dust temperature
(Tibbs et al. 2012b). Instead, as suggested by Finkbeiner (2004),
the thermal dust optical depth is expected to be a better diag-
nostic of the AME emissivity, since it is proportional to the col-
umn density of dust via 7, = Npk,umy, where Ny is the column

1073

I Unweighted mean (this work)

[ Weighted mean (this wirk)

D
Todorovic_et al. (20

1074~

=
N

28.4 GHz residual/100 um

107° .
0.1 1.0
AME significance

10.0

Fig.19. Ratio of 28.4 GHz residual to the 100 um flux density as a
function of the AME significance. The symbols are as in Fig. 6. The
Perseus (P) and p Ophiuchi (R) clouds are indicated. The weighted and
unweighted average ratios for the significant AME regions are shown as
the solid horizontal lines. The average ratio from Todorovi¢ et al. (2010,
dashed line) and Davies et al. (2006, dot-dashed line) are also shown.

density, « is the dust mass absorption coefficient, u is the mean
molecular weight, and my is the mass of hydrogen (Boulanger
et al. 1996; Martin et al. 2012). The fit against the dust optical
depth at a wavelength of 250 um (1250), which is proportional
to Ny, yields a slope much closer to unity (+1.03 + 0.03). This
suggests that the AME is emitting at approximately the same
level per unit column density in all the bright AME regions
chosen in our sample. Planck Collaboration XXI (2011) also
found that AME emits at the same level per Ny throughout the
Galactic plane. We therefore define our default AME emissivity
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Fig. 20. Ratio of AME amplitude (Ayp) to dust optical depth (7250), as a
function of the AME significance o-ame. The symbols are as in Fig. 6.
The Perseus (P) and p Ophiuchi (R) clouds are indicated. The hori-
zontal lines represent averages: weighted average of significant AME
regions (solid line), unweighted average of significant AME regions
(dashed line) and weighted average of non-significant AME regions
(dotted line).

as the AME amplitude divided by the thermal dust optical depth,
Agp/T250. In this case, the units are formally 10%° cm™2, but we
note that the interpretation of this value depends on the spin-
ning dust model that is fitted. The actual dust column density
calculated from the optical depth depends on the range of dust
temperatures along the line-of-sight (Ysard et al. 2012), as well
as details of the dust grains including the dust opacity (which in
turn depends on many factors such as dust composition).

Figure 20 plots the AME emissivity Agp/T250 against the sig-
nificance, o amg. There is considerable scatter in the emissivity,
some of which is due to the intrinsic uncertainty in the measure-
ment; however, for AME sources there is more variation than can
be accounted for by the uncertainty alone. This will be investi-
gated via correlations with other parameters. Remarkably, unlike
the equivalent plot for the 100 um-based emissivity, there is no
clear trend with AME significance. This is an important result. It
shows that AME emissivities based on 100 um data are likely to
be biased due to the effect of varying dust temperature. This plot
also suggests that AME is emitting at approximately the same
level per unit dust column density, not only for the strong AME
sources, but for most of the sources within our sample. However,
we caution that the uncertainties are large and including an AME
component will inevitably result in a positive bias. Furthermore,
some sources have a possible contribution from UCH II regions
as well (Table 3). The weighted average emissivity for signifi-
cant AME sources is (1.36 + 0.05) x 10*, while the non-AME
sources are at (2.0 + 0.5) x 10*.

It is worth noting that for the AME regions the weighted av-
erage is smaller than the unweighted average of (4.3 +£0.6) x 10%,
due to four high significance sources that appear to have a
lower emissivity (Agp/7T250 < 10%) than the rest of the sample.
These are G005.40+36.50, G023.47+08.19, G133.27+09.05
and G219.18-08.93. All are associated with dark nebulae (see
Table 3 and Sect. 6.2). These sources are high latitude sources
with very weak free-free emission and a low intensity radiation
field (Gy = 0.3-0.6), leading to cold big grain dust temperatures
(Tq = 14-16K).

