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We study quantitatively the importance of the recently derived next-to-leading-order corrections to the
deep inelastic scattering structure functions at small x in the dipole formalism. We show that these
corrections can be significant and depend on the factorization scheme used to resum large logarithms of
energy into renormalization group evolution with the Balitsky-Kovchegov equation. This feature is similar
to what has recently been observed for single inclusive forward hadron production. Using a factorization
scheme consistent with the one recently proposed for the single inclusive cross section, we show that it is
possible to obtain meaningful results for the deep inelastic scattering cross sections.
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I. INTRODUCTION

At high energy (or equivalently small values of the
longitudinal momentum fraction x), the gluon density in
hadrons can become nonperturbatively large; this is the
regime of gluon saturation. However, the evolution of this
gluon density as a function of the momentum fraction x can
still be computed using weak coupling techniques, leading
to the Balitsky-Kovchegov (BK) evolution equation [1,2].
Knowing the initial gluon density at a given x ¼ x0, one
can thus evolve it perturbatively to any x < x0. This initial
condition involves nonperturbative dynamics and needs to
be extracted from data, but the evolution equation then
gives a first principles prediction for smaller x.
The cleanest process to study the partonic structure of

hadrons is provided by deep inelastic scattering (DIS). At
small x, this process is most conveniently understood in the
dipole picture, where the scattering is factorized into a QED
splitting of the virtual photon into a quark-antiquark dipole
and the subsequent QCD interaction of this dipole with the
target. Here, the BK equation describes the dependence of
the dipole-target scattering amplitude on the collision
energy. Several groups have been able to obtain satisfactory
fits to HERA DIS data in the leading-order dipole picture,
using the BK equation with running coupling corrections
(see for example Refs. [3,4]). To advance the saturation
formalism to next-to-leading order (NLO), two key ingre-
dients are needed: the NLO BK equation and the process-
dependent NLO impact factors. In addition to many recent
methodological developments for these higher-order cal-
culations (see e.g. Refs. [5,6]), progress has been made in
both of these directions. The NLO corrections to the BK
equation have been computed in Ref. [7] and evaluated
numerically in Ref. [8], where it was shown that they can
lead to unphysical results. This problem has been sub-
sequently solved by resumming classes of large logarithms
[9–11], indeed leading to reasonable results [12].
Concerning impact factors, most of the recent work has

concentrated on the NLO corrections to single inclusive

forward hadron production. The impact factor for this
process has been known for some time [13,14], but the first
numerical implementation of these expressions showed that
they can make the cross section negative when the trans-
verse momentum of the produced hadron is of the order of a
few GeV [15]. Several works have been devoted to solving
this issue [16–20], and recently a new proposed formu-
lation of the NLO cross section [21] was shown to lead to
physical results [22], albeit with a remaining issue con-
cerning the best way to implement a running QCD coupling
constant.
Also, the impact factor for DIS in the dipole picture has

been studied in several papers [23–26]. However, the full
expressions in the mixed space representation (longitudinal
momentum, but transverse coordinate) that are most nat-
urally combined with BK evolution have only become
available more recently [27,28]. For a practical implemen-
tation of these results, it is essential to match the impact
factor calculation with the evolution equation in the correct
way, i.e. to factorize the leading high energy logarithms
into the high energy evolution. As we shall discuss below,
the situation here is very analogous to that of single
inclusive particle production.
The main purpose of this paper is twofold. We first want

to study the importance of the NLO corrections to have a
first estimate of the stability of the perturbative expansion
for this quantity. Second, we want to develop a good
factorization procedure for matching the renormalization
group evolution with the previous calculation of the impact
factor. Both of these are prerequisites for a description of
experimental data, which will be pursued in a continuation
of this work. Our focus in this paper is to demonstrate the
feasibility of the factorization scheme and study the general
characteristics of the NLO corrections to the cross sections.
A full NLO calculation will additionally require including
an NLO evolution equation. In this paper, we shall first, in
Sec. II, briefly present the NLO impact factor as calculated
in Refs. [27,28]. We shall then, in Sec. III, quantify the
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effects of the NLO corrections for the Q2- and xBj-
dependence of the transverse and longitudinal DIS cross
sections.

