
REVIEW

The role of ANGPTL3 in controlling lipoprotein metabolism
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Abstract Angiopoietin-like protein 3 (ANGPTL3) is a

secretory protein regulating plasma lipid levels via affect-

ing lipoprotein lipase- and endothelial lipase-mediated

hydrolysis of triglycerides and phospholipids. ANGPTL3-

deficiency due to loss-of-function mutations in the

ANGPTL3 gene causes familial combined hypobetal-

ipoproteinemia (FHBL2, OMIM # 605019), a phenotype

characterized by low concentration of all major lipoprotein

classes in circulation. ANGPTL3 is therefore a potential

therapeutic target to treat combined hyperlipidemia, a

major risk factor for atherosclerotic coronary heart disease.

This review focuses on the mechanisms behind ANGPTL3-

deficiency induced FHBL2.
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Introduction

Dietary fats are transported in the circulation in lipoprotein

particles, lipid-apolipoprotein complexes containing a

surface of phospholipid monolayer together with free

cholesterol and structural apolipoproteins (apo) and a

hydrophobic core including cholesterol esters and triglyc-

erides (TG) [1, 2]. In humans, TGs are packed and secreted

in the small intestine in apoB-48-containing chylomicrons

(CM) and in the liver in apoB-100 containing very low

density lipoproteins (VLDL) [1, 2]. TG in CM and VLDL

are hydrolyzed in circulation by lipoprotein lipase (LPL) [3].

The resulting free fatty acids are taken up by tissues pri-

marily via the function of CD36 transporter [4]. After

deprivation of TG, CM, and VLDL remnants are cleared via

specific liver receptors. SomeVLDL remnants are converted

in circulation, via hepatic lipase (HL) function, into

cholesterol-rich low density lipoproteins (LDL). LDL-re-

ceptors recognize LDL-bound apoB-100, resulting in the

uptake of the circulating LDL, mainly by the liver and by the

steroidogenic tissues [3]. Another class of lipoproteins, high

density lipoproteins (HDL), are functionally important in

reverse cholesterol transport, to clear excess accumulated

cholesterol from the periphery, and transport it back to the

liver for excretion [5]. Disturbances in lipoprotein metabo-

lism by genetic variants in genes affecting LPL activity

(ANGPTL3, APOC3, APOC2, APOA5), remnant clearance

(APOE, LIPC, LRP1), LDL receptor activity (PCSK9,

LDLR), lipoprotein secretion (APOB, MTP) and HDL

(APOA1, ABCA1) have been detected in humans [6, 7].

High blood levels of saturated fat and cholesterol are

major risk factors for coronary heart disease (CHD). Lipids

within apoB-containing lipoproteins can accumulate in

arterial intima and result in plaque formation and the

development of atherosclerosis [8]. LDL-Cholesterol is a

major cause for the generation of atherosclerotic plaques

[8], however, an independent predictive value for elevated

circulating TG in coronary heart disease (CHD) risk has

been demonstrated in prospective studies [9, 10]. Existing

pharmaceuticals, such as statins, fibrates, niacin, and fish

oil, which target LDL-cholesterol (LDL-C), TG, and HDL-

cholesterol (HDL-C) are prescribed alone or in various

combinations to target dyslipidemias [11]. ANGPTL3 is a

potential therapeutic target for alternative treatment of

combined hyperlipidemia.
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Characteristics of ANGPTL3

The angiopoietin-like proteins (ANGPTLs) form collec-

tively a specific family of secretory proteins sharing a

structural similarity to angiopoietins, the key factors that

regulate angiogenesis [12]. ANGPTL3 is a 460-amino-acid

(aa) polypeptide with a distinctive signal peptide sequence,

a N-terminal helical domain (predicted to form dimeric or

trimeric coiled-coil structures) and a C-terminal globular

fibrinogen homology domain [13]. The N-terminal

coiled—coil region (17–207 aa), specifically the amino—

acid domain 61–66, affects plasma triglyceride (TG) levels

via reversibly inhibiting catalytic activity of LPL [14, 15].

The fibrinogen-like domain (207–460 aa) binds to integrin

avb3 receptor and affects angiogenesis [16]. A short linker

region (at 221–222 and 224–225) between N- and C-ter-

minal domains functions as a furin cleavage site. The

truncated form of cleaved ANGPTL3 displays enhanced

inhibitory activity for LPL and endothelial lipase (EL)

suggesting that furin-facilitated cleavage of ANGPTL3 is

physiologically important [14, 17]. Angiopoietin-like pro-

tein 8 (ANGPTL8), an insulin-induced protein sharing

sequence homology with ANGPTL3, may also regulate

ANGPTL3 proteolytic activation in vivo [18–20].