We have investigated the correlation of AME emissivity
with a wide range of parameters and properties in this study.
In general, we find little or no correlation with most parame-
ters. Previous works (Lagache 2003; Vidal et al. 2011) found
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Fig. 21. Ratio of AME amplitude (Ay,) to dust optical depth (7250), as
a function of 7,59. The symbols are as in Fig. 6. The Perseus (P) and
p Ophiuchi (R) clouds are indicated. The solid line shows the best-
fitting power law for the significant AME regions.

evidence of an anti-correlation of the AME emissivity with the
column density. The interpretation is that this is what would be
expected with AME arising from small spinning dust grains; as
the density (ny) increases, dust grain growth becomes more ef-
ficient and thus the small grain population decreases. Figure 21
shows the AME emissivity against the optical depth, 7,59. For
the significant AME regions, we also find a similar trend. The
anti-correlation (r; = —0.72 + 0.07) has a best-fitting power-law
slope of ¥ = —0.67 + 0.04, similar to the —0.54 + 0.10 value
found by Vidal et al. (2011).

The effect we see is somewhat surprising given the difficulty
of estimating density in the potential complex mix of environ-
ments in a 1° beam, especially at low latitudes where there may
be multiple objects along the line-of-sight. Nevertheless, this is
one of the few observational trends associated with AME that
has come to light in several independent studies. It is consistent
with small grains as AME carriers, because they are expected to
be depleted in denser environments by coagulation onto larger
grains.

5.4. The role of the ISRF

The ISRF plays an important role in the ISM. It is a major source
of local heating, with UV photons being absorbed by dust grains
and re-radiated in the IR. It also has important effects on the
composition of the ISM, since it can charge PAHs and also de-
stroy PAHs and VSGs when the intensity is high enough. For
spinning dust, the population of PAHs and VSGs is fundamental
in determining the AME, and the formation of ions (e.g., C*, H")
can be important for rotationally exciting small dust grains. The
ISRF also plays a role in rotationally exciting small dust parti-
cles through the absorption of infrared photons; these particles
can be dominant in some environments (e.g., when Gy = 1 and
ng < 10ecm™).

In the recent studies by Tibbs et al. (2011, 2012a), the AME
brightness was found to correlate with Go more than any other
parameter, including the PAH fraction. Figure 22 shows the
AME emissivity as a function of Gy for our sample. We also
find that the AME emissivity is related to Gy. For the AME re-
gions there is a positive correlation (rs = 0.63 £ 0.07) with a
fitted power-law index y = +0.74 + 0.10. We verified that the
correlation is due primarily to variations in 74, and not 34, by
setting B4 to the fitted values. We found a similar positive trend
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Fig.22. AME emissivity as a function of Gy. The symbols are as in
Fig. 6. The straight lines are the best-fitting power laws to the AME
(solid line) and including semi-significant AME (dashed line) regions.

but with larger scatter (r; = 0.49 + 0.12 and y = +1.32 + 0.10).
Surprisingly, for semi-significant regions (grey filled circles),
the same trend is also visible, but with a flatter slope of y =
+0.70 = 0.04, and the non-AME sources are also correlated.
This may suggest that there is AME in many of our sources or
that there is a systematic effect that is driving this result. As be-
fore, we only consider the AME sources with oamg > 5 and
FUCHIL (0,25 to be reliable. Given the larger scatter, at this
point we can only say that there is a positive correlation with a
slope vy = +1; we will adopt this value in Sect. 5.5.

We may not be seeing AME at high Gy (and high T4) be-
cause the PAHs/VSGs require radiation to spin, but too much
UV destroys them, as happens inside very bright HII regions
(with higher EM, T4 and Gy). The grains need to be shielded,
hence to be close to the PDR of the HII regions (which is the
coldest part of an HII region). It could also be a selection effect
due to brighter free-free emission associated with high values
of G that would make AME more difficult to detect.

In some environments (e.g., low density), it is expected that
as the ISRF increases (up to a certain point), the smaller grains
will receive more rotational excitation, resulting in a spinning
dust spectrum shifting to higher frequencies (e.g., Ysard et al.
2011). Figure 23 plots the spinning dust peak frequency against
Gy. Although not strong, there is tentative evidence for a correla-
tion between the two quantities (rs = 0.41 = 0.15). The majority
of the high signal-to-noise ratio detections are clustered near the
centre of this plot (vy, = 25-30GHz and Gy = 1-3), making a
slope difficult to constrain; a weighted fit is flat within the un-
certainties (dashed line). However, if we make an unweighted
fit to the AME sources, assigning median errors for Go and vgp,
we find a positive slope of +0.18 +0.02. Omitting the California
nebula, which is driving this fit, gives a slope of +0.05 + 0.02.
The precise value of the AME emissivity does depend on the
assumptions on Sq that affect the estimation of Gy; however, in
this case, using the fitted values for 84 actually results in a tighter
positive correlation, with g = 0.65 = 0.15 and y = +0.08 + 0.02
(omitting the California nebula).