II. IMPACT FACTOR

In the dipole framework, the interaction of a virtual
photon with the proton in DIS is factorized as the scattering
of a quark-antiquark dipole with the proton. At leading
order, the expressions for the cross sections of transversally
or longitudinally polarized virtual photons σL;T read

σLOL;TðxBj; Q2Þ ¼ 4Ncαem
X
f

e2f

Z
1

0

dz1

×
Z
x0;x1

KLO
L;Tðz1;x0;x1; xBjÞ; ð1Þ

with the shorthand
R
x0

¼ R d2x0
2π . The integrands are given

by the squares of the light cone wave functions for the
γ� → qq̄ splitting and the scattering amplitudes for the qq̄
dipole to scatter off the target

KLO
L ðz1;x0;x1; XÞ ¼ 4Q2z21ð1 − z1Þ2

× K2
0ðQX2Þð1 − S01ðXÞÞ; ð2Þ

KLO
T ðz1;x0;x1; XÞ ¼ Q2z1ð1 − z1Þðz21 þ ð1 − z1Þ2Þ

× K2
1ðQX2Þð1 − S01ðXÞÞ; ð3Þ

for the longitudinal (L) and transverse (T) polarized virtual
photons respectively. Here, the argument of the Bessel
functions, related to the lifetime of the qq̄-fluctuation, is
X2
2 ¼ z1ð1 − z1Þx2

01. The scattering amplitude of the dipole
is given, in the Color Glass Condensate picture, by the two
point function of a correlator of Wilson lines, namely

S01ðXÞ≡ Sðx01 ¼ x0 − x1; XÞ

¼
�

1

Nc
TrUðx0ÞU†ðx1Þ

�

X
; ð4Þ

where we denote by X the momentum fraction (corre-
sponding to the evolution variable in the BK equation
y ¼ ln 1=X) at which the Wilson line correlator is to be
evaluated.
The NLO corrections to these expressions have been

computed in Refs. [27,28]. They involve two kinds of
terms: the one loop corrections to the qq̄-state and a
new qq̄g-component in the γ� Fock state. Following the
general idea exposed in Ref. [21] for single inclusive
hadron production, we write the (unsubtracted) NLO cross
sections as

σNLOL;T ¼ σð0ÞL;T þ σqgL;T þ σdipL;T: ð5Þ

In this expression, the first term corresponds to the lowest-
order contribution with an unevolved target (i.e. evaluated
at the rapidity X ¼ x0). The terms proportional to αs have
been organized into two parts. First, the gluon contribution
σqgL;T includes all the real contributions (with a gluon
emitted into the final state) and a subset of the virtual
corrections that need to be combined with the real correc-
tions to cancel any ultraviolet or collinear divergences. The
dipole contribution σdipL;T contains the rest of the virtual
corrections. The separation between these two terms is not
unique, but the sum of the two is fully determined by the
NLO calculation. The expressions for these terms can be
written as

σqgL;T ¼ 8Ncαem
αsCF

π

X
f

e2f

Z
1

0

dz1

Z
1−z1 dz2

z2

×
Z
x0;x1;x2

KNLO
L;T ðz1; z2;x0;x1;x2; Xðz2ÞÞ; ð6Þ

σdipL;T ¼ 4Ncαem
αsCF

π

X
f

e2f

Z
1

0

dz1

×
Z
x0;x1

KLO
L;Tðz1;x0;x1; XdipÞ

×

�
1

2
ln2

�
z1

1 − z1

�
−
π2

6
þ 5

2

�
; ð7Þ

with

KNLO
L ðz1; z2;x0;x1;x2; XÞ ¼ 4Q2z21ð1 − z1Þ2

×

�
P

�
z2

1 − z1

�
x20

x2
20

·

�
x20

x2
20

−
x21

x2
21

�

× ½K2
0ðQX3Þð1 − S012ðXÞÞ − ðx2 → x0Þ�

þ
�

z2
1 − z1

�
2 x20 · x21

x2
20x

2
21

K2
0ðQX3Þð1 − S012ðXÞÞ

	
; ð8Þ

KNLO
T ðz1;z2;x0;x1;x2;XÞ¼Q2z1ð1− z1Þ

×

�
P

�
z2

1− z1

�
ðz21þð1−z1Þ2Þ

x20

x2
20

·

�
x20

x2
20

−
x21

x2
21

�
½K2

1ðQX3Þð1−S012ðXÞÞ− ðx2 →x0Þ�

þ
�

z2
1−z1

�
2
�
ðz21þð1− z1Þ2Þ

x20 ·x21

x2
20x

2
21

þ2z0z1
x20 ·x21

x2
20X

2
3

−
z0ðz1þ z2Þ

X2
3

�
K2

1ðQX3Þð1−S012ðXÞÞ
	
:

