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Kumpulan tiedekirjasto

Group defense against predator attacks are common for prey species. Some group defense mecha-
nisms are more passive, like swarm confusion. In this thesis the focus is an active type of group
defense where the prey fight back against the attacking predator as a group.

The aim of this thesis is to formulate a model with active groups defense and to mechanistically
derive and analyse the functional response arising from it. The motivation is to understand the
impact of this special type of group defense on the functional response of the predator, and hence
on the whole dynamics of the model.

Some theory about prey-predator models, the functional response and tools for analysing dyna-
mical systems are presented as background first. Following this, the model is formulated from
the individual level processes and the functional response derived using the method of time-scale
separation. Finally, two special cases of the model are analysed.

In the model, the defense of the prey is modelled as a coagulation and fragmentation process,
where the prey can join the fight to protect the individual that is being attacked. These fights
become clusters where the attacking predator is the coagulation kernel. The clusters can grow
or shrink by one prey joining or leaving at a time, or the cluster breaking up completely due to
success of either the attack or the defense. This type of coagulation and fragmentation process can
be seen as a generalization of the Becker-Döring equations, where the clusters are homogenous
groups and the groups can also only grow and shrink by one individual at a time.

The cluster dynamics truncated with a maximum size for the clusters was found to have a unique
and stable equilibrium for arbitrarily large maximum cluster sizes in both special cases of the
model. The stability analysis for cluster dynamics with no maximum cluster size was not successful,
even though there is reason to believe the results for the truncated system is generalizable to that
case.

The functional response was found to take a dome-shaped form, decreasing to zero under certain
circumstances, or the form of Holling type II functional response. The determining factor for
which type of functional response the model gives rise to is whether the predator’s attack rate is
dependent on the cluster size or not. The same dependence of the form of the functional response
on the attack rate was found to hold in both special cases of the model.
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Chapter 1

Introduction

The aim of this thesis is to derive the functional response in a prey-predator system where
the prey team up and actively defend against predator attacks. This dynamic was found
to result in either a dome-shaped functional response, or a Holling type II functional
response, depending on the predator capture rate.

A biological example of this type of interaction is the lion and the wildebeest. A
wildebeest that is attacked by a lion may be joined by others from it’s herd in an attempt
to fight off the lion. The wildebeests are much bigger than the lion and have big horns,
so the success of a lion against a large group is unlikely.

1.1 Prey-predator models
Prey-predator models are a useful and classical tool in studying ecological systems. They
can be extended to a variety of resource-consumer or host-parasite interactions in nature,
which makes studying the phenomenon occurring in such models interesting.

In mathematical modelling there is always a trade-off between detail and mathematical
manageability. When formulating the model, the focus should be on the processes relevant
to the questions asked and the point of view for the study, i.e. where the interest lies.
Reality is of course always a lot more detailed than the model we choose to work with, but
for mathematical purposes the details can be ignored or incorporated into the parameters.
This is also done for methodological purposes, to link the individual-level processes to the
population level phenomena, e.g. group formation to the shape of the functional response.
Incorporating all possible processes into the model would make it a more realististic one,
but it would make finding the link between the phenomena and processes more difficult.
As a result of this, two models of the same ecological system with different objectives may
look quite different from each other.

2



A well-known prey-predator model is the basic Lotka-Volterra model shown below [12]
[17]. Here N denotes the prey density and P the predator density. The parameter ↵ is the
intrinsic growth rate of the prey population, i.e. the combined birth and death rate for the
total population, � the rate at which the predator captures prey, � the conversion constant
of captured prey into new predator individuals and � the death rate of the predator.

(1.1)

(
˙N = ↵N � �NP
˙P = �NP � �P

The Lotka-Volterra model is an example of a very simple and not very realistic prey-
predator model, because it assumes exponential growth for the prey when the predator is
absent.

1.2 The functional response
The functional response is a key element in all ecological systems with predation. It
contains the information about interaction between the resource and the consumer. The
functional response is defined as the number of prey eaten by a single predator individual
per unit of time. Typically this will be a function of the prey density, but it can also
be dependent on the predator density. An example of this is the DeAngelis-Beddington
functional response [4] [3].

This definition allows us to divide the modelled processes for both prey and predator
into interaction between the species and population growth processes. A prey-predator
model where the prey density is denoted by N and the predator density by P formulated
using the functional response f(N) can for example have the following form. This is the
prey-predator model of Gause [5].

(1.2)

(
˙N = g(N)N � f(N)P
˙P = �f(N)P � µP

Here g(N) is the predator-free prey population dynamics, including death and birth, �
is the conversion constant of eaten prey into offspring of the predator and µ the death rate
of the predator. We see that the resulting dynamics for both predator and prey will depend
on the functional response of the predator as much as on the processes indepedent of the
inter-species interactions. This is characteristic for the functional response and makes it’s
impact on the dynamics an interesting element to study.
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1.3 Types of functional responses
There are several well-known types of functional responses, each of them resulting from
different underlying individual-level processes. The most well-known functional response
types are Holling type I and type II [9]. In this section I will present four classifications
of functional responses.

Figure 1.1: Graphical representation of the four most well-known functional responses.
a: Holling Type I or linear (here shown with saturation), b: Holling Type II, c: Holling
Type III and d: The functional response derived and studied in this thesis, also called
non-monotonous or dome-shaped functional response.

1.3.1 Monotonous functional responses

The three classifications of functional responses made by Holling are all monotonous
functions of the prey density. There are several different models with different interaction
processes that give rise to these three types of functional responses.

The functional response known as the Holling type I, seen in figure 1.1 a, is a linear
and saturating function of the prey density. The simple Lotka-Volterra model shown in
(1.1) on page 3 gives a Holling type I functional response. The functional response of the
Lotka-Volterra equations takes the form of f(N) = �N , but it can be assumed to saturate
for very high prey densities for increased realism.
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The Holling type II functional response, figure 1.1 b, is also a saturating function
of prey density, but it has the added assumption of the predator population being di-
vided into searching and handling individuals. In models with this assumption, only the
searching predator individuals attack prey and the handling individuals spend their time
digesting and resting etc. Searching predators enter the handling class after capture of a
prey and handling predators go back to the searching class after some time. This leads
to the type II functional response given by f(N) =

↵N
1+↵hN , ↵ being the attack rate of

the searching predator and h the expected handling time of a handling predator before
returning to the searching class.

Other processes, in particular those studied in this thesis, also lead to the Holling type
II functional response. That means the functional response is qualitatively the same but
with a different mathematical expression.

Type III of the Holling functional responses, figure 1.1 c, takes an s-form before satu-
rating. In some models this is a result of the predator learning how to capture prey when
prey densities are low and predation increasing more rapidly as the learned behaviour
spreads in the predator population as the prey population increases. The function that
gives type III is of the form

(1.3) f(N) =

↵Nn

1 + ↵hNn
,

where n > 1 and the parameters ↵ and h might consist of multiple model parameters.
Leslie Real pointed out in a paper from 1977 that Type I and II functional responses are
special cases of the equation (1.3), where h = 0 and n = 1 for type I and h 6= 0 and n = 1

for type II [16].

1.3.2 Non-monotonous functional responses

There have also been observed non-monotonous functional responses, which reach their
maximum value at a certain prey density and decrease after that. These types of functional
responses are sometimes called the type IV (not classified by Holling) but are also referred
to as the humpback, dome-shaped or unimodal functional response. An example can be
seen in figure 1.1 d. Non-monotonous functional responses can occur in models with
swarm confusion [10] and other group defense mechanisms.