As discussed in the next section, the increase of AME emis-
sivity and peak frequency with the increase of Gy is compat-
ible with model predictions. For 0.1 < Gy < 10, gas-grain
interactions dominate the process for rotational excitation over
photon emission. This might explain why we see a decrease of
the AME intensity when 7y increases. Alternatively, there could
be an observational bias related to the fact that cooler regions,
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Fig. 23. Spinning dust peak frequency as a function of Gy. The sym-
bols are as in Fig. 6. The solid line is the best-fitting power law for the
AME regions with all data points equally weighted. The dashed line is
the weighted fit to the AME regions, while the dot-dashed line is the
weighted fit to AME and semi-significant AME regions.

with a weaker radiation field due to less massive stars, will
typically have less free-free emission. Thus we may be select-
ing cool regions preferentially; indeed sources with larger val-
ues of Ty appear to have larger uncertainties in the AME am-
plitude. A complete flux-density-limited sample would be re-
quired to investigate this possibility. Nevertheless, this result
agrees with previous studies that found AME arising preferen-
tially from denser and colder molecular/atomic gas rather than
from the ionized gas phase (Planck Collaboration XX 2011;
Planck Collaboration XXI 2011).

5.5. Spinning dust modelling

We investigate here whether the behaviour of the AME presently
observed can be explained by spinning dust emission, i.e., rota-
tional emission of PAHs. We focus on the relationship between
the AME and the intensity of the radiation field Gy. The present
results indicate a trend between the AME emissivity at 28.4 GHz
(noted j3) and Gy (Fig. 22), where jos = S /7250 = jo GJ'2,
with jo = 3x 10724 My sr~! cm? per H atom. This trend is found
for the significant AME regions.

Models show that the spinning dust emissivity increases
with Gy and ny, the gas density (Ali-Haimoud et al. 2009; Ysard
& Verstraete 2010; Hoang et al. 2011). In general, the spinning
dust emissivity and therefore j,g are functions of ny and Gy. In
the CNM, excitation of spinning dust by photons and collisions
have similar rates. For the present sample, we expect both pro-
cesses to contribute to the spinning dust emissivity. To model the
spinning dust emission in our sample, we describe the emission
region in the following way. Observations suggest that PAHs are
depleted in the ionized gas (e.g., Salgado et al. 2012; Dobler
et al. 2009) and in the case of HII regions, PAHs are observed
to be located in a dense, neutral shell surrounding the ionized
gas. We assume that this shell dominates the thermal dust emis-
sion and is therefore heated by a mean radiation field of intensity
Gy. We note that the dust optical depth 7,59 does not show any
trend with Gy (r = —0.01 + 0.13), suggesting that the column
density of dust is rather constant, probably corresponding to the
shell material directly heated by the star. The AME thus comes
from a shell around the H1I region with density ny and radiation
field Gy. From the observed trend of j,g with Gy, and assuming
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Fig. 24. Density estimates (solid black line) from spinning dust mod-
els that follow the observed trend between the AME emissivity jag
and Gy. We also show the influence of AME emissivities half (j, =
1.5 x 107 MJy sr~!' cm? per H atom; triple-dot-dashed line) and twice
as large (jo = 6 x 1072* MJy sr™! cm? per H atom; dashed line).

that the AME is due to spinning dust, models can constrain the
gas density ny.

Using the SPDUST code (Silsbee et al. 2011) and the gas ion
scheme of Ysard et al. (2011), we ran model grids for the spin-
ning dust emissivity in the 28.4 GHz LFI band with the following
hypotheses. We assume the PAH properties to be the same for all
values of Gy and ny, namely that they enclose 65 ppm of carbon
and have a log-normal size distribution with centroid 0.6 nm and
width 0.4 nm. In addition, we assume the gas temperature to be
constant for all nyg and Go, namely Ty = 60 K. In Fig. 24,
we show the relationship between Gy and ny that results from
the j,3—Go trend. We see that ny increases with Gy, suggest-
ing that density plays an important role in the AME pumping.
As expected, higher AME emissivities require higher densities.
This trend possibly reflects the presence of more massive stars
in denser clouds. The emissivity rises with ny but levels off for
ny > 10°cm™ (see Fig. 8 of Ysard et al. 2011) due to recom-
bination of H* and C* ions. When jy = 6 X 1072* MJy sr~! cm?
per H atom, the model emissivity cannot match the observed
level even for very high density (ng = 10% cm™); this is why the
dashed curve is interrupted in Fig. 24.