ð9Þ
Here, the longitudinal momentum fractions of the quark,

antiquark, and gluon are denoted as z0, z1, z2 with
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z0 þ z1 þ z2 ¼ 1. The argument of the Bessel functions,
related to the lifetime of the qq̄g-fluctuation, is X2

3 ¼
z0z1x2

01 þ z0z2x2
20 þ z2z1x2

21, PðzÞ ¼ 1þ ð1 − zÞ2, and
the Wilson line operator corresponding to the scattering
of the qq̄g-state is

S012ðXÞ ¼
Nc

2CF

�
S02ðXÞS21ðXÞ −

1

Nc
2
S01ðXÞ

�
: ð10Þ

It is important to note that, because the functions
KNLO

L;T ðz1; z2;x0;x1;x2; XÞ approach a nonzero value when
z2 → 0 at fixed X, the integral over z2 in σqgL;T produces a
large logarithm which should be resummed in the BK
evolution of the target. We will do this using the same
procedure introduced in Refs. [9,21] and demonstrated in
Ref. [22] for the case of single inclusive particle production
in forward proton-nucleus collisions. Note that, similarly to
the “CF-term” in the case of the single inclusive cross
section, the “dipole” term does not generate such a large
logarithmic contribution and therefore does not contribute
to the BK evolution.
The starting point of the BK-factorization procedure is to

identify the first term in Eq. (5) as the initial condition for
the BK evolution with the longitudinal momentum fraction
x0 ∼ 0.01, i.e.

σICL;T ¼ 4Ncαem
X
f

e2f

Z
1

0

dz1

Z
x0;x1

KLO
L;Tðz1;x0;x1; x0Þ:

ð11Þ

As discussed in great detail in Refs. [9,21], the essential
feature required for a stable perturbative expansion is that
the dipole correlators in σqgL;T must be evaluated at a rapidity
scale that depends on the longitudinal momentum of the
emitted gluon, i.e. z2. Here, there are several different
possibilities, which are all equivalent at the leading
logarithmic level. At NLO accuracy, the different schemes
lead to different expressions which are in principle equiv-
alent, but more naturally lend themselves to different
approximations.
The choice advocated in Ref. [9] is to consistently use the

probe longitudinal momentum kþ as the evolution variable,
sometimes referred to as “probe evolution.” In this case, the
evolution rapidity is by definition y ¼ ln 1=z2 þ y0 with
some constanty0 used tomake y ¼ 0 correspond to the initial
condition for the evolution. To determine the lower integra-
tion limit for z2 in this scheme, we have to compare the
longitudinal momentum of the emitted soft gluon z2qþ to
momentum scales in the target. The typical target hadronic
momentum scale is given by Pþ ¼ Q2

0=ð2P−Þ, where Q0 is
some hadronic low transverse momentum scale and the total
target light cone energy P− is obtained from the total center-
of-mass energy of the γ�-target system by W2 ¼ 2qþP−.
For the eikonal approximation to be valid, we require that the

probe gluon momentum is larger than the target momentum
scale by a large factor 1=x0, i.e. z2qþ > ð1=x0ÞPþ. This
translates, using xBj ≈Q2=W2, into an integration limit,
z2 > ðxBj=x0ÞðQ2

0=Q
2Þ. If now the soft gluon has a trans-

verse momentum k⊥, the light cone energy required from the
target to put the qq̄g-state on shell is Δk− ≳ k2⊥=ð2z2qþÞ.
The limit on z2 means that we allow the γ� system to take a
fraction Δk−=P− ≲ x0ðk2⊥=Q2

0Þ of the target light cone
energy. If the typical gluon k⊥ is at the hadronic scale Q0,
this is indeed the limitΔk−=P− < x0 that wewould want for
the fraction of the target light cone energy. However, the
contribution from k2⊥ ∼Q2 ≫ Q2