The association of ANGPTL3 with lipoprotein meta-

bolism was discovered in hypertriglyceridemic and

hyperglycemic obese KK mice, which spontaneously

inherited a recessive trait causing low levels of triglyceride

in plasma [21] and elevated post-heparin LPL activity [22].

The hypolipidemic mice carried a 4-base pair insertion in

exon 6 introducing a stop codon in the Angptl3 gene. Low

lipid levels in the mutant mice were normalized by an

intravenous injection of ANGPTL3 [21]. When the region

including Angptl3 LOF was introduced to atherogenic

apoE-knock out mice, the prevalence of atherosclerotic

lesions significantly declined [23] indicating that

ANGPTL3-deficiency and the resulting hypolipidemia in

these mice, was protective against the development of

atherosclerosis.

Population studies and clinical characterization
of ANGPTL3 sequence variants in humans

In humans, both common and rare genetic variants in

ANGPTL3 gene have been reported to associate with

plasma lipids. Three genome-wide scans (n = 8800) from

Finnish and Italian subjects showed a strong association

between ANGPTL3 and plasma TG levels [6]. Since then,

more data have been published on the association between

ANGPTL3 variants and plasma TG, LDL, HDL, and total

cholesterol levels [24]. As much as 4 % of the Dallas Heart

Study population (n = 3,551) with plasma TG in the

lowest quartile carried rare LOF mutations in ANGPTL3,

ANGPTL4, or ANGPTL5 [25].

Genetic LOF variants in ANGPTL3 cause a rare reces-

sive disorder known as familial combined hypobetal-

ipoproteinemia (FHBL2, OMIM # 605019). FHBL2

subjects display a distinct plasma lipid phenotype including

very low VLDL, LDL, and HDL levels, and consequently

low total TG and cholesterol levels ([26], see Table 1).

Involvement of ANGPTL3 LOF mutation in FHBL2 was

discovered by genome sequencing of two siblings of

European descent who were compound heterozygotes for

two distinct nonsense mutations in ANGPTL3 (p.E129*

and p.S17*) [27]. p.S17* LOF mutation is common among

the residents of a town Campodimele (Latina, Italy), of

which 9.4 % carry the mutant variant [26]. Only the

homozygous carriers of p.S17*, who have unde-

tectable levels of ANGPTL3 in circulation, manifest low

lipid and lipoprotein levels whereas heterozygote carriers,

with a 50 % reduction in circulatory ANGPTL3, are not

affected by FHBL2 (26, 34, see Table 1). In addition to

p.S17* and p.E129* LOF mutations, more subjects with

rare LOF variants in ANGPTL3 are detected in Spanish and

Italian FHBL2 families [28–30]. Among 78 sequenced

American and Italian FHBL2 subjects, 8 subjects carried 9

different nonsense mutations in ANGPTL3, with no muta-

tions in APOB, PCSK9, or MTP. The prevalence for

ANGPTL3 LOF mutations in all of the FHBL2 cases was

therefore 10 % [31].

ANGPTL3 function

An increasing number of evidence indicates that the

hypolipidemic phenotype in ANGPTL3-deficiency is dri-

ven by accelerated turnover of lipoproteins and the

resulting altered energy substrate distribution among tis-

sues (see Fig. 1).

ANGPTL3 and lipoprotein clearance

Lipoprotein lipase (LPL) is located on the luminal side of

the vascular endothelium of the capillaries in extra hepatic

tissues [3]. LPL plays a critical role in hydrolyzing TG

carried by VLDL and chylomicron (CM) particles in the

circulation. Activity of LPL in white adipose tissue (WAT)

is elevated in fed state and reduced in fasted state [3].

Therefore, in the fed state, the flow of dietary fat is pri-

marily targeted into WAT, not into skeletal muscle, which

would rely on glucose in energy production [3]. During

fasting, skeletal muscle is believed to be the main site for

LPL activity [3]. Endothelial lipase (EL) is located on the
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luminal side of the vascular endothelial cells (like LPL)

and shares 44 % homology with LPL and 41 % with

hepatic lipase (HL) [32]. Unlike LPL, EL is more specific

in hydrolyzing lipoprotein phospholipids, especially in

HDL-particles, rather than TG [33].