‘We emphasize that this ny—Gy trend is qualitative, because of
several important uncertainties. First, while estimating Gy from
the emergent dust SED, we may be biased towards low values
because of the contribution of large column densities of cold
dust. Also, we assume a constant PAH abundance, whereas it
is known that PAHs are depleted in dense gas (Arab et al. 2012;
Compiegne et al. 2008). This analysis is thus preliminary, and
microwave data at higher angular resolution, as well as radiative
transfer modelling of such regions, are required to further our
understanding of the AME and its possible use in characterizing
the physical conditions in the emitting region.

6. Discussion and conclusions
6.1. Detection of AME

In this paper we have increased the number of known candi-
date AME targets by a factor of several. We have also presented
evidence for AME being exhibited in a much larger number of

15 From CLOUDY simulations (as described in Ysard & Verstraete 2010)
we find Ty, to be between 50 and 70 K along the ny—Gy trend of Fig. 24.
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Galactic clouds, albeit at a lower significance. The spectral cov-
erage of radio, submillimetre, and far-infrared data have allowed
us to estimate the SED to high precision to determine the contin-
uum components that are contributing at each frequency. These
sources are a mix of HII regions, molecular clouds, and dark
clouds, often in cloud complexes. The SEDs can be fitted by a
combination of synchrotron (in a few cases), optically thin free-
free emission, CMB, thermal dust, and spinning dust.

Of the 98 regions, 42 are highly significant (>50°) in terms
of AME amplitude. Of these 42 sources, 15 contain candidate
UCHTI regions (based on IRAS colour ratios) that could be
contributing a portion (>25%) of the excess emission and are
dropped from the significant AME list. This leaves 27 regions
that appear to emit AME. Among the clearest AME detections
are the well-known p Ophiuchi and Perseus molecular clouds.
A further 27 sources are AME significant at the level of 2—50.
Only 29 of the sample are non-significant (<20) although the
sample is far from complete.

The AME detections are shown to be robust. In general,
we have been conservative in the assignment of uncertainties.
The average reduced y? value of 0.59 indicates that we may be
over-estimating our uncertainties by about 30%; however, given
the complexity of assigning flux densities to diffuse emission
in the presence of complex and bright backgrounds, we choose
to be conservative in this low resolution analysis. We consider
the effect of fitting for a CMB component and its relation to
a possible flattening of the thermal dust index at frequencies
<300 GHz. Although there is some evidence for this effect, it
is shown not to be a major effect on the AME properties. The
excess emission is readily fitted by spinning dust models that
peak at frequencies around 25-30 GHz and have column densi-
ties of about 102! cm~2, reasonable for diffuse ISM clouds. We
have not attempted to fit for other components, such as magneto-
dipole radiation (Draine & Lazarian 1999; Draine & Hensley
2012, 2013), which could also account for the excess emission.

A number of the sources in the sample have been discussed
in the literature. Génova-Santos et al. (2011) used WMAP
data to study the reflection nebula associated with the Pleiades
(G166.44-24.08) and found (2.15 + 0.12)Jy at 22.8 GHz in
a 1° radius aperture. Of this, the bulk was found to be from
AME. In our analysis, we find a similar total flux density of
(1.89 + 0.13)Jy at 22.8 GHz, but the AME level is much lower
at (0.83 = 0.19)Jy. The results are different mostly due to the
different level of free-free emission assigned to the cloud due to
the large background at low frequencies. Although it does not
enter our significant AME list, with oamg = 4.3, this region is
likely to be emitting appreciable amounts of AME at frequen-
cies ~20—40 GHz.