0 goes to larger values of the
target momentum fraction Δk−=P− than we would want.
This can generally be expected to be a problem that must be
corrected by imposing an additional “kinematical constraint”
on the evolution equation [9,29] and on the impact factor
[17,19,20].
The other option to probe evolution is to take the view

that the evolution variable should always be the target
momentum fraction, i.e. the fraction of the target light cone
energy X ¼ Δk−=P−. Keeping this momentum fraction
small, X < x0, removes the need for an additional kin-
ematical constraint, significantly simplifying the evolution
equation. On the other hand, using Δk−=P− as the
evolution variable adds the significant complication that
this momentum fraction depends on the transverse momen-
tum of the gluon, Xðz2Þ ≈ k2⊥=ðz2W2Þ, and when z2 is not
very small also on the momenta of the quark and antiquark.
This makes it difficult to implement a light cone energy
factorization scale or evolution variable exactly.
Parametrically, the transverse momentum k⊥ can range
from a hadronic scale Q0 to the hard scale Q. If one
estimates the typical target momentum fraction Δk−
assuming that the typical gluon transverse momentum is
at the hadronic scale k2⊥ ∼Q2

0, one recovers the same limit
z2 > ðxBj=x0ÞðQ2

0=Q
2Þ as argued from using kþ as the

factorization variable. In contrast, the argument used in the
recent work on single inclusive particle production in
proton-nucleus collisions [21,22] was that, at least in that
case, the typical transverse momentum of the gluon in the
impact factor is in fact the hard scale of the process k⊥ ∼Q.
Assuming that this is the case also for DIS means that one
should restrict the integrals to a smaller phase space
z2 > ðxBj=x0Þ. The latter is the limit that we will use in
this work. In terms of the kþ-momentum, this limit
corresponds to the emitted gluon having longitudinal
momentum z2qþ ≳ ðQ2=Q2

0Þð1=x0ÞPþ instead of the
z2qþ > ð1=x0ÞPþ that one would use in the factorization
scheme with kþ. This approximation leads to a rather
simple formulation for the cross section. Improving the
accuracy would require including the additional phase
space ðxBj=x0ÞðQ2

0=Q
2Þ < z2 < ðxBj=x0Þ in the cross sec-

tion on one hand but cutting out the large logarithmic
increase from this region by using a kinematical constraint
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in the evolution equation, as advocated e.g. in
Refs. [9,27,28]. Due to the considerably increased com-
plication of this formulation, we will defer studying this
alternative to future work.
To summarize, in this paper, we will follow the choice

made for single inclusive particle production in proton-
nucleus collisions in Refs. [21,22] and choose the target
momentum fraction as the evolution variable, supple-
mented with the assumption that all transverse momenta
are of the order Q. Thus, we take Xðz2Þ ¼ xBj=z2 and set
the kinematical limit by requiring Xðz2Þ < x0, i.e.
z2 > xBj=x0. Implementing this limit, we can now com-
plete the “unsubtracted” form of the cross section (5) with
the lower integration limit in z2 as

σNLOL;T ¼ σICL;T þ σqg;unsubL;T þ σdipL;T; ð12Þ
with

σqg;unsubL;T ¼ 8Ncαem
αsCF

π

X
f

e2f

Z
1

0

dz1

Z
1−z1

xBj=x0

dz2
z2

×
Z
x0;x1;x2

KNLO
L;T ðz1; z2;x0;x1;x2; Xðz2ÞÞ: ð13Þ

We then note that taking z2 ¼ 0 as the explicit z2-argument
in KNLO

L;T [but not in the implicit dependence through Xðz2Þ]
leads to an integral version of the BK equation. Using this,
we can also rewrite Eq. (12) in a form that involves the
leading-order cross sections with BK-evolved dipole oper-
ators evaluated at the scale xBj instead of x0. The result is a
strictly equivalent “subtracted” form of the cross section

σNLOL;T ¼ σLOL;T þ σqg;subL;T þ σdipL;T; ð14Þ

where σLOL;T is the well-known leading-order expression (1)
and

σqg;subL;T ¼ 8Ncαem
αsCF

π

X
f

e2f

Z
1

0

dz1

Z
1

xBj=x0

dz2
z2

×
Z
x0;x1;x2

½θð1 − z1 − z2Þ

×KNLO
L;T ðz1; z2;x0;x1;x2; Xðz2ÞÞ

−KNLO
L;T ðz1; 0;x0;x1;x2; Xðz2ÞÞ�: ð15Þ

Contrary to σqgL;T , the dipole term σdipL;T is not associated
with the rapidity evolution of the target, and thus the
rapidity scale of the dipole operators in this term is left
unspecified. As presented in Refs. [27,28], this term is
already integrated over z2. Therefore, it is not possible to
evaluate the dipole operators in this term at the same scale
Xðz2Þ ¼ xBj=z2 as in σqgL;T , which would arguably be the
most natural thing to do. Here, we will evaluate this term at
Xdip ¼ xBj since the integrand vanishes when z2 → 0, and