The classification of functional responses is not very accurate since many different
models with different processes give rise to them and the divide between them is sometimes
unclear. The advantage of classifying the functional responses is that many types of
functional responses have been well studied, and once you know what type of functional
response a model has you have an indication of the resulting dynamics.
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1.4 Stability analysis of dynamical systems
When analysing dynamical systems, one often wants to find the equilibrium solution,
i.e. the solution that does not change in time. One important aspect of equilibria is
whether a small perturbation to it causes the trajectory of the system to move back to
the equilibrium or if it moves away from it. If any small preturbation of the equilibrium
goes back to the equilibrium, it is said to be stable. Moreover, an equilibrium that is
attracting and stable is called a globally asymptotically stable equilibrium.

There are a vast variety of tools, results and theories related to stability of equilibrias
in dynamical systems, however in this thesis I only use linear stability analysis.

Linear stability analysis

The stability theory developed by Lyapunov [13] states that for a linear dynamical system
a hyperbolic equilibrium is globally, asymptotically stable if all the eigenvalues of it’s
Jacobi matrix have strictly negative real parts at the equilibrium value.

The Jacobi matrix of a system is the matrix of all partial derivatives of the system
J(x) =

h
@fij
@xij

(x)
i
. An equilibrium is hyperbolic if the Jacobi matrix has no eigenvalues

with zero real part.
The Hartman-Grobman theorem generalises this result to non-linear systems. The the-

orem states that a non-linear system is locally topologically equivalent to it’s linearisation
around a hyperbolic equilibrium point [8] [7].

1.5 Time-scale separation
One of the first and most well-known examples of the use of time-scale separation within
a dynamical system was in 1913 by Michealis and Menten in a biochemistry setting [15].
It is a method for reducing the dimension of the system to make it easier to analyse. In
this section I will describe the method in a three-dimensional system so it can be used in
later sections without detailed explanation of each step.

Time-scale separation is based on prior knowledge of the relative rates of change of
the different densities in the system. One property of a system which warrants the use of
the method is if one density in the system is much larger than the others. In a short span
of time the relative change in a large density will be much smaller than in a small. E.g.
a change of one unit is a change of 0.1% for a density of 1000 units, but for a density of
single unit it’s a change of 100%. Another property allowing for the method to be used is
if one or more of the processes are much faster than others. Compare a process happening
at a rate of 100 per unit of time to a process happening at a rate of 0.1 per unit of time.
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What is done to highlight this difference is scaling the time which is examined.

Example

Consider a prey-predator system where the predators are divided into searching S and
handling H predators and the prey density is denoted by N . Only the hunting inter-
actions are considered, i.e. reproduction and predation-independent deaths are omitted.
Searching predators attack a prey with rate ↵ and go into the handling state. From the
handling state they become a searching predator again with rate 1

h
.

8
><

>:

dN
dt = �↵SN
dS
dt = �↵SN +

1
h
H

dH
dt = ↵SN � 1

h
H

The total predator density denoted by P is constant in this model and is the sum
of the searching and handling predator densities. We rewrite the system in terms of the
total predator density.

(1.4)

8
><

>:

dN
dt = �↵SN
dP
dt = 0

dS
dt = �↵SN +

1
h
(P � S)

We now assume that the predator density is much smaller than the density of prey.
This is a reasonable assumption to make. We introduce the small dimensionless scaling
parameter ✏ > 0. We do this to scale the predator density up to a scale where it is
comparable to the bigger prey density.

S⇤
=

S

✏
P ⇤

=

P

✏
, S = ✏S⇤ P = ✏P ⇤

Rewriting the equations, the dynamical system becomes the following.

(1.5)

8
><

>:

dN
dt = �↵✏S⇤N

✏dP
⇤

dt = 0

✏dS
⇤

dt = �↵✏S⇤N +

1
h
(✏P ⇤ � ✏S⇤

)

Letting ✏ go to zero, we get the following system. Note that ✏ cancels out in the equa-
tions for P ⇤ and S⇤. According to singular perturbation theory, the dynamical systems
(1.4) and (1.5) are topologically equivalent for small ✏.
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(1.6)

8
><

>:

dN
dt = 0

dP ⇤

dt = 0

dS⇤

dt = �↵S⇤N +

1
h
(P ⇤ � S⇤

)

From this fast dynamic we get the quasi-equilibrium value for the density of searching
predators.

ˆS⇤
=

P ⇤

1 + ↵hN

The idea of time-scale separation is that the fast dynamics equilibriate before the
change on the slower time-scale starts to play a role. To use the quasi-equilibrium, we
must make sure that it is hyperbolically stable on the fast time-scale, otherwise there is
no reason why the system should converge to it in fast time. We find that the Jacobian
of the fast system (1.6) has one distinct, real and negative eigenvalue.

� = �(↵N +

1

h
)

This means that the quasi-equilibrium is stable on the fast time-scale. To see what
happens on the slower time-scale, we now scale the time of system (1.5).

t⇤ = ✏t, d

dt⇤
=

d

dt

dt

dt⇤
=

d

dt

1

✏
8
><

>:

dN
dt⇤ =

1
✏
(�↵✏S⇤N)

dP ⇤

dt⇤ = 0

✏dS
⇤

dt⇤ =

1
✏
(�↵✏S⇤N +

1
h
✏(✏P ⇤ � ✏S⇤

))

Letting ✏ go to zero again, the dynamics on the slow time-scale becomes the following.
We see that on the slow time-scale, S doesn’t change and the equation is the quasi-
equilibrium equation, so we can substitute the quasi-equilibrium of S into the equation
for the prey.

8
><

>:

dN
dt⇤ = �↵S⇤N
dP ⇤

dt⇤ = 0

0 = �↵S⇤N +

1
h
(P ⇤ � S⇤

)

,
dN

dt⇤
= �↵ ˆS⇤N = � ↵P ⇤

1 + ↵hN
N = �f(N)P ⇤
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Now we have derived the functional response of the predator, f(N) =

↵N
1+↵hN , using

the method of time-scale separation. This is the Holling type II response.

1.6 Coagulation and fragmentation processes
A special type of interactions in many types of models are coagulation and fragmentation
processes. They describe the the growth and decline in size of groups of particles of some
kind e.g. water droplets.

An example of these processes are the Becker-Döring equations [2]. The Becker-Döring
equations, seen below, describe homogeneous groups that can either grow by one or shrink
by one unit at a time.

(1.7)

8
>>>>>>>>>>><

>>>>>>>>>>>:

ṅ1 = �a1x1n1 + b2n2 �
K�1P
k=1

(aknkn1 + bk+1nk+1)

ṅ2 = a1n1n1 + b3n3 � a2n2n1 � b2n2
...
ṅk = ak�1nk�1n1 + bk+1nk+1 � aknkn1 � bknk for 1 < k < K
...
˙nK = aK�1nK�1n1 � bKnK

A group of k units grows with rate akx1, where x1 is the density of single units, and
shrinks with rate bk. The rates can depend on the size of a group, and the groups may
have a maximum size K, from which they can no longer grow.

Note that the groups of size one play a special role, since the groups only grow and
shrink by one unit at a time. That means that growth and decline in any group size
reduces or increases the density of single particles.