The source G201.62+01.63 was first claimed to emit AME
by Finkbeiner et al. (2002), but was later shown by Dickinson
et al. (2006) to be consistent with free-free emission on angu-
lar scales of 6" with an upper limit of 24% AME at 31 GHz.
More recently, Rubifio-Martin et al. (2012a) detected AME at
the 2.80 level. In the present analysis, this source is highly sig-
nificant at ocamg = 7.4. The analysis of Dickinson et al. (2006)
was of the bright, more compact (6”) source in the centre of
the nebula, which contains approximately half of the flux den-
sity of the more extended region covering 30’. It is possible that
most of the AME is originating within this extended region that
the 1° analysis is more sensitive to. G204.70—11.80 is associ-
ated with LDN1622 and LDN1621, which are both known to
be dominated by dust-correlated emission at 31 GHz (Casassus
et al. 2006; Dickinson et al. 2010).
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6.2. Nature of the sources in our sample

Given the low angular resolution (1°) of the present analysis, it
is somewhat difficult to disentangle the various sources and en-
vironments for the majority of the AME regions, since in many
cases there are multiple sources within the beam. Furthermore,
the sample is not complete and there likely remains selection ef-
fects and biases. However, in some cases the nature of the source
is clear. For example, some of the non-AME regions are clearly
dominated by bright H1I regions, such as G209.01-19.38 (M42)
and G267.95-1.06 (RCW38).

Of the AME regions, many have a contribution of free-
free emission associated with HII regions. However, a small
fraction of these do not have a bright associated HII region,
and a large fraction of the 20-60GHz flux density is due
to AME. These sight-lines do contain known dark nebula
and may be responsible for the AME. The best examples of
these are GO004.24+18.09 (LDN137/141), G005.40+36.50
(LDN134), G023.47+08.19 (LDN462), G133.27+09.05
(LDN1358/1355/1357), G142.35+01.35 (DNe TGU H942),
G180.18+04.30 (LDN1557),G192.34—11.37 (LDN1582/1584),
G219.18-08.93 (DNe H1544/1546), and G231.83—02.00 (DNe
TGU H1593). These sources are dominated by AME at 23 GHz,
but the AME emissivity (per unit dust column density) is
typically lower than the average for the sample.

The AME regions are, in general, spatially extended even at
an angular resolution of 1°, while non-AME regions tend to be
relatively compact. This is a trend that is becoming increasingly
familiar; AME sources are typically diffuse (e.g., Davies et al.
2006; Casassus et al. 2006, 2008; Dickinson et al. 2010; Planck
Collaboration XX 2011; Planck Collaboration XXI 2011), while
compact objects show little evidence for AME (e.g., Scaife et al.
2009), or a much smaller fraction of the total flux density (e.g.,
Dickinson et al. 2007; Tibbs et al. 2010).

A tight correlation is observed between the AME amplitude
and dust continuum tracers in the submillimetre (353 GHz) and
far-infrared (12, 25, 60, 100 um). In agreement with other stud-
ies, dividing the infrared fluxes by the intensity of the interstel-
lar radiation field Gy improves the correlation. We find that the
majority of the AME regions have a high ratio of S1,/S2s =
0.06—1.0, compared to the typical range 0.2—0.6. From inspec-
tion of these regions, they do not appear to contain a strong
ionized component, and therefore probably do not have strong
ionic/stellar contamination of the 12 um band. Instead, we be-
lieve that this is indicative of PAHs as the carriers of spinning
dust emission. Comparison with Spitzer data is inconclusive be-
cause of the limited coverage of the data.

We find that the AME sources favour slightly cooler re-
gions with 7y = 14-20K and a dust emissivity index of
Ba = +1.8, while the non-AME sources appear to be warmer
(Tq = 20-27K) and prefer a slightly flatter emissivity index
Ba ~+1.7. This is consistent with the picture that AME is aris-
ing primarily from the colder neutral ISM phases, rather than the
warmer ionized gas associated with bona fide HII regions. In HII
regions the PAH population is expected to be depleted, thus re-
ducing the primary carriers of spinning dust emission. The lack
of AME associated with the WNM/WIM phase is in agreement
with the findings of Planck Collaboration XXI (2011). The ISRF
intensity, parameterized by Gy, appears to play an important role
for AME. We find that most AME sources prefer lower levels of
the ISRF in the range 0.3 < Gy < 3, while non-AME regions are
generally higher (G = 1-10).