therefore one can expect the integral to be dominated by the
region where z2 is close to 1. Note, however, that the
difference between X ¼ xBj=z2 and X ¼ xBj, while for-
mally subleading for the dipole term, could be numerically
important, as is the case for the analogous CF-terms in
single inclusive particle production [22].
To obtain the previous expressions, we followed closely

the original idea of Ref. [21], which was shown in Ref. [22]
to lead to reasonable numerical results for single inclusive
particle production at all transverse momenta. Bear in
mind that the two expressions in Eqs. (12) and (14) are
completely equivalent and are related through the BK
evolution equation. In the following, it will also be
interesting to compare the results obtained in this formu-
lation with what we denote here as the “xBj-subtraction”
scheme, which is expressed as

σ
NLO;xBj−sub
L;T ¼ σLOL;T þ σqg;sub

�
L;T þ σdipL;T; ð16Þ

where σqg;sub
�

L;T is an approximation of Eq. (15) by using
Xðz2Þ ¼ xBj and taking the limit xBj=x0 → 0 in the lower
limit of the integral over z2. This is the analog of what was
denoted in Refs. [20,22] as the “CXY” subtraction scheme
after the authors of [13,14] for the case of single inclusive
particle production, which is formally equivalent at this
order of perturbation theory, but leads to problematic
results for high momentum scales.

III. NUMERICAL RESULTS

Since we do not consider a possible impact parameter
dependence of the dipole correlators, one of the coordinate
integrals in the expressions shown in the previous section is
trivial and leads to a factor corresponding to the target
transverse area, denoted as σ0=2. This quantity is usually
determined by a fit to data, such as in Refs. [3,4].
Performing such a fit goes well beyond the scope of the
present work; therefore, for simplicity, we leave out this
overall normalization factor and present results for FL;T=

σ0
2
,

where the structure functions FL;T are defined as

FL;TðxBj; Q2Þ ¼ Q2

4π2αem
σL;TðxBj; Q2Þ: ð17Þ

We first focus on the fixed coupling case, using αs ¼ 0.2
both when evaluating the NLO cross section and when
solving the leading-order Balitsky-Kovchegov equation.
Note that for the factorization scheme to be consistent both
the cross section calculation and the BK equation need to
have the same coupling constant. For the BK equation, we
use a McLerran-Venugopalan initial condition [30]

Sðr; x0Þ ¼ exp

�
−
r2Q2

s;0

4
ln

�
1

jrjΛQCD
þ e

��
; ð18Þ

where we take Q2
s;0 ¼ 0.2 GeV2 and ΛQCD ¼ 0.241 GeV.
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In Fig. 1, we show the importance of the NLO correc-
tions σdip and σqg to FL and FT as a function of Q2 at
xBj ¼ 10−3. In both the longitudinal and transverse cases,
the sign of these corrections is the same: the dipole
contribution is positive, which can be understood from
Eq. (7), while the qg contribution is negative. Because the
second correction is larger in magnitude than the first one,
the total NLO cross section is smaller than the leading-
order (LO) one.
In Fig. 2, we show how these results change if we use the

approximate xBj-subtraction in Eq. (16) for the qg-term.
This term is still negative and has a larger magnitude,
especially at large Q, which makes the whole NLO cross
section negative for Q2 ≳ 10 GeV2, both in the longi-
tudinal and transverse cases. Therefore, approximating
Eq. (14) by Eq. (16), while in principle justified in a weak
coupling sense, has in fact a large effect in this region and
can lead to unphysical results. A similar behavior was

observed in single inclusive particle production at large
transverse momenta [22]. This shows that to get meaningful
results one should really use the factorization procedure in
Eq. (12) or equivalently Eq. (14), which we will do for the
rest of this paper.
We also show in Figs. 3 and 4 the xBj-dependence of the

different NLO contributions to FL and FT for fixedQ2 ¼ 1

and 50 GeV2. These plots show a change of behavior: at
small xBj, the NLO cross section is smaller than the LO
one, while it becomes larger when xBj approaches x0. The
reason is the following: as explained previously, the dipole
NLO correction is always positive. In addition, as can be
seen from Eq. (13), the qg-part is 0 at xBj ¼ x0 since the
z2-integration range vanishes. Therefore, the NLO cross
section is the sum of the leading-order one and a positive
correction, i.e. always larger than the leading-order one.
This is related to the reason why, as explained in the
previous section, we would prefer to use an expression of

FIG. 2. LO and NLO contributions to FL (left) and FT (right) as a function of Q2 at xBj ¼ 10−3 with αs ¼ 0.2 and using the xBj-
subtraction procedure.