The Becker-Döring equations are known to have a unique and stable equilibrium.

1.7 The model of Geritz and Gyllenberg
An example of a prey-predator model that has a coagulation and fragmentation process
is a model by Geritz and Gyllenberg [6]. In the model the prey defend themselves from a
predator that can only attack single prey individuals by forming groups. Here, the group
formation process follows the Becker-Döring equations.
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The group formation processes are assumed to be on a faster time-scale than prey
capture and also the population level processes. The group formation equations are the
same as in equations (1.7) and since there is no birth or death, the total prey density is

constant N =

KP
k=1

knk.

The quasi-equilibrium of the group formation dynamics is then the following.

n̂k = Qkn̂1
k , where(1.8)

Qk =

k�1Y

i=1

ai
bi+1

(Q1 = 1)

The Lyapunov function

V =

KX

k=1

nk

✓
log
✓
nk

Qk

◆
� 1

◆

proves the global asymptotic stability of the equilibrium.
Since the total prey density is constant on the group fromation time-scale, it may

be expressed in terms of the quasi-equilibrium (1.8). It then becomes an expression
dependent on the density of single prey individuals, or more precisely, the density of
single prey depends on the total prey density.

N =

KX

k=1

kQkn̂1
k , n̂1(N)

The equilibrium group size distribution is illustrated in the figure 1.2.

Figure 1.2: The equilibrium distribution plotted with constant rates a
b
= 0.5 and maxi-

mum group size K = 20.
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If the predator has a constant capture rate of single prey �, the functional response
becomes of Holling type II in the limit K !1.

f(N) = �n̂1(N)

If the full prey-predator dynamics is taken to be the following quite simple model, the
dynamics of the system becomes the same as in the well-studied model of Rosenzweig
and MacArthur [14]. Here the predator free dynamics of the prey is the logistic growth
function g(N) = rN(1 � N/K), and the predator has a conversion constant of captured
prey into offspring � and a death rate �. The prey-predator dynamics of this model show
a Hopf bifurcation and a limit cycle, which would not exist for a model without prey
group formation. (

˙N = g(N)N � f(N)P
˙P = �f(N)P � �P

The model and analysis of Geritz and Gyllenberg show that the coagulation and
fragmentation process has a significant impact on the full dynamics of the model, and
that it is a good approach to modelling group defense of prey.

The model formulated in this thesis is similar to the model of Geritz and Gyllenberg
with the prey defense mechanism being a coagulation and fragmentation process. However
in the model of this thesis the prey defense is a more active one, with direct interference
with the attack of the prey instead of an attempt at avoiding being attacked in the first
place.
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Chapter 2

Model formation

Now we want to formulate a model as described in the introduction. In order to do that
we have to specify the individual level, i-level, processes first. This model consists of
prey, searching predator, and handling predator individuals. During an attack predators
and prey form clusters of one predator and k prey defending against the attack (k 2
1, 2, · · · , K). The density of clusters of size k is denoted by Pk and maximum cluster size
K can be taken to be infinite in some cases. Prey density is denoted by N , searching
predator density by S and handling predator density by H. When a prey is killed, the
predator goes from being in a cluster to handling state, where it digests and rests for
an exponentially distributed handling time. The kill may result in an offspring for the
predator.

In the first section of this chapter I will elaborate on how the cluster dynamics is
modelled and in the second section the full dynamics of the model will be explained.

2.1 Modelling prey cooperation as active defense
The cooperation of prey against predator attacks is modelled as a coagulation and frag-
mentation processes. When a predator attacks a prey, they form a pair. Other prey can
then join this pair in an effort to fend off the predator, forming a cluster of one predator
and several prey individuals. Prey individuals may leave the cluster before the fighting is
over, shrinking the cluster size by one at a time, or the predator may give up causing the
cluster to fully break up. In the case of prey capture (only one prey from the cluster is
assumed to be captured) the cluster also breaks apart.

Note that in this process the single predator is the kernel around which the cluster
forms, growing and shrinking only by one prey individual at a time or by bursting due to
prey failure or success in the defense. These cluster growth and shrinking processes are a
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sort of generalized version of the Becker-Döring processes.
In these clusters only searching, i.e. hunting predators are present. A single searching

predator is denoted by P0, as in a cluster with zero prey, and the total density of searching

predators is S =

KP
k=0

Pk, since all clusters of all sizes contain exactly one predator.

A single searching predator, P0, attacks a free prey, N, at rate a0 and the pair become
a cluster of size one, P1. A free prey joins a cluster of size k with rate ak and leaves it
with rate bk, increasing and shrinking the cluster size with one respectively. A cluster of
size k breaks up with rate ck due to the predator giving up, upon which the predator goes
back to searching as a single predator and the k prey go back to being free prey. With
rate �k the predator makes a kill in a cluster of size k, upon which the predator becomes
a handling predator, H, and (k � 1) prey go back to being free prey. All the parameters
are positive, but may become zero for some value of k. For example the capture rate �k
must be decreasing as k increases, at least after a threshold value of k, to keep the model
as a good interpretation of reality.

Below the figure (2.1) describes the i-level processes in clusters and the corresponding
set of differential equations for cluster dynamics are given below that.

(2.1)

P0

��
��
!

KP
k=1

ck

a0N��! ��
b1

P1

 
��
��

c1  
��
��

�1

a1N��! ��
b2

P2

 
��
��

c2  
��
��

�2

· · ·
ak�1N����! ����

bk
Pk

 
��
��

ck  
��
��

�k

akN���! ���
bk+1

· · · PK�1

 
��
��

cK�1  
��
��

�K�1

aK�1N����! ����
bK

PK

 
��
��

cK  
��
��

�K

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

˙P0 = �a0NP0 + b1P1 +

KP
k=1

ckPk

˙Pk = ak�1NPk�1 � akNPk + bk+1Pk+1 � bkPk � ckPk � �kPk for 0 < k < K

˙PK = aK�1NPK�1 � bKPK � cKPK � �KPK

˙N = �
K�1P
k=0

akNPk +

KP
k=1

k ckPk +

KP
k=1

(k � 1)�kPk

˙H =

KP
k=1

�kPk
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This type of cluster dynamic can be seen as a generalized version of the Becker-Döring
process, where the possibility of clusters bursting is added as opposed to the restriction to
changes by one unit only. Also the Becker-Döring equations describe changes in groups in
homogeneous populations, whereas here there is a coagulation kernel of a different type
to the individuals clustering around it.

2.2 The full model
The remaining i-level processes yet to be added to the model are birth and death. For
the prey, the predator-free dynamics are left unspecified and denoted as function g(N),
which can be any realistic population dynamic. The handling predators have handling
time h, corresponding to a rate 1

h
of returning to the searching single predator state.

Predators have natural death rate � in both searching and handling state. In this model
it’s considered unlikely that the predator dies mid-hunt of natural causes so it’s dropped
from the cluster equations. The prey could kill the predator while defending against
the attack, and that could be added as an individual process breaking up the clusters,
but for now the risk of hunting is just considered to raise the average death rate �.
Predator birth is modelled through a conversion constant of ⇢ per killed prey, where the
new individuals enter straight into the population of searching single predators. The
parameter ⇢ (0 < ⇢  1) can be interpreted as the probability of a birth given a kill.

Adding these processes into the model gives the differential equations (2.2) below for
the full model.

