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A B S T R A C T

Complex molecular pathways regulate cancer invasion. This study overviewed proteins and microRNAs
(miRNAs) involved in oral tongue squamous cell carcinoma (OTSCC) invasion. The human highly aggressive
OTSCC cell line HSC-3 was examined in a 3D organotypic human leiomyoma model. Non-invasive and invasive
cells were laser-captured and protein expression was analyzed using mass spectrometry-based proteomics and
miRNA expression by microarray. In functional studies the 3D invasion assay was replicated after silencing
candidate miRNAs, miR-498 and miR-940, in invasive OTSCC cell lines (HSC-3 and SCC-15). Cell migration,
proliferation and viability were also studied in the silenced cells. In HSC-3 cells, 67 proteins and 53 miRNAs
showed significant fold-changes between non-invasive vs. invasive cells. Pathway enrichment analyses allocated
“Focal adhesion” and “ECM-receptor interaction” as most important for invasion. Significantly, in HSC-3 cells,
miR-498 silencing decreased the invasion area and miR-940 silencing reduced invasion area and depth.
Viability, proliferation and migration weren’t significantly affected. In SCC-15 cells, down-regulation of miR-
498 significantly reduced invasion and migration. This study shows HSC-3 specific miRNA and protein
expression in invasion, and suggests that miR-498 and miR-940 affect invasion in vitro, the process being more
influenced by mir-940 silencing in aggressive HSC-3 cells than in the less invasive SCC-15.

1. Introduction

Oral cancer is the most common subgroup of head and neck cancers
and the rates of treatment failure and therapy-related morbidity in
patients are high because of its regional or distant metastases [15].
Migration and invasion of neoplastic cells are prerequisites for
metastasis, which is among the main causes of cancer deaths [53].
Varying histological tumor patterns suggest that cancer cells employ
different cellular and molecular invasion modes, which complicates the

recognition and understanding of the crucial molecules and pathways
involved [10]. Invasion requires molecular modulation of the cancer
cells’ adhesive, migratory and cytoskeletal properties [10,17].

Proteins regulate cancer cell behavior, and their related biological
pathways have been studied previously [42,63]. MicroRNAs (miRNAs)
can also affect tumor invasion and metastasis, e.g. in breast, liver,
prostate and colorectal cancers [6,51,56]. At present, over 2500 mature
miRNAs are reported for Homo sapiens (miRBase V21, 2014; Welcome
Sanger Trust Institutes, Cambridge, UK), yet miRNAs and related
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pathways in oral cancer invasion have not been fully addressed.
We aimed to compile an overview on proteins and miRNAs involved

in oral tongue squamous cell carcinoma (OTSCC) invasion. The highly
invasive human tongue squamous cell carcinoma HSC-3 cell line was
studied in an in vitro 3D human organotypic invasion assay [39].
Expression profiles of laser-captured non-invasive and invasive cells of
the HSC-3 cell line were compared using mass spectrometry and
miRNA microarray, respectively. Protein and miRNA results were
combined to build a network including pathway enrichment analysis
for the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
involved in invasion. Finally, candidate miRNAs, hsa-miR-498 and
−940, were silenced for functional in vitro studies using more and less
invasive OTSCC cell lines.

2. Material and methods

2.1. Cell culture

Two oral tongue carcinoma (OTSCC) cell lines were used: the
aggressive, highly invasive human tongue squamous cell carcinoma
HSC-3 (JCRB 0623; Osaka National Institute of Health Sciences,
Osaka, Japan) and the less invasive SCC-15 (ATCC; [45]). The cells
were cultured in Dulbecco’s Modified Eagle’s medium (DMEM; Gibco,
BRL, Life Technologies, Carlsbad, CA, USA) plus 10% fetal bovine
serum (FBS), 100 U/ml penicillin-streptomycin, 1% amphotericin-B
and 0.1% hydrocortisone (all from Sigma-Aldrich, Ayrshire, UK). Cells
were grown at 37 °C and 5% CO2. See Supplementary Table 1 for
detailed description of the cell lines.

2.2Myoma organotypic model, immunohistochemistry & laser
microdissection

The 3D myoma organotypic model was used to study cancer cell
invasion [39]. Briefly, myoma discs were preincubated for 48 h in 10%
FBS-DMEM at 4 °C, after which they were placed in transwells. HSC-3
cells (7×105 cells/well) were seeded on the discs and allowed to invade
into the myomas for 10 days. The media was changed every 3–4 days.

For isolating non-invasive and invasive cells, the myoma discs were
embedded in Sakura Tissue-Tek O.C.T. compound (VWR, Radnor, PA,
USA), snap frozen in liquid nitrogen, cut into 10 µm sections and
stained using cytokeratin AE1/AE3 (M3515, Dako, Glostrup,
Denmark). Non-invasive and invasive cells were isolated using a laser
microdissection system from PALM Technologies (Carl Zeiss
MicroImaging GmbH, Munich, Germany) or LMD7000 (Leica
Microsystems, Wetzlar, Germany). The two cell populations were
distinguished (Supplementary Fig. 1) and collected separately into
tubes under a 10x ocular lens and stored at −70 °C.

For detecting invasion in the silenced cell lines, myoma discs were
fixed overnight in Zn fixative followed by rehydration and embedding
in paraffin [16].