Both LPL and EL activities are increased in humans and

mice with Angptl3 deficiency [34–36]. There are no reports

on enhanced HL activity in ANGPTL3-deficiency. In

Angptl3-knockout mice, TGs in postprandial lipoproteins

were directed in brown adipose tissue (BAT) and muscle

Table 1 Characteristic lipid, apolipoprotein, and Angptl3 levels of FHBL2 subjects with p.S17* mutation in the ANGPTL3 gene

Parameter Homozygote p.S17*-carriers (n = 5) Heterozygote p.S17*-carriers (n = 17) Non-carriers (n = 22)

Sex (W/M) 2/3 8/9 11/11

Age 63.6 ± 10 50.1 ± 20 51.8 ± 19

BMI 31.5 ± 7 28.3 ± 4 28.3 ± 5

Angptl3 (ng/mL) 0* 97 ± 96* 233 ± 145

FFA (lmol/L) 344.5 ± 292.2 486.2 ± 239.9 563 ± 249.9

ApoB (g/l) 1.0 ± 0.08* 1.5 ± 0.3 1.5 ± 0.4

ApoA-I (g/l) 0.5 ± 0.2* 1.3 ± 0.3 1.3 ± 0.2

TG (mmol/l) 0.5 ± 0.10* 1.1 ± 0.6 1.5 ± 0.7

CHOL (mmol/l) 2.3 ± 0.4* 4.6 ± 0.8 5.2 ± 1.1

LDL-CHOL (mmol/l) 1.4 ± 0.2* 2.6 ± 0.6 3.1 ± 0.8

HDL-CHOL (mmol/l) 0.7 ± 0.21* 1.5 ± 0.3 1.5 ± 0.4

Values in Table are modified from Robciuc et al. [34]. Values are reported as mean ± SD * p\ 0.05. FFA values N = 7 for homozygotes,

N = 47 for heterozygotes and N = 58 for non-carriers

ANGPTL3

CM 
secre�on ?

VLDL 
secre�on

LPL 
ac�vity

Lipolysis
LPL 

ac�vity

Fig. 1 Function of ANGPTL3

in lipoprotein metabolism.

ANGPTL3-deficiency causes

enhanced activity of lipoprotein

lipase (LPL) in the muscle and

adipose tissue and accelerated

clearance of TG-rich

lipoproteins. Decreased release

of FFA, from adipose tissue

(lipolysis), hypothetically

results in scarcity of FFA

substrates for hepatic de novo

synthesis of TG and cholesterol,

and consequently decreased

lipidation of VLDL. There are

no reports on whether

ANGPTL3-deficiency would

affect the lipidation and

secretion of intestinal TG-

enriched chylomicron (CM)-

particles
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instead of WAT [37]. The study indicates that ANGPTL3-

deficiency might induce LPL activity in the oxidative tis-

sues during feeding and accelerate the clearance of TG-rich

particles. Since LPL or EL do not hydrolyze cholesterol

esters, the mechanism for low LDL-C levels in ANGPTL3-

deficiency, has remained elusive. Wang et al. reported that

LDL-cholesterol levels were equally reduced in wildtype

mice and LDLR, LRP1, or APOE knockout mice treated

with ANGPTL3 inactivating antibody [38]. These results

suggest that reduced LDL-cholesterol in ANGPTL3-defi-

ciency is not caused by enhanced clearance of cholesterol

via LDL-receptors. Alternatively, reduced LDL-C levels

may be a result of lower secretion rates of LDL precursors,

hepatic VLDL particles.

ANGPTL3-deficiency in FHBL2 causes a reduction in

HDL-particles, the facilitators of reverse cholesterol

transport. As increased activity of EL is associated with

reduced plasma HDL-cholesterol (HDL-C) levels [39],

higher activity of EL might contribute to low HDL levels

demonstrated in ANGPTL3-deficiency. Even though low

HDL is an established risk factor for atherosclerosis [40],

decreased HDL levels did not result in accelerated

atherosclerosis in ANGPTL3-deficient subjects, probably

because of the lifelong exposure to low levels of VLDL

and LDL [30]. The lipolysis of TG-rich lipoproteins and

HDL, via LPL and EL, respectively, may result in

increased turnover of lipoprotein remnants and therefore

low plasma apoB and apoA-I levels.

The role of ANGPTL3 in lipoprotein production

Hepatic VLDL synthesis relies on the availability of

triglycerides which are synthesized from substrates derived

from the supply of free fatty acids from adipocytes [41],

from VLDL and chylomicron remnants [1, 2] and from

simple sugars [42] via the portal vein. Insulin signaling

reduces hepatic VLDL synthesis and secretion which is

manifested by reduced lipidation of TG-rich VLDL parti-

cles [43]. Mice treated with monoclonal ANGPTL3 inac-

tivating antibody did not show lower production rates for

apoB-100 [38], the major structural protein of VLDL,

indicating that there are no changes within the amount of

secreted VLDL particles. However, the amount of TG in

each VLDL particle might be declined [44]. Reduced lip-

idation of VLDL in ANGPTL3-deficiency may be caused

by decreased supply of free fatty acids from the circulation

into the liver. These observations are in agreement with the

reported low FFA levels in ANGPTL3-deficient subjects

[34]. A metabolic study with ANGPTL3-silenced hepato-

cytes suggests that silencing of ANGPTL3 causes a shift in

substrate utilization to favor glucose, instead of FFA [44],

which supports the theory of attenuated FFA supply into

the liver.