(2.2)8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

˙N = g(N)N �
K�1P
k=0

akNPk +

KP
k=1

k ckPk +

KP
k=1

(k � 1)�kPk

˙H =

KP
k=1

�kPk � 1
h
H � �H

˙P0 = �a0NP0 + b1P1 +

KP
k=1

ckPk + ⇢
KP
k=1

�kPk +
1
h
H � �P0

˙Pk = ak�1NPk�1 � akNPk + bk+1Pk+1 � bkPk � ckPk � �kPk for 0 < k < K

˙PK = aK�1NPK�1 � bKPK � cKPK � �KPK

14



Now that we have defined our model, we will in the next chapter derive the result-
ing functional response of the predator. As a consequence of knowing the expression for
the functional response, the dynamical system for the full model will be significantly sim-
plified as seen in (1.2), which will make analysing the full population dynamics a lot easier.

Conclusion

In the model, the defense of the prey is modelled as a coagulation and fragmentation
process, where the prey can join the fight to protect the individual that is being attacked.
These fights become clusters where the attacking predator is the coagulation kernel. The
clusters can grow or shrink by one prey joining or leaving at a time, or the cluster breaking
up completely due to success of either the attack or the defense. This type of coagulation
and fragmentation process can be seen as a generalization of the Becker-Döring equations,
where the clusters are homogenous groups and the groups can also only grow and shrink
by one individual at a time.
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Chapter 3

Deriving the functional response

3.1 The functional response
The functional response is the number of prey captured per unit of time per predator
individual. To get an explicit expression for the functional response, we need the total
number of prey captured per unit of time and the total number of predators. The full
model (2.2) is a huge system. In order to make sense of it we should take steps to simplify
it. To this end, we make a time-scale separation based on some realistic assumptions.

The first assumption is that the prey density is much larger than the predator density.
This is a common assumption to make in ecology for prey-predator models. It has the
consequence that the prey population changes slowly relative to predator density. The
second assumption is that birth and death processes are slow compared to the rest of the
processes, meaning that individuals die and are born less often than they for example eat.
In other words, the rates ak, bk, ck, �k and 1

h
are of a larger order of magnitude than ⇢

and �.

(1) N >> S +H

(2) ak, bk, ck, �k,
1

h
>> ⇢, �

This results in a time-scale separation between the full population dynamics and the
searching-handling cycle dynamics, the latter being the faster system, which is given by
the set of differential equations (3.1).
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(3.1)8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

˙N = 0

˙H =

KP
k=1

�kPk � 1
h
H

˙P0 = �a0NP0 + b1P1 +

KP
k=1

ckPk +
1
h
H

˙Pk = ak�1NPk�1 � akNPk + bk+1Pk+1 � bkPk � ckPk � �kPk for 0 < k < K

˙PK = aK�1NPK�1 � bKPK � cKPK � �KPK

We note now that the total predator density is PT = H + S, where S =

KP
k=0

Pk, and the

total number of captured prey per unit of time is exactly the number of clusters breaking

up due to capture per unit of time, i.e.
KP
k=1

�kPk. Since these are all on a faster time-scale

than the birth and death processes, we can solve the quasi-equilibrium for them and, given
that they are stable quasi-equilibriums, use them to express the functional response.

f(N,PT ) =

KP
k=1

�k ˆPk

KP
k=0

ˆPk +
ˆH

However, solving the equilibriums of system (3.1) is still not a straightforward task.
I will argue that it’s possible to make a further time-scale separation without making
unreasonable assumptions. Firstly, the handling time of predators hunting big prey tend
to be at least a few days, and the attacks of the predator happen in bursts of energy,
lasting only a few minutes. Secondly, prey capture is a relatively rare event and most
prey-predator interactions end in the hunted getting away.

This results in a second time-scale separation between the searching-handling cycle
and an even faster dynamic given by the following dynamical system. This fast dynamics
(3.2) is the cluster dynamics described in figure (2.1), only without prey capture.
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(3.2)

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

˙N = 0

˙H = 0

˙P0 = �a0NP0 + b1P1 +

KP
k=1

ckPk

˙Pk = ak�1NPk�1 � akNPk + bk+1Pk+1 � bkPk � ckPk for 0 < k < K

˙PK = aK�1NPK�1 � bKPK � cKPK

On this time-scale the densities of both prey N and handling predators H are constant.

Also the density of searching predators, i.e. the total number of clusters, S =

KP
k=0

Pk, is

constant because there is no death or birth of predators on the time-scale of cluster
dynamics.

Given that we can solve the equilibrium distribution of Pk clusters in the cluster
dynamics system (3.2), denoted by ˆPk, where 0  k  K, we will have almost everything
we need for writing out the functional response explicitly. The quasi-equilibrium of the
handling predator density on the searching-handling cycle time-scale (3.1) is easily solved
using the equilibrium distribution ˆPk.

ˆH = h
KX

k=1

�k ˆPk

To express the functional response using the quasi-equilibriums we need to prove that
they are stable. Given that ˆPk is stable, it follows that the quasi-equilibrium of H on
the searching-handling cycle time-scale is stable. The stability is quickly confirmed by
observing that the differential equation for H is a single first order linear differential
equation with a single negative eigenvalue of the Jacobi matrix when the system on the
cluster dynamic time-scale has equilibrated.

We now have the information we need to formulate the expression of the functional
response for this model. The dependence of the functional response on the densities of
prey and predators depends on the form of the quasi-equilibrium ˆPk.
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(3.3) f(N,S) =

KP
k=1

�k ˆPk

KP
k=0

ˆPk + h
KP
k=1

�k ˆPk

where S =

KX

k=0

Pk

In the next sections I will derive the explicit form of the quasi-equilibrium distributions,
show their stability and look at the resulting functional responses for two special cases
for the rates ak, bk and ck of the cluster dynamics. The full model is too general to
say anything meaningful about without prior knowledge of what the parameters for the
different cluster sizes are. The set of all possible parameter combinations is so big that a
huge variety of dynamics can be engineered by choosing the right parameters.

3.2 Special case: constant cluster dynamic rates
In this section I solve the quasi-equilibriums and explicit form of the functional response
in the case of constant rates a, b and c on the cluster dynamic time-scale. For this case,
all three parameters are non-zero. Note that if c = 0 we are back to the Becker-Döring
processes, which are well studied and not included here. The case of b = 0, I leave for
the next section on another special case of the generic cluster dynamic model 3.2. If the
parameter a is equal to zero, the model becomes uninteresting, since the predator never
attacks and thus starves to death.

The equilibrium equations of the cluster dynamics can be expressed in the following
form for constant cluster parameters. Since the searching predator density is constant on
this time-scale, the equation for ˆP0 can be omitted and solved using the expression for
the ˆPk densities.

(3.4) 0 = aNPk � (aN + b+ c)Pk+1 + bPk+2 for k � 0

This three-parameter linear recurrence equation can be reduced to a two-parameter equa-
tion by substituting ↵ =

aN
b

and � =

c
b
. Note that since b = 0 is ruled out for now, we

can do this.

(3.5) 0 = ↵Pk � (↵ + 1 + �)Pk+1 + Pk+2

For this linear equation, there exists a general solution (3.6) depending on the eigen-
values. The eigenvalues are solved from the characteristic equation (3.7). Although we
have a general solution, we need to make sure the solutions stay positive and real as they
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are expressions for population densities. If the maximum cluster size K can be infinity,
the solution must converge, which means that the eigenvalue used must be less than unity.