The discs were cut into 6 µm sections that were stained using
cytokeratin AE1/AE3 (M3515, Dako) and visualized (x5) using a Leica
DMRB microscope DFC 480 camera with the Leica application suite
v3.8 (Leica Microsystems). Invasion areas and depths were assessed
using Image J v1.46o (National Institute of Health, Bethesda, MD,
USA).

2.3. MicroRNA extraction from non-invasive and invasive HSC-3
cells

Total RNA including miRNA was extracted using the miRNeasy
Mini Kit (Qiagen, Valencia, CA) according to the manufacturer’s
protocol. RNA qualities and quantities were checked using a
NanoDrop ND-1000 Spectrophotometer (NanoDrop Technologies,
Wilmington, Delaware, USA) and verified with an Agilent 2100
Bioanalyzer using RNA Nano 6000 and Small RNA Chips according

to the manufacturer’s protocol (Agilent Technologies Inc., Palo Alto,
CA).

2.4. MiRNA microarray hybridizations, image scanning and feature
extraction

Agilent’s SuperPrint G3 Human miRNA microarray System (V16,
Agilent Technologies, Santa Clara, CA, USA) was used following the
manufacturer’s protocol. The slides were washed and scanned in a
high-resolution Microarray Scanner (G2565CA, Agilent Technologies
Inc.). Scanned images were digitized with Agilent Feature Extraction
Software v.9.5.

2.5. Identification of differentially expressed miRNAs in HSC-3 cells

Statistical analyses to identify differentially expressed miRNAs
between non-invasive and invasive cells were done with GeneSpring
GX (v12.0). Text files gained from the Feature Extraction software were
up-loaded into GeneSpring GX, assigning the interpretation para-
meters (“non-invasive” and “invasive”). Experimental qualities of the
arrays were verified, expression signals were normalized at the 75th
percentile of raw signal values and baseline transformation was set at
the median of each array. MiRNAs not detected in any samples were
excluded. To identify significantly altered miRNA expression levels
between non-invasive and invasive cells, the unpaired t-test was used
with an adjusted p value at < 0.05 and fold-change with adjustables.
Quantitative RT-PCR (qRT-PCR) was used to validate some of the
differentially expressed miRNAs.

2.6. Validation of miRNA microarray and differentially expressed
miRNAs by qRT-PCR

For validating the microarray expression results, four over-ex-
pressed (miR-498, miR-940, miR-1207-5p and miR-1238) and two
evenly expressed microRNAs (miR-106b and miR-125b) and the
housekeeping gene U6 (SnRNA U6; Qiagen) were assayed using
Light-Cycler (Roche Applied Science, Mannheim, Germany) and pri-
mers from Qiagen (Valencia, CA) or GeneCopoeia (Rockville, MD,
USA). MiRNAs were selected from the two main KEGG pathways in our
networks, namely “Focal adhesion” (miR-1207-5p and miR-1238) and
“Extracellular matrix (ECM) receptor interaction” (miR-498 and miR-
940). The latter ones were also chosen as candidates to be silenced for
functional assays as they were among the most up-regulated miRNAs
in invasive vs. non-invasive cells (Supplementary table 2), and also
based on previous literature. The remaining RNA samples were pooled
for HSC-3 to perform quantitative reverse transcription-PCR (qRT-
PCR). RNA (300 ng) was converted into cDNA using the miScript
Reverse Transcription Kit (Qiagen) and qRT-PCR was done using a
SYBR Green miScript PCR System (Qiagen) according to the manufac-
turer's instructions. Samples were treated as duplicates. The relative
amounts of miRNA expressions were calculated using the 2−ΔΔCT

method [35].

2.7. Analysis of miR-498 and miR-940 expressions in oral squamous
cell carcinoma (OSCC) samples

The expression of miR-498 and miR-940 was assessed in fresh
tumor specimens (n=12) and a pool of normal oral mucosa samples
(n=12). The tumors located in tongue (7), floor of mouth (2), retro-
molar area (2), and one containing sample from both tongue and floor
of mouth. Tumor grades varied between well differentiated (5),
moderately differentiated (5) and poorly differentiated (2). Briefly,
1 µg of total RNA was converted into specific cDNA derived from
mature microRNAs using TaqMan® microRNA Reverse Transcription
Kit (Applied Biosystems, USA) and quantified in triplicates using the
TaqMan® microRNA assay. The small nucleolar RNA (snoRNA) RNU6
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was used as endogenous control. All assays were obtained from Applied
Biosystems through their Assay-on-Demand service. Data were quan-
tified and analyzed using sequence detection system (version 2.3)
(Applied Biosystems, USA). MicroRNA relative expression in fresh
tumor specimens was normalized against endogenous control and
pooled normal oral mucosa samples (n=12).

2.8. Sample preparation for mass spectrometry

Microdissected sections were treated with 1.6 M urea, followed by
reduction (5 mM dithiothreitol, 25 min at 56 °C), alkylation (14 mM
iodoacetamide, 30 min at room temperature in the dark) and digestion
with trypsin (1:50, w/w). The reaction was stopped with 0.4% formic
acid and desalted using Stage Tips [2,44]. Samples were dried in a
vacuum concentrator and reconstituted in 0.1% formic acid. LC-MS/
MS analysis, protein identification and quantitative analysis are
described in the Supplementary material. Mass spectrometric raw
and msf files are available for download via FTP from the
PeptideAtlas data repository (http://www.peptideatlas.org/
PASS00751/).