FIG. 1. LO and NLO contributions to FL (left) and FT (right) as a function of Q2 at xBj ¼ 10−3 with αs ¼ 0.2.
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the dipole part which has an explicit integration over z2.
This would allow one to use, also in the dipole term, Wilson
line operators at a rapidity scale which depends on the
gluon momentum fraction, i.e. the invariant mass of the
qq̄g-state, in a way that is more consistent with the qg-part.
The expressions we currently use restrict the kinematics to
the regime of validity of the dipole picture X < x0 for the
qg-part but not for the dipole part. This leads to a sign
change of the total NLO contribution as a function of xBj
near x0.
While the running of the strong coupling αs is in

principle a subleading effect in a leading-order calculation,
this effect has to be taken into account at next-to-leading
order. To evaluate its importance here, we use the simple
parent dipole prescription in which the coupling is given by

αsðx2
01Þ ¼

4π

β0 ln



4C2

x2
01
Λ2
QCD

� ; ð19Þ

with β0 ¼ ð11Nc − 2nfÞ=3. The scaling parameter C2 is
taken to be C2 ¼ e−2γe , as suggested in Refs. [31,32], and
the coupling is frozen at the value 0.7 at large dipole sizes.
When fitting the initial condition of the BK equation to data
at leading order (see e.g. Refs. [3,4]), one usually uses
instead the Balitsky prescription [33] for the running
coupling and additionally takes C2 as a fit parameter in
order to obtain a slow enough evolution. However, in
principle, the choice of the running coupling prescription is
a higher-order effect, and thus the parent dipole prescrip-
tion is equally well justified in a weak coupling sense. Also,
on the phenomenological level, it has been shown [8,10–
12] that the NLO corrections to the BK kernel slow down
the evolution, and thus it is not a priori obvious which
prescription will yield a good description of experimental
data at the NLO level.
As stated before, our purpose here is not to achieve a fit

to DIS data but to quantify the effect of the NLO
corrections to the impact factor compared to previous

FIG. 4. LO and NLO contributions to FT as a function of xBj at Q2 ¼ 1 GeV2 (left) and Q2 ¼ 50 GeV2 (right) with αs ¼ 0.2.

FIG. 3. LO and NLO contributions to FL as a function of xBj at Q2 ¼ 1 GeV2 (left) and Q2 ¼ 50 GeV2 (right) with αs ¼ 0.2.
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LO calculations. Therefore, we show, in the left panel of
Fig. 5, the NLO/LO ratio for FL and FT as a function ofQ2

at xBj ¼ 10−3 with fixed and running coupling. In the right
panel, we show the same ratio as a function of xBj at
Q2 ¼ 1 and 50 GeV2 with running coupling. We see that
for fixed coupling the net effect of the NLO corrections is to
decrease the cross section. However, especially for a
running coupling, this feature is reversed close to the
initial rapidity scale xBj ≈ x0. As discussed above, this is
related to the fact that the negative NLO corrections related
to BK evolution vanish in this limit while the positive ones
in the dipole term do not, indicating a strong dependence on
the details of the factorization scheme. While this is a
transient effect that does not alter the asymptotic high
energy behavior, treating it carefully will be important for
an attempt to describe experimental data.

IV. OUTLOOK

In conclusion, we have in this paper evaluated, for the first
time, the total DIS cross section in the dipole picture with an
impact factor derived at NLO accuracy. We developed a
factorization procedure to resum the leading high energy
logarithms into a BK renormalization group evolution of the
target, in line with recent developments for single inclusive

cross sections. We showed that this procedure leads to
physical, well-behaved expressions for the cross sections
with, however, large transient effects in the region close to the
limit of validity of the eikonal approximation. With the
caveat of understanding these transient effects, there is a good
perspective for a comparisonwith experimental data. In order
to achieve this at consistentNLOaccuracy, the impact factors
studied here must be combined with a solution of the NLO
BK equation [12] or at least a collinearly resummed version
of the LO equation [10,11]. A major missing theoretical
ingredient that is needed for amore detailed comparisonwith
data is to work out the corresponding impact factor for
massive quarks. This should in principle be a straightfor-
ward, if laborious, extension of the existing calculation for
massless quarks.
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