(3.6) ˆPk =

(
A�k+ +B �k� if �+ 6= ��

(A+Bk)�k if �+ = �� = �
for arbitrary constants A,B 2 C .

(3.7) 0 = ↵�k � (↵ + 1 + �)��k + �2 �k , 0 = ↵� (↵ + 1 + �)�+ �2

�± =

1

2

⇣
1 + ↵ + � ±

p
(1 + ↵ + �)2 � 4↵

⌘

The eigenvalues are always real and never equal. If we assume they are not we get a
contradiction.

(1 + ↵ + �)2  4↵

(1 +

aN

b
+

c

b
)

2  4

aN

b

(1� aN

b
)

2
+

c

b

✓
2 + 2

aN

b
+

c

b

◆
 0

The last equation above shows that the eigenvalues are equal only when ↵ = 1 and � =

0. But we already assumed that none of the parameters are zero, so that’s a contradiction.
Also, the left hand side of the last equation is clearly positive, so the eigenvalues must be
real for all positive values of the parameters.

In addition �+ is greater than or equal to one and �� is less than or equal to one for
all possible parameter values. Equality to one for both eigenvalues only happens when �
is zero. In figure 3.1 the two eigenvalues are shown plotted with the unit surface.

Assuming that there is no upper bound on cluster size, we must use �� for convergence
of the solution. The expression of the solution then becomes the following.

ˆPk = C�k�

From the equilibrium equation for P0, we get the value for C. The equilibrium is unique
because of the linearity of the equations. The stability analysis of this equilibrium on
the time-scale of the cluster dynamics can be found in section 3.2.2. From here on, I will
make the dependence of the eigenvalue �� on the prey density N explicit by denoting it
by ��(N). This I do to make the connection between the equilibrium cluster densities
and the prey density clear.

ˆPk = ��(N)

k
ˆP0 for k � 0
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Figure 3.1: The upper surface is the eigenvalue �+ and the lower surface is the eigenvalue
��. The middel surface equals 1. Note that the eigenvalues are not equal to each other
or to 1 anywhere for � > 0.

Figure 3.2: The equilibrium distribution plotted with parameter values ↵
N

= 0.2, N = 100,
� = 0.5, P0 = 1 and maximum cluster size K = 100.

The quasi-equilibrium distribution of the different sized clusters is shown in figure 3.2.
Now we substitute the expression for the quasi-equilibrium into the expression for the

functional response (3.3) on page 19. The functional response only depends on the density
of free prey and is equal to (3.8) below.

(3.8) f(N) =

1P
k=1

�k ��(N)

k
ˆP0

1P
k=0

��(N)

k
ˆP0 + h

1P
k=1

�k ��(N)

k
ˆP0

=

1P
k=1

�k ��(N)

k

1P
k=0

��(N)

k
+ h

1P
k=1

�k ��(N)

k
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Remark

In the limit for N ! 1, ��(N) becomes one, for all positive values of ↵ and �. The
expression also approaches the limit from below, since we know it’s always between zero
and one. This is illustrated in figure 3.3.

These properties allow us to make the first substitution below for the converging
geometric series

1P
k=0

��(N)

k.

S =

1X

k=0

��(N)

k
ˆP0 =

1

1� ��(N)

ˆP0 , S

ˆP0

=

1

1� ��(N)

Rearranging the terms like on the right hand side above, we see that in the limit for
N ! 1, S

P̂0
becomes infinite. As our S, the total searching predator density on the

time-scale of the cluster dynamics, is a constant, the equality can only hold if ˆP0 becomes
zero in the limit N !1.

As the quasi-equilibrium expression for all cluster size densities is multiplied by ˆP0,
we see that in the limit for N !1 all cluster size densities ˆPk become zero.

Consequently, in the limit N ! 1 the quasi-equilibrium distribution of cluster sizes
becomes the uniform distribution over all natural numbers with density zero. However,
this does not mean that the clusters disappear, but they are growing to the next size at
an "infinite rate" (aN !1), i.e. all the mass of the distribution escapes to +1.

Figure 3.3: The limit of the eigenvalue ��(N) as N grows, illustrated. The upper surface
equals to 1 and the lower surface to ��(N). (N !1 , ↵ =

aN
b
!1)

Of course, this does not happen in real life, but from this reasoning we get an idea
of how the cluster size distribution is affected by prey population growth. Compare the
example of a distribution in figure 3.2 on the previous page where N = 100, with the
uniform zero distribution in the limit N !1.
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3.2.1 The shape of the functional response

In the case of constant cluster rates, the shape of the functional response depends strongly
on the capture rate of the predator �k. Here I consider three types of capture rates to be
realistic, which are shown in figure 3.4.

The functions for the rates are chosen such that they take a form that is considered
realistic, a derivation of them from i-level processes is out of the scope of this thesis, al-
though preferable to this approach. The functions used for the different types of capturing
rates are listed below.

(a) �k =  Constant capture rate.
(b) �k =

!k+1
�k2+ k + 0.5 Decreasing capture rate, decreasing to a positive value.

(c) �k =
!k+1
�k2+ k Decreasing capture rate, decreasing to zero.

Figure 3.4: The capture rate types plotted with parameter values  = 1,� = 0.7,! = 0.3.

Rate (a) is a case of a capture rate independent of the cluster size. This could mean
that the predator is well adapted and is able to adjust it’s tactics in different sized clusters
or that the prey individuals are ineffectual at preventing the capture even if they show
up. Rates (b) and (c) are both decreasing as the cluster size increases, i.e. the defense is
working. The difference is that in rate (b), the predator still has a chance of capture even
in bigger clusters, but in (c) the defense is so effective in big clusters that the the chance
of capture decreases to zero.

If the capture rate is constant, the functional response is of Holling type II as seen
in the first picture in figure 3.5 on the next page. If the capture rate is decreasing with
increasing cluster size k, the functional response will be a non-monotonous functional
response. The middle picture in figure 3.5 shows the response with capture rate (b) and
the last picture with (c).

In figure 3.6 we see that in the limit the functional response with a capture rate that
decreases to a constant, (b), saturates at a positive value in the limit and with a capture
rate that decreases to zero, (c), the functional response also decreases to zero.
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Figure 3.5: Left: constant capture rate (a), middle: capture rate decreasing to a positive
value (b), right: capture rate decreasing to zero (c). All plotted with parameter values:
↵
N

= 2, � = 1.5,, h = 1.

Figure 3.6: Left: capture rate decreasing to a positive value, right: capture rate decreasing
to zero.

The condition for the functional response to have a local maximum, i.e. being non-
monotonous is that the capture rate is decreasing. The derivative of the functional re-
sponse with respect to prey density N will always be zero in the limit, but if �k decreases
it will also have a zero value at a local maximum. On the left in figure 3.7 the derivative
of the functional response is plotted with a constant capture rate and in the middle figure
it’s plotted with a decreasing capture rate. The rightmost figure is also plotted with a
decreasing capture rate, and it shows how the derivative becomes zero in the limit also
here but first taking negative values.
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Figure 3.7: The derivative of the functional response with respect to prey density N . Left:
constant capture rate, middle and right: decreasing capture rate.

The saturating value in the case of the constant capture rate is �
1+h�

. To find the
conditions for the different saturating values of the non-monotonous functional response
we look at the expression for f(N).

f(N) =

1P
k=1

�k ��(N)

k

1P
k=0

��(N)

k
+ h

1P
k=1

�k ��(N)

k

=

1P
k=1

�k ��(N)

k

1
1���(N) + h

1P
k=1

�k ��(N)

k

=

1

1

(1���(N))
1P

k=1
�k ��(N)k

+ h
(3.9)

There are three valid options for the limit of f(N). It can be finite and strictly positive,
zero or infinite. However, for the denominator of (3.9) to be zero, the fraction 1

(1���(N))
1P

k=1
�k ��(N)k

would have to be equal to�h, and we know it only takes positive values. So, the functional
response can not explode to infinity.

We know that lim

N!1
(1 � ��(N)) = 0, so the limit of the fraction in the denominator

of (3.9) depends on the power series
1P
k=1

�k ��(N)

k.

If the radius of convergence for the the power series is more than one, it means that
the power series converges for every possible value of ��(N) for sufficiently large K, since
��(N) is always less than one.

lim

N!1
(1� ��(N))

1P
k=1

�k ��(N)

k
= 0

, lim

N!1
1

(1���(N))
1P

k=1
�k ��(N)k

=1
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, lim

N!1
f(N) = 0

If the radius of convergence for the the power series is less than one, it means that the
power series diverges for some values of ��(N), as ��(N) is one in the limit.

0 < lim

N!1
(1� ��(N))

1P
k=1

�k ��(N)

k  1

, 0  lim

N!1
1

(1���(N))
1P

k=1
�k ��(N)k

<1

, 0 < lim

N!1
f(N) <1

So, if lim sup

k!1
|�k|

1
k < 1, the power series has a radius of convergence of more than

one and the functional response is zero in the limit. Otherwise, the functional response
saturates at a positive but finite value.

3.2.2 Stability of the quasi-equilibrium

For a linear system we look at the eigenvalues of the Jacobi matrix to study the stability
of it’s equilibrium. If all the eigenvalues have negative real parts, the equilibrium is stable.
If even one of the eigenvalues have a positive real part the equilibrium is unstable. If there
are eigenvalues with zero real part, the equilibrium is non-hyperbolic and one has to look
more carefully at happens around the equilibrium.

Maximum cluster size finite, K <1

For the case where there is a maximum cluster size, K, the Jacobi matrix is of dimension
(K + 1)⇥ (K + 1).

J( ˆPk) =

0

BBBBBBB@

�aN b+ c c c · · · c
aN �aN � b� c b 0 0

0 aN �aN � b� c b 0

... . . . ...
0 0 aN �aN � b� c b
0 0 · · · 0 aN �b� c

1

CCCCCCCA

We see that the Jacobi matrix is off-diagonally non-negative, so we make the following
transformation to make it fully non-negative. Here, µ is a constant real number, and I is
the identity matrix of same dimensions as J( ˆPk).
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A = J( ˆPk) + µI ,

A =

0

BBBBBBB@

�aN + µ b+ c c c · · · c
aN �aN � b� c+ µ b 0 0

0 a �aN � b� c+ µ b 0

... . . . ...
0 0 aN �aN � b� c+ µ b
0 0 · · · 0 aN �b� c+ µ

1

CCCCCCCA

Theorem 3.10. (The Perron-Frobenius theorem) Let A be an irreducible matrix, where
all it’s elements aij are non-negative. Then the following statements hold.

1. A has a positive, real eigenvalue r(A), called the Perron-Frobenius root, such that
all other eigenvalues of A satisfy

|�| < r(A) .

2. The Perron-Frobenius root is a simple eigenvalue, i.e. r(A) is a simple root of the
characteristic polynomial of A.

3. There exists an eigenvector v of A with eigenvalue r(A), such that all components
of v are positive.

4. There are no other non-negative eigenvectors except multiples of v.

Now A is a non-negative matrix for any µ > aN+b+c, for which the Perron-Frobenius
theorem 3.10 holds. The Perron-Frobenius theorem states that a non-negative matrix has
a strictly positive, simple, and real maximum eigenvalue called the Perron-Frobenius root,
which I will denote by r(A). For the Perron-Frobenius root the following properties hold.

1. r(A) = r(AT
)

2. min

i

K+1P
j=1

aij  r(A)  max

i

K+1P
j=1

aij where the aij are the matrix elements of A

The second property means that the Perron-Frobenius root is sandwhiched between
the minimum and maximum of the row sums of the matrix. From the first and second
property together it follows that r(A) is also between the column sums of the matrix since
the row sums of a matrix are the same as the column sums of it’s transpose.
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3. min

j

K+1P
i=1

aij  r(A)  max

j

K+1P
i=1

aij

We notice that all the column sums of matrix A are exactly µ, so µ must also be the
Perron-Frobenius root of A.

µ  r(A)  µ , r(A) = µ

For our original matrix, J( ˆPk), the following relation holds for all it’s eigenvalues � and
the eigenvalues of the transformation A.

(3.11) � = ⌫ � µ , where ⌫ is an eigenvalue of A

Especially, for the maximum eigenvalue of J( ˆPk) the following is true.

�max = ⌫max � µ = r(A)� µ = 0

We now know that �max is a unique, real and zero eigenvalue, because there are no
eigenvalues of J( ˆPk) for which (3.11) does not hold. Also, all other eigenvalues must
have a real part that is less than zero. In fact, �max has all the same properties that a
Perron-Frobenius root has.

To know what the dynamics are on the long time-scale, we have to look at the dynam-
ics on the slow manifold corresponding to the zero eigenvalue. We know that the slow
manifold is attracting, because all the other eigenvalues have a negative real part. The
slow manifold is spanned by the eigenvector corresponding to the zero eigenvalue.

(3.12) J( ˆPk)x = 0 , where x is a vector in RK+1

The eigenvector we are looking for is the non-zero solution of (3.12). But because the
cluster dynamic is a system of linear differential equations, equation (3.12) also defines
it’s set of equilibrium equations. We’ve established earlier that ˆPk is the unique non-zero
solution of the equilibrium equations, which means that the equilibrium distribution is
equilvalent to the slow manifold. Also, the solution of the system which stays on the slow
manifold is (3.13), and it is clearly stationary in time.

(3.13) Pk(t) = xe0⇤t = ˆPk for all 0  k  K

In conclusion, because all other eigenvalues of the Jacobi matrix have a negative real
part, the dynamics of the system will converge to the slow manifold corresponding to the
simple and real zero eigenvalue. The slow manifold is the equilibrium distribution ˆPk, so
the equilibrium is stable. Moreover, it is stable for an arbitrarily big, but finite maximum
cluster size.

Next step is to try to prove the same for the equilibrium in an untruncated version of
the cluster dynamics.
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Maximum cluster size infinite, K =1

The following is a suggestion for a way of completing the proof, however I was not able
to prove stability. I leave this here as a sort of footnote.

The Jacobi matrix of the system takes the following form in a system with no maximum
cluster size.

J( ˆPk) =

0

BBBBBBB@

�aN b+ c c c c
aN �aN � b� c b 0 0

0 aN �aN � b� c b 0 · · ·
0 0 aN �aN � b� c b
0 0 0 aN �aN � b� c

... . . .

1

CCCCCCCA

Like in the previous section, the Jacobi matrix is an off-diagonally non-negative matrix.
However it is now an "infinite-dimensional" square matrix, and straight forward linear
algebra does not apply. By the same simple transformation we can still make it a fully
non-negative matrix by adding a constant µ (µ > aN + b+ c) to the diagonal. I call the
transormed matrix A1.

A1 = J( ˆPk) + µI ,

A1 =

0

BBBBB@

�aN + µ b+ c c c
aN �aN � b� c+ µ b 0

0 aN �aN � b� c+ µ b · · ·
0 0 aN �aN � b� c+ µ

... . . .

1

CCCCCA

Theorem 3.14. (The Krein-Rutman theorem) Let X be a Banach space, and let K ⇢ X
be a convex cone such that K-K is dense in X. Let T : X ! X be a non-zero positive
compact operator and assume that it’s spectral radius r(T) is strictly positive. Then r(T)
is an eigenvalue of T with positive eigenvector.

The generalisation of the Perron-Frobenius theorem to the infinite dimensional case
is the Krein-Rutman theorem 3.14, which applies to compact operators [11]. I made an
attempt at applying Krein-Rutman theorem to the linear operator (3.15) defined by the
matrix A1.

(3.15) F (x) = A1(x) F : X ! X
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In (3.15) X is the infinite dimensional space R1, equipped with an operator norm. Then,
the space X is a Banach space.

We know that the matrix A1 is the limit of compact operators Fm, defined by the
matrices Am, when m!1. The Am are matrices with a m⇥m dimensional truncated
version of A1 in the upper left corner, zero otherwise. So, we know the operator F is
compact as well.

(3.16) Fm(X) = Amx Fm : X ! X

Am =

0

BBBBB@

�aN + µ b+ c c 0

aN �aN � b� c+ µ b 0

0 aN �aN � b� c+ µ 0 · · ·
0 0 0 0

... . . .

1

CCCCCA

Also, R1
+ , where 0 2 R+ defines a convex cone, which the linear operator F maps

non-emptively into itself.
So it seems Krein-Rutman theorem might be a feasible way of generalising the method

from the finite case. Unfortunately there is a long way to go from here to the full proof.

Conclusions

In the case of positive, constant rates a (coagulation), b (fragmentation) and c
(cluster bursting), the functional response was found to take a dome-shaped form,
decreasing to zero under certain circumstances, or the form of Holling type II functional
response. The determining factor for which type of functional response the model gives
rise to is whether the predator’s attack rate is dependent on the cluster size or not.

The cluster dynamics truncated with a maximum size for the clusters was found
to have a unique and stable equilibrium for arbitrarily large maximum cluster sizes. The
stability analysis for cluster dynamics with no maximum cluster size was not successful,
even though there is reason to believe the results for the truncated system is generalizable
to that case.
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3.3 Special case: two cluster dynamic rates
In this section, I will look at a special case of the cluster dynamics where prey individuals
only join clusters but don’t leave until the whole cluster breaks up, i.e. b = 0, a > 0,
c > 0. In this case the prey are more stubborn and loyal and won’t leave another prey in
trouble. Here the rates can be dependent on the cluster size k. The dynamical system on
the cluster dynamics time scale is a little simpler now.

(3.17)

8
>>>>>>>><

>>>>>>>>:

˙P0 = �a0NP0 +

KP
k=1

ckPk

˙Pk = ak�1NPk�1 � (akN + ck)Pk for 0 < k < K

˙PK = aK�1NPK�1 � cKPK

In this case solving the quasi-equilibrium is a straight-forward task compared to the
previous case and yields the following. Stability of this is proven in section 3.3.2, again
only for the case of finite cluster size. The equilibrium is unique because of the linearity
of the system.

ˆPk =

 
k�1Y

q=0

aqN

aq+1N + cq+1

!
ˆP0

The equilibrium cluster size distribution depends on the rates ak and ck. I will again
look at what forms the rates can realistically take, but without deriving them from indi-
vidual level processes.

The predator attack rate a0 must always be positive. For the prey joining rates ak
(k � 1), I will consider four different options, shown on the left in figure 3.8, and for the
cluster break up rate ck I consider three different options, shown in the same figure on
the right.
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(d) ak =  Constant prey joining rate.
(e) ak =

�k2+ k
!k+1 Increasing prey joining rate.

(f) ak =
 k
!k+1 Increasing and saturating joining rate.

(g) ak =

(
4 sin

�
k
10

�
0 < k  10⇡

0 k > 10⇡
Dome-shaped prey joining rate.

(h) ck =  Constant cluster break up rate.
(i) ck =

�k2+ k
!k+1 Increasing cluster break up rate.

(j) ck =
 k
!k+1 Increasing and saturating cluster break up rate.

Figure 3.8: Left: Prey joining rate ak types plotted with parameter values  = 3, � = 0.1,
! = 0.3. Right: cluster break up rate ck types plotted with parameter values  = 2,
� = 0.3, ! = 0.6.

A possible interpretation of the prey joining rates (f) and (g) in the list above is that
the prey can count up to a certain amount of individuals in the cluster and take that into
account when deciding whether to join or not. If the rate is equal to (e), the prey gets
more encouraged to help out the more individuals there are in the cluster already. In the
case of the constant attack rate the decision making of the prey is independent of what
the others are doing.
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Below in figure 3.9 the equilibrium cluster size distribution is shown for rates increasing
with k and constant rates.

Figure 3.9: Left: equilibrium distribution with prey joining rate (f) and cluster break
up rate (j), same parameter values used as in figure 3.8. Right: equilibrium distribution
with constant rates ak = 0.6 and ck = 0.3. (a0 = 3, N = 100, P0 = 1, K = 100 used for
both.)

As before, inserting the expression for the quasi-equilibrium into (3.3) on page 19 gives
a functional response dependent only on the prey density.

(3.18) f(N) =

KP
k=1

�k ˆPk

KP
k=0

ˆPk + h
KP
k=1

�k ˆPk

=

KP
k=1

�k

✓
k�1Q
q=0

aqN

aq+1N+cq+1

◆

KP
k=0

✓
k�1Q
q=0

aqN

aq+1N+cq+1

◆
+ h

KP
k=1

�k

✓
k�1Q
q=0

aqN

aq+1N+cq+1

◆

3.3.1 The shape of the functional response

The shape of the functional response in this case depends on what the three parameters
�k, ak and ck are chosen to be. I use the same options for the capture rate �k as in section
3.2.1, and the options from figure 3.8 for prey joining rate ak and cluster break up rate
ck (parameter values the same as in figure 3.8).

This gives 36 different parameter combinations, but it turns out that also in this case
the deciding factor for the shape of the functional response is the predator capture rate.
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Figure 3.10: The functional response f(N) plotted as a function of prey density N for all
parameter combinations for increasing prey joining rate ((e) on p. 32).
Capture rate �k: left column constant, middle column decreasing, right column decresing
to zero (cases (a), (b) and (c) on p. 23).
Cluster break up rate ck: 1. row increasing, 2. row increasing and saturating, 3. row
constant (cases (i), (j) and (h) on p. 32).
For all cases here h = 1, a0 = 3 and maximum cluster size K = 32.
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Figure 3.11: The functional response f(N) plotted as a function of prey density N for all
parameter combinations for dome-shaped prey joining rate, case (g) on p. 32.
Capture rates �k and cluster break up rates ck arranged in columns and rows same way
as in figure 3.10. Same values for parameters h, a0 and K also.

In figure 3.10 the resulting functional responses are shown for all nine parameter
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combinations for strictly increasing prey joining rate ((e) in figure 3.8). In figure 3.11 the
combinations for the dome-shaped prey joining rate (f) are shown. The combinations
for the two other prey joining rates considered, (d) and (g), give similar results. For
those combinations the functional response only differs from the results in figures 3.10
and 3.11 in the saturation value and slope. However, no combination of parameters yields
a functional response decreasing to zero.

As in the previous special case, the constant capture rate gives a Holling type II
functional response independent of the other rates. The decreasing capture rate gives
a non-monotonous functional response in both special cases, but in this latter one the
saturating value for the functional response stays positive for all capture rates. Also in
this case there will only be a local maximum, i.e. a zero value of the derivative of f(N)

that is not at the asymptote, if the capture rate �k is decreasing as k increases.
Again, we’re going to look at the expression for the functional response to see what

happens in the limit N !1. The functional response can be written into the following
form where we can see how the value in the limit depends on the relationship between
the two series.

(3.19)

f(N) =

KP
k=1

�k

✓
k�1Q
q=0

aqN

aq+1N+cq+1

◆

KP
k=0

✓
k�1Q
q=0

aqN

aq+1N+cq+1

◆
+ h

KP
k=1

�k

✓
k�1Q
q=0

aqN

aq+1N+cq+1

◆ =

1

KP
k=0

 
k�1Q
q=0

aqN
aq+1N+cq+1

!

KP
k=1

�k

 
k�1Q
q=0

aqN
aq+1N+cq+1

!
+ h

We see that the limit of f(N) equals zero if the limit of the expression (3.20) is infinite,
finite if the limit of (3.20) is finite, and infinite if the limit of (3.20) is �h. The latter is
clearly not possible and if the limit is finite it’s also positive.

(3.20)

KP
k=0

✓
k�1Q
q=0

aqN

aq+1N+cq+1

◆

KP
k=1

�k

✓
k�1Q
q=0

aqN

aq+1N+cq+1

◆

For all realistic prey joining rates ak, except the dome-shaped rate, the following holds.

aqN  aq+1N < aq+1N + cq+1 for all q � 1, N � 0

,
aqN

aq+1N + cq+1
< 1 for all q � 1, N � 0
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,

(3.21) lim

N!1

aqN

aq+1N + cq+1
< 1 , lim

N!1

KX

k=0

 
k�1Y

q=0

aqN

aq+1N + cq+1

!
<1

The dome-shaped joining rate ak goes to zero, so the right hand side of (3.21) clearly
holds in that case as well.

We see that the denominator of (3.20) is always positive and more than zero, so a
necessary condition for the expression to have an infinite limit is if the numerator is
infinity in the limit. But we have just observed that the numerator has a finite limit for
all rates ak considered realistic, so the functional response can only have a finite, strictly
positive limit as prey density grows.

3.3.2 Stability of the quasi-equilibrium

For the case when there is a maximum cluster size and when there’s not, the stability
analysis of the equilibrium is completely analogous to section 3.2.2.

Maximum cluster size finite, K <1

JK( ˆPk) =

0

BBBBBBBBB@

�a0N c1 c2 c3 c4 · · · cK
a0N �a1N � c1 0 0 0 0

0 a1N �a2N � c2 0 0 0

0 0 a2N �a3N � c3 0

...
0 0 0 a3N �a4N � c4 0

... . . .
0

0 0 0 · · · 0 aK�1N �cK

1

CCCCCCCCCA

We make the transformation of the Jacobi matrix to a non-negative matrix again.

A = J( ˆPk) + µI

In the exact same way as in section 3.2.2, the columns sums of the matrix A are equal
to µ, so the Perron-Frobenius root is also equal to µ.

r(A) = µ

Following from that, the maximum eigenvalue of the Jacobi matrix, �max, is zero, and
it is simple and real.

�max = r(A)� µ = 0
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Again, the non-zero eigenvector x corresponding to the zero eigenvalue spans the slow
manifold, and is equal to the equilibrium solution.

J( ˆPk)x = 0 , x =

ˆPk

Also here the unique equilibrium solution of the linear system is stable because it itself
is an attracting slow manifold.

Maximum cluster size infinite, K =1

Stability for this case left an open question.

Conclusions

In the case of non-constant rates ak (coagulation, ck (cluster bursting) and with
bk = 0 (fragmentation), the functional response was found to take a dome-shaped form,
however never decreasing to zero, or the form of Holling type II functional response. The
determining factor for which type of functional response the model gives rise to is also in
this case whether the predator’s attack rate �k is dependent on the cluster size or not.

Results of the stability analysis are qualitatively the same as in previous special
case (section 3.2. The truncated cluster dynamics with a maximum size for the clusters
was found to have a unique and stable equilibrium for arbitrarily large maximum cluster
sizes. The stability analysis for the cluster dynamics with no maximum cluster size was
not successful, even though there is reason to believe the results for the truncated system
is generalizable to that case.
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Chapter 4

Discussion

In this thesis the functional response was derived from the individual level processes in a
prey-predator system with active defense from the prey. The model was assumed to have
three characteristic time-scales, which held up in further analysis. The dynamics on the
successive timescales (from fast to slow) were called the cluster formation dynamics, the
searching-handling cycle of the predator dynamics and the population level dynamics.

The prey defense was modelled as a generelized Becker-Döring process, and in the case
of a finite maxium cluster size it was found to have a stable equilibrium. The stability in
the case of no truncation of the cluster sizes turned ut to be a more complicated matter,
and in the end was left as an open question.

It would be interesting, although out of the scope of this thesis to look at e.g., the
resulting actual population dynamics, a modelling approach to the cluster formation pa-
rameters and evolution of cooperative traits of the prey.

4.1 Other types of cooperation
The cooperation of prey seen in this model is only one special type of cooperative defense
of the prey. Another version of active group defense is modelled in an article by Jeschke
and Tollrian [10], where the predator gets confused by swarms of prey and makes it less
succesfull in it’s attacks. They found that predator confusion did not necessarily lead to
a dome-shaped functional response.

The same was found in this thesis, although the case where the functional response
becomes monotonous is the one where cluster size does not affect the predator’s capture
rate, which not too realistic. The predator confusion of the article and the active prey
defense here are qualitatively not too different, so this model can be seen as a mechanical
derivation of the results validated with data in the article.
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On the other hand, predators can also cooperate. In an article by Alves and Hilcker
[1], the predator hunting cooperation was shown to promote Allee effects, i.e. that that
there is a critical population density under which the population can not presist. In this
thesis the predators were modelled as predators hunting alone, but it could be extended
to cooperating predators as well to counteract the cooperation of the prey.

4.2 An unrealistic example
For the capture rate of the predator we only considered a constant �k or decreasing capture
rate �k as k ! 1. In theory, one could imagine a predator to have an "optimal cluster
size" for capture. An exaggerated example of this is shown on the left in figure 4.1, where
the capture rate reaches it’s maximum at cluster size 30. The capture rate was considered
to become zero in the limit.

The expression for the functional response used here is the same as in section 3.2.
This capture rate results in a functional response with similar shape to the Holling type
III functional response initially, and a hump-shaped functional resopnse in the limit.

I include this here as an example that a wide variety of shapes for the functional
response can be engineered with such a great degree of freedom for the different parameters
as in this model, so the parameters should be chosen carefully.

Figure 4.1: ↵
N

= 2, � = 2, h = 1 Left: the attack rate as the normal distribution N(30,10)
Right: The type V functional response
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