2.9. LC-MS/MS analysis

Nanoflow nLC-MS/MS: The mixture of peptides was analyzed on an
ETD-enabled LTQ Orbitrap Velos mass spectrometer (Thermo Fisher
Scientific) connected to a nanoflow liquid chromatography (LC-MS/
MS) instrument by an EASY-nLC system (Proxeon Biosystem) with a
Proxeon nanoelectrospray ion source. Peptides were separated with a
2–90% acetonitrile gradient in 0.1% formic acid using an analytical
PicoFrit Column (20 cmxID75 μm, 5 µm particle size, New Objective)
at a flow rate of 300 nL/min over 80 min. The nanoelectrospray voltage
was set to 2.2 kV and the source temperature was 275 °C. All of the
instrument methods were set up in the data-dependent acquisition
mode. The full scan MS spectra (m/z 300–1600) were acquired in the
Orbitrap analyzer after accumulation to a target value of 1×106. The
resolution in the Orbitrap was set to r=60,000 and the 20 most intense
peptide ions with charge states ≥2 were sequentially isolated to a target
value of 5,000 and fragmented in the linear ion trap using low-energy
CID (normalized collision energy of 35%). The signal threshold for
triggering an MS/MS event was set to 1,000 counts. Dynamic exclusion
was enabled with an exclusion size list of 500, exclusion duration of
60 s, and a repeat count of 1. An activation q=0.25 and activation time
of 10 ms were used [2].

2.10. Protein identification and quantitative analysis

Protein identification and quantitative analysis were performed as
described in [26]. The raw files were processed using the MaxQuant
version 1.2.7.429 and the MS/MS spectra were searched using the
Andromeda search engine [8] against the Uniprot Human Protein
Database (release Jun, 2013; 88,771). The initial maximal allowed
mass tolerance was set to 20 ppm for precursor and then set to 6 ppm
in the main search and to 0.5 Da for fragment ions. Enzyme specificity
was set to trypsin with a maximum of two missed cleavages.
Carbamidomethylation of cysteine (57.021464 Da) was set as a fixed
modification, and oxidation of methionine (15.994915 Da) and protein
N-terminal acetylation (42.010565 Da) were selected as variable
modifications. The maximum PEP was set to 1, and the minimum
peptide length was set to 7 amino acids. Only proteins with at least two
peptides (thereof one uniquely assignable to the respective protein
group) were considered as reliably identified.

Based on Hubner [20], label-free protein quantification was
switched on, and unique and razor peptides were considered for
quantification with a minimum ratio count of 1. For protein quantifica-
tion, LFQ was set and the ‘requantify’ and ‘match between runs’ with
2 min of time window functions were enabled. At least two quantitation

events were required for a quantifiable protein.
The false discovery rates (FDRs) of peptide and protein were both

set to 0.01. Only proteins with at least two peptides (thereof one
uniquely assignable to the respective protein group) were considered as
reliably identified.

Bioinformatic analyses were performed using Perseus v.1.2.7.429,
which is available in the MaxQuant environment. First, reverse and
only identified by site entries were excluded from further analysis.
Label-free quantification was performed using the normalized spectral
protein intensity (LFQ intensity). Data obtained from one experiment
from each cell line and condition (non-invading and invading) were
described as HSC_A or C groups and the data were converted into log2.
The protein ratios were calculated from the median of all normalized
protein intensity.

2.11. Pathway enrichment analyses & combining proteomic and
miRNA data

The differences of expression between non-invasive and invasive
cells were the focus of this study. The proteomics enrichment for KEGG
pathways and network files for proteins with statistically significant
fold-changes were created using the Integrated interactome system
(IIS; [5]. The proteomic networks were built by setting a logFC cut off
to ≤−0.6 for the down-regulated proteins and to ≥0.6 for the up-
regulated ones [5]. For miRNA pathway enrichment analyses, miRNAs
with statistically significant fold-changes between non-invasive and
invasive cells were inserted into mirPath 2.0 [58] and filtered by a list
of target proteins expressed in the equivalent myoma invasion assay
with statistically significant fold-changes.

Finally, miRNA and proteomic data were combined and the net-
work visualized in Cytoscape v2.8.3 [50,52]. MiRNAs were assigned
only to one pathway and target gene based on their highest p-values.
Interesting Top KEGG pathways were selected based on the following
criteria: 1) P value < 0.05, 2) more than three miRNAs or proteins
assigned in a cluster, 3) pathways associated with specific non-cancer
related diseases or viral conditions were excluded.

2.12. Silencing candidate miRNAs in OTSCC cells

Lentiviral miRNA inhibitors for hsa-miR-498 and -940 and the
control (HmiR-AN0541-AM03, HmiR-AN0845-AM03 and HmiR-
AN0001-AM03; GeneCopoeia Inc., Rockville, MD, USA) were pro-
duced in 293Ta packaging cells using the Lenti-Pac HIV expression
packaging kit (GeneCopoeia Inc., Rockville, MD, USA) according to the
manufacturer's instructions. Two days before transfection 1.4×106

293Ta cells were plated on 10 cm plates. Lentiviral particles were
harvested 48 h later and stored in −70 °C.

HSC-3 and SCC-15 cells were plated at 9×104/well on 24-well
plates 24 h prior to transduction. The cells were transduced by using
370 µl of collected lentiviral medium in 10% FBS-DMEM (500 µl)
supplemented with 5 µg/ml Polybrene (Sigma) following the manu-
facturer´s protocol (GeneCopoeia Inc., Rockville, MD, USA).
Hygromycin (5 µg/ml) selection was carried out over two weeks to
establish stably silenced cell lines.

2.13. Cell viability and proliferation assays

Cells were plated on 96-well plates (5×103 cells/well). Cell lines
were seeded on eight wells and assays performed 48 h later. An MTT
assay was used to compare cell viability and a BrdU assay was used to
assess proliferation between silenced HSC-3 and SCC-15 cell lines and
the corresponding control cells. MTT (Cell growth determination kit,
Sigma-Aldrich, St. Louis, Missouri, USA) and Cell proliferation ELISA,
BrdU, assays (Roche, Mannheim, Germany) were performed according
to the manufacturer's protocol. Absorbances were read using a Victor3V
1420 Multilabel Counter (Perkin Elmer Life & Life Technologies,
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Waltham, MA, USA).

2.14. Horizontal cell migration assay

Horizontal migration assays were performed to assess the effect of
miR-498 and miR-940 silencing on HSC-3 and SCC-15 cell migration.
HSC-3 cells were plated at 9×104/well (48 h prior to assay) and SCC-15
cells at 2.5×105/well (24 h prior to assay) on 24-well plates. An empty
area (a wound) was created amid confluent cells by removing cells
using a sterile 1000 µl pipette tip (Sartorius, Göttingen, Germany).
Cells were washed twice with 1×PBS, and kept in 1% FBS-DMEM
during migration. Migration was documented every 3 h until wound
closure at 12 h for HSC-3 and continued at 15, 24, 27, 30 and 48 h for
SCC-15 cells using an EVOS fl microscope (Advanced Microscopy
Groups, Mill Creek, WA, USA). Each cell line was treated in triplicate.

Statistical analyses for in vitro assays were calculated using one-
way ANOVA followed by Tukey's post hoc test using IBM SPSS
Statistics v21.0 (IBM Corp. Armonk, NY, USA).

2.15. Search for putative target gene for candidate miRNA

Since miR-940 and Macrophage-capping protein (CAPG) pair
seemed the most promising candidate miRNA- target gene pair based
on bioinformatics (please see the Results section) and recent literature
[9,11,12,30,60,66], our aim was to verify if CAPG expression was
affected by miR-940 silencing. As the original expression differences
were observed in invading HSC-3 cells, two approaches in which the
silenced anti-miR-940 HSC-3 cells were either invading or migrating
were used to study the miR-940 - CAPG interaction. Total RNA was
isolated for qRT-PCR and protein for Western blot analyses from both
study set-ups.

Firstly, invasive anti-miR-940 HSC-3 cells and corresponding
controls (anti-miR-ctrl) were captured from cryosections produced in
the myoma invasion assay using laser microdissection as described
before. Myoma tissue surrounding the invasive cancer cells was
captured at the same time and used as control. Total RNA was isolated
using RNeasy Mini Kit (Qiagen) and protein with elution buffer
(50 mM Tris-Cl pH 7,5; 10 mM CaCl2·2H2O; 150 mM NaCl; 0,05%
Brij 35) with an overnight incubation at +4 °C, followed by a
centrifugation at 14000 rpm for 10 min at +4 °C.

Secondly, we performed a migration assay on myogel coated [47]
six well plates and compared CAPG expression between migrating and
non-migrating anti-miR-940 and anti-miR-ctrl HSC-3 cells. Cells were
plated on 6 well plates (7.5×105 cells/well) in triplicates and wounds
were created as presented above. Migration was followed microscopi-
cally in 0.5%FBS-DMEM and cells were harvested when they were all
migrating (at 5 h). RNA and protein were isolated using TRIzol®
reagent (Thermo Scientific) according to manufacturer's instructions.

From the RNA samples cDNA was synthesized using SuperScript™
First-strand synthesis system for RT-PCR (Invitrogen). FastStart
Universal SYBR Green Master (ROX) –kit (Roche) was used in qRT-
PCR, reactions run in the CFX96 Real-Time System (BioRad) and
results analyzed in CFX Manager v3.0 -software (BioRad). GAPD was
used as a reference gene, the PCR primers (available upon request)
were ordered from Sigma. The relative amounts of CAPG expressions
were calculated using the 2-ΔΔCT method [35].

For protein analysis a total of 13 µg of protein was loaded into each
well on 12%SDS-PAGE (BioRad) under reducing conditions. Proteins
were transferred onto Immobilon-P membranes (Immobilon) and
unspecific binding was blocked with 5% non-fat dry milk solution.
The primary antibody used was monoclonal CAPG (ab89511; Abcam;
1:500 dilution) and the secondary antibody was biotinylated poly-
clonal rabbit anti-mouse (1:1000, Dako). Ponceau staining was used to
as a loading control (Sigma; data not shown). Pierce ECL Plus Western
blotting substrate (Thermo Scientific) and LAS3000 Lite equipment
were used for visualization.

3Results

3.1. MiRNA expression signatures between non-invasive and invasive
HSC-3 cells

Significant differences in miRNA expression profiles in non-inva-
sive vs. invasive HSC-3 cells were identified (Fig. 1). Among the 1392
miRNAs present on the array chip, 95 miRNAs differed in HSC-3
(Supplementary Table 2). The majority of miRNAs were up-regulated

Fig. 1. MicroRNA expression profiles for HSC-3 (A & B) cells and for fresh
oral squamous cell carcinoma specimens (C). Results are shown in BoxWhisker
plot. On the X-axis, numbers 1–4 indicate non-invasive (N) cells (4 samples collected)
and their corresponding invasive cells (IN) are indicated as numbers 5–8. Two clusters
were formed according to similar miRNA expressions by clustering factors given in the
GeneSpring GX. Y-axis indicates logarithmic scales (log2) for the miRNA expression
intensities. Expressions of six selected miRNAs (miR-106b, miR-1207-5p, miR-1238,
miR-125b, miR-498 and miR-940) were measured by qRT-PCR (B). MiR-498 and miR-
940 expressions were analyzed from fresh tumor specimens of 12 patients (1–12) and
pooled normal oral mucosa samples. Specimens 1 and 9 were collected from floor of
mouth, 2, 4–5, 8 and 10–12 from tongue, 3 and 7 from retromolar area and specimen 6
was collected from tongue and floor of mouth. MicroRNA relative expression in fresh
tumor specimens was normalized against endogenous control and pooled normal oral
mucosa samples (n=12) (C). Patient numbers and tumor grades are given below the x-
axis (WD = Well differentiated i.e. low grade; MD = Moderately differentiated i.e.
intermediate grade and PD = Poorly differentiated i.e. high grade). Data for each miRNA
are shown as the fold expression (calculated as 2−ΔΔCT ; [34]) relative to SnRNA U6.
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and only let-7e and miR-19a were significantly down-regulated in
invasive cells (adjusted p-value < 0.05 and fold change ≤0.5).

3.2. Validation of miRNA expressions by qRT-PCR in HSC-3 cells and
in OSCC samples

The qRT-PCR results for the 6 miRNAs were compatible with the
microarray results after normalization with housekeeping gene SnRNA
U6 (Fig. 1B). MiR-498 expression fold changes in HSC-3 were higher in
qRT-PCR than in the microarray results.

The miR-498 and miR-940 expressions were surveyed also from
OSCC and normal oral mucosa samples. MiRNA expressions were
slightly increased in most OSCC samples (9 and 8 out of 12 for miR-
498 and miR-940, respectively), but clear expression profiles could not
be distinguished (Fig. 1C).

3.3. Mass spectrometry of HSC-3 cells

In HSC-3 cells a total of 354 proteins were identified and
quantitated. Exogenous contaminants, protein duplicates and proteins
that could not be quantified or were not exclusively expressed in either
cell population were excluded from further analyses. After filtering, 321
proteins were present in HSC-3 cells and of these 31 were exclusive for
non-invasive and 190 for invasive cells (Supplementary Table 3).

3.4. Protein and miRNA networks of HSC-3 cells

Proteins and miRNAs associated with invasion were annotated in
specific KEGG pathways. The most striking observation was the
expression profiles as the majority of proteins, miRNAs and their
interactions were up-regulated (Fig. 2). Of the 67 proteins in the HSC-3
network, 66.7% were up-regulated, 15.0% were down-regulated and
18.3% were non-regulated. Pathway analyses annotated the majority of
these proteins to “Focal adhesion” (Supplementary Table 4). The HSC-
3 network contained 53 miRNAs, which were all up-regulated. Of these
miRNAs 77.8% were annotated to “ECM-receptor interaction”
(Supplementary Table 5).

At last the expressions of candidate miRNAs, miR-498 and miR-
940, and their target proteins in invasive HSC-3 cells were compared.
Altogether thirteen target proteins were paired with miR-498 and
twelve with miR-940 in invasive HSC-3 s cells in the miRNA – protein
network compiled in Interactive interactome system (IIS; [5]
(Supplementary Table 6). Of these only one miRNA – target protein
pair, namely miR-940 – Macrophage-capping protein (CAPG), had
inverted expression pattern (Supplementary Table 6). Overall, CAPG
was one of the few proteins that was down-regulated in invasive HSC-3
cells.

3.5. Cell viability, proliferation and horizontal migration assays
using silenced OTSCC cell lines

MiR-498 and mir-940 were selected for functional assays because
they were among the most up-regulated miRNAs in invasive cells and
have also been implicated in other cancers [14,43,59], but they have
not been studied in tongue cancer. Moreover, they were involved in the
enriched “ECM-receptor interaction” pathway, which consists of a
complex mixture of macromolecules controlling cellular activities such
as adhesion, migration and apoptosis. Therefore, to understand the
role of the selected miRNAs, two OTSCC cell lines were used: HSC-3
(highly invasive) and SCC-15 (less invasive).

First, cell viability and proliferation were studied in miRNA-
silenced cells. Anti-miR-498 and -940 silencing did not affect HSC-3
proliferation or viability (Fig. 3A-B). However viability was increased in
the less invasive SCC-15 cells treated with anti-miR-498 compared to
anti-control (Fig. 3C). Both viability and proliferation were even more
increased in SCC-15 treated with anti-miR-940 compared to anti-miR-

498 and anti-control (Fig. 3C-D).
For HSC-3 migration, a decreased trend was observed in anti-miR-

498 and anti-miR-940 compared to anti-control (Fig. 3E-F). Wound
closure was slower in SCC-15 than in HSC-3 cells. Migration was
reduced significantly in SCC-15 anti-miR-498 compared to anti-miR-
940 and anti-control, and migration was fastest in anti-miR-940
(Fig. 3G-H).

3.6. Myoma invasion using silenced OTSCC cell lines

Next the 3D invasion of silenced cells was analyzed. Invasion depth
was decreased in HSC-3 anti-miR-940 compared to anti-miR-498 and
anti-control (p < 0.001 for both), and invasion area was reduced in
anti-miR-498 and anti-miR-940 compared to anti-control (p < 0.001
for both) (Fig. 4A-C). In SCC-15 anti-miR-498 invasion depth was
decreased compared to anti-miR-940 and anti-control (p < 0.05 and p
< 0.001, respectively), and invasion area was reduced compared to
anti-miR-940 (p < 0.05) (Fig. 4D-F).

3.7. Search for target genes for candidate miR-940

As assessed using qRT-PCR no difference was observed in the
expression of CAPG between the invasive anti-miR-940 HSC-3 cells
and control samples captured from the myoma invasion assay. The
average relative fold changes were 0,947 and 0,935 for anti-miR-940
and control, respectively. No difference was observed in CAPG expres-
sion of migrating cells either, the fold changes relative to non-migrating
cells being 1,760 for miR-940 and 1,860 for miR-control.
(Supplementary Fig. 2A).

Unfortunately the protein yield from the laser microdissected
samples was too low for successful Western blot analysis on CAPG
expression. However, the results from Western blot of migrating cells
were consistent with the qPCR finding with no difference in CAPG
protein levels between anti-miR-940 and anti-miR-control HSC-3 cells
(Supplementary Fig. 2B).

4Discussion

In this study, miRNAs, proteins and related pathways associated
with invasion of the highly invasive OTSCC cell line HSC-3 were
overviewed. Marked differences in expression patterns, fold-changes
and interactions were observed between invasive and non-invasive
cells. Interestingly, expression was mostly up-regulated in HSC-3
invasive cells. Though miRNAs are often down-regulated in cancer,
up-regulated or increased expressions have been observed related to
cancer metastases [1]. Indeed, two recent review articles outlined
several miRNAs to be up-regulated in neck squamous cell carcinomas
(HNSCC) [38] and/or HNSCC metastases [23], coinciding with our
results. Surprisingly, comparison of candidate miRNAs, miR-498 and
miR-940, and their target protein expressions revealed only one pair
(miR940 – CAPG) with inversed regulation, while the other miRNA –

target protein pairs were up-regulated in parallel manner. Although
miRNAs mostly down-regulate target protein expression, there is some
evidence of miRNAs also increasing the expression of their target genes
[61,57]). Future research will reveal, if this applies in HSC-3 invasion.

Eight KEGG pathways were annotated to networks in invasive HSC-
3 cells and hence considered central in invasion. The majority of
proteins and miRNAs (highest statistical significances) were annotated
to processes of “Focal adhesion”, “ECM-receptor interaction” and
“Regulation of actin cytoskeleton.” These functions of cell attachment
and movement have also been previously annotated in invasion and
metastasis processes in lung adenocarcinoma [19] and in muscle
invasive bladder cancer [4]. Interestingly, up-regulated proteins in
buccal carcinoma were also annotated into “Focal adhesion”,
“Regulation of actin cytoskeleton” and “Cell cycle” [46].

Recently Xiao et al. [63] performed a comparative proteomic study
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to discover expression differences between epithelial dysplasia and
normal epithelia from 19 patients. Ten of the 32 differentially
expressed proteins (Annexin A1, Keratin 1 and S100 calcium-binding
protein A8, Myosin light chain 1/3, Cardiac muscle alpha actin 1
proprotein, Putative uncharacterized protein, Tenascin, Manganese-
containing superoxide dismutase, Gelsolin isoform b and Myosin-10)
were also detected and similarly expressed in the invasive vs. non-
invasive HSC-3 cells in our 3D myoma invasion assay. Our results not
only support the previous research, but also define and implicate a
possible role for these proteins specifically in HSC-3 invasion.

Two miRNAs that were up-regulated in invasive vs. non-invasive
HSC-3 cells were chosen for functional assays of two OTSCC cell lines.
Silencing of miR-498 and miR-940 had effects on both of these cell
lines, but there were differences between the less and more aggressive
cells in the 2D and 3D assays. Importantly, invasion depth and/or area
were significantly reduced in both silenced OTSCC cell lines, showing
the relevance of these miRNAs particularly in invasion in the 3D model.
However, miRNA and cell line specific differences were observed as
anti-miR-940 decreased depth of invasion in HSC-3 but not in SCC-15
cells, and anti-miR-498 reduced invasion depth in SCC-15 while
showing no effect on HSC-3. Invasion area was decreased with both
miRNA silencing in HSC-3, while in SCC-15 only anti-miR-498 had a
lower invasion area compared to anti-miR-940. In general, miRNA
silencing had a greater effect on the less invasive SCC-15 cells than on
the more invasive HSC-3 cells. Silencing had no significant effect on
migration, cell viability or proliferation of HSC-3 cells. In contrast, in
SCC-15 anti-miR-498 and anti-miR-940 increased the viability, and

anti-miR-940 pormoted the proliferation of the cells. This difference
between these cell lines might be explained by the fact that HSC-3, as a
highly aggressive cell line, may not be that susceptible to such miRNA
induced changes.

To validate the significance of miR-498 and miR-940 in OSCC,
additional in vivo research is necessary. Here we analyzed the two
miRNAs’ expressions from a group of OSCC and normal mucosa
samples, but evident expression profiles for miRNAs were not ob-
served. To have a better understanding on these miRNAs in OSCC in
vivo, further research needs to be performed on bigger sample sizes
and more detailed descriptions on the patients. For instance it would
be of interest to see, if higher miRNA expressions correlate with
increased invasion or cancer aggressiveness. In addition, as part of the
future in vivo studies it would be prominent to analyze and compare
the miRNA expressions not only from solid tumors, but also from
related metastases, since miRNAs were up-regulated in invasive vs.
non-invasive cells in the principal in vitro assay.

Both miR-498 and miR-940 have been implicated in the tumor-
igenesis of several cancers. MiR-498 is among the miRNAs up-
regulated by hypoxia in oral SCC [18]. Furthermore miR-498 is
down-regulated in stage II colon cancer [14,49] and its high expression
correlates with longer survival in stage II colon cancer [49]. On the
contrary, decreased miR-498 expression was detected in two studies on
ovarian cancer [7,32], where it associates with poor overall survival and
prognosis of patients [7] or controls cell proliferation by targeting
FOXO3 [32]. Decreased miR-498 expression is observed also in non-
small lung cancer correlating with tumor progression [59]. In vitro up-

Fig. 2. Networks on protein and miRNA interactions and KEGG annotations in HSC-3 cell invasion. Proteins and miRNAs with statistically significant fold-changes
between non-invasive vs. invasive cells or exclusive expressions were compiled into networks to visualize their interactions and also to annotate them into KEGG processes. Processes are
presented in their statistically significant order starting from the left with Focal adhesion with the highest statistical significance. Proteins and miRNAs in the middle of the networks
were not annotated into any cancer related KEGG processes. The sizes of the nodes depict fold-changes in expressions between non-invasive vs. invasive cells and the colors indicate
expression patterns.
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regulation of miR-498 in SW480 colon cancer reduces cell proliferation
and increases the number of cells in G2-M phase [14]. The above
results are in line with our invasion assays. Nonetheless, miR-498 is
highly expressed in retinoblastoma [67] and up-regulated in medullary
thyroid carcinoma metastatic tumors [48] and in triple negative breast
cancer, where it promotes cancer cell proliferation via down-regulation
of BRCA1 [37]. These data underline the multifaceted role of miR-498
in cancer. Regarding the functional side, miR-498 has been shown to
down-regulate the human epidermal growth factor receptor 2 (HER2)–
pathway in breast cancer [28], and in ovarian cancer it mediates the
1,25(OH)2D3's (calcitriol) effect on tumor suppression and apoptosis
[24,25].

MiR-940 has not been reported in tongue cancer before, and
information in other cancers is still sparse and contradictory.
Prostate cancer cells treated with miR-940 in vitro migrated and
invaded more slowly than control cells and conversely, inhibition of
miR-940 increased invasion [43]. In pancreatic carcinoma miR-940
overexpression increases cell proliferation and invasion via GSK3β and
sFRP1 [64], while in gastric cancer miR-940 induces cancer invasion
through ZNF24 down-regulation [33]. In another study on gastric
cancer miR-940 levels were down-regulated in patient plasma, cancer
tissue samples and cancer cell lines and biomarker role was suggested
for miR-940 [34]. At the same time down-regulation of miR-940 was
detected in hepatocellular carcinoma, where it induced cell prolifera-
tion by targeting estrogen-related receptor gamma [65], and in
pancreatic ductal adenocarcinoma, where it correlated with poor
patient survival and promoted cell proliferation via targeting Myeloid
differentiation primary response gene (88) [54]. Another study showed
miR-940 decreased human telomerase-immortalized retinal pigmented

epithelial (RPE1) cell migration [3]. Additionally, miR-940 in naso-
pharyngeal carcinoma inhibits cancer cell proliferation, arrests the cell
cycle, promotes apoptosis and inhibits xenograft tumor formation [36].
Our results indicated that SCC-15 anti-miR-940 cells were the fastest
to migrate. However, silencing miR-940 in HSC-3 cells reduced
invasion depth and area, but in SCC-15 cells anti-miR-940 did not
have similar effect. Differences in results of miRNA silencing are likely
due to cancer and cell line specific characteristics.

The differences between the migration and invasion assay results
may be explained by the experimental matrixes as invasion was studied
on a 3D myoma organotypic model, which closely mimics the tumor
microenvironment, and the migration assay was performed on plain
plastic well plates. It is noted that cell migration on plastic surfaces
does not thoroughly replicate cell behavior in vivo. However to date
there are no solid options for examining migration in in vitro
conditions that would ideally represent those of in vivo situation
[27]. Horizontal cell migration assay was chosen for this study, as it
is a generally used and accepted method to examine collective cell
migration in cellular monolayer [41]. It is commonly used also in
studying head and neck squamous cell carcinoma migration and
adaptations of this method are also applied to study cell invasion
[21]. The method is easy to perform, it doesn’t require any special
equipment, and it provides high throughput data and enables live
imaging [31,41].

Meanwhile it is also recognized that at the present the actual
function of these two miRNAs is yet to be determined in OTSCC
invasion, and thus the current results should be considered with
moderation. Indeed besides computationally predicted pathways in
the current work, it is essential to find and establish specific target

Fig. 3. The effect of miR-498 ormiR-940 silencing onHSC-3 or SCC-15 viability, proliferation andmigration.HSC-3 control (antictrl), and miR-498 (anti-miR-498) and
miR-940 (anti-miR-940) silenced cells’ viability defined using MTT assay (A), proliferation determined using BrdU assay (B). SCC-15 antictrl, anti-miR-498 and anti-miR-940 cells’
viability (C) and proliferation (D). Cell migration was followed for 12 h in HSC-3 s and 48 h in SCC-15 s and pictures were taken every three hours until wound closure (except for the
last time point for SCC-15 at 48 h) (E-H). Pictures of HSC-3 antictrl, anti-miR-498 and anti-miR-940 migration at time points 0 h, 6 h and 12 h (E). Percentual reduction in HSC-3
antictrl, anti-miR-498 and anti-miR-940 migration area at every time point (F). SCC-15 antictrl, anti-miR-498 and anti-miR-940 migration at time points 0 h, 15 h and 48 h (G).
Percentual reduction in SCC-15 antictrl, anti-miR-498 and anti-miR-940 migration at every time point (H). The wound area at 0 h was set to 100% (F-H), and percentual rate of
migration was calculated and compared between cell lines. Assays were performed in sextuples for each cell line.*P < 0.05; **P < 0.01; ***P < 0.001.
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proteins for miR-498 and miR-940, and to discover the particular
molecular mechanisms behind their effects. In fact, disturbed miRNA
expression may be caused by structural genetic alterations (chromo-
somal abnormalities, mutations or single nucleotide polymorphisms)
either in miRNA coding sequences or in the genes transcribing for the
components that participate in miRNA biogenesis [22,55,62].
Disruptions in epigenetic regulation (DNA methylation/hypomethyla-
tion) or regulators (other miRNAs or transcription factors) may also
explain abnormalities in miRNA expressions in cancerous processes
[22,55,62].

Based on the bioinformatic results, and because miR-940 silencing
had more extensive effects in vitro than miR-498 silencing, the
interaction between miR-940 and CAPG was further explored. CAPG
was a favorable candidate, for it has a role in actin filament reorganiza-
tion and cell movement. Recently, CAPG has also shown promise as a

potential biomarker for breast cancer [9] and breast cancer metastasis
in bone [60]. CAPG silencing by siRNA was shown to decrease
proliferation, invasiveness and metastasis of a prostate cancer cell line
DU 145 [30], and CAPG has been implicated also in ovarian cancer
migration and/or invasion [11,12,66]. However, our current in vitro
results indicated that, miR-940 does not regulate CAPG expression in
HSC-3 cells invasion or migration in the present study set-ups and
under these circumstances. Hence, further research is fundamental in
establishing the function of both candidate miRNAs by elucidating the
molecular mechanisms behind their effects and to deepen the under-
standing of miRNAs’ effects via very necessary in vivo research.

The miRNAs are redundant and pleiotropic nature of miRNAs
should also be remembered when interpreting results. One miRNA may
regulate the expression of many target genes and hence different
biological processes [1]. Concurrently, a gene may be regulated

Fig. 4. The effect of miR-498 or miR-940 silencing on HSC-3 or SCC-15 cell invasion. Sections of HSC-3 control (antictrl), and miR-498 (anti-miR-498) and miR-940 (anti-
miR-940) silenced cells in the myoma organotypic model were stained for cytokeratin AE1/AE3 (A). Maximum invasion depths of HSC-3 antictrl, anti-miR-498 and anti-miR-940 (B),
Maximum invasion areas of HSC-3 antictrl, anti-miR-498 and anti-miR-940 (C), Sections of SCC-15 antictrl, anti-miR-498 and anti-miR-940 in the organotypic myoma model (D).
Maximum invasion depths of SCC-15 antictrl, anti-miR-498 and anti-miR-940 (E), Maximum invasion areas of SCC-15 antictrl, anti-miR-498 and anti-miR-940 (F).*P < 0.05; ***P <
0.001.
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synergistically by several miRNAs [1], and in pathological processes the
function of more than one miRNA may be disrupted and/or involved.
The great number of regulators and complexity of their interrelations is
emphasized in our HSC-3 invasion network results. Furthermore
miRNA results are not readily generalized, for miRNA expressions
and their effects may be cell or tissue specific or tumor microenviron-
ment dependent [1,55]. All of these factors contribute to the intricacy
of cancer development and invasion. Finally, it is important to verify
the miRNA functional and phenotypic effects in vivo in an appropriate
genetic model system. These subjects are to be addressed and pursued
in detail in later research. The focus will be in elucidating miRNAs’
function and producing consistent in vivo evidence for miRNAs’ role in
OTSCC in model organism and in patient material. These results will
further promote assessing and establishing the significance and
feasibility of the two miRNAs in potential future clinical applications
such as diagnostics, prognostics and treatment.

Taken together, the pathway enrichment analyses, based on the
miRNAs and proteins, annotated “Focal adhesion”, “ECM-receptor
interaction” and “Regulation of actin cytoskeleton” processes to be
involved in the HSC-3 invasion in vitro. Focal adhesions, which bring
together actin cytoskeleton and extracellular matrix (ECM) compo-
nents, potentiate ECM-receptor related interactions by participating
e.g. in cell attachment, motility and migration [13,29,40]. Those
elements are all essential in cancer invasion. Furthermore, we observed
that at least miR-498 and -940 have a putative role in 3D invasion by
both more and less aggressive OTSCC cells. Yet, additional research is
necessary to establish and understand the miR-498 and miR-940
functions and related molecular mechanisms involved in OTSCC
invasion. From the future perspective, identifying pathways and
various regulatocrs of oral cancer invasion is important for developing
targeted therapies against aggressive oral carcinomas, including
OTSCC.
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