Cholesterol is either ingested from nutrition or synthe-

sized de novo by the liver. Reduced availability of sub-

strates may decrease hepatic de novo synthesis of

cholesterol resulting in the secretion of cholesterol-poor

VLDL in ANGPTL3-deficiency. Interestingly, ANGPTL3

is a downstream target for liver X receptors (LXR’s),

transcription factors with sterol binding ability [45].

Oxysterols, cholesterol, and other cholesterol metabolites

are natural ligands for LXRs, and LXR activation protects

the liver from cholesterol overload by stimulating bile acid

formation and excretion, lipogenesis, HDL-mediated

reverse cholesterol transport, and glucose metabolism [46,

47]. Synthetic LXR ligands and a high cholesterol diet

induce Angptl3 expression in the liver [48, 49]. On the

contrary, low LXR, and low Angptl3 expression (in

ANGPTL3-deficiency) may therefore be linked to hypoc-

holesterolemic and antilipogenic status in the liver.

Adipose tissue

White adipose tissue (WAT) serves as the primary tissue

for storage of triglycerides. Postprandial TGs are primarily

directed to WAT via LPL-mediated hydrolysis [3]. In

Angptl3-knockout mice, TG-derived FFA uptake was

decreased in WAT while elevated in BAT and muscle.

Such a shift in substrate distribution between tissues,

however, did not result in differences in TG-content of the

liver, adipose tissue, and heart, possibly because reduced

lipid uptake in WAT was balanced by elevated glucose

uptake [37].

TG-deposits in adipose tissue are dismantled by lipoly-

sis, a catabolic breakdown of TG mediated by concerted

action of adipose TG lipase (ATGL), and hormone sensi-

tive lipase (HSL) [41]. Lipolysis is inhibited in the post-

prandial state by elevated insulin concentrations [50].

During fasting, lipolytic activity increases the release of

FFA and free glycerol into circulation, to provide sub-

strates for energy production in the oxidative tissues [41].

In Angptl3-knockout mice, both FFA and glycerol were

reduced in plasma and were preserved by administration of

ANGPTL3 [51]. Therefore, absence of circulatory

ANGPTL3 (in ANGPTL3-deficiency) may decrease FFA

lipolysis in the adipose tissue and consequently reduce

plasma FFA and glycerol levels.

Conclusions

Several mutations in the APOB, PCSK9, and MTP genes

result in familial hypobetalipoproteinemia (FHBL) and

abetalipoproteinemia (ABL) defined as low, or absent

levels of apoB-100, and LDL-C in plasma [52, 53]. LOF

mutations in the ANGPTL3 results in familial combined
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hypobetalipoproteinemia (FHBL2) with reduced levels of

all major lipoprotein classes (VLDL, LDL, HDL) in

plasma. The hypolipidemic phenotype caused by

ANGPTL3 inactivation is likely an outcome of increased

activity of two lipolytic enzymes, LPL, and EL, which

account for increased turnover of lipoproteins, and reduced

TG and HDL levels in the plasma. Low plasma FFA levels

in ANGPTL3-deficiency may be due to decreased lipolysis

in the adipose tissue which may also contribute to reduced

lipidation of hepatic VLDL, and LDL, and consequently

low TG and LDL-C. The impact of ANGPTL3-deficiency

on intestinal chylomicron production remains unknown.

However, there are no reports on steatorrhea among

ANGPTL3-deficient subjects.

No adverse health effects or developmental alterations

during early or later life-time are reported in ANGPTL3-

deficient p.s17* LOF mutation carriers [26, 34]. Perhaps

ANGPTL3 may have been functionally important during

long periods of fasting to primarily ensure FFA release from

TG-deposits, via controlling lipolytic activity, and by guid-

ing energy substrates into either oxidative tissues orWAT by

selective LPL inhibition. Such tight regulation between

energy storage and substrate release might be important

during times with less frequent access to energy rich diet.

The striking hypolipidemic phenotype in ANGPTL3

deficiency shows the potential of ANGPTL3 inactivation as

a treatment for correcting hyperlipidemia. Therefore,

ANGPTL3 inactivation may have important therapeutic

implications for treatment of metabolic syndrome, type 2

diabetes, and patients in high risk of heart disease. The first

reports on ANGPTL3 inhibitors have shown promising

results. Administration of ANGPTL3 inactivating antibody

to monkeys and dyslipidemic mice reduced circulating

plasma levels of TG, LDL-cholesterol, and HDL-choles-

terol significantly [54]. Another strategy for ANGPTL3

inactivation, and perhaps a better one to avoid immune

response associated with administration of antibodies,

could be selective antisense inhibition of ANGPTL3

expression in the liver. Despite favorable reduction in

LDL-C and TG, it is still uncertain whether decreased

HDL-C would have an influence on overall CVD risk in

ANGPTL3-inhibitor treated patients.
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