For the AME emissivity relative to 100 um, we find that
the levels are similar to those found in the diffuse ISM at high

Galactic latitudes, as well as from previous studies of HII re-
gions, with typical values of a few 10~*. A more robust emis-
sivity is found by forming the ratio between the AME flux
density and the thermal dust optical depth 7,59, due to its non-
dependancy on dust temperature. Remarkably, we find that most
of the sources in our sample (AME and non-AME regions) have
a similar AME emissivity relative to 7,59, although there is a
large scatter at all significance levels. This suggests that AME
may be inherent to most of the sources in our sample, but for
some sources the AME is more difficult to detect, such as when
there is a dominant free-free component.

We investigated the AME emissivity with various observa-
tional/physical parameters from our sample. In general, we do
not find strong trends. We believe this is partly due to the afore-
mentioned complexity and mix of environments and sources
within each region, in addition to the relatively small sample
size; however, a few weak trends are observed.

In agreement with previous studies (Lagache 2003; Vidal
et al. 2011), we find that the AME emissivity decreases with the
column density, as traced by the thermal dust optical depth. This
might be explained by dust coagulation in denser regions, reduc-
ing the population of smallest grains and therefore reducing the
number of spinning dust carriers.

We observe a correlation of Gy with the AME emissivity. A
weak correlation of G with the peak frequency of the spinning
dust frequency is also observed. Both these trends may be un-
derstood in terms of radiative and collisional excitation of the
rotation of small grains; however, we caution that there may also
be an observational bias, due to the fact that an increasing G
generally means an increasing free-free component that makes it
more difficult to detect AME. On the other hand, spinning dust
modelling of the AME emissivity assuming a fixed small grain
abundance suggests that the density increases with Gy, a trend
expected in massive star forming regions.

Finally, we note that the sources within our sample cover a
wide range of distances (from a few kpc to 15kpc); however,
the majority of the significant AME regions (that do not have a
potential UCH IT component) tend to be located several degrees
away from the Galactic plane, resulting in them being relatively
nearby (d < 1kpc). The semi-significant AME candidates in our
sample cover a wide range of Galactocentric distances, show-
ing that AME is not just a local phenomenon, as was previously
shown by Planck Collaboration XXI (2011).

6.3. Final remarks

To make further progress in this field it is now vital that we com-
plement these studies in two ways. First, more accurately cali-
brated data at frequencies not covered in this analysis will help
determine more precisely each of the emission components. In
particular, more data at frequencies 5—20 GHz (e.g., the 5 GHz
C-Band All-Sky Survey, C-BASS; King et al. 2010, or the multi-
frequency 11-19 GHz Q-U-I JOint TEnerife CMB experiment,
QUIJOTE; Rubifio-Martin et al. 2012b) would improve the con-
straints on free-free emission, which is a large fraction of the
20—-60 GHz brightness in many of the sources under study. Also,
the inclusion of the Planck 100 and 217 GHz channels will dra-
matically improve the constraints where we see evidence of flat-
tening of the low frequency tail of thermal dust, as well as a (mi-
nor) contribution from CMB fluctuations on scales of 1°. Second
and perhaps more importantly, higher resolution (few arcmin
and better) data are required to study different environments in
more detail. As discussed earlier, we typically see a mix of en-
vironments and multiple sources when working at an angular
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resolution of 1°. The relationships between the gas and dust can
then be inferred and the contribution of AME from different
sources can be assessed by comparison with high resolution ra-
dio and infrared data. Furthermore, on scales «1° the CMB be-
comes negligible and background emission can, at least in some
areas of the sky, be less problematic. High resolution follow-up
observations of the AME candidates, such as with AMI (Zwart
et al. 2008) at a frequency of 15 GHz, will determine whether the
AME is in fact due to diffuse dust and whether UCH I regions
are a major component. With more accurate SEDs and spatial in-
formation, we will be able to better constrain important quanti-
ties such as the intensity of the radiation field and the abundance
of small grains. The polarization properties of AME are also
of great importance in identifying the emission mechanisms re-
sponsible, such as magneto-dipole radiation (Draine & Hensley
2013). Any significant level of polarized emission, in the fre-
quency range ~30-300GHz, will likely be a major foreground
for future sensitive CMB B-mode experiments (Rubifio-Martin
et al. 2012a; Armitage-Caplan et al. 2